
OS/390

C/C++
Programming Guide

SC09-2362-04

IBM

OS/390

C/C++
Programming Guide

SC09-2362-04

IBM

Note!
Before using this information and the product it supports, read the information in “Notices” on page 867.

Fifth Edition (September 1999)

This edition applies to version 2 release 8 modification 0 of OS/390 C/C++ (5647-A01) and to all subsequent
releases and modifications until otherwise indicated in new editions. This edition replaces SC09-2362-03. Make sure
that you use the correct edition for the level of the program listed above. Also, ensure that you apply all necessary
PTFs for the program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390
Library page at: http://www.s390.ibm.com/os390/bkserv.

IBM welcomes your comments. You can send your comments in any one of the following methods:
v Electronically to the network ID listed below. Be sure to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)

v By FAX, use the following number:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

v By mail, to the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR
1150 Eglinton Avenue East
Toronto, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to
your comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Introduction 1

Chapter 1. About This Book 3
Who Should Use This Book 3
A Note about Examples. 3
IBM OS/390 C/C++ and Related Publications 4
Hardcopy Books 9
Softcopy Books 9
Softcopy Examples 9
OS/390 C/C++ on the World Wide Web 10
C/C++ News... 10
How to Read the Syntax Diagrams 11

Chapter 2. About IBM OS/390 C/C++ 15
Changes for Version 2 Release 8 15
The C/C++ Compilers 15

The C Language 15
The C++ Language 15
Common Features of the OS/390 C and C++
Compilers 16
OS/390 C Compiler Specific Features 17
Features That Are Specific to the OS/390 C++
Compiler 17

Utilities 18
Class Libraries 18

Class Library Source 19
The Debug Tool 19
OS/390 Language Environment 20
The Program Management Binder 21
OS/390 UNIX System Services (OS/390 UNIX) 21
OS/390 C/C++ Applications with OS/390 UNIX
C/C++ Functions 23
Input and Output. 23

I/O Interfaces 23
File Types 24
Additional I/O Features 25

The System Programming C Facility 25
Interaction with Other IBM Products 25
Additional Features of OS/390 C/C++ 27

Part 2. Input and Output 29

Chapter 3. Introduction to C and C++
Input and Output 31
Types of C and C++ Input and Output 31

Text Streams 31
Binary Streams 32
Record I/O 32

Chapter 4. Understanding Models of C
I/O 33
The Record Model for C I/O 33

Record Formats 33

The Byte Stream Model for C I/O 42
Mapping the C Types of I/O to the Byte
Stream Model 42

Chapter 5. Using the I/O Stream Class
Library in C++ 45
Advantages to Using the C++ I/O Stream Class
Library 45
Predefined Streams for C++ 45
How C++ I/O Streams Relate to C Streams . . . 46
Specifying File Attributes 46
Related Information 46

Chapter 6. Opening Files 47
Prototypes of functions 47
Categories of I/O. 48
Specifying What Kind of File to Use 50

OS Files 50
HFS Files 50
VSAM Data Sets 50
Terminal Files 50
Memory Files and Hiperspace Memory Files 51
CICS Data Queues 51
OS/390 Language Environment Message File 52
How to Specify RECFM, LRECL, and BLKSIZE 52
fopen() Defaults 54
DDnames 56

How OS/390 C/C++ Determines What Kind of
File to Open 57
MAP 0010: Under TSO, MVS Batch, IMS —
POSIX(ON) 58
MAP 0020: Under TSO, MVS Batch, IMS —
POSIX(OFF) 62
MAP 0030: Under CICS. 65

Chapter 7. Buffering of C Streams. . . 67

Chapter 8. Using ASA Text Files . . . 69
Example of Writing to an ASA File 69

CBC3GAS1 69
ASA File Control 70

Chapter 9. OS/390 C Support for the
Double-Byte Character Set 73
Opening Files 74
Reading Streams and Files 74
Writing Streams and Files 75

Writing Text Streams. 76
Writing Binary Streams 77

Flushing Buffers 77
Flushing Text Streams 78
Flushing Binary Streams 78
ungetwc() Considerations 78

Setting Positions within Files 79

© Copyright IBM Corp. 1996, 1999 iii

||

Repositioning within Text Streams 79
Repositioning within Binary Streams 79
ungetwc() Considerations 80

Closing Files 80
Manipulating Wide Character Array Functions 81

Chapter 10. Using C and C++ Standard
Streams and Redirection 83
Default Open Modes 84
Interleaving the Standard Streams I/O with
sync_with_stdio() 85
Interleaving the Standard Streams I/O without
sync_with_stdio() 86
Redirecting Standard Streams. 88
Redirecting Streams from the Command Line 88

Using the Redirection Symbols 89
Assigning the Standard Streams 90
Using the freopen() Library Function 90
Redirecting Streams with the MSGFILE Option 90

MSGFILE Considerations 90
Redirecting Streams under OS/390 92

Under MVS Batch 92
Redirecting Streams under TSO 94
Redirecting Streams under IMS 94
Redirecting Streams under CICS 94

Passing C and C++ Standard Streams Across a
system() Call 95

Passing Binary Streams 95
Passing Text Streams. 96
Passing Record I/O Streams 98

Using Global Standard Streams 98
Command Line Redirection 100
Direct Assignment 101
freopen(). 101
MSGFILE() Run-Time Option 101
fclose() 101
File Position and Visible Data. 101
C++ I/O Stream Class Library 101

Chapter 11. Performing OS I/O
Operations 103
Opening Files 103

Using fopen() or freopen() 103
Generation Data Group I/O 107
Regular and Extended Partitioned Data Sets 110
Partitioned and Sequential Concatenated Data
Sets 111
In-stream Data Sets 113
SYSOUT Data sets 113
Tapes 114
Multivolume Data Sets 115
Striped Data Sets 115
Other Devices 116
fopen() and freopen() Parameters 116

Buffering 120
Multiple Buffering 120

DCB (Data Control Block) Attributes 121
Reading from Files 123

Reading from Binary Files 124
Reading from Text Files. 124

Reading from Record I/O Files 124
Writing to Files 125

Writing to Binary Files 125
Writing to Text Files 126
Writing to Record I/O Files 129

Flushing Buffers 129
Updating Existing Records. 130
Reading Updated Records 130
Writing New Records 130
ungetc() Considerations. 131

Repositioning within Files 132
ungetc() Considerations. 133
How Long fgetpos() and ftell() Values Last 133
Using fseek() and ftell() in Binary Files . . . 133
Using fseek() and ftell() in Text Files (ASA and
Non-ASA) 135
Using fseek() and ftell() in Record Files . . . 135
Porting Old C Code That Uses fseek() or ftell() 135

Closing Files 136
Renaming and Removing Files 136
fldata() Behavior 136

Chapter 12. Performing Hierarchical
File System I/O Operations 139
Creating Files 139

Regular Files 139
Link and Symbolic Link Files 140
Directory Files 140
Character Special Files 140
FIFO Files 140

Opening Files 140
Using fopen() or freopen() 141

Reading from HFS Files 145
Opening and Reading from HFS Directory Files 145
Writing to HFS Files 145
Flushing Records 146
Setting Positions within Files 146
Closing Files 146
Deleting Files 147
Pipe I/O. 147

Using Unnamed Pipes 147
Using Named Pipes 149
Character Special File I/O 153

Low-Level OS/390 UNIX I/O 153
Example of HFS I/O Functions 153

CBC3GHF3 154
fldata() Behavior 156

Chapter 13. Performing VSAM I/O
Operations 159
VSAM Types (Data Set Organization) 159

Access Method Services. 160
Choosing VSAM Data Set Types 160

Keys, RBAs and RRNs 162
Summary of VSAM I/O Operations 163

Opening VSAM Data Sets 165
Using fopen() or freopen() 165
Buffering 169

Record I/O in VSAM 169
RRDS Record Structure 170

iv OS/390 V2R8.0 C/C++ Programming Guide

Reading Record I/O Files 170
Writing to Record I/O Files 171
Updating Record I/O Files 172
Deleting Records 173
Repositioning within Record I/O Files 174
Flushing Buffers 176
Summary of VSAM Record I/O Operations 176

VSAM Record Level Sharing 177
Error Reporting 178

Text and Binary I/O in VSAM 179
Reading from Text and Binary I/O Files . . . 179
Writing to and Updating Text and Binary I/O
Files 179
Deleting Records in Text and Binary I/O Files 180
Repositioning within Text and Binary I/O Files 180
Flushing Buffers 182
Summary of VSAM Text I/O Operations . . . 182
Summary of VSAM Binary I/O Operations 183

Closing VSAM Data Sets 185
VSAM Return Codes 185
VSAM Examples 185

KSDS Example 185
RRDS Example 194

fldata() Behavior 197

Chapter 14. Performing Terminal I/O
Operations 199
Opening Files 199

Using fopen() and freopen() 199
Buffering 201

Reading from Files 202
Reading from Binary Files 203
Reading from Text Files. 203
Reading from Record I/O Files 203

Writing to Files 204
Writing to Binary Files 204
Writing to Text Files 204
Writing to Record I/O Files 205

Flushing Records 205
Text Streams 206
Binary Streams 206
Record I/O 206

Repositioning within Files 206
Closing Files 206
fldata() Behavior 207

Chapter 15. Performing Memory File
and Hiperspace I/O Operations 209
Using Hiperspace Operations 209
Opening Files 210

Using fopen() or freopen() 210
Simulating Partitioned Data Sets 214
Buffering 215

Reading from Files 216
Writing to Files 217
Flushing Records 217

ungetc() Considerations. 217
Repositioning within Files 218
Closing Files 218

Performance Tips 218

Removing Memory Files 219
fldata() Behavior 219
Example Program. 220

CBC3GMF3. 221
CBC3GMF4. 222

Chapter 16. Performing CICS I/O
Operations 223

Chapter 17. Language Environment
Message File Operations 225
Opening Files 225
Reading from Files 225
Writing to Files 225
Flushing Buffers 226
Repositioning within Files 226
Closing Files 226

Chapter 18. Debugging I/O Programs 227
Using the __amrc Structure 227

CBC3GDI1 229
Using the __amrc2 Structure 230
Using __last_op Codes 231
Using the SIGIOERR Signal 234

CBC3GDI2 234

Part 3. Interlanguage Calls with
OS/390 C/C++237

Chapter 19. Using Linkage
Specifications in C++ 239
Syntax for Linkage 239
Kinds of Linkage used by C++ Interlanguage
Programs 239

Chapter 20. Combining C or C++ and
Assembler 241
Establishing the OS/390 C/C++ Environment 241
Specifying Linkage for C or C++ to Assembler 241
Parameter List for OS Linkage 242
Using Standard Macros 243

Assembler Prolog 243
Assembler Epilog 244
Accessing Automatic Memory 244

Calling Run-Time Library Routines from
Assembler — C Example 245

CBC3GCA4 245
CBC3GCA2 245
CBC3GCA5 246
Calling Run-Time Library Routines from
Assembler — C++ Example 246

Retaining the C Environment Using
Preinitialization 248

Setting Up the Interface for Preinitializable
Programs 249
Preinitializing a C Program 253
Multiple Preinitialization Compatibility
Interface C Environments 260

Contents v

||
||

Using the Service Vector and Associated
Routines 263

Part 4. Coding: Advanced Topics 269

Chapter 21. Building and Using
Dynamic Link Libraries (DLLs) 271
Support for DLLs 271
DLL Concepts and Terms 272
Loading a DLL 272

Loading a DLL Implicitly 272
Loading a DLL Explicitly 273

Managing the Use of DLLs When Running DLL
Applications 275

Loading DLLs 276
Sharing DLLs 277
Freeing DLLs 277

Creating a DLL or a DLL Application 277
Building a Simple DLL 277

Writing Your C Code 278
Writing Your C++ Code. 278

Compiling Your Code 279
Binding Your Code 280
Building a Simple DLL Application 281
Creating and Using DLLs 282
DLL Restrictions 283

Improving Performance. 284

Chapter 22. Building Complex DLLs 287
Rules for Compiling Source Code 288
Modifying Noncompliant Source 290
Compatibility Issues Between DLL and Non-DLL
Code 290

Pointer Assignment 292
Function Pointers 292

DLL Function Pointer Call in Non-DLL Code . . 294
C Example 295
Non-DLL Function Pointer Call in DLL(CBA)
Code 297
Non-DLL Function Pointer Call in DLL Code 299
Function Pointer Comparison in Non-DLL
Code 300
Function Pointer Comparison in DLL Code 303

Using DLLs That Call Each Other 305

Chapter 23. Using Threads in an
OS/390 UNIX Application 311
Models and Requirements 311

Functions 311
Creating a Thread 312
Synchronization Primitives 313
Thread-specific Data 316
Signals 318
Generating a Signal 319
Thread Cancellation 320
Cleanup for Threads 321

Behaviors and Restrictions in an OS/390 UNIX
Application 322

Using Threads with MVS Files 322

Thread-Scoped Functions 323
Unsafe Thread Functions 323
Fetched Functions and Writable Statics . . . 324
MTF and OS/390 UNIX Threading 324
Thread Queuing Function 324
Thread Scheduling 324
iconv() Family of Functions 325

Chapter 24. Reentrancy in OS/390
C/C++ 327
Natural or Constructed Reentrancy 327

Limitations of Constructed Reentrancy for C
Programs 328

Controlling External Static in C Programs. . . . 328
Controlling Writable Strings 329
Controlling the Memory Area in C++ 329

Controlling Where String Literals Exist in C++
Code 330

CBC3GRE2 330
Using Writable Static in Assembler Code 331

CBC3GRE3 332
CBC3GRE4 333

Chapter 25. Using the Decimal Data
Type in C 335
Declaring Decimal Types 335

Declaring Fixed-Point Decimal Constants . . . 336
Declaring Decimal Variables 336

Defining Decimal-Related Constants 337
Using Operators 337

Arithmetic Operators 338
Assignment Operators 341
Unary Operators 342
Cast Operator 343
Summary of Operators Used With Decimal
Types 343

Converting Decimal Types 343
Converting Decimal Types to Decimal Types 343
Converting Decimal Types to and from Integer
Types 345
Converting Decimal Types to and from Floating
Types 346

Calling Functions 347
Using Library Functions 347

Using Variable Arguments with Decimal Types 347
Formatting Input and Output Operations 348
Validating Values 348
Fix Sign 349
Decimal Absolute 349
Programming Example 350

CBC3GDC3 350
Output from Programming Example One . . . 351
CBC3GDC4 352
Output from Programming Example Two. . . 352

Decimal Exception Handling 352
System Programming Calls Restrictions . . . 353
printf() and scanf() Restrictions 353
Additional Considerations 353
Error Messages 354

vi OS/390 V2R8.0 C/C++ Programming Guide

Chapter 26. Using Decimal Data in C++ 355
The IBinaryCodedDecimal Class 355
Header File and Constants for
IBinaryCodedDecimal 355

Constants Defined in idecimal.hpp 355
Constructing IBinaryCodedDecimal Objects . . . 356
IBinaryCodedDecimal Input and Output 356
Mathematical Operators for IBinaryCodedDecimal 356

Relational Operators 356
Equality Operators 356

Converting IBinaryCodedDecimal Objects . . . 357
An IBinaryCodedDecimal Object to a
IBinaryCodedDecimal Object 357

Number of Digits in an IBinaryCodedDecimal
Object 358
Precision of a IBinaryCodedDecimal Object . . . 358
IBinaryCodedDecimal Object Exceptions 358
The Decimal Class 358

Header File for the Decimal Class 358
Constructing Decimal Objects. 358
Decimal Class Input and Output. 359
Operators for Decimal Class 359
Converting Decimal Objects 361
Number of Digits in an Decimal Object . . . 362
Precision of a Decimal Object 362
Decimal Object Exceptions 362

Chapter 27. Handling Exceptions, Error
Conditions, and Signals 363
Handling C Software Exceptions under C++ . . . 364
Handling Hardware Exceptions under C++ . . . 364
Tracebacks under C++ 364

CBC3GCH1. 365
CBC3GCH2. 366

Handling Signals with POSIX(OFF) Using signal()
and raise() 367
Handling Signals Using Language Environment
Callable Services 367
Handling Signals Using OS/390 UNIX with
POSIX(ON) 368
Asynchronous Signal Delivery under OS/390
UNIX 370
C Signal Handling Features under OS/390 C/C++ 371

Establishing a Signal Handler. 371
Enabling a Signal 372
Interrupting a Program 372
Raising a Signal 372
Identifying Hardware and Software Signals 372
SIGABND Considerations 375
SIGIOERR Considerations 375
Default Handling of Signals 375

MAP 0040: Summary of C and OS/390 Language
Environment Error Handling 379

Example of C Signal Handling under OS/390 C
or OS/390 C++ 381

Chapter 28. Optimizing Code 383
Programming Recommendations. 383

Using Variables 383
Passing Function Arguments 384

Coding Expressions 385
Coding Conversions 385
Arithmetic Considerations 386
Using Loops and Control Constructs 386
Choosing a Data Type 386
Using Built-In Library Functions and Macros 387

Input/Output Considerations. 389
When Accessing MVS data sets 389
When Accessing HFS Files 390
When Using the I/O Stream Class library with
C++ 391
Using Library Extensions 391

Compile Time Considerations. 391
Using Optimization Facilities 392

Specifying Inline Functions 392
Optimizing Use of Dynamic Memory 396
Using the OPTIMIZE Option 396
Additional Hints and Tips 398

Chapter 29. Optimizing Your C/C++
Code with Interprocedural Analysis 399
Types of Procedural Analysis 399
Compiler Processing Flow 400

Regular Compiler Execution 400
Compiler Execution with IPA 401
Invoking IPA from the c89 Utility 407

Controlling IPA Execution 408
Specifying Compiler Options with IPA. . . . 408
Specifying Pragmas under IPA 409

Effects of IPA on Your Program 410
Restrictions 411
Locale Support 411
Date and Time Stamps Within IPA Objects . . . 411

Chapter 30. Network Communications
under UNIX System Services 413
Understanding OS/390 UNIX Sockets and
Internetworking 413
The Basics of Network Communication 414

Transport Protocols for Sockets 414
What Is a Socket?. 415

OS/390 UNIX Socket Families 417
OS/390 UNIX Socket Types 417
Guidelines for Using Socket Types 418
Addressing within Sockets. 418

The Conversation 420
The Server Perspective 421
The Client Perspective 423
A Typical TCP Socket Session. 423

A Typical UDP Socket Session 424
A Typical Datagram Socket Session 425

Locating the Server’s Port 425
Network Application Example 426
Using Common INET 432
Compiling and Binding 433
Using TCP/IP APIs 435

Restrictions for Using MVS TCP/IP API with
OS/390 UNIX 435

Using OS/390 UNIX Sockets 437

Contents vii

Compiling under MVS Batch for Berkeley
Sockets 438
Compiling under MVS Batch for X/Open
Sockets 439

Understanding The X/Open Transport Interface
(XTI) 440

Transport endpoints 441
Transport providers for X/Open Transport
Interface 441
General Restrictions for OS/390 UNIX. . . . 441

Chapter 31. Interprocess
Communication Using OS/390 UNIX 443
Message Queues 443
Semaphores. 444
Shared Memory 444
Memory Mapping 444
TSO Commands from the Shell 445

Chapter 32. Structuring a Program
That Uses C++ Templates 447
Template Terms 447
Generating Template Functions 447

Class Template Example 448
Using TEMPINC 450

Organizing Source Code for the TEMPINC
option 450
Instantiating the Functions. 450

Using the NOTEMPINC Option 454
Organizing Source Code for the NOTEMPINC
option 454

Using TEMPINC or NOTEMPINC 455
Example of a Multipurpose Header File . . . 455
Example of Source Code with Multipurpose
Header File 455

Chapter 33. Using Environment
Variables 457
Working with Environment Variables 460

Naming Conventions 461
Environment Variables Specific to the OS/390
C/C++ Library 462

_EDC_ADD_ERRNO2 462
_EDC_ANSI_OPEN_DEFAULT 462
_EDC_BYTE_SEEK 463
_EDC_CLEAR_SCREEN 463
_EDC_COMPAT 463
_EDC_GLOBAL_STREAMS 464
_EDC_IP_CACHE_ENTRIES 465
_EDC_RRDS_HIDE_KEY 465
_EDC_STOR_INCREMENT 466
_EDC_STOR_INITIAL 466
_EDC_ZERO_RECLEN 466
_CEE_DMPTARG. 467
_CEE_ENVFILE 467

Example 468
CBC3GEV1 468
CBC3GEV2 469

Part 5. OS/390 C/C++ Environments 471

Chapter 34. Using the System
Programming C Facilities 473
Using Functions in the System Programming C
Environment 474
System Programming C Facility Considerations
and Restrictions 475
Creating Freestanding Applications 476

Creating Modules without CEESTART 477
Including an Alternative Initialization Routine
under OS/390 477
Initializing a Freestanding Application without
Language Environment. 477
Initializing a Freestanding Application Using C
Functions 478
Setting up a C Environment with Preallocated
Stack and Heap 478
Determining ISA requirements 479
Building Freestanding Applications to Run
under OS/390 479
Parts Used for Freestanding Applications . . . 482

Creating System Exit Routines 483
Building System Exit Routines under OS/390 483
An Example of a System Exit 483

Creating and Using Persistent C Environments 486
Building Applications That Use Persistent C
Environments 487
An Example of Persistent C Environments . . 487

Developing Services in the Service Routine
Environment 491

Using Application Service Routine Control
Flow 492
Understanding the Stub Perspective 498
Establishing a Server Environment 507
Initiating a Server Request 508
Accepting a Request for Service 508
Returning Control from Service 508
Constructing User-Server Stub Routines . . . 508
Building User-Server Environments 509

Tailoring the System Programming C Environment 509
Generating Abends 510
Getting Storage 510
Getting Page-Aligned Storage. 512
Freeing Storage 512
Loading a Module 513
Deleting a Module 514

Including a Run-Time Message File 514
Additional Library Routines 515
Summary of Application Types 516

Chapter 35. Library Functions for
System Programming C 519
__xhotc() — Set Up a Persistent C Environment
(No Library) 519

Format 519
Description 519
Returned Value 519
Example 520

viii OS/390 V2R8.0 C/C++ Programming Guide

||

||

__xhotl() — Set Up a Persistent C Environment
(With Library) 520
__xhott() — Terminate a Persistent C
Environment 520
__xhotu() — Run a Function in a Persistent C
Environment 521
__xregs() — Get Registers on Entry 522
__xsacc() — Accept Request for Service . . . 522
__xsrvc() — Return Control from Service . . . 523
__xusr() - __xusr2() — Get Address of User
Word 523
__24malc() — Allocate Storage below 16MB
Line 523
__4kmalc() — Allocate Page-Aligned Storage 524

Chapter 36. Using Run-Time User Exits 525
Using Run-Time User Exits in OS/390 Language
Environment 525

Understanding the Basics 525
PL/I and C/370 Compatibility 525
User Exits Supported under OS/390 Language
Environment. 526
Order of Processing of User Exits 526
Using Installation-Wide or Application-Specific
User Exits 527
Using the Assembler User Exit 528
Using Sample Assembler User Exits 528
Assembler User Exit Interface. 530
Parameter Values in the Assembler User Exit 534
PL/I and C/370 Compatibility 539
High Level Language User Exit Interface . . . 539

Chapter 37. Using The OS/390 C
MultiTasking Facility 543
Organizing a Program with MTF 543

Ensuring Computational Independence . . . 544
Running a C Program without MTF 545
Running a C Program with MTF. 546
Running a C Program with One Parallel
Function 546
Running a C Program with Two Different
Parallel Functions. 548
OS/390 C with Multiple Instances of the Same
Parallel Function 550

Designing and Coding Applications for MTF . . 551
Step 1: Identifying Computationally-
Independent Code 551
Step 2: Creating Parallel Functions 552
Step 3: Inserting Calls to Parallel Functions 555
Changing an Application to Use MTF 555

Compiling and Linking Programs That Use MTF 560
Creating the Main Task Program Load Module 560
Creating the Parallel Functions Load Module 561
Specifying the Linkage-Editor Option 562
Modifying Run-Time Options. 562

Running Programs That Use MTF 562
STEPLIB DD Statement 562
DD Statements for Standard Streams 563
Example of JCL 563
Debugging Programs That Use MTF 564

Avoiding Undesirable Results when Using MTF 564

Part 6. Programming with Other
Products567

Chapter 38. Using the Customer
Information Control System (CICS) . . 569
Developing C and C++ Programs for the CICS
Environment 569
Preparing CICS for Use with OS/390 Language
Environment 569
Designing and Coding for CICS 570

Using the CICS Command-Level Interface . . 570
Using Input and Output 574
Using OS/390 C/C++ Library Support . . . 576
Storage Management 578
Using Interlanguage Support 579
Exception Handling 579

MAP 0050: Error Handling in CICS 581
Example of Error Handling in CICS 582
ABEND Codes and Error Messages under
OS/390 C/C++ 584
Coding Hints and Tips 584

Translating and Compiling for Reentrancy . . . 585
Translating 585
Translating Example 585
Compiling 590
Sample JCL to Translate and Compile 590

Prelinking and Linking All Object Modules . . . 591
Defining and Running the CICS Program. . . . 592

Program Processing 592
Link Considerations for C Programs 592
CSD Considerations 593
Sample JCL to Install OS/390 C/C++
Application Programs 593

Chapter 39. Using Cross System
Product (CSP) 595
Common Data Types 595
Passing Control 595
Running CSP under MVS 596

Calling CSP Applications from OS/390 C . . . 596
Examples 596
Calling OS/390 C from CSP 600
Examples 600

Running under CICS Control 604
Examples 604

Chapter 40. Using Data Window
Services (DWS) 609
CBC3GDW2 610

Example 611
CBC3GDW1 611

Chapter 41. Using DATABASE 2 (DB2) 613
C++ Example 613

CBC3GDB1 613
CBC3GDB2 614

C Example 615

Contents ix

CBC3GDB4 616

Chapter 42. Using Graphical Data
Display Manager (GDDM) 617
Example 618

CBC3GGD1. 619
CBC3GGD2. 621

Chapter 43. Using the Information
Management System (IMS) 623
Handling Errors 624
Other Considerations 625

Examples 626

Chapter 44. Using the Interactive
System Productivity Facility (ISPF) . . 633
Examples 634

CBC3GIS1 634
CBC3GIS2 635
CBC3GIS3 635
CBC3GIS4 636
CBC3GIS5 636
CBC3GIS6 637
CBC3GIS7 637
CBC3GIS8 638
CBC3GIS9 638
CBC3GISA 638
CBC3GISB 639
CBC3GIS4 639
CBC3GIS5 640

Chapter 45. Using the Query
Management Facility (QMF) 641
Example 641

CBC3GQM1 641
CBC3GQM2 644
CBC3GQM3 645

Part 7. SOM support Under OS/390
C/C++.647

Chapter 46. The IBM System Object
Model 649
What is SOM? 649

SOM and the CORBA Standard 650
The Cost of Using SOM 650

What is DTS? 650
Interface Definition Language 651
SOM and Upward Binary Compatibility of
Libraries 651

Release Order of SOM Objects 652
Version Control for SOM Libraries and
Programs 654
Recompiling Requirements for SOM Programs 655

SOM and Interlanguage Sharing of Objects and
Methods 656

Providing a Default Constructor with No
Arguments 656

Accessing Special Member Functions from
Other Languages 657
Assignment Methods 657
set and get Methods for Attribute Class
Members 659

Understanding the Interface Definition Language 660
IDL Types and C++ Types 660
IDL Names and C++ SOM Pragmas 660
IDL and OIDL Callstyles 661
The Environment Pointer 662
C++ Limitations to Interface Definition
Language 662

Differences between SOM and C++ 663
Initializer Lists and Constructors 663
Function Overloading 663
Calling Methods through a NULL Pointer . . 664
Data Member Offsets 664
Casting to Pointer-to-SOM Object 664
Dereferencing a Virtual Base Pointer to a
Derived Base 665
Multiple Inheritance of a Base Class 665
Local Classes 665
Abstract Classes 666
Classes as Objects 666
Metaclasses 667
offsetof macro 667
sizeof operator. 667
Instance Data 668
Templates 668
Allocating Memory 669
Volatile Objects 672
Data Members Implemented as Attributes . . 672
Addresses of Embedded SOM objects 672

Converting C++ Programs to SOM Using
SOMAsDefault 673
Creating SOM-Compliant Programs by Inheriting
from SOMObject 673
Creating DLLs with SOM 674

Chapter 47. Macros, Built-in Functions,
and Pragmas for SOM 675
Macros Defined for SOM 675
Built-in Functions for SOM 675
Pragmas for Using SOM 675

Conventions Used by the SOM Pragmas . . . 676
The SOM Pragma. 677
The SOMAsDefault Pragma 677
The SOMAttribute Pragma 678
The SOMCallStyle Pragma. 680
The SOMClassInit Pragma 680
The SOMClassName Pragma 680
The SOMClassVersion Pragma 681
The SOMDataName Pragma 682
The SOMDefine Pragma 683
The SOMMetaClass Pragma 683
The SOMMethodName Pragma 684
The SOMNoDataDirect Pragma 687
The SOMNoMangling Pragma 687
The SOMNonDTS Pragma 688
The SOMReleaseOrder Pragma 689

x OS/390 V2R8.0 C/C++ Programming Guide

Chapter 48. Examples and Tips 695
Building a C++ SOM-Enabled Class Library . . . 695

Explicitly Deriving Classes from SOMObject 695
Implicitly Deriving Classes from SOMObject
Using the SOM Option 696
Implicitly Deriving Classes from SOMObject
Using the SOMAsDefault Pragma 697
Sample JCL to Compile and Create a
SOM-Enabled Class Library 698
Release-to-Release Binary Compatibility . . . 699

Using a C++ SOM-Enabled Class Library 699

Part 8. Internationalization: Locales
and Character Sets701

Chapter 49. Introduction to Locale . . 703
Internationalization in Programming Languages 703
Elements of Internationalization 703
OS/390 C/C++ Support for Internationalization 704
Locales and Localization 704

Locale-Sensitive Interfaces 704

Chapter 50. Building a Locale 707
Using the charmap File 707

The CHARMAP Section 712
The CHARSETID Section 714

Locale Source Files 715
LC_CTYPE Category 718
LC_COLLATE Category 721
LC_MONETARY Category. 728
LC_NUMERIC Category 731
LC_TIME Category 732
LC_MESSAGES Category 734
LC_TOD Category 735
LC_SYNTAX Category 737

Using the localedef Utility 739
Locale Naming Conventions 739

Chapter 51. Customizing a Locale . . . 745
Using the Customized Locale 746
Referring Explicitly to a Customized Locale . . . 746

CBC3GCL1 747
Referring Implicitly to a Customized Locale . . . 747

CBC3GCL2 748

Chapter 52. Customizing a Time Zone 751
Using the TZ or _TZ Environment Variable to
Specify Time Zone 751
Relationship Between TZ or _TZ and LC_TOD 752

Chapter 53. Definition of S370 C, SAA
C, and POSIX C Locales 753
Differences between SAA C and POSIX C Locales 759

CBC3GDL1 759

Chapter 54. Code Set Conversion
Utilities 761
The genxlt Utility 761

The iconv Utility 761
Code Conversion Functions 762
Code Set Converters Supplied 762
Universal Coded Character Set Converters . . . 771

Codeset Conversion Using UCS-2 774
UCMAP Source Format 775

Chapter 55. Coded Character Set
Considerations with Locale Functions 779
Variant Character Detail 779

Mappings of 13 PPCS Variant Characters . . . 780
Alternate Code Points 781
Coding without Locale Support 781
Converting Existing Work 783
Writing Source Code in Coded Character Set
IBM-1047 784
Coded Character Set Independence in
Developing Applications 785
Coded Character Set of Source Code and
Header Files 787
Converting Coded Character Sets at Compile
Time 788
Working With Listings and Output Files . . . 792
Considerations With Other Products and Tools 794

Part 9. Appendixes795

Appendix A. POSIX Character Set . . . 797

Appendix B. Mapping Variant
Characters for OS/390 C/C++ 801
Displaying Hexadecimal Values 801

Example 802
CBC3GMV1 802

Using pragma Filetag To Specify Code Page in C 804
Displaying Square Brackets When Using ISPF 804

CBC3GMV2 805
Using The CBC3GMV2 Macro 805

Procedure for Mapping on 3279 806

Appendix C. OS/390 C/C++ Code Point
Mappings 807

Appendix D. Locales Supplied with
OS/390 C/C++ 809

Appendix E. Charmap Files Supplied
with OS/390 C/C++ 817

Appendix F. Examples of Charmap and
Locale Definition Source 819
Charmap File 819

The Locale Definition Source File 826

Appendix G. Converting Code from
Coded Character Set IBM-1047 831
CBC3GHC1. 831

Contents xi

Appendix H. Additional Examples . . . 841
Memory Management 842

CBC3GMI1 842
CBC3GMI2 843

Calling MVS WTO routines from C 852
CBC3GWT1. 853
CBC3GWT2. 853

Listing Partitioned Data Set Members 853
CBC3GIP1 854
CBC3GIP2 858

Appendix I. Using Built-In Functions 859

Appendix J. Application
Considerations for OS/390 UNIX C/C++ 861
Relationship to DATABASE 2 (DB2) 861
Application Programming Environments Not
Supported 861
Support for the Curses Library 861

Appendix K. External Variables 863
errno 863
daylight 863
getdate_err 863
h_errno 864
__loc1 864
loc1 864
loc2 864
locs 864
optarg 864
opterr. 864
optind 865
optopt 865
signgam 865

stdin 865
stderr 865
stdout 865
t_errno 865
timezone 865
tzname 866

Notices 867
Programming Interface Information. 868
Trademarks 868
Standards 869

Glossary 871

Bibliography 899
OS/390 899
VS COBOL II Release 4 899
COBOL FOR MVS & VM Release 2 899
COBOL for OS/390 & VM Version 2 Release 1 900
PL/I for MVS & VM Release 1 Modification 1 900
OS PL/I Version 2 Release 3 900
VS FORTRAN Version 2 Release 6 900
CICS/ESA Version 4 Release 1 900
CICS Transaction Server for OS/390 Release 2 900
DB2 Version 3 Release 1 901
DB2 Version 4 Release 1 901
DB2 Version 5 Release 1 901
IMS/ESA Version 4 Release 1 901
IMS/ESA Version 5 Release 1 901
IMS/ESA Version 6 Release 1 901
QMF Version 3 Release 2 902
VSAM 902

INDEX 903

xii OS/390 V2R8.0 C/C++ Programming Guide

Part 1. Introduction

© Copyright IBM Corp. 1996, 1999 1

2 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 1. About This Book

This book provides information about implementing programs that are written in
C and C++. It contains advanced guidelines and information for developing C and
C++ programs to run under OS/390.

Who Should Use This Book

To use this book, or any other books in the library of OS/390 C/C++ publications,
you must have a working knowledge of the C/C++ programming language. In
addition, you must have knowledge on the OS/390 operating system, and where
appropriate, the related products.

A Note about Examples

Examples that illustrate the use of the OS/390 C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of C/C++ language constructs. Some examples are only code fragments and will
not compile without additional code.

© Copyright IBM Corp. 1996, 1999 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:

v C/C++ input and output
v Debugging OS/390 C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in an OS/390 UNIX® application
v Using threads in an OS/390 UNIX application
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under OS/390 UNIX
v Interprocess communications using OS/390 UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using runtime user exits
v Using the OS/390 C multitasking facility
v Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,

GDDM*, IMS*, ISPF, QMF*)
v Direct-to-SOM support under OS/390 C/C++
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with OS/390 C/C++
v Charmap files supplied with OS/390 C/C++
v Examples of charmap and locale definition source files
v Converting code from code character set IBM-1047
v Using built-in functions
v Programming considerations for OS/390 UNIX C/C++

OS/390 C/C++ User’s Guide, SC09-2361 Guidance information for:
v OS/390 C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying OS/390 Language Environment runtime options
v Compiling, IPA Linking, binding, and running OS/390 C/C++ programs
v Using precompiled headers
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM
v Error messages and return codes

4 OS/390 V2R8.0 C/C++ Programming Guide

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Language Reference,
SC09-2360

Reference information for:
v The C and C++ Languages
v Lexical elements of OS/390 C and OS/390 C++
v Declarations, expressions and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v OS/390 C and OS/390 C++ compatibility

OS/390 C/C++ Run-Time Library
Reference, SC28-1663

Reference information for:
v C header files
v C Library functions

OS/390 C Curses, SC28-1907 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

OS/390 C/C++ Compiler and Run-Time
Migration Guide, SC09-2359

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of OS/390
v C/370* V1 to V2 compiler changes
v Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:
v Character set, trigraphs, digraphs, and keywords
v Escape sequences, storage classes
v Predefined and derived types, type qualifiers
v Operator precedence, redirection symbols
v fprintf() format, type characters, and flag characters
v fscanf() format and type characters
v __amrc structure
v Hardware exceptions and signals
v Compiler return codes
v Compiler options
v #pragma directives
v Library functions
v Utilities

Chapter 1. About This Book 5

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ IBM Open Class Library
User’s Guide, SC09-2363

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started,
advanced topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception
handling, tutorials, problem solving, compatibility with previous releases,
thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads and
protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

OS/390 C/C++ IBM Open Class Library
Reference, SC09-2364

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
SC09-2366

Guidance and reference information for:
v C++ SOM (RRBC-enabled) versions of Collection and Application Support

Class Libraries
v Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and Reference,
SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

Debug Tool Reference Summary,
SX26-3840

Summary information for Debug Tool commands

APAR and BOOKS files (Shipped
with Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on OS/390
v Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language Environment
Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390 C/C++
v OS/390 C/C++ Compiler and Run-Time Migration Guide,

SC09-2359
v OS/390 Language Environment Customization, SC28-1941
v OS/390 UNIX System Services Planning, SC28-1890
v OS/390 Planning for Installation, GC28-1726
v OS/390 Task Atlas, available on the OS/390 Library

page on the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Installing v OS/390 Program Directory
v OS/390 Planning for Installation, GC28-1726
v OS/390 Language Environment Customization, SC28-1941

Coding programs v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Concepts Guide,

GC28-1945
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Programming Reference,

SC28-1940
v OS/390 C/C++ IBM Open Class Library User’s Guide,

SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference,

SC09-2364
v OS/390 C/C++ SOM-Enabled Class Library User’s Guide

and Reference, SC09-2366

Coding and binding programs with interlanguage calls v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Writing Interlanguage

Applications, SC28-1943
v DFSMS/MVS Program Management, SC26-4916

Compiling, binding, and running programs v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v DFSMS/MVS Program Management, SC26-4916
v OS/390 Messages Database, available on the OS/390

Library page in the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Compiling and binding applications in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

v OS/390 SOMobjects Programmer’s Guide, GC28-1859
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ User’s Guide, SC09-2361

Chapter 1. About This Book 7

Table 2. Publications by Task (continued)

Tasks Books

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v Debug Tool Reference Summary, SX26-3840
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v OS/390 UNIX System Services Messages and Codes,

SC28-1908
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Programming Tools,

SC28-1904

Using shells and utilities in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Messages and Codes,

SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

v OS/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390 v OS/390 UNIX System Services Porting Guide

This guide contains useful information about
supported header files and C functions, sockets in an
OS/390 UNIX environment, process management,
compiler optimization tips, and suggestions for
improving the application’s performance after it has
been ported. The Porting Guide is available as a PDF
file which you can download, or as web pages which
you can browse, at the following URL:
http://www.s390.ibm.com/unix/bpxa1por.html

Working in the OS/390 UNIX System Services Parallel
Environment

v OS/390 UNIX System Services Parallel Environment:
Operation and Use, SC33-6697

v OS/390 UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SC33-6696

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

v OS/390 C/C++ User’s Guide, SC09-2361
v CBC.SCBCDOC(APAR) on OS/390 C/C++ product

tape

Quick reference v OS/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial v For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs
in the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the OS/390 C/C++ Programming Guide.

8 OS/390 V2R8.0 C/C++ Programming Guide

|

|
|
|
|

|
|

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:
v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C Curses, SC28-1907
v OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062, 5695-046)
licensed program must be available on your operating system. BookManager Read
provides access to online information as an alternative to hard copy documents.
You can read, search, make notes, and select sections of text to print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The
Library" link on the OS/390 home page. The URL for this page is:
http://www.s390.ibm.com/os390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364

Chapter 1. About This Book 9

v OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference, SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:
v R and X refer to the OS/390 C/C++ Language Reference, SC09-2360
v G refers to the OS/390 C/C++ Programming Guide, SC09-2362
v U refers to the OS/390 C/C++ User’s Guide, SC09-2361
v A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference, the
OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide. Examples
labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class Library User’s
Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference, SC09-2366. For the OS/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366, the label refers to a member
name in the data set CBC.SCLBXSM.

OS/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web.
The URL for the OS/390 C/C++ home page is:
http://www.software.ibm.com/ad/c390/index.html

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:
v Send a message electronically to the following network ID :

– Internet: inetc370@ca.ibm.com
– IBMMAIL: ibmmail(caibmrxz)

v Mail your request to:

10 OS/390 V2R8.0 C/C++ Programming Guide

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR
895 Don Mills Road
NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next
line. In the following diagrams, "statement" represents a command, directive, or
statement.

ÊÊ statement ÊÍ

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

ÊÊ statement ÊÍ

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

ÊÊ statement ÊÍ

v Required items are on the horizontal line (the main path).

ÊÊ statement required_item ÊÍ

v Optional items are below the main path.

ÊÊ statement
optional_item

ÊÍ

v If you can choose from two or more items, they are vertical in a stack.
If you must choose one of the items, one item of the stack is on the main path.

ÊÊ statement required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack is below the main path.

Chapter 1. About This Book 11

ÊÊ statement
optional_choice1
optional_choice2

ÊÍ

v An arrow that returns to the left above the main line indicates an item that you
can repeat.

ÊÊ »statement repeatable_item ÊÍ

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

v Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

v If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise
specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

ÊÊ
(1) (2) (3)

pragma
(4)

comment Ê

Ê
(5) (6) (9) (10)

(compiler)
date
timestamp

copyright
user (7) (8)

, " token_sequence "

ÊÍ

Notes:

1 This is the start of the syntax diagram.

2 The symbol -# must appear first.

3 The keyword -pragma must follow the -# symbol.

4 The keyword -comment must follow the keyword -pragma.

5 An opening parenthesis must follow the keyword -comment.

6 The comment type must be entered only as one of the following: -compiler,
-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

12 OS/390 V2R8.0 C/C++ Programming Guide

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Chapter 1. About This Book 13

14 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C
and C++ application development on the OS/390 platform. The C/C++ feature is
based on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:
v A C compiler (referred to as the OS/390 C compiler)
v A C++ compiler (referred to as the OS/390 C++ compiler)
v A set of C++ class libraries
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 8

The Language Environment C/C++ Run-Time library has made the following
changes for this release:
v Added code pages to support the euro, the monetary unit of the European

Monetary Union (EMU).
v Added support for Unicode through UTF-8. Interoperability of UTF-8 (ASCII)

and Unicode (EBCDIC) data are supported through data converters to and from
UTF-8 and UCS-2.

v Added VSAM Record Level Sharing support for the sharing of VSAM data at
the record level, using the locking and caching functions of the coupling facility
hardware.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
OS/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

© Copyright IBM Corp. 1996, 1999 15

|

|
|

|
|

|
|

|
|
|

|
|
|

|

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:
v Optimization support.

– Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

– The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

– The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

v DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.
IBM OS/390 C/C++ provides support for generating DLLs in a way similar to
the way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.
You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

v Full program reentrancy.
With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
OS/390 C++ compiler always ensures that C++ programs are reentrant.

v Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System

16 OS/390 V2R8.0 C/C++ Programming Guide

Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code
with existing applications.

v Exploitation of OS/390 and OS/390 UNIX technology.
OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

v When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:
– A subset of the extended multibyte and wide character functions as defined

by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2
– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX

committee has renumbered POSIX.4a to POSIX.1c)
– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2
– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the S/390 environment.
– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support.

OS/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:
v The ability to write portable code that conforms to the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)
– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
– X/Open Specification Programming Language Issue 3, Common Usage C
– FIPS-160

v System programming capabilities, which allow you to use OS/390 C in place of
assembler

v Additional optimization capabilities through the INLINE compile-time option
v Extensions of the standard definitions of the C language to provide

programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:
v An implementation based on the definition of the language that is contained in

the Draft Proposal International Standard for Information Systems–
Programming Language C++ (X3J16/92-00091). The OS/390 C++ compiler also
conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

v System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the

Chapter 2. About IBM OS/390 C/C++ 17

IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.
With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate
IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead
of generating it through the IDL compile option.

v C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:
v The Object Library Utility to update partitioned data set (PDS) libraries of object

modules and Interprocedural Analysis (IPA) object modules
v The DLL Rename Utility to make selected DLLs a unique component of the

applications with which they are packaged
v The CXXFILT Utility to map OS/390 C++ mangled names to the original source
v The localedef Utility to read the locale definition file and produce a locale object

that the locale-specific library functions can use
v The DSECT Conversion Utility to convert descriptive assembler DSECTs into

OS/390 C/C++ data structures
v The C/C++ Model Tool to provide online help for C/C++ #pragma directives

and runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:
v The I/O Stream Class Library

The I/O Stream Class Library lets you perform input and output (I/O)
operations independent of physical I/O devices or data types that are used. You
can code sophisticated I/O statements easily and clearly, and define input and
output for your own data types. You can improve the maintainability of
programs that use input and output by using the I/O Stream Class Library.

v The Complex Mathematics Class Library
The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

v The Application Support Class Library

18 OS/390 V2R8.0 C/C++ Programming Guide

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.
The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

v The Collection Class Library
The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of
building blocks from which they can derive application objects. The library
design exploits features of the C++ language such as exception handling and
template support.
The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in
addition to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++
compiler feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:
v Application Support Class Library source code
v Collection Class Library source code (C++ native and C++ SOM only)
v Instructions for building the Application Support Class and Collection Class

Libraries in C++ native (static and DLL) versions
v Instructions for building the Application Support Class and Collection Class

Libraries in C++ SOM (static and DLL) versions
v Class Library Language Environment message file source
v Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:
v Step mode

Chapter 2. About IBM OS/390 C/C++ 19

v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

OS/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of
runtime services available with OS/390 Language Environment (formerly
Language Environment for MVS & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see Figure 1. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:
v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation
of storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

v Runtime options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

20 OS/390 V2R8.0 C/C++ Programming Guide

v Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder
supports all C and C++ code, provided that you store the output program in a
PDSE (Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:
v Faster rebinds when recompiling and rebinding a few of your source files
v Rebinding at the single compile unit level of granularity (except when you use

the IPA compile-time option)
v Input of object modules, load modules, and program objects
v Improved long name support:

– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

OS/390 UNIX System Services (OS/390 UNIX)

OS/390 UNIX provides capabilities under OS/390 to make it easier to implement
or port applications in an open, distributed environment. OS/390 UNIX Services
are available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

OS/390 UNIX provides support for both existing OS/390 applications and new
OS/390 UNIX applications:
v C programming language support as defined by ISO/ANSI C
v C++ programming language support
v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards; subsets

of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification: System
Interfaces and Headers, Issue 4, Version 2, which provides standard interfaces
for better source code portability with other conforming systems; and X/Open
CAE Specification, Network Services, Issue 4, which defines the X/Open UNIX
descriptions of sockets and X/Open Transport Interface (XTI)

Chapter 2. About IBM OS/390 C/C++ 21

v OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

v The OS/390 UNIX Shell and Utilities feature, which provides:
– A shell, based on the Korn Shell and compatible with the Bourne Shell
– Tools and utilities that conform to the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
OS/390 support. The following utilities are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds OS/390 UNIX C applications

gencat Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

make Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source
and object files, keeping all such files up to date with one
another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source data
(the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog
v The OS/390 UNIX Debugger feature, which provides the dbx interactive

symbolic debugger for OS/390 UNIX applications
v OS/390 UNIX, which provides access to a hierarchical file system (HFS), with

support for the POSIX.1 and XPG4 standards
v OS/390 C/C++ I/O routines, which support using HFS files, standard OS/390

data sets, or a mixture of both
v Application threads (with support for a subset of POSIX.4a)
v Support for OS/390 C/C++ DLLs

OS/390 UNIX offers program portability across multivendor operating systems,
with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments,

22 OS/390 V2R8.0 C/C++ Programming Guide

you may find that the OS/390 UNIX environment can enhance your productivity.
Refer to the OS/390 UNIX System Services User’s Guide for more information on the
Shell and Utilities.

OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
OS/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:
v Directly from the OS/390 UNIX Shell.
v From another program, or from the OS/390 UNIX Shell, using one of the exec

family of functions, or the BPXBATCH utility from TSO or MVS batch.
v Using the POSIX system() call.
v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

Input and Output

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The
C++ I/O Stream Class Library provides additional support.

I/O Interfaces

The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets I/O
OS/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known
as sockets. A set of C language functions provides support for OS/390
UNIX sockets. OS/390 UNIX sockets correspond closely to the sockets that
are used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

Chapter 2. About IBM OS/390 C/C++ 23

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
OS/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of VSAM data
organization:
v Key-sequenced data sets (KSDS). Use KSDS to access a record through a

key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the order
it was created (or in the reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each item
has a particular number (for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations on these VSAM
file types, see “Chapter 13. Performing VSAM I/O Operations” on
page 159.

Hierarchical File System Files
When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than
to devices. Since memory files reside in main storage and only exist while
the program is executing, you primarily use them as work files. You can
access memory files across load modules through calls to non-POSIX
system() and C fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on a non-POSIX
system() call using command line redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded

24 OS/390 V2R8.0 C/C++ Programming Guide

storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 230 bytes).

Additional I/O Features

IBM OS/390 C/C++ provides additional I/O support through the following
features:
v User error handling for serious I/O failures (SIGIOERR)
v Improved sequential data access performance through enablement of the

DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

v Overlapped I/O support under OS/390 (NCP, BUFNO)
v Multibyte character I/O functions
v Fixed-point (packed) decimal data type support in formatted I/O functions
v Support for multiple volume data sets that span more than one volume of

DASD or tape
v Support for Generation Data Group I/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services
available on your operating system. SP C offers a number of advantages:
v You can develop applications that you can execute in a customized environment

rather than with OS/390 Language Environment services. Note that if you do
not use OS/390 Language Environment services, only some built-in functions
and a limited set of C/C++ runtime library functions are available to you.

v You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

v SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:
v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Chapter 2. About IBM OS/390 C/C++ 25

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

v Customer Information Control System (CICS)
You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

v DATABASE 2 (DB2)
DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.
You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL
translator. The DB2 program processes a request, and processing returns to the
application.

v Data Window Services (DWS)
The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)
The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)
OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a person
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)
GDDM provides a comprehensive set of functions to display and print
applications most effectively:
– A windowing system that the user can tailor to display selected information
– Support for presentation and keyboard interaction
– Comprehensive graphics support
– Fonts — including support for double-byte character set (DBCS)
– Business image support
– Saving and restoring graphics pictures
– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)
OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as data
entry, query building, administration aids, and report analysis.

26 OS/390 V2R8.0 C/C++ Programming Guide

Additional Features of OS/390 C/C++

Feature Description

Multibyte Character Support OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/370 floating-point number data types: single
precision (32 bits), declared as float; double precision (64 bits), declared as double;
and extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and long double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of
separate files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks
at the same time. OS/390 C provides a set of library functions that perform
multitasking. These functions are known as the Multitasking Facility (MTF). MTF uses
the multitasking capabilities of OS/390 to allow a single OS/390 C application
program to use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

Chapter 2. About IBM OS/390 C/C++ 27

Feature Description

System Calls You can call commands or executable modules using the system() function under
OS/390, OS/390 UNIX, and TSO. You can also use the system() function to call EXECs
on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

28 OS/390 V2R8.0 C/C++ Programming Guide

Part 2. Input and Output

This part describes the models of input and output available with IBM OS/390
C/C++. C++ has its own way of handling input and output, the I/O Stream class
library. “Chapter 5. Using the I/O Stream Class Library in C++” on page 45
contains a brief description of C++ I/O, but for a more complete description and
examples, you should see the OS/390 C/C++ IBM Open Class Library User’s Guide
and the OS/390 C/C++ IBM Open Class Library Reference.
v “Chapter 3. Introduction to C and C++ Input and Output” on page 31
v “Chapter 4. Understanding Models of C I/O” on page 33
v “Chapter 5. Using the I/O Stream Class Library in C++” on page 45
v “Chapter 6. Opening Files” on page 47
v “Chapter 7. Buffering of C Streams” on page 67
v “Chapter 8. Using ASA Text Files” on page 69
v “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
v “Chapter 10. Using C and C++ Standard Streams and Redirection” on page 83
v “Chapter 11. Performing OS I/O Operations” on page 103
v “Chapter 12. Performing Hierarchical File System I/O Operations” on page 139
v “Chapter 13. Performing VSAM I/O Operations” on page 159
v “Chapter 14. Performing Terminal I/O Operations” on page 199
v “Chapter 15. Performing Memory File and Hiperspace I/O Operations” on

page 209
v “Chapter 16. Performing CICS I/O Operations” on page 223
v “Chapter 17. Language Environment Message File Operations” on page 225
v “Chapter 18. Debugging I/O Programs” on page 227

© Copyright IBM Corp. 1996, 1999 29

30 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 3. Introduction to C and C++ Input and Output

This chapter provides you with a general introduction to C and C++ input and
output (I/O). Three types of C and C++ input and output are discussed in this
chapter:
v text streams
v binary streams
v record I/O

Types of C and C++ Input and Output

A stream is a continuous flow of data elements that are transmitted or intended for
transmission in a defined format. A record is a set of data elements treated as a
unit, and a file is a named set of records that is stored or processed as a unit.

The OS/390 C/C++ compiler supports three types of input and output: text
streams, binary streams, and record I/O. Text and binary streams are both ANSI
standards; record I/O is an OS/390 C extension. Record I/O is not supported by
the C++ I/O Streams Class Library.

Note: If you have written data in one of these three types and try to read it as
another type (for example, reading a binary file in text mode), you may not
get the behavior that you expect.

Text Streams

Text streams contain printable characters and, depending on the type of file,
control characters. Text streams are organized into lines. Each line ends with a
control character, usually a new-line. The last record in a text file may or may not
end with a control character, depending on what kind of file you are using. Text
files recognize the following control characters:

\a Alarm.

\b Backspace.

\f Form feed.

\n New-line.

\r Carriage return.

\t Horizontal tab character.

\v Vertical tab character.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1 in the definition of the locale that is in effect. For more
information about MB_CUR_MAX, see “Chapter 9. OS/390 C Support for the
Double-Byte Character Set” on page 73.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX >
1 in the definition of the locale that is in effect. For more information about
MB_CUR_MAX, see “Chapter 9. OS/390 C Support for the Double-Byte
Character Set” on page 73.

© Copyright IBM Corp. 1996, 1999 31

Control characters behave differently in terminal files (see “Chapter 14. Performing
Terminal I/O Operations” on page 199) and ASA files (see “Chapter 8. Using ASA
Text Files” on page 69).

Binary Streams

Binary streams contain an ordered sequence of bytes. For binary streams, the
library does not translate any characters on input or output. It treats them as a
continuous stream of bytes, and ignores any record boundaries. When data is
written out to a record-oriented file, it fills one record before it starts filling the
next. HFS streams follow the binary model, regardless of whether they are opened
for text, binary, or record I/O. You can simulate record I/O by using new-line
characters as record boundaries.

Record I/O

Record I/O is an OS/390 C extension to the ANSI standard. For files opened in
record format, OS/390 C/C++ reads and writes one record at a time. If you try to
write more data to a record than the record can hold, the data is truncated. For
record I/O, OS/390 C/C++ allows only the use of fread() and fwrite() to read
and write to files. Any other functions (such as fprintf(), fscanf(), getc(), and
putc()) fail. For record-oriented files, records do not change size when you update
them. If the new record has fewer characters than the original record, the new data
fills the first n characters, where n is the number of characters of the new data. The
record will remain the same size, and the old characters (those after n) are left
unchanged. A subsequent update begins at the next boundary. For example, if you
have the string "abcdefgh":
and you overwrite it with the string "1234", the record will look like this:

OS/390 C/C++ record I/O is binary. That is, it does not interpret any of the data
in a record file and therefore does not recognize control characters. The only
exception is for file categories that do not support records, such as the Hierarchical
File System (also known as POSIX I/O). For these files, OS/390 C/C++ uses
new-line characters as record boundaries.

a b c d e f g h

1 2 3 4 e f g h

32 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 4. Understanding Models of C I/O

This chapter describes OS/390 C/C++ support for the major models of C I/O:
v The record model
v The byte stream model

The next chapter (“Chapter 5. Using the I/O Stream Class Library in C++” on
page 45) describes a third major model, the object-oriented model.

The Record Model for C I/O

Almost all the kinds of I/O that OS/390 C/C++ supports use this model. The only
ones that do not are HFS, memory file, and Hiperspace I/O.

The record model consists of the following:
v A record, which is the unit of data transmitted to and from a program.
v A block, which is the unit of data transmitted to and from a device. Each block

may contain one or more records.

In the record model of I/O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on
the physical device.

LRECL Specifies the length of logical records (as opposed to physical
ones). Variable length records include a count field that is normally
not available to the programmer.

BLKSIZE Specifies the length of physical records (blocks on the physical
device).

Record Formats

Use the RECFM attribute to specify the record format. The records in a file using the
record model have one of the following formats:
v Fixed-length (F)
v Variable-length (V)
v Undefined-length (U)

Note: OS/390 C/C++ does not support ISCII/ASCII format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA control characters.

B Specifies that a file is blocked. A blocked file can have more than one
record in each block.

M Specifies that the file contains machine control characters.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if
it is variable). In a standard file, every block must be full before another

© Copyright IBM Corp. 1996, 1999 33

one starts. In a spanned file, a record can be longer than a block. If it is,
the record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed
in the following sections.

Not all the I/O categories (listed in Table 4 on page 48) support all of these
attributes. Depending on what category you are using, OS/390 C/C++ ignores or
simulates attributes that do not apply. For more information, on the record formats
and the options supported for each I/O category, see “Opening Files” section in
this book.

Fixed-Format Records

Record Format (RECFM)

These are the formats you can specify for RECFM if you want to use a fixed-format
file:

F Fixed-length, unblocked

FA Fixed-length, ASA print-control characters

FB Fixed-length, blocked

FM Fixed-length, machine print-control codes

FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine print-control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters

FSM Fixed-length, unblocked, standard, machine print-control codes

FBSM Fixed-length, blocked, standard, machine print-control codes

FBSA Fixed-length, blocked, standard, ASA print-control characters.

Note: In general, all references in this guide to files with record format FB also
refer to FBM and FBA. The specific behavior of ASA files (such as FBA) is
explained in “Chapter 8. Using ASA Text Files” on page 69.

Attention: OS/390 C/C++ distinguishes between FB and FBS formats, because an
FBS file contains no embedded short blocks (the last block may be
short). FBS files give you much better performance. The use of standard
(S) blocks optimizes the sequential processing of a file on a direct-access
device. With a standard format file, the file pointer can be directly
repositioned by calculating the exact position in that file of a given
record rather than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown
in Figure 2 on page 35.

34 OS/390 V2R8.0 C/C++ Programming Guide

Mapping C Types to Fixed Format: The following formats are discussed in this
section:
v Binary
v Text (non-ASA)
v Text (ASA)
v Record

Binary
On binary input and output, data flows over record boundaries. Because
all fixed-format records must be full, OS/390 C/C++ completes any
incomplete output record by padding it with nulls ('\0') when you close
the file. Incomplete blocks are not padded. On input, nulls are visible and
are treated as data.

For example, if record length is set to 10 and you are writing 25 characters
of data, OS/390 C/C++ will write two full records, each containing 10
characters, and then an incomplete record containing 5 characters. If you
then close the file, OS/390 C/C++ will complete the last record with 5
nulls. If you open the file for reading, OS/390 C/C++ will read the records
in order. OS/390 C/C++ will not strip off the nulls at the end of the last
record.

Text (non-ASA)
When writing in a text stream, you indicate the end of the data for a
record by writing a new-line ('\n') or carriage return ('\r') to the stream.
In a fixed-format file, the new-line or carriage return will not appear in the
external file, and the record will be padded with blanks from the position
of the new-line or carriage return to LRECL. (A carriage return is considered
the same as a new-line because the '\r' is not written to the file.)

For example, if you have set LRECL to 10, and you write the string "ABC\n"
to a fixed-format text file, OS/390 C/C++ will write this to the physical

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record

F-Format FB-Format FBS-Format

Block Block

.

Figure 2. Blocking Fixed-Length Records

Chapter 4. Understanding Models of C I/O 35

file:

A B C

A record containing only a new-line is written to the file as LRECL blanks.

When reading in a text stream, the I/O functions place a new-line
character ('\n') in the buffer to indicate the end of data for the record. In a
fixed-format file, the new-line character is placed at the start of the blank
padding at the end of the data.

For example, if your file position points to the start of the following record
in a fixed-format file opened as a text stream

A B C

file pointer

and you call fgets() to read the line of text, fgets() places the string
"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a new-line or carriage
return will be considered blank padding when the record is
read back from the file. You cannot change the padding
character.

When you are updating a fixed-format file opened as a text stream, you
can update the amount of data in a record. The maximum length of the
updated data is LRECL bytes plus the new-line character; the minimum
length is zero data bytes plus the new-line character. Writing new data into
an existing record replaces the old data. If the new data is longer or shorter
than the old data, the number of blank padding characters in the record in
the external file is changed. When you extend a record, thereby writing
over the old new-line, there will be a new-line character implied after the
new characters. For instance, if you were to overwrite the record
mentioned in the previous example with the string "123456", the records in
the physical file would then look like this:

1 2 3

file pointer

4 5 6

The blanks at the end of the record imply a new-line at position 7. You can
see this new-line by calling fflush() and then performing a read. The
implied new-line is the first character returned from this read.

36 OS/390 V2R8.0 C/C++ Programming Guide

A fixed record can hold only LRECL characters. If you try to write more
than that, OS/390 C/C++ truncates the data unless you are using a
standard stream or a terminal file. In this case, the output is split across
multiple records. If truncation occurs, OS/390 C/C++ raises SIGIOERR and
sets both errno and the error flag.

Text (ASA)
For ASA files, the first character of each record is reserved for the ASA
control character that represents a new-line, a carriage return, or a form
feed. This control character represents what should happen before the
record is written.

Table 3. C Control to ASA Characters

C Control Character ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

\r '+' overstrike

A control character that ends a logical record is represented at the
beginning of the following record in the external file. Since the ASA control
character is in the first byte of each record, a record can hold only LRECL -
1 bytes of data. As with non-ASA text files described above, OS/390
C/C++ adds blank padding to complete any record shorter than LRECL - 1
when it writes the record to the file. On input, OS/390 C/C++ removes all
trailing blanks. For example, if LRECL is 10, and you enter the string:

\nABC\nDEF

the record in the physical file will look like this:
On input, this string is read as follows:

\nABC\nDEF

You can lengthen and shorten records the same way as you can for
non-ASA files. For more information about ASA, refer to “Chapter 8. Using
ASA Text Files” on page 69.

Record
As with fixed-format text files, a record can hold LRECL characters. Every
call to fwrite() is considered to be writing a full record. If you write fewer
than LRECL characters, OS/390 C/C++ completes the record with enough
nulls to make it LRECL characters long. If you try to write more than that,
OS/390 C/C++ truncates the data.

Variable-Format Records

In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

A B C D E F ...

Chapter 4. Understanding Models of C I/O 37

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).
Illustrations of variable-length records are shown in Figure 3 on page 39.

Once you have set the LRECL for a variable-format file, you can write up to LRECL
minus 4 characters in each record. OS/390 C/C++ does not let you see RDWs,
BDWs, or SDWs when you open a file as variable-format. To see the RDWs or
SDWs and BDWs, open the variable file as undefined-format, as described in
“Undefined-Format Records” on page 41.

The value of LRECL must be greater than 4 to accommodate the RDW or SDW. The
value of BLKSIZE must be greater than or equal to the value of LRECL plus 4. You
should not use a BLKSIZE greater than LRECL plus 4 for an unblocked data set.
Doing so results in buffers that are larger than they need to be. The largest amount
of data that any one record can hold is LRECL bytes minus 4.

For striped data sets, a block is padded out to its full BLKSIZE. This makes
specifying an unnecessarily large BLKSIZE very inefficient.

Record Format (RECFM): You can specify the following formats for
variable-length records:

V Variable-length, unblocked

VA Variable-length, ASA print control characters, unblocked

VB Variable-length, blocked

VM Variable-length, machine print control codes, unblocked

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print control characters

VBM Variable-length, blocked, machine print control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, spanned, ASA print control characters

VSM Variable-length, spanned, machine print control codes

VBSA Variable-length, blocked, spanned, ASA print control characters

VBSM Variable-length, blocked, spanned, machine print control codes

Note: In general, all references in this guide to files with record format VB also
refer to VBM and VBA. The specific behavior of ASA files (such as VBA) is
explained in “Chapter 8. Using ASA Text Files” on page 69.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate.

Spanned Records: A spanned record is opened using both V and S in the format
specifier. A spanned record is a variable-length record in which the length of the
record can exceed the size of a block. If it does, the record is divided into segments
and accommodated in two or more consecutive blocks. The use of spanned records
allows you to select a block size, independent of record length, that will combine
optimum use of auxiliary storage with the maximum efficiency of transmission.

38 OS/390 V2R8.0 C/C++ Programming Guide

VS-format specifies that each block contains only one record or segment of a record.
The first 4 bytes of a block describe the block control information. The second 4
bytes contain record or segment control information, including an indication of
whether the record is complete or is a first, intermediate, or last segment.

VBS-format differs from VS-format in that each block in VBS-format contains as
many complete records or segments as it can accommodate, while each block in
VS-format contains at most one record per block.

Mapping C Types to Variable Format:

Binary
On input and output, data flows over record boundaries. Any record will
hold up to LRECL minus 4 characters of data. If you try to write more than
that, your data will go to the next record, after the RDW or SDW. You will
not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWs, or SDWs, you can open and
read a V-format file as a U-format file. See “Undefined-Format
Records” on page 41 for more information.

OS/390 C/C++ never creates empty binary records for files opened in
V-format. See “Writing to Binary Files” on page 125 for more information.
An empty binary record is one that contains only an RDW, which is 4
bytes long. On input, empty records are ignored.

C1 C1 C1C2 C2 C2Record 1 Record 2

C1 C1C2 C2 C2Record 1 Record 2 Record 3

Record 3

C1 C1 C1C2 C2 C2

C2

Record 1
(entire)

Record 2
(first segment)

Record 2
(first segment)

Record 2
(next segment)

C1 C1C2 C2 C2
Record 1
(entire)

Record 2
(last segment)

V-format:

VB-format:

VS-format:

VBS-format:

C1
C2

: Block control information
: Record or segment control information

Block

Spanned Record

Spanned Record

Figure 3. Variable-Length Records on OS/390

Chapter 4. Understanding Models of C I/O 39

Text (non-ASA)
Record boundaries are used in the physical file to represent the position of
the new-line character. You can indicate the end of a record by including a
new-line or carriage return character in your data. In variable-format files,
OS/390 C/C++ treats the carriage return character as if it were a new-line.
OS/390 C/C++ does not write either of these characters to the physical
file; instead, it creates a record boundary. When you read the file back,
boundaries are read as new-lines.

If a record only contains a new-line character, the default behavior of
OS/390 C/C++ is to write a record containing a single blank to the file.
Therefore, the string “ \n” is treated the same way as the string “\n”; both
are read back as “\n”. All other blanks in your output are read back as is.
Any empty (zero-length) record is ignored on input. However, if the
environment variable _EDC_ZERO_RECLEN was set to Y at the time the file
was opened, a single new-line is written to the file as an empty record, and
a single blank represents “ \n”. On input, an empty record is treated as a
single new-line and is not ignored.

After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of
data into it, the C I/O library will add blank characters until the record is
full. Writing more data to a record than it can hold causes your data to be
truncated unless you are writing to a standard stream or a terminal file. In
this case, your output is split across multiple records. If truncation occurs,
OS/390 C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the _EDC_ZERO_RECLEN environment
variable when you opened the file, you can update a record that
contains a single blank to contain a non-blank character, thereby
lengthening the logical record from '\n' to 'x\n'), where x is the
non-blank character.

Text (ASA)
OS/390 C/C++ treats variable-format ASA text files similarly to the way it
treats fixed-format ones. Empty records are always ignored in ASA
variable-format files; for a record to be recognized, it must contain at least
one character as the ASA control character.

For more information about ASA, refer to “Chapter 8. Using ASA Text
Files” on page 69.

Record
Each call to fwrite() creates a record that must be shorter than or equal to
the size established by LRECL. If you try to write more than LRECL bytes on
one call to fwrite(), OS/390 C/C++ will truncate your data. OS/390
C/C++ never creates empty records using record I/O. On input, empty
records are ignored unless you have set the _EDC_ZERO_RECLEN environment
variable to Y. In this case, empty records are treated as records with length
0.

If your application sets _EDC_ZERO_RECLEN to Y, bear in mind that fread()
returns back 0 bytes read, but does not set errno, and that both feof() and
ferror() return 0 as well.

40 OS/390 V2R8.0 C/C++ Programming Guide

Undefined-Format Records

Everything in an undefined-format file is treated as data, including control
characters and record boundaries. Blocks in undefined-format records are
variable-length; each block is considered a record.

It is impossible to have an empty record. Whatever you specify for LRECL has no
effect on your data, but the value of LRECL must be less than or equal to the value
you specify for BLKSIZE. Regardless of what you specify, OS/390 C/C++ sets LRECL
to zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record Format (RECFM): You can specify the following formats for
undefined-length records:

U Undefined-length

UA Undefined-length, ASA print control characters

UM Undefined-length, machine print control codes

U, UA, and UM formats permit the processing of records that do not conform to F-
and V-formats. The operating system treats each block as a record; your program
must perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see
the BDWs and RDWs of a file that you have written in V-format.

Mapping C Types to Undefined Format:

Binary
When you are writing to an undefined-format file, binary data fills a block
and then begins a new block.

Text (non-ASA)
Record boundaries (that is, block boundaries) are used in the physical file
to represent the position of the new-line character. You can indicate the end
of a record by including a new-line or carriage return character in your
data. In undefined-format files, OS/390 C/C++ treats the carriage return
character as if it were a new-line. OS/390 C/C++ does not write either of
these characters to the physical file; instead, it creates a record boundary.
When you read the file back, these boundaries are read as new-lines. If a
record contains only a new-line character, OS/390 C/C++ writes a record
containing a single blank to the file regardless of the setting of the
_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a
single blank followed by a new-line character) is treated the same way as
'\n'; both are written out as a single blank. On input, both are read as
'\n'. All other blank characters are written and read as you intended.
After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of
data into it, the C I/O library adds blank characters until the record is full.
Writing more data to a record than it can hold will cause your data to be
truncated unless you are writing to a standard stream or a terminal file. In
these cases, your output is split across multiple records. If truncation
occurs, OS/390 C/C++ raises SIGIOERR and sets both errno and the error
flag.

Chapter 4. Understanding Models of C I/O 41

Note: You can update a record that contains a single blank to contain a
non-blank character, thereby lengthening the logical record from
'\n' to 'x\n'), where x is the non-blank character.

Text (ASA)
For a record to be recognized, it must contain at least one character as the
ASA control character.

For more information about ASA, refer to “Chapter 8. Using ASA Text
Files” on page 69.

Record
Each call to fwrite() creates a record that must be shorter than or equal to
the size established by BLKSIZE. If you try to write more than BLKSIZE bytes
on one call to fwrite(), OS/390 C/C++ truncates your data.

The Byte Stream Model for C I/O

The byte stream model differs from the record I/O model. In the byte stream
model, a file is just a stream of bytes, with no record boundaries. New-line
characters written to the stream appear in the external file.

If the file is opened in binary mode, any new-line characters previously written to
the file are visible on input. OS/390 C/C++ memory file I/O and Hiperspace
memory file I/O are based on the byte stream model (see “Chapter 15. Performing
Memory File and Hiperspace I/O Operations” on page 209 for more information).

Hierarchical File System (HFS) I/O, defined by POSIX, is also based on the byte
stream model. Refer to “Chapter 12. Performing Hierarchical File System I/O
Operations” on page 139 for information about I/O with HFS.

Mapping the C Types of I/O to the Byte Stream Model
Binary

In the byte stream model, files opened in binary mode do not contain any
record boundaries. Data is written as is to the file.

Text The byte stream model does not support ASA. New-lines, carriage returns,
and other control characters are written as-is to the file.

Record
If record I/O is supported by the kind of file you are using, OS/390
C/C++ simulates it by treating new-line characters as record boundaries.
New-lines are not treated as part of the record. A record written out with a
new-line inside it is not read back as it was written, because OS/390
C/C++ treats the new-line as a record boundary instead of data.

HFS files support record I/O, but memory files do not.

As with all other record I/O, you can use only fread() and fwrite() to
read from and write to files. Each call to fwrite() inserts a new-line in the
byte stream; each call to fread() strips it off. For example, if you use one
fwrite() statement to write the string ABC and the next to write DEF, the

42 OS/390 V2R8.0 C/C++ Programming Guide

byte stream will look like this:

A B C \n D E F \n ...

There are no limitations on lengthening and shortening records. If you then
rewind the file and write new data into it, OS/390 C/C++ will replace the
old data. For example, if you used the rewind() function on the stream in
the previous example and then called fwrite() to place the string 12345
into it, the stream would look like this:

1 2 3 4 5 \n F \n ...

If you are using files with this model, do not use new-line characters in
your output. If you do, they will create extra record boundaries. If you are
unsure about the data being written or are writing numeric data, use
binary instead of text to avoid writing a byte that has the hex value of a
new-line.

Chapter 4. Understanding Models of C I/O 43

44 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 5. Using the I/O Stream Class Library in C++

The object-oriented model for I/O is a set of C++ classes that comprise the I/O
Stream Class Library. This set of classes implements and manages stream buffers
for input and output. Stream buffers can take two forms. They can be arrays of
bytes where data is stored between the program and the ultimate consumer for
output. Stream buffers can also be between the ultimate producer and the program
for input. Stream buffers and manipulators are used to format data.

There are two base classes, ios and streambuf, from which all other classes in the
I/O Stream library are derived. The ios class and its derivative classes are used to
implement formatting of I/O and maintain error state information of stream
buffers implemented with the streambuf class.

To use the I/O Stream Library, include the iostream.h header file in your program.

This chapter includes the following topics:
v Advantages to using the C++ I/O Stream Class Library
v Predefined Streams for C++
v How C++ I/O Streams Relate to C Streams
v Specifying File Attributes
v Related Information

Advantages to Using the C++ I/O Stream Class Library

Although input and output are implemented with streams for both C and C++, the
C++ I/O Stream Class Library provides the same facilities for input and output as
C stdio.h. The I/O Stream Class Library has the following advantages:
v The input (>>) operator and output (<<) operator are typesafe. These operators

are easier to use than scanf() and printf().
v You can overload the input and output operators to define input and output for

your own types and classes. This makes input and output across types,
including your own, uniform.

Predefined Streams for C++

OS/390 C++ provides the following predefined streams:

cin The standard input stream

cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this
stream are flushed on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets
flushed sending the contents of cout to the ultimate consumer.

OS/390 C standard streams create all I/O to I/O Streams:
v Input to cin comes from stdin (unless cin is redirected)

© Copyright IBM Corp. 1996, 1999 45

v cout output goes to stdout (unless cout is redirected)
v cerr output goes to stderr (unit-buffered) (unless cerr is redirected)
v clog output goes to stderr (unless clog is redirected)

When redirecting or intercepting a C standard stream, the corresponding C++ I/O
Stream standard stream becomes redirected. This applies unless you redirect an
I/O Stream standard stream. See “Chapter 10. Using C and C++ Standard Streams
and Redirection” on page 83 for more information.

How C++ I/O Streams Relate to C Streams

I/O Stream Class Library file I/O is implemented in terms of OS/390 C file I/O,
and is buffered from it. The only exception cerr is unit buffered (ios::unitbuf is
set). A filebuf object is associated with each ifstream, ofstream, and fstream
object. When the filebuf is flushed, it writes to the underlying C stream, which
has its own buffer. The filebuf object follows every fwrite() to the underlying C
stream with an fflush().

Specifying File Attributes

The fstream, ifstream, and ofstream classes specialize stream input and output
for files.

For OS/390 C++, overloaded fstream, ifstream, and ofstream constructors, and
open() member functions, with an additional parameter, are provided so you can
specify OS/390 C fopen() mode values. You can use this additional parameter to
specify any OS/390 C fopen() mode value except type=record. If you choose to
use a constructor without this additional parameter, you will get the default
OS/390 C fopen() file characteristics. Table 6 on page 55 describes the default
fopen() characteristics.

Related Information

For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see the OS/390 C/C++ IBM Open Class Library
Reference and the OS/390 C/C++ IBM Open Class Library User’s Guide.

46 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 6. Opening Files

This chapter describes how to open I/O files. You can open files using the
standard C fopen() and freopen() library functions. Alternatively, if you want to
use the C++ I/O stream class library, you can use the constructors for the
ifstream, ofstream or fstream classes, or the open() member functions of the
filebuf, ifstream, ofstream or fstream classes.

To open a file stream with a previously opened HFS file descriptor, use the
fdopen() function.

To open files with HFS low-level I/O, use the open() function. For more
information about opening HFS files, see “Chapter 12. Performing Hierarchical File
System I/O Operations” on page 139.

Prototypes of functions

The prototypes of these functions are:

C Library Functions:
FILE *fopen(const char *filename, const char *mode);

FILE *freopen(const char *filename, const char *mode, FILE *stream

FILE *fdopen(int filedes, char *mode);

C++ I/O Stream Class Library Functions:
// ifstream constructor
ifstream(const char* fname, int mode=ios::in,

int prot=filebuf::openprot);

// OS/390 C++ extension
ifstream(const char* fname, const char* fattr,

int mode=ios::in, int prot=filebuf::openprot);

// ifstream::open()
void open(const char* fname, int mode=ios::in,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode=ios::in, int prot=filebuf::openprot);
// ofstream constructor
ofstream(const char* fname, int mode=ios::out,

int prot=filebuf::openprot);

// OS/390 C++ extension
ofstream(const char* fname, const char* fattr,

int mode=ios::out, int prot=filebuf::openprot);

// ofstream::open()
void open(const char* fname, int mode=ios::out,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode=ios::out, int prot=filebuf::openprot);

© Copyright IBM Corp. 1996, 1999 47

// fstream constructor
fstream(const char* fname, int mode,

int prot=filebuf::openprot);

// OS/390 C++ extension
fstream(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

// fstream::open()
void open(const char* fname, int mode,

int prot=filebuf::openprot);

// OS/390 C++ extension
void open(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

// filebuf::open()
filebuf* open(const char* fname, int mode,

int prot=filebuf::openprot);

// OS/390 C++ extension
filebuf* open(const char* fname, const char* fattr,

int mode, int prot=filebuf::openprot);

The C library functions are described in more detail in the OS/390 C/C++ Run-Time
Library Reference. The C++ I/O streams class library functions are described in
more detail in the OS/390 C/C++ IBM Open Class Library Reference and the OS/390
C/C++ IBM Open Class Library User’s Guide.

Categories of I/O

The following table lists the categories of I/O that OS/390 C/C++ supports and
points to the section where each category is described.

Table 4. Kinds of I/O Supported by OS/390 C/C++

Type of I/O Suggested Uses and Supported Devices Model Page

OS I/O Used for dealing with the following kinds of
files:

v Generation data group

v MVS sequential DASD files

v Regular and extended partitioned data sets

v Tapes

v Printers

v Punch data sets

v Card reader data sets

v MVS inline JCL data sets

v MVS spool data sets

v Striped data sets

v Optical readers

Record 103

Hierarchical File
System (HFS) I/O

Used under OS/390 UNIX System Services
(OS/390 UNIX) to support HFS data sets, and
access the byte-oriented HFS files according to
POSIX .1 and XPG 4.2 interfaces. This increases
the portability of applications written on
UNIX-based systems to OS/390 C/C++
systems.

Byte
stream

139

48 OS/390 V2R8.0 C/C++ Programming Guide

Table 4. Kinds of I/O Supported by OS/390 C/C++ (continued)

Type of I/O Suggested Uses and Supported Devices Model Page

VSAM I/O Used for working with VSAM data sets.
Supports direct access to records by key, relative
record number, or relative byte address.
Supports entry-sequenced, relative record, and
key-sequenced data sets.

Record 159

Terminal I/O Used to perform interactive input and output
operations with a terminal.

Record 199

Memory Files Used for applications requiring temporary I/O
files without the overhead of system data sets.
Fast and efficient.

Byte
stream

209

Hiperspace*
Memory Files

Used to deal with memory files as large as 2
gigabytes.

Byte
stream

209

CICS Data Queues Used under the Customer Information Control
System (CICS). CICS data queues are
automatically selected under CICS for the
standard streams stdout and stderr for C, or
cout and cerr for C++. The CICS I/O
commands are supported through the
Command Level interface. The standard stream
stdin under C (or cin under C++) is treated as
an empty file under CICS.

Record 223

OS/390 Language
Environment
Message File

Used when you are running with OS/390
Language Environment. The message file is
automatically selected for stderr under OS/390
Language Environment. For C++, automatic
selection is of cerr.

Record 225

The following table lists the environments that OS/390 C/C++ supports, and
which categories of I/O work in which environment.

Table 5. I/O Categories and Environments That Support Them

Type of I/O MVS
batch

IMS online TSO TSO batch CICS

OS I/O Yes Yes Yes Yes No

HFS I/O Yes Yes Yes Yes No

VSAM I/O Yes Yes Yes Yes No

Terminal I/O No No Yes No No

Memory Files Yes Yes Yes Yes Yes

Hiperspace Memory Files Yes Yes Yes Yes No

CICS Data Queues No No No No Yes

OS/390 Language
Environment Message File

Yes Yes Yes Yes No

Note: MVS batch includes IMS batch. TSO is interactive. TSO batch indicates an
environment set up by a batch call to IKJEFT01. Programs run in such an environment
behave more like a TSO interactive program than an MVS batch program.

Chapter 6. Opening Files 49

Specifying What Kind of File to Use

This section discusses:
v the kinds of files you can use
v how to specify RECFM, LRECL, and BLKSIZE
v how to specify DDnames

OS Files

OS/390 C/C++ treats a file as an OS file, provided that it is not a CICS data
queue, or an HFS, VSAM, memory, terminal, or Hiperspace file.

HFS Files

When you are running under MVS, TSO (batch and interactive), or IMS, OS/390
C/C++ recognizes an HFS I/O file as such if the name specified on the fopen() or
freopen() call conforms to certain rules. These rules are described in “How
OS/390 C/C++ Determines What Kind of File to Open” on page 57.

VSAM Data Sets

OS/390 C/C++ recognizes a VSAM data set if the file exists and has been defined
as a VSAM cluster before the call to fopen().

Terminal Files

When you are running with the run-time option POSIX(OFF) under interactive TSO,
OS/390 C/C++ associates streams to the terminal. You can also call fopen() to
open the terminal directly if you are running under TSO (interactive or batch), and
either the filename you specify begins with an asterisk (*), or the ddname has been
allocated with a DSN of *.

When running with POSIX(ON), OS/390 C/C++ associates streams to the terminal
under TSO and the shell if the filename you have specified fits one of the
following criteria:
v Under TSO (interactive and batch), the name must begin with the sequence //*,

or the ddname must have been allocated with a DSN of *.
v Under the shell, the name specified on fopen() or freopen() must be the

character string returned by ttyname().

Interactive IMS and CICS behave differently from what is described here. For more
information about terminal files with interactive IMS and CICS see “Chapter 10.
Using C and C++ Standard Streams and Redirection” on page 83.

If you are running with POSIX(ON) outside the shell, you must use the regular
OS/390 C/C++ I/O functions for terminal I/O. If you are running with POSIX(ON)
from the shell, you can use the regular OS/390 C/C++ I/O functions or the POSIX
low-level functions (such as read()) for terminal I/O.

50 OS/390 V2R8.0 C/C++ Programming Guide

Memory Files and Hiperspace Memory Files

You can use regular memory files on all the systems that OS/390 C/C++ supports.
To create one, specify type=memory on the fopen() or freopen() call that creates the
file. A memory file, once created, exists until either of the following happens:
v You explicitly remove it with remove() or clrmemf()

v The root program is terminated

While a memory file exists, you can just use another fopen() or freopen() that
specifies the memory file’s name; you do not have to specify type=memory. For
example:

CBC3GOF1

A valid memory file name will match current file restrictions on a real file. Thus, a
memory filename that is classified as HFS can have more characters than can one
classified as an MVS filename.

If you are not running under CICS, you can open a Hiperspace memory file as
follows:

fp = fopen("a.b", "w, type=memory(hiperspace)");

If you specify hiperspace and you are running in a CICS environment, OS/390
C/C++ opens a regular memory file. If you are running with the run-time options
POSIX(ON) and TRAP(OFF), specifying hiperspace has no effect; OS/390 C/C++ will
open a regular memory file. You must specify TRAP(ON) to be able to create
Hiperspace files.

CICS Data Queues

A CICS transient data queue is a pathway to a single predefined destination. The
destination can be a ddname, another transient data queue, a VSAM file, a
terminal, or another CICS environment. The CICS system administrator defines the
queues that are active during execution of CICS. All users who direct data to a
given queue will be placing data in the same location, in order of occurrence.

/* this example shows how fopen() may be used with memory files */

#include <stdio.h>
char text[3], *result;
FILE * fp;

int main(void)
{
fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */
fprintf(fp, "%d\n",10); /* Writes to the file */
fclose(fp); /* Closes the file */
fp = fopen("a.b", "r"); /* Reopens the same */

/* file (already */
/* a memory file) */

if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results */
printf("value retrieved is %s\n",result);

fclose(fp); /* Closes the file */

return(0);
}

Figure 4. Memory File Example

Chapter 6. Opening Files 51

You cannot use fopen() or freopen() to specify this kind of I/O. It is the category
selected automatically when you call any ANSI functions that reference stdout and
stderr under CICS. If you reference either of these in a C or C++ program under
CICS, OS/390 C/C++ attempts to open the CESO (stdout) or CESE (stderr)
queue. If you want to write to any other queue, you should use the CICS-provided
interface.

OS/390 Language Environment Message File

The OS/390 Language Environment message file is managed by OS/390 Language
Environment and may not be directly opened or closed with fopen(), freopen() or
fclose() within a C or C++ application. In OS/390 Language Environment, output
from stderr is directed to the OS/390 Language Environment message file by
default. You can use freopen() and fclose() to manage stderr, or you can
redirect it to another destination. There are application writer interfaces (AWIs)
that enable you to access the OS/390 Language Environment message file directly.
These are documented in the OS/390 Language Environment Programming Guide.

See “Chapter 17. Language Environment Message File Operations” on page 225 for
more information on OS/390 Language Environment message files.

How to Specify RECFM, LRECL, and BLKSIZE

For OS files and terminal files, the values of RECFM, LRECL, and BLKSIZE are
significant. When you open a file, OS/390 C/C++ searches for the RECFM, LRECL,
and BLKSIZE values in the following places:
1. The fopen() or freopen() statement that opens the file
2. The DD statement (described in “DDnames” on page 56)
3. The values set in the existing file
4. The default values for fopen() or freopen().

When you call fopen() and specify a write mode (w, wb, w+, wb+, w+b) for an
existing file, OS/390 C/C++ uses the default values for fopen() if:
v the data set is opened by the dataset name or
v the data set is opened by ddname and the DD statement does not have any

attributes filled in.

These defaults are listed in Table 6 on page 55. To force OS/390 C/C++ to use
existing attributes when you are opening a file, specify recfm=* on the fopen() or
freopen() call.

recfm=* is valid only for existing DASD data sets. It is ignored in all other cases.

Notes:

1. When specifying a ddname on fopen() or freopen() you should be aware of
the following when opening the ddname using one of the write modes:

2. If the ddname is allocated to an already existing file and that ddname has not
yet been opened, then the DD statement will not contain the recfm, lrecl, or
blksize. That information is not filled in until the ddname is opened for the
first time. If the first open uses one of the write modes (w,wb, w+, wb+, w+b)
and recfm=* is not specified, then the existing file attributes are not considered.
Therefore, since the DD statement has not yet been filled in, the fopen()
defaults are used.

52 OS/390 V2R8.0 C/C++ Programming Guide

3. If the ddname is allocated at the same time the file is created, then the DD
statement will contain the same recfm, lrecl, and blksize specified for the
file. If the first open uses one of the write modes (w, wb, w+, wb+, w+b) and
recfm=* is not specified, then OS/390 C/C++ picks up the existing file
attributes from the DD statement since they were placed there at the time of
allocation.

You can specify the record format in
v The RECFM parameter of the JCL DD statement under MVS
v The RECFM parameter of the ALLOCATE statement under TSO
v The __recfm field of the __dyn_t structure passed to the dynalloc() library

function under MVS
v The RECFM parameter on the call to the fopen() or freopen() library function
v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS
v The ISPF data set utility under MVS

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE
or RECFM that are not physically supported on the device. Table 4 on page 48 lists all
the categories of I/O that OS/390 C/C++ supports and directs you to where you
can find more information about them.

You can specify the logical record length in
v The LRECL parameter of the JCL DD statement under MVS
v The LRECL parameter of the ALLOCATE statement under TSO
v The __lrecl field of the __dyn_t structure passed to the dynalloc() library

function under MVS
v The LRECL parameter on the call to the fopen() or freopen() library function
v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS
v The ISPF data set utility

If you are creating a file and you do not select a record size, OS/390 C/C++ uses a
default. See “fopen() Defaults” on page 54 for details on how defaults are
calculated.

You can specify the block size in
v The BLKSIZE parameter of the JCL DD statement
v The BLKSIZE parameter of the ALLOCATE statement under TSO
v The __blksize field of the __dyn_t structure passed to the dynalloc() library

function under MVS
v The BLKSIZE parameter on a call to the fopen() or freopen() library function
v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS
v The ISPF data set utility

If you are creating a file and do not select a block size, OS/390 C/C++ uses a
default. The defaults are listed in Table 6 on page 55.

Chapter 6. Opening Files 53

fopen() Defaults

You cannot specify a file attribute more than once on a call to fopen() or
freopen(). If you do, the function call fails. If the file attributes specified on the
call to fopen() differ from the actual file attributes, fopen() usually fails. However,
fopen() does not fail if:
v The file is opened for w, w+, wb, or wb+, and the file is neither an existing PDS or

PDSE nor an existing file opened by a ddname that specifies DISP=MOD. In such
instances, fopen() attributes override the actual file attributes. However, if
recfm=* is specified on the fopen(), any attributes that are not specified either
on the fopen() or for the ddname will be retrieved from the existing file. If the
final combination of attributes is invalid, the fopen() will fail.

v The file is opened for reading (r or rb) with recfm=U. Any other specified
attributes should be compatible with those of the existing data set.

In calls to fopen(), the LRECL, BLKSIZE, and RECFM parameters are optional. (If you
are opening a file for read or append, any attributes that you specify must match
the existing attributes.)

If you do not specify file attributes for fopen() (or for an I/O Stream object), you
get the following defaults.

RECFM Defaults

If recfm is not specified in a fopen() call for an output binary file, recfm defaults
to:
v recfm=VB for spool (printer) files
v recfm=FB otherwise

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:
v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.

In this case, LRECL and BLKSIZE are both defaulted to 254.
v recfm=VBA for spool (printer) files.
v recfm=U for terminal files.
v recfm=VB for MVS files.
v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

LRECL and BLKSIZE defaults

The following table shows the defaults for LRECL and BLKSIZE when OS/390
C/C++ is creating a file, not appending or updating it. The table assumes that
OS/390 C/C++ has already processed any information from the fopen() statement
or ddname. The defaults provide a basis for fopen() to select values for
unspecified attributes when you create a file.

54 OS/390 V2R8.0 C/C++ Programming Guide

Table 6. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral multiple of
80 less than or equal to max

All V, VB,
VS, or
VBS

minimum of 1028 or max–4 max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral multiple of
lrecl less than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or
FB

blksize blksize

All V, VB,
VS, or
VBS

minimum of 1028 or blksize–4 blksize

All U 0 blksize

Note: “All”includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control
character (M) specifier.

In the preceding table, the value max represents the maximum block size for the
device. These are the current default maximum block sizes for several devices that
OS/390 C/C++ supports:

Device Block Size

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes, as returned by the DEVTYPE
macro, refer to the DFP System Programming Reference.

For DASD files that do not have recfm=U, if you specify blksize=0 on the call to
fopen() or freopen() and you have DFP Release 3.1 or higher, the system
determines the optimal block size for your file. If you do not have the correct level
of DFP or you specify blksize=0 for a ddname instead of specifying it on the
fopen() or freopen() call, OS/390 C/C++ behaves as if you had not specified the
blksize parameter at all.

Chapter 6. Opening Files 55

For information about block sizes for different categories of I/O, see the chapters
listed in Table 4 on page 48.

You do not have to specify the LRECL and BLKSIZE attributes; however, it is possible
to have conflicting attributes when you do specify them. The restrictions are:
v For a V file, the LRECL must be greater than 4 bytes and must be at least 4 bytes

smaller than the BLKSIZE.
v For an F file, the LRECL must be equal to the BLKSIZE, and must be at least 1.
v For an FB file, the BLKSIZE must be an integer multiple of the LRECL.
v For a U file, the LRECL must be less than or equal to the BLKSIZE and must be

greater than or equal to 0. The BLKSIZE must be at least 1.
v In spanned files, the LRECL and the BLKSIZE attributes must be greater than 4.
v If you specify LRECL=X, the BLKSIZE attribute must be less than or equal to the

maximum block size allowed on the device.

To determine the maximum LRECL and BLKSIZE values for the various file types
and devices available on your operating system, refer to the chapters listed in
Table 4 on page 48.

DDnames

DD names are specified by prefixing the DD name with DD:. All the following
forms of the prefix are supported:
v DD:
v dd:
v dD:
v Dd:

The DD statement enables you to write C source programs that are independent of
the files and input/output devices they will use. You can modify the parameters of
a file (such as LRECL, BLKSIZE, and RECFM) or process different files without
recompiling your program.

How to Create a DDname Under MVS Batch
To create a ddname under MVS batch, you must write a JCL DD statement.
For the C file PARTS.INSTOCK, you would write a JCL DD statement similar
to the following:

//STOCK DD DSN=PARTS.INSTOCK, . . .

HFS files can be allocated with a DD card. For example:
//STOCK DD PATH='/u/parts.instock',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXU,SIRWXO,SIRWXG)

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations
such as freopen(), and the DD statement will be unallocated.

For more information on writing DD statements, refer to the JCL manuals
listed in the OS/390 Information Roadmap.

How to Create a DDname Under TSO
To create a ddname under TSO, you must write an ALLOCATE command.

56 OS/390 V2R8.0 C/C++ Programming Guide

For the declaration shown above for the C file STOCK, you should write a
TSO ALLOCATE statement similar to the following:

ALLOCATE FILE(STOCK) DATASET('PARTS.INSTOCK')

You can also allocate HFS files with TSO ALLOCATE commands. For
example:

ALLOC FI(stock) PATH('/used/parts.stock') PATHOPTS(OWRONLY,OCREAT)
PATHMODE(sirwxu,sirwxo,sirwxg)

See the OS/390 Information Roadmapfor more information on TSO ALLOCATE.

How to Create a DDname In Source Code
You can also use the OS/390 C/C++ library functions svc99() and
dynalloc() to allocate ddnames. See the OS/390 C/C++ Run-Time Library
Reference for more information about these functions.

You do not always need to describe the characteristics of the data in files both
within the program and outside it. There are, in fact, advantages to describing the
characteristics of your data in only one place.

Opening a file by ddname may require the merging of information internal and
external to the program. If any conflict is detected that will prevent the opening of
a file, fopen() returns a NULL pointer to indicate that the file cannot be opened. See
the OS/390 C/C++ Run-Time Library Reference for more information on fopen().

If DISP=MOD is specified on a DD statement and if the file is opened in w or wb mode,
the DISP=MOD causes the file to be opened in append mode rather than in write
mode.

Note: You can open a ddname only with fopen() or freopen(). open() does not
interpret ddnames as such.

How OS/390 C/C++ Determines What Kind of File to Open

This section describes the criteria that OS/390 C/C++ uses to determine what kind
of file it is opening. OS/390 C/C++ goes through the categories listed in Table 4 on
page 48 in the order that follows. If a category applies to a file, OS/390 C/C++
stops searching.

Note: Files cannot be opened under CICS when you have specified the POSIX(ON)
run-time option.

The following chart shows how OS/390 C/C++ determines what type of file to
open under TSO, MVS batch, and interactive IMS with POSIX(ON). For information
on the types of files shown in the chart see the appropriate chapter in the I/O
section.

Chapter 6. Opening Files 57

MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 59.

004

Continue at Step 008.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens a regular memory file.

007

OS/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

009

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011

OS/390 C/C++ opens an OS file.

012

OS/390 C/C++ opens the existing memory file.

58 OS/390 V2R8.0 C/C++ Programming Guide

013

Continue to Step 032 on page 60.

014

Are you running under TSO interactive?
Yes No

015

OS/390 C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to Step 028 on page 60.

016

OS/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019

OS/390 C/C++ opens an HFS file.

020

OS/390 C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?
Yes No

023

OS/390 C/C++ opens an HFS file called either *DD:ddname or
DD:ddname.

024

OS/390 C/C++ opens the existing memory file.

MAP 0010 (continued)

Chapter 6. Opening Files 59

025

Is a path specified in ddname?
Yes No

026

OS/390 C/C++ opens an OS file.

027

OS/390 C/C++ opens an HFS file.

028

Is the name of the form *DD:ddname or DD:ddname?
Yes No

029

Does the name specified match that of an existing memory file?
Yes No

030

OS/390 C/C++ opens an OS file.

031

OS/390 C/C++ opens the existing memory file.

032

Does ddname exist?
Yes No

033

Does a memory file exist?
Yes No

034

ERROR

035

OS/390 C/C++ opens the existing memory file.

MAP 0010 (continued)

60 OS/390 V2R8.0 C/C++ Programming Guide

036

Is a path specified in ddname?
Yes No

037

OS/390 C/C++ opens an OS file.

038

OS/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to
open under TSO, MVS batch, and interactive IMS with POSIX(OFF). For information
on the types of files shown in the chart see the appropriate chapter in the I/O
section.

MAP 0010 (continued)

Chapter 6. Opening Files 61

MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 63.

004

Continue at Step 008.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens a regular memory file.

007

OS/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

009

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011

OS/390 C/C++ opens an OS file.

012

OS/390 C/C++ opens the existing memory file.

62 OS/390 V2R8.0 C/C++ Programming Guide

013

Continue at Step 021.

014

Are you running under TSO interactive?
Yes No

015

OS/390 C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to Step 017.

016

OS/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019

OS/390 C/C++ opens an OS file.

020

OS/390 C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?
Yes No

023

ERROR

024

OS/390 C/C++ opens the existing memory file.

MAP 0020 (continued)

Chapter 6. Opening Files 63

025

Is a path specified in ddname?
Yes No

026

OS/390 C/C++ opens an OS file.

027

OS/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to
open under CICS. For information on the types of files shown in the chart see the
appropriate chapter in the I/O section.

MAP 0020 (continued)

64 OS/390 V2R8.0 C/C++ Programming Guide

MAP 0030: Under CICS

001

Is type=memory specified?
Yes No

002

Does the name specified match that of an existing memory file?
Yes No

003

The fopen() call fails.

004

OS/390 C/C++ opens that memory file.

005

Is hiperspace specified?
Yes No

006

OS/390 C/C++ opens the specified memory file.

007

The fopen() call ignores the hiperspace specification and opens the memory file.

Chapter 6. Opening Files 65

MAP 0030 (continued)

66 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 7. Buffering of C Streams

This chapter describes buffering modes used by OS/390 C/C++, library functions
available to control buffering and methods of flushing buffers.

OS/390 C/C++ uses buffers to map C I/O to system-level I/O. When OS/390
C/C++ performs I/O operations, it uses one of the following buffering modes:
v Line buffering - characters are transmitted to the system as a block when a

new-line character is encountered. Line buffering is meaningful only for text
streams and HFS files.

v Full buffering - characters are transmitted to the system as a block when a buffer
is filled.

v No buffering - characters are transmitted to the system as they are written. Only
regular memory files and HFS files support the no buffering mode.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()
and setbuf() library functions to control buffering, but you cannot change the
buffering mode after an I/O operation has used the buffer, as all read, write, and
reposition operations do. In some circumstances, repositioning alters the contents
of the buffer. It is strongly recommended that you only use setbuf() and
setvbuf() before any I/O, to conform with ANSI, and to avoid any dependency on
the current implementation. If you use setvbuf(), OS/390 C/C++ may or may not
accept your buffer for its internal use. For a hiperspace memory file, if the size of
the buffer specified to setvbuf() is 8K or more, it will affect the number of
hiperspace blocks read or written on each call to the operating system; the size is
rounded down to the nearest multiple of 4K.

Full buffering is the default except in the following cases:
v If you are using an interactive terminal, OS/390 C/C++ uses line buffering.
v If you are running under CICS, OS/390 C/C++ also uses line buffering.
v stderr is line-buffered by default.
v If you are using a memory file, OS/390 C/C++ does not use any buffering.

For terminals, because I/O is always unblocked, line buffering is equivalent to full
buffering.

For record I/O files, buffering is meaningful only for blocked files or for record
I/O HFS files using full buffering. For unblocked files, the buffer is full after every
write and is therefore written immediately, leaving nothing to flush. For blocked
files or fully-buffered HFS files, however, the buffer can contain one or more
records that have not been flushed and that require a flush operation for them to
go to the system.

You can flush buffers to the system in several different ways.
v If you are using full buffering, OS/390 C/C++ automatically flushes a buffer

when it is filled.
v If you are using line buffering for a text file or an HFS file, OS/390 C/C++

flushes a buffer when you complete it with a control character. Except for HFS
files, specifying line buffering for a record I/O or binary file has no effect;
OS/390 C/C++ treats the file as if you had specified full buffering.

v OS/390 C/C++ flushes buffers to the system when you close a file or end a
program.

© Copyright IBM Corp. 1996, 1999 67

v OS/390 C/C++ flushes buffers to the system when you call the fflush() library
function, with the following restrictions:
– A file opened in text mode does not flush data if a record has not been

completed with a new-line.
– A file opened in fixed format does not flush incomplete records to the file.
– An FBS file does not flush out a short block unless it is a DISK file opened

without the NOSEEK parameter.
v All streams are flushed across non-POSIX system() calls. Streams are not flushed

across POSIX system() calls. For a POSIX system call, we recommend that you
do a fflush() before the system() call.

If you are reading a record that another user is writing to at the same time, you
can see the new data if you call fflush() to refresh the contents of the input
buffer.

Note: This is not supported for VSAM files.

You may not see output if a program that is using input and output fails, and the
error handling routines cannot close all the open files.

68 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 8. Using ASA Text Files

This chapter describes the American Standards Association (ASA) text files, the
control characters used in ASA files, how OS/390 C/C++ translates the control
characters, and how OS/390 C/C++ treats ASA files during input and output. The
first column of each record in an ASA file contains a control character (' ', '0', '−',
'1', or '+') when it appears in the external medium.

OS/390 C/C++ translates control characters in ASA files opened for text processing
(r, w, a, r+, w+, a+ functions). On input, OS/390 C/C++ translates ASA
characters to sequences of control characters, as shown in Table 7. On output,
OS/390 C/C++ performs the reverse translation. The following sequences of
control characters are translated, and the resultant ASA character becomes the first
character of the following record:

Table 7. C Control to ASA Characters Translation Table

C Control Character
Sequence

ASA Character Description

\n ’ ’ skip one line

\n\n ’0’ skip two lines

\n\n\n ’-’ skip three lines

\f ’1’ new page

\r ’+’ overstrike

If you are writing to the first record or byte of the file and the output data does
not start with a translatable sequence of C control characters, the ' ' ASA control
character is written to the file before the specified data.

OS/390 C/C++ does not translate or verify control characters when you open an
ASA file for binary or record I/O.

Example of Writing to an ASA File

CBC3GAS1

/* this example shows how to write to an ASA file */

#include <stdio.h>
#define MAX_LEN 80

int main(void) {
FILE *fp;
int i;
char s[MAX_LEN+1];

Figure 5. ASA Example (Part 1 of 2)

© Copyright IBM Corp. 1996, 1999 69

This program writes five records to the file asa.file, as follows:
0abcdef
1
+345
-
9034

Note that the last record is 9034. The last single '\n' does not create a record with a
single control character (' '). If this same file is opened for read, and the getc()
function is called to read the file 1 byte at a time, the same characters as those that
were written out by fputs() in the first program are read.

ASA File Control

ASA files are treated as follows:
v If the first record written does not begin with a control character, then a single

new-line is written and then followed by data; that is, the ASA character
defaults to a space when none is specified.

v In ASA files, control characters are treated the same way that they are treated in
other text files, with the following exceptions:

'\f' — form feed
Defines a record boundary and determines the ASA character of the
following record. Refer to Table 7 on page 69.

'\n' — new-line
Does either of these:
– Define a record boundary and determines the ASA character of the

following record (see translation table above).
– Modify the preceding ASA character if the current position is directly

after an ASA character of ' ' or '0' (see translation table above).

'\r' — carriage return
Defines a record boundary and determines the ASA character of the
following record (see translation table above).

v Records are terminated by writing a new-line ('\n'), carriage return ('\r'), or
form feed ('\f') character.

v An ASA character can be updated to any other ASA character.
Updates made to any of the C control characters that make up an ASA character
cause the ASA character to change.

fp = fopen("asa.file", "w, recfm=fba");
if (fp != NULL) {

fputs("\n\nabcdef\f\r345\n\n", fp);
fputs("\n\n9034\n", fp);
fclose(fp);

return(0);
}

fp = fopen("asa.file", "r");
for (i = 0; i < 5; i++) {

fscanf(fp, "%s", s[0]);
printf("string = %s\n",s);

}
}

Figure 5. ASA Example (Part 2 of 2)

70 OS/390 V2R8.0 C/C++ Programming Guide

If the file is positioned directly after a ' ' or '0' ASA character, writing a '\n'
character changes the ASA character to a '0' or '-' respectively. However, if the
ASA character is a '-', '1' or '+', the '\n' truncates the record (that is, it adds blank
padding to the end of the record), and causes the following record's ASA
character to be written as a ' '. Writing a '\f' or '\r' terminates the record and
start a new one, but writing a normal data character simply overwrites the first
data character of the record.

v You cannot overwrite the ASA character with a normal data character. The
position at the start of a record (at the ASA character) is the logical end of the
previous record. If you write normal data there, you are writing to the end of
the previous record. OS/390 C/C++ truncates data for the following files, except
when they are standard streams:
– Variable-format files
– Undefined-format files
– Fixed-format files in which the previous record is full of data

When truncation occurs, OS/390 C/C++ raises SIGIOERR and sets both errno and
the error flag.

v Even when you update an ASA control character, seeking to a previously
recorded position still succeeds. If the recorded position was at a control
character that no longer exists (because of an update), the reposition is to the
next character. Often, this is the first data character of the record. For example, if
you have the following string:
you have saved the position of the third new-line. If you then update the ASA

character to a form feed ('\f'), the logical ASA position x no longer exists:
\fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid
character, which is the letter 'H':

v If you try to shorten a record when you are updating it, OS/390 C/C++ adds
enough blank padding to fill the record.

v The ASA character can represent up to three new-lines, which can increase the
logical record length by 1 or 2 bytes.

v Extending a fixed logical record on update implies that the logical end of the
line follows the last written non-blank character.

v If an undefined text record is updated, the length of the physical records does
not change. If the replacement record is:

\n\n\nHELLO WORLD

x = ftell()

\fHELLO WORLD

fseek() to pos x

Chapter 8. Using ASA Text Files 71

– Longer - data characters beyond the record boundary are truncated. At the
point of truncation, the User error flag is set and SIGIOERR is raised (if the
signal is not set up to be ignored). Truncation continues until you do one of
these:
1. Write a new-line character, carriage return, or form feed to complete the

current record
2. Close the file explicitly or implicitly at termination
3. Reposition to another position in the file.

– Shorter - the blank character is used to overwrite the rest of the record.
v If you close an ASA file that has a new-line as its last character, OS/390 C/C++

does not write the new-line to the physical file. The next time you read from the
file or update it, OS/390 C/C++ returns the new-line to the end of the file. An
exception to this rule happens when you write only a new-line to a new file. In
this case, OS/390 C/C++ does not truncate the new-line; it writes a single blank
to the file. On input, however, you will read two new-lines.

v Using ASA format to read a file that contains zero-length records results in
undefined behavior.

v You may have trouble updating a file if two ASA characters are next to each
other in the file. For example, if there is a single-byte record (containing only an
ASA character) immediately followed by the ASA character of the next record,
you are positioned at or within the first ASA character. If you then write a
sequence of '\n' characters intended to update both ASA characters, the '\n's
will be absorbed by the first ASA character before overflowing to the next
record. This absorption may affect the crossing of record boundaries and cause
truncation or corruption of data.
At least one normal intervening data character (for example, a space) is required
between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than
one consecutive new-line: the result of the update depends on how the
original ASA records were structured.

v If you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system on completion (that is,
when a '\n', '\r' or '\f' character is written or when the file is closed).
If you are writing data to a blocked file without intervening flush or reposition
requests, and the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system on completion.
If you are writing data to a spanned file without intervening flush or reposition
requests, and the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

v If a flush occurs while an ASA character indicating more than one new-line is
being updated, the remaining new-lines will be discarded and a read will
continue at the first data character. For example, if '\n\n\n' is updated to be
'\n\n' and a flush occurs, then a '0' will be written out in the ASA character
position.

72 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 9. OS/390 C Support for the Double-Byte Character
Set

The number of characters in some languages such as Japanese or Korean is larger
than 256, the number of distinct values that can be encoded in a single byte. The
characters in such languages are represented in computers by a sequence of bytes,
and are called multibyte characters. This chapter explains how the OS/390 C
compiler supports multibyte characters.

Note: The OS/390 C++ compiler does not have native support for multibyte
characters. The support described here is what OS/390 C provides; for C++,
you can take advantage of this support by using interlanguage calls to C
code. Please refer to “Chapter 19. Using Linkage Specifications in C++” on
page 239 for more information.

The OS/390 C compiler supports the IBM EBCDIC encoding of multibyte
characters, in which each natural language character is uniquely represented by
one to four bytes. The number of bytes that encode a single character depends on
the global shift-state information. If a stream is in initial shift state, one multibyte
character is represented by a byte or sequence of bytes that has the following
characteristics:
v It starts with the byte containing the shift-out (0x0e) character.
v The shift-out character is followed by 2 bytes that encode the value of the

character.
v These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,
making this sequence represent a 4-byte multibyte character. Multibyte characters
of various lengths can be normalized by the set of OS/390 C library functions and
encoded in units of one length. Such normalized characters are called wide
characters; in OS/390 C they are represented by two bytes. Conversions between
multibyte format and wide character format can be performed by string conversion
functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(), as well
by the family of the wide character I/O functions. MB_CUR_MAX is defined in the
stdlib.h header file. Depending on its value, either of the following happens:
v When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out

and shift-in characters are treated as data as well.
v When MB_CUR_MAX is 4:

– On input, the wide character I/O functions read the multibyte character from
the streams, and convert them to the wide characters.

– On output, they convert wide characters to multibyte characters and write
them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record do
not. There are three possible orientations of a stream:

Non-oriented
A stream that has been associated with an open file before any operation
other than setbuf() or setvbuf() is performed. Subsequent operations on
a non-oriented stream change the orientation of the stream. You can use
the setbuf() and setvbuf() functions only on a non-oriented stream.
When you use these functions, the stream remains non-oriented. When you

© Copyright IBM Corp. 1996, 1999 73

perform one of the wide character input/output operations on a
non-oriented stream, the stream becomes wide-oriented. When you perform
one of the byte input/output operations on a non-oriented stream, the
stream becomes byte-oriented.

Wide-oriented
A stream on which any wide character input/output functions are
guaranteed to operate correctly. Conceptually, wide-oriented streams are
sequences of wide characters. The external file associated with a
wide-oriented stream is a sequence of multibyte characters. Using byte I/O
functions on a wide-oriented stream results in undefined behavior. A
stream opened for record I/O cannot be wide-oriented.

Byte-oriented
A stream on which any byte input/output functions are guaranteed to
operate properly. Using wide character I/O functions on a byte
input/output stream results in undefined behavior. Byte-oriented streams
have minimal support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftell()
functions do not change the orientation.

Once you have established a stream’s orientation, the only way to change it is to
make a successful call to the freopen() function, which removes a stream’s
orientation.

The wchar.h header file declares the WEOF macro and the functions that support
wide character input and output. The macro expands to a constant expression of
type wint_t. Certain functions return WEOF type when the end-of-file is reached on
the stream.

Note: The behavior of the wide character I/O functions is affected by the LC_CTYPE
category of the current locale, and the setting of MB_CUR_MAX. Wide-character
input and output should be performed under the same LC_CTYPE setting. If
you change the setting between when you read from a file and when you
write to it, or vice versa, you may get undefined behavior. If you change it
back to the original setting, however, you will get the behavior that is
documented. See the introduction of this chapter for a discussion of the
effects of MB_CUR_MAX.

Opening Files

You can use the fopen() or freopen() library functions to open I/O files that
contain multibyte characters. You do not need to specify any special parameters on
these functions for wide character I/O.

Reading Streams and Files

Wide character input functions read multibyte characters from the stream and
convert them to wide characters. The conversion process is performed in the same
way that the mbrtowc() function performs conversions.

The following OS/390 C library functions support wide character input:
v fgetwc()

v fgetws()

74 OS/390 V2R8.0 C/C++ Programming Guide

v getwc()

v getwchar()

v swscanf()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:
v scanf()

v fscanf()

v sscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted I/O functions, refer to the
OS/390 C/C++ Run-Time Library Reference.

The wide-character input/output functions maintain global shift-state for multibyte
character streams they read or write. For each multibyte character they read,
wide-character input functions change global shift-state as the mbrtowc() function
would do. Similarly, for each multibyte character they write, wide-character output
functions change global shift-state as the wcrtomb() function would do.

When you are using wide-oriented input functions, multibyte characters are
converted to wide characters according to the current shift state. Invalid
double-byte character sequences cause conversion errors on input. As OS/390 C
uses wide-oriented functions to read a stream, it updates the shift state when it
encounters shift-out and shift-in characters. Wide-oriented functions always read
complete multibyte characters. Byte-oriented functions do not check for complete
multibyte characters, nor do they maintain information about the shift state.
Therefore, they should not be used to read multibyte streams.

For binary streams, no validation is performed to ensure that records start or end
in initial shift state. For text streams, however, all records must start and end in
initial shift state.

Writing Streams and Files

Wide character output functions convert wide characters to multibyte characters
and write the result to the stream. The conversion process is performed in the
same way that the wcrtomb() function performs conversions.

The following OS/390 C functions support wide character output:
v fputwc()

v fputws()

v swprintf()

v vswprintf()

v putwc()

v putwchar()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:
v printf()

v fprintf()

Chapter 9. OS/390 C Support for the Double-Byte Character Set 75

v sprintf()

All other output functions do not support the wchar_t data type. However, all of
the output functions support multibyte character output for text streams if
MB_CUR_MAX is 4.

For a detailed description of unformatted and formatted I/O functions, refer to the
OS/390 C/C++ Run-Time Library Reference.

Writing Text Streams

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. For text streams, all records must start and end in initial
shift state. The wide-character functions add shift-out and shift-in characters as
they are needed. When the file is closed, a shift-out character may be added to
complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, OS/390 C
starts each record in initial shift state and makes sure you complete each record in
initial shift state before moving to the next record. When a string starts with a
shift-out, all data written is treated as multibyte, not single-byte. This means that
you cannot write a single-byte control character (such as a new-line) until you
complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.
OS/390 C truncates the second shift-out and raises SIGIOERR if SIGIOERR is not set
to SIG_IGN.

When you write a shift-in character to an incomplete multibyte character, OS/390
C completes the multibyte character with a padding character (0xfe) before it
writes the shift-in. The padding character is not counted as an output character in
the total returned by the output function; you will never get a return code
indicating that you wrote more characters than you provided. If OS/390 C adds a
padding character, however, it does raise SIGIOERR, if SIGIOERR is not set to
SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are
not interpreted or validated.

When you close the file, OS/390 C ensures that the file ends in initial shift state.
This may require adding a shift-in and possibly a padding character to complete
the last multibyte character, if it is not already complete. If padding is needed in
this case, OS/390 C does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all
records end and start in initial shift state. When a shift-out is written to the file,
either directly or indirectly by wide-oriented functions, OS/390 C calculates the
maximum number of complete multibyte characters that can be contained in the
record with the accompanying shift-in. If multibyte output (including any required
shift-out and shift-in characters) does not fit within the current record, the behavior
depends on what type of file it is (a memory file has no record boundaries and so
never has this particular problem). For a standard stream or terminal file, data is
wrapped from one record to the next. Shift characters may be added to ensure that
the first record ends in initial shift state and that the second record starts in the
required shift state.

76 OS/390 V2R8.0 C/C++ Programming Guide

For files that are not standard streams, terminal files, or memory files, any attempt
to write data that does not fit into the current record results in data truncation. In
such a case, the output function returns an error code, raises SIGIOERR, and sets
errno and the error flag. Truncation continues until initial state is reached and a
new-line is written to the file. An entire multibyte stream may be truncated,
including the shift-out and shift-in, if there are not at least two bytes in the record.
For a wide-oriented stream, truncation stops when a wchar_t new-line character is
written out.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe.

Writing Binary Streams

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. No validation is performed to ensure that records start or
end in initial shift state. When the file is closed, any appends are completed with a
shift-in character, if it is needed to end the stream in initial shift state. If you are
updating a record when the stream is closed, the stream is flushed. See “Flushing
Buffers” for more information.

Byte-oriented output functions do not interpret binary data. If you use them for
writing multibyte data, ensure that your data is correct and ends in initial shift
state.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe for a wide-oriented file.

If you update a record after you call fgetpos(), the shift state may change. Using
the fpos_t value with the fsetpos() function may cause the shift state to be set
incorrectly.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of stream. If you call one OS/390 C
program from another OS/390 C program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee. A call to the
POSIX system() function does not flush any streams to the system. For a POSIX
system call, we recommend that you do a fflush() before the system call.

Chapter 9. OS/390 C Support for the Double-Byte Character Set 77

Flushing Text Streams

When you call fflush() after updating a text stream, fflush() calculates your
current shift state. If you are not in initial shift state, OS/390 C looks forward in
the record to see whether a shift-in character occurs before the end of the record or
any shift-out. If not, OS/390 C adds a shift-in to the data if it will not overwrite a
shift-out character. The shift-in is placed such that there are complete multibyte
characters between it and the shift-out that took the data out of initial state.
OS/390 C may accomplish this by skipping over the next byte in order to leave an
even number of bytes between the shift-out and the added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly
discouraged. In a byte-oriented stream, you may have written only half of a
multibyte character when you call fflush(). In such a case, OS/390 C adds a
padding byte before the shift-out. For both wide-oriented and byte-oriented
streams, the addition of any shift or padding character does not move the current
file position.

Calling fflush() has no effect on the current record when you are writing new
data to a wide-oriented or byte-oriented multibyte stream, because the record is
incomplete.

Flushing Binary Streams

In a wide-oriented stream, calling fflush() causes OS/390 C to add a shift-in
character if the stream does not already end in initial shift state. In a byte-oriented
stream, calling fflush() causes no special behavior beyond what a call to fflush()
usually does.

ungetwc() Considerations

ungetwc() pushes wide characters back onto the input stream for binary and text
files. You can use it to push one wide character onto the ungetwc() buffer. Never
use ungetc() on a wide-oriented file. After you call ungetwc(), calling fflush()
backs up the file position by one wide character and clears the pushed-back wide
character from the stream. Backing up by one wide character skips over shift
characters and backs up to the start of the previous character (whether single-byte
or double-byte). For text files, OS/390 C counts the new-lines added to the records
as single-byte characters when it calculates the file position. For example, if you
have the following stream: you can run the following code fragment:

A B C

fp

SO SIX'FE' X'7F'

78 OS/390 V2R8.0 C/C++ Programming Guide

You can set the _EDC_COMPAT environment variable before you open the file, so that
fflush() ignores any character pushed back with ungetwc() or ungetc(), and leaves
the file position where it was when ungetwc() or ungetc() was first issued. Any
characters pushed back are still cleared. For more information about _EDC_COMPAT,
see “Chapter 33. Using Environment Variables” on page 457.

Setting Positions within Files

The following conditions apply to text streams and binary streams.

Repositioning within Text Streams

When you use the fseek() or fsetpos() function to reposition within files, OS/390
C recalculates the shift state.

If you update a record after a successful call to the fseek() function or the
fsetpos() function, a partial multibyte character can be overwritten. Calling a
wide character function for data after the written character can result in undefined
behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a
multibyte character. If you reposition to the middle of a multibyte character,
undefined behavior can occur.

Repositioning within Binary Streams

When you are working with a wide-oriented file, keep in mind the state of the file
position that you are repositioning to. If you call ftell(), you can seek with
SEEK_SET and the state will be reset correctly. You cannot use such an ftell()
value across a program boundary unless the stream has been marked
wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will
change the state to initial state. Using relative offsets is strongly discouraged,
because you may be seeking to a point that is not in initial state, or you may end
up in the middle of a multibyte character, causing wide-oriented functions to give
you undefined behavior. These functions expect you to be at the beginning or end
of a multibyte character in the correct state. Using your own offset with SEEK_SET
also does the same. For a wide-oriented file, the number of valid bytes or records
that ftell() supports is cut in half.

fgetwc(fp); /* Returns X'00C1' (the hexadecimal */
/* wchar representation of A) */

fgetwc(fp); /* Returns X'00C2' (the hexadecimal */
/* wchar representation of B) */

fgetwc(fp); /* Returns X'7FFE' (the hexadecimal */
/* wchar representation of the DBCS */
/* character) between the SO and SI */
/* characters; leaves file position at C */

ungetwc('Z',fp); /* Logically inserts Z before SI character */
fflush(fp); /* Backs up one wchar, leaving position at */

/* beginning of X'7FFE' DBCS char */
/* and DBCS state in double-byte mode; */
/* clears Z from the logical stream */

Figure 6. ungetwc() Example

Chapter 9. OS/390 C Support for the Double-Byte Character Set 79

When you use the fsetpos() function to reposition within a file, the shift state is
set to the state saved by the function. Use this function to reposition to a wide
character that is not in the initial state.

ungetwc() Considerations

For text files, the library functions fgetpos() and ftell() take into account the
character you have pushed back onto the input stream with ungetwc(), and move
the file position back by one wide character. The starting position for an fseek()
call with a whence value of SEEK_CUR also takes into account this pushed-back wide
character. Backing up one wide character means backing up either a single-byte
character or a multibyte character, depending on the type of the preceding
character. The implicit new-lines at the end of each record are counted as wide
characters.

For binary files, the library functions fgetpos() and ftell() also take into account
the character you have pushed back onto the input stream with ungetwc(), and
adjust the file position accordingly. However, the ungetwc() must push back the
same type of character just read by fgetwc(), so that ftell() and fgetpos() can
save the state correctly. An fseek() with an offset of SEEK_CUR also accounts for the
pushed-back character. Again, the ungetwc() must unget the same type of character
for this to work properly. If the ungetwc() pushes back a character in the opposite
state, you will get undefined behavior.

You can make only one call to ungetwc(). If the current logical file position is
already at or before the first wchar in the file, a call to ftell() or fgetpos() after
ungetwc() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point
for the reposition also accounts for the presence of ungetwc() characters and
compensates as ftell() and fgetpos() do. Specifying a relative offset other than 0
is not supported and results in undefined behavior.

You can set the _EDC_COMPAT environment variable to specify that ungetwc() should
not affect fgetpos() or fseek(). (It will still affect ftell().) If the environment
variable is set, fgetpos() and fseek() ignore any pushed-back wide character. See
“Chapter 33. Using Environment Variables” on page 457 for more information
about _EDC_COMPAT.

If a repositioning operation fails, OS/390 C attempts to restore the original file
position by treating the operation as a call to fflush(). It does not account for the
presence of ungetwc() characters, which are lost.

Closing Files

OS/390 C expects files to end in initial shift state. For binary byte-oriented files,
you must ensure that the ending state of the file is initial state. Failure to do so
results in undefined behavior if you reaccess the file again. For wide-oriented
streams and byte-oriented text streams, OS/390 C tracks new data that you add. If
necessary, OS/390 C adds a padding byte to complete any incomplete multibyte
character and a shift-in to end the file in initial state.

80 OS/390 V2R8.0 C/C++ Programming Guide

Manipulating Wide Character Array Functions

In order to manipulate wide character arrays in your program, the following
functions can be used:

Table 8. Manipulating wide character arrays

Function Purpose

wmemcmp() Compare wide character

wmemchr() Locate wide character

wmemcpy() Copy wide character

wmemmove() Move wide character

wmemset() Set wide character

wcrtomb() Convert a wide character to a multibyte
character

wcscat() Append to wide-character string

wcschr() Search for wide-character substring

wcscmp() Compare wide-character strings

For more information about these functions, refer to the OS/390 C/C++ Run-Time
Library Reference.

Chapter 9. OS/390 C Support for the Double-Byte Character Set 81

82 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 10. Using C and C++ Standard Streams and
Redirection

A C program or a C++ program has associated with it standard streams. You do not
have to open these streams, because they are automatically set up for you by C
when you include the stdio.h header file, or by C++ when you include
iostream.h. Table 9 below shows three standard streams for C and the functions
that implicitly use them. It also shows the four C++ standard streams and the
operators typically used to perform I/O with them.

The default behavior for the I/O Stream standard streams is for them to open
automatically on first reference. You do not have to declare them or call their
open() member functions to open them. For example, with no preceding
declaration or open() call, the following statement writes the decimal number n to
the cout stream.
cout << n << endl;

For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see the OS/390 C/C++ IBM Open Class Library
Reference and the OS/390 C/C++ IBM Open Class Library User’s Guide.

Table 9. C and C++ Standard streams

C standard streams and their related functions

Name of
stream

Purpose Functions that use it

stdin The input device from which your C program
usually retrieves its data.

getchar()
scanf()
gets()

stdout The output device to which your C program
normally directs its output.

printf()
puts()
putchar()

stderr The output device to which your C program
directs its diagnostic messages. OS/390 C/C++
uses stderr to collect error messages about
exceptions that occur.

perror()

C++ standard streams and the operators typically used with them

Name of
stream

Purpose Common usage

cin The object from which your C++ program usually
retrieves its data. In OS/390 C++, input from cin
comes from stdin by default.

>>, the input (extraction)
operator

cout The object to which your C++ program normally
directs its output. In OS/390 C++, output to cout
goes to stdout by default.

<<, the output (insertion)
operator

cerr The object to which your C++ program normally
directs its diagnostic messages. In OS/390 C++,
output to cerr goes to stderr by default. cerr is
unbuffered, so each character is flushed as you
write it.

<<, the output (insertion)
operator

© Copyright IBM Corp. 1996, 1999 83

Table 9. C and C++ Standard streams (continued)

clog Another object intended for error messages. In
OS/390 C++, output to clog goes to stderr by
default. Unlike cerr, clog is buffered.

<<, the output (insertion)
operator

On I/O operations requiring a file pointer, you can use stdin, stdout, or stderr in
the same manner as you would any other file pointer.

If you are running with POSIX(ON), standard streams are opened during
initialization of the process, before the application receives control. With
POSIX(OFF), the default behavior for the C standard streams is for them to open
automatically on first reference. You do not have to call fopen() to open them. For
example:

printf("%d\n",n);

with no preceding fopen() statement writes the decimal number n to the stdout
stream.

By default, stdin interprets the character sequence /* as indicating that the end of
the file has been reached. See “Chapter 14. Performing Terminal I/O Operations”
on page 199 for more information.

Default Open Modes

The default open modes for the C standard streams are:

stdin r

stdout w

stderr w

Where the streams go depends on what kind of environment you are running
under. These are the defaults:
v Under interactive TSO, all three standard streams go to the terminal.
v Under MVS batch, TSO batch, and IMS (batch and interactive):

– stdin goes to dd:sysin If dd:sysin does not exist, all read operations from
stdin will fail.

– stdout goes first to dd:sysprint; if dd:sysprint does not exist, stdout looks
for dd:systerm and then dd:syserr. If neither of these files exists, OS/390
C/C++ opens a sysout=* data set and sends the stdout stream to it.

– stderr will go to the OS/390 Language Environment message file.
v Under CICS, stdout and stderr are assigned to transient data queues, allocated

during CICS initialization. The CICS standard streams can be redirected only to
or from memory files. You can do this by using freopen().

v Under OS/390 UNIX if you are running in the OS/390 shell, the shell controls
redirection. See the OS/390 UNIX System Services User’s Guide and OS/390 UNIX
System Services Command Reference for information.

You can also redirect the standard streams to other files. See Redirecting Standard
Streams and sections following.

84 OS/390 V2R8.0 C/C++ Programming Guide

Interleaving the Standard Streams I/O with sync_with_stdio()

For the special case of I/O Streams standard streams, the ios::sync_with_stdio()
member function allows you to indicate that you wish to interleave I/O Streams
I/O with C I/O. A call to ios::sync_with_stdio() does the following:
v cin, cout, cerr, and clog are initialized with stdiobuf objects associated with

stdin, stdout, and stderr.
v The flags unitbuf and stdio are set for cout, cerr, and clog.

This ensures that subsequent I/O Stream and C standard stream I/O may be
mixed on a per-character basis. However, a run-time performance penalty is
incurred to ensure this synchronization.

//
// Example of interleaving I/O with sync_with_stdio()
//
// tsyncws.cxx
#include <stdio.h>
#include <fstream.h>

int main() {
ios::sync_with_stdio();
cout << "object: to show that sync_with_stdio() allows interleaving\n "

" standard input and output on a per character basis\n" << endl;

printf("line 1 ");
cout << "rest of line 1\n";
cout << "line 2 ";
printf("rest of line 2\n\n");

char string1[80] = "";
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 2 lines:\n"
"hello world, here I am\n"
"again\n" << endl;

cin.get(string1[0]);
string1[1] = getchar();
cin.get(string1[2]);

cout << "\nstring1[0] is \'" << string1[0] << "\'\n"
<< "string1[1] is \'" << string1[1] << "\'\n"
<< "string1[2] is \'" << string1[2] << "\'\n" << endl;

cin >> &string1[3];
rc = gets(string2); // note: reads to end of line, so
cin >> string3; // this line waits for more input

cout << "\nstring1 is \"" << string1 << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << flush;

}

Figure 7. Interleaving I/O with sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection 85

Interleaving the Standard Streams I/O without sync_with_stdio()

Because of the buffering scheme described above, and the fact that I/O Streams
I/O is based on OS/390 C I/O, output to cout or clog may be interleaved with
output to stdout or stderr, respectively, without a call to sync_with_stdio(), by
explicitly flushing cout or clog before calling the OS/390 C output function.
Results of attempting to interleave output to cout or clog without explicitly
flushing, are undefined. Output to cerr doesn’t have to be explicitly flushed, since
cerr is unit-buffered.

Input to cin may be interleaved with input to stdin, without a call to
sync_with_stdio(), on a line-by-line basis. Results of attempting to interleave on a
per-character basis are undefined.

// sample output (with user input shown underlined):
//
// object: to show that sync_with_stdio() allows interleaving
// standard input and output on a per character basis
//
// line 1 rest of line 1
// line 2 rest of line 2
//
// type the following 2 lines:
// hello world, here I am
// again
//
// hello world, here I am
//
// string1[0] is 'h'
// string1[1] is 'e'
// string1[2] is 'l'
//
// again
//
// string1 is "hello"
// string2 is "world, here I am"
// string3 is "again"

Figure 7. Interleaving I/O with sync_with_stdio() (Part 2 of 2)

86 OS/390 V2R8.0 C/C++ Programming Guide

// Example of interleaving I/O without sync_with_stdio()
//
// tsyncwos.cxx
#include <stdio.h>
#include <fstream.h>

int main() {
cout << "object: to illustrate interleaving input and output\n "

" without sync_with_stdio()\n" << endl;

printf("interleaving output ");
cout << "works with an (end of line 1) \n" << flush;
cout << "explicit flush of cout " << flush;
printf("(end of line 2)\n\n");

char string1[80] = "";
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 3 lines:\n"
"interleaving input\n"
"on a per-line basis\n"
"is supported\n" << endl;

cin.getline(string1, 80);
rc = gets(string2);
cin.getline(string3, 80);

cout << "\nstring1 is \"" << string1 << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << endl;

// The endl manipulator inserts a newline
// character and calls flush().

char char1 = '\0';
char char2 = '\0';
char char3 = '\0';

cout << "type the following 2 lines:\n"
"results of interleaving input on a per-\n"
"character basis are not defined\n" << endl;

cin >> char1;
char2 = (char) getchar();
cin >> char3;

cout << "\nchar1 is \'" << char1 << "\'\n"
<< "char2 is \'" << char2 << "\'\n"
<< "char3 is \'" << char3 << "\'\n" << flush;

}

Figure 8. Interleaving I/O without sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection 87

Redirecting Standard Streams

This section describes redirection of standard streams:
v From the command line
v By assignment
v With freopen()

v With the MSGFILE run-time option

Note that, because C++ I/O streams are implemented in terms of C streams, cin,
cout, cerr, or clog are implicitly redirected when the corresponding C standard
streams are redirected, unless cin, cout, cerr, or clog are redirected by
assignment—as described in “Assigning the Standard Streams” on page 90. If
freopen() is applied to a C standard stream, creating a binary stream or one with
"type=record", then behavior of the related I/O Stream standard stream is
undefined.

Redirecting Streams from the Command Line

To redirect a standard stream to a file from the command line, invoke your
program by entering the following:
1. Program name
2. Any parameters your program requires (these may be specified before and after

the redirection)

// sample output (with user input shown underlined):
//
// object: to illustrate interleaving input and output
// without sync_with_stdio()
//
// interleaving output works with an (end of line 1)
// explicit flush of cout (end of line 2)
//
// type the following 3 lines:
// interleaving input
// on a per-line basis
// is supported
//
// interleaving-input
// on a per-line basis
// is supported
//
// string1 is "interleaving input"
// string2 is "on a per-line basis"
// string3 is "is supported"
//
// type the following 2 lines:
// results of interleaving input on a per-
// character basis are not defined
//
// results of interleaving input on a per-
// character basis are not defined
//
// char1 is 'r'
// char2 is 'c'
// char3 is 'e'

Figure 8. Interleaving I/O without sync_with_stdio() (Part 2 of 2)

88 OS/390 V2R8.0 C/C++ Programming Guide

3. A redirection symbol followed by the name of the file that is to be used in
place of the standard stream

Note: If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Redirection Symbols

The following table lists the redirection symbols supported by OS/390 C/C++
(when not running under the OS/390 shell) for redirection of C standard streams
from the command line or from a system() call. 0, 1, and 2 represent stdin, stdout,
and stderr, respectively.

Table 10. OS/390 C/C++ Redirection Symbols

Symbol Description

<fn associates the file specified as fn with stdin; reopens fn in mode r.

0<fn associates the file specified as fn with stdin; reopens fn in mode r.

>fn associates the file specified as fn with stdout; reopens fn in mode w.

1>fn associates the file specified as fn with stdout; reopens fn in mode w.

>>fn associates the file specified as fn with stdout; reopens fn in mode a.

2>fn associates the file specified as fn with stderr; reopens fn in mode w.

2>>fn associates the file specified as fn with stderr; reopens fn in mode a.

2>&1; associate stderr with stdout; same file and mode.

1>&2; associate stdout with stderr; same file and mode.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive under C, or the
NOREDIR compile-time option, under C++, you cannot redirect standard streams
on the command line using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can
enclose it in double quotation marks. For example, the following passes the
string "here are the args including a <" to prog and redirects stdout to
redir1 output a.

prog "here are args including a <" >"redir1 output a"

3. TSO (batch and online) and MVS batch support command line arguments.
CICS and IMS do not.

4. When two options specifying redirection conflict with each other, or when you
redirect a standard stream more than once, the redirection fails. If you do the
latter, you will get an abend. For example, if you specify

2>&1

and then
1>&2

OS/390 C/C++ uses the first redirection and ignores any subsequent ones. If
you specify

>a.out

and then
1>&2

Chapter 10. Using C and C++ Standard Streams and Redirection 89

the redirection fails and the program abends.
5. A failed attempt to redirect a standard stream causes your program to fail in

initialization.

Assigning the Standard Streams

This method of redirecting streams is known as direct assignment. You can redirect
a C standard stream by assigning a valid file pointer to it, as follows:

FILE *stream;
stream = fopen("new.file", "w+");
stdout = stream;

You must ensure that the streams are appropriate; for example, do not assign a
stream opened for w to stdin. Doing so would cause a function such as getchar()
called for the stream to fail, because getchar() expects a stream to be opened for
read access.

Similarly, you can redirect an I/O streams standard stream under C++ by
assignment:
ofstream myfile("myfile.data");
cout = myfile;

Again, you must ensure that the assigned stream is appropriate; for example, do
not assign an fstream opened for ios::out only to cin. This will cause a
subsequent read operation to fail.

This topic is also covered in the chapter, ″Associating a File with a Standard Input
or Output Stream″, in the OS/390 C/C++ IBM Open Class Library User’s Guide.

Using the freopen() Library Function

You can use the freopen() C library function to redirect C standard streams in all
environments.

Redirecting Streams with the MSGFILE Option

You can redirect stderr by specifying a ddname on the MSGFILE run-time option
and not redirecting stderr elsewhere (such as on the command line). The default
ddname for the OS/390 Language Environment MSGFILE is SYSOUT. See the OS/390
Language Environment Programming Guide for more information on MSGFILE.

MSGFILE Considerations

OS/390 C/C++ makes a distinction between types of error output according to
whether the output is directed to the MSGFILE, to stderr, or to stdout:

90 OS/390 V2R8.0 C/C++ Programming Guide

Table 11. Output Destinations under OS/390 C/C++

Destination of
Output Type of Message Produced by Default Destination

MSGFILE output OS/390 Language
Environment
messages (CEExxxx)

OS/390 Language
Environment
conditions

MSGFILE ddname

OS/390 C/C++
language messages
(EDCxxxx)

OS/390 C/C++
unhandled conditions

MSGFILE ddname

stderr messages perror() messages
(EDCxxxx)

Issued by a call, for
example, to: perror()

MSGFILE ddname 1

User output sent
explicitly to stderr

Issued by a call to
fprintf()

MSGFILE ddname

stdout messages User output sent
explicitly to stdout

Issued by a call, for
example, to: printf()

stdout 2

All stderr output is by default sent to the MSGFILE destination, while stdout
output is sent to its own destination. When stderr is redirected to stdout, both
share the stdout destination. When stdout is redirected to stderr, both share the
stderr destination.

If you specified one of the DDs used in the stdout open search order as the DD for
the MSGFILE option, then that DD will be ignored in the stdout open search.

Table 12 describes the destination of output to stderr and stdout after redirection
has occurred. Whenever stdout and stderr share a common destination, the
output is interleaved. The default case is the one where stdout and stderr have
not been redirected.

Table 12. OS/390 C/C++ Interleaved Output

stderr not redirected

stderr redirected to
destination other
than stdout

stderr redirected to
stdout

stdout not redirected stdout to itself
stderr to MSGFILE

stdout to itself
stderr to its other
destination

Both to stdout

stdout redirected to
destination other
than stderr

stdout to its other
destination stderr to
MSGFILE

stdout to its other
destination stderr to
its other destination

Both to the new
stdout destination

stdout redirected to
stderr

Both to MSGFILE Both to the new
stderr destination

stdout to stderr
stderr to stdout

OS/390 C/C++ routes error output as follows:
v MSGFILE output

– OS/390 Language Environment messages (messages prefixed with CEE)
– Language messages (messages prefixed with EDC)

v stderr output

1. When you are using the OS/390 shell, stderr will go to file descriptor 2, which is typically the terminal. See “Chapter 17.
Language Environment Message File Operations” on page 225 for more information about OS/390 Language Environment
message files.

2. When you are using the OS/390 shell, stdout will go to file descriptor 1, which is typically the terminal.

Chapter 10. Using C and C++ Standard Streams and Redirection 91

– perror messages (messages prefixed with EDC and issued by a call to
perror())

– Output explicitly sent to stderr (for example, by a call to fprintf())

By default, OS/390 C/C++ sends all stderr output to the MSGFILE destination
and stdout output to its own destination. You can change this by using OS/390
C/C++ redirection, which enables you to redirect stdout and stderr to a
ddname, file name, or each other. Unless you have redirected stderr, it always
uses the MSGFILE destination. When you redirect stderr to stdout, stderr and
stdout share the stdout destination. When you redirect stdout to stderr, they
share the stderr destination.

Redirecting Streams under OS/390

This section describes how to redirect C standard streams under MVS batch and
under TSO.

Under MVS Batch

You can redirect standard streams in the following ways:
v From the freopen() library function call
v On the PARM parameter of the EXEC used to invoke your C or C++ program
v Using DD statements

Because the topic of JCL statements goes beyond the scope of this book, only
simple examples will be shown here.

Using the PARM Parameter of the EXEC Statement

The following example shows an excerpt taken from a job stream. It demonstrates
both the redirection of stdout using the PARM parameter of the EXEC statement, and
the way to redirect to a fully qualified data set. You can use the redirection
symbols described in Table 10 on page 89.

Suppose you have a program called BATCHPGM. with 1 required parameter 'DEBUG'.
The output from BATCHPGM is to be directed to a sequential data set called
'MAINT.LOG.LISTING'. You can use the following JCL statements:

The following JCL redirects output to an unqualified data set using the same
program name, parameter and output data set as the example above:

If your userid were TSOU812, stdout would be sent to TSOU812.LOG.LISTING.

Using DD Statements

When you use DD statements to redirect standard streams, the standard streams
will be associated with ddnames as follows:

//JOBname JOB...
//STEP01 EXEC PGM=BATCHPGM,PARM='DEBUG >''MAINT.LOG.LISTING'''...

//STEP01 EXEC PGM=BATCHPGM,PARM='DEBUG >LOG.LISTING'

92 OS/390 V2R8.0 C/C++ Programming Guide

v stdin will be associated with the SYSIN ddname. If SYSIN is not defined, no
characters can be read in from stdin.

v stdout will be associated with the SYSPRINT ddname. If SYSPRINT is not defined,
the C library will try to associate stdout with SYSTERM, and if SYSTERM is also not
defined, the C library will try to associate stdout with SYSERR. If any of the
above DD statements are used as the MSGFILE DD, then that DD statement will
not be considered for use as the stdout DD.

v stderr will be associated with the MSGFILE, which defaults to SYSOUT. See the
OS/390 Language Environment Programming Guide for more information on
MSGFILE.

v If you are running with the run-time option POSIX(ON), you can redirect
standard streams with ddnames only for MVS data sets, not for HFS files.

v If the ddname for stdout is not allocated to a device or data set, it is
dynamically allocated to the terminal in an interactive environment or to
SYSOUT=* in an MVS batch environment.

The following table summarizes the association of streams with ddnames:

Table 13. Association of Standard Streams with ddnames

Standard stream ddname Alternate ddname

stdin SYSIN none

stdout SYSPRINT SYSTERM, SYSERR

stderr DD associated with MSGFILE None

The following MVS example shows an excerpt taken from a job stream
demonstrating the redirection of the three standard streams by using ddnames.

In the example, your program name is MONITOR and the input to MONITOR is to be
retrieved from a sequential data set called 'SAFETY.CHEM.LIST'. The output of
MONITOR is to be directed to a partitioned data set member called
'YEAREND.ACTION(CHEM)', and any errors generated by MONITOR are to be written to
a sequential data set called 'YEAREND.MONITOR.ERRLIST'. To redirect the standard
streams using DD statements you could use the following JCL statements:

The following example shows how to get stdout and stderr to share the same file
where: the program name is HOCKEY and the input to HOCKEY is to be retrieved from
a sequential data set called 'HOCKEY.PLAYER.LIST'. The output of HOCKEY is to be
directed to a sequential data set called 'HOCKEY.OUTPUT' and any errors generated
by HOCKEY are also to be written to the sequential data set 'HOCKEY.OUTPUT'. You
could use the following JCL statments:

stderr shares stdout because of the 2>&1 redirection statement.

//JOBname JOB...
//STEP01 EXEC PGM=MONITOR,PARM='MSGFILE(SYSERR)/'...

//SYSIN DD DSN=SAFETY.CHEM.LIST,DISP=OLD
//SYSERR DD DSN=YEAREND.MONITOR.ERRLIST,DISP=MOD
//SYSPRINT DD DSN=YEAREND.ACTION(CHEM),DISP=OLD...

//JOBname JOB...
//STEP01 EXEC PGM=HOCKEY,PARM='/ 2>&1'
//SYSIN DD DSN=HOCKEY.PLAYER.LIST,DISP=SHR
//SYSPRINT DD DSN=HOCKEY.OUTPUT,DISP=(OLD),DCB=...

Chapter 10. Using C and C++ Standard Streams and Redirection 93

If you want to redirect to an HFS file, you can modify the above examples to use
the PATH and PATHOPT options described in “DDnames” on page 56.

Redirecting Streams under TSO

You can redirect standard streams in the following ways:
v From the freopen() library function call
v From the command line
v Using the parameter list in a CALL command

From the Command Line

The following example illustrates the redirection of stdin under TSO. The program
in this example is called BUILD and it has 2 required parameters, 'PLAN' and
'JOHNSTON'. The input to BUILD is to be retrieved from a partitioned data set
member called 'CONDO(SPRING)'. To redirect stdin in this example under TSO you
can use the following command:

BUILD PLAN JOHNSTON <'CONDO(SPRING)'

Notes:

1. If the data set name is not enclosed in quotation marks, your user prefix will be
appended to the data set name specified.

2. If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Parameter List in a CALL Command

You can also redirect the output to a file with a ddname in TSO by specifying the
output file in the parameter list like the following:

CALL 'PREFIX.PROGRAM' '>DD:OUTFILE'

The ddname can be created by an ALLOCATE command.

Redirecting Streams under IMS

Under IMS online and batch, you can redirect the C standard streams in any of the
following ways:
v with direct assignment
v with the freopen() function
v with ddnames

For details on ddnames, see “Using DD Statements” on page 92.

Redirecting Streams under CICS

There are several ways to redirect C standard streams under CICS:
v You can assign a memory file to the stream (for example, stdout=myfile).
v You can use freopen() to open a standard stream as a memory file.
v You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able
to use C functions to direct the information outside or elsewhere in the CICS

94 OS/390 V2R8.0 C/C++ Programming Guide

environment. Once access to a CICS transient data queue has been removed, either
by a call to freopen() or fclose(), or by the assignment of another file pointer to
the stream, OS/390 C/C++ does not provide a way to regain access. Once C
functions have lost access to the transient data queues, you must use the
CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data
queue, the default standard stream implementation, will go, but you must
configure this facility before a CICS cold start.

Passing C and C++ Standard Streams Across a system() Call

A system() call occurs when one OS/390 C/C++ program calls another OS/390
C/C++ program by using the ANSI system() function, which OS/390 C/C++ uses
if you are not running with POSIX(ON). Standard streams are inherited across calls
to the ANSI system() function. With a POSIX system() function, file descriptors 0,
1, and 2 will be mapped to standard streams stdin, stdout and stderr in the child
process. The behavior of these streams is similar to binary streams called with the
ANSI system() function.

Inheritance includes any redirection of the stream as well as the open mode of the
stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls
program B, program B inherits the definition of stdout. If program B reopens
stdout as "C.D" for "ab" and then uses system() to call program C, program C
inherits stdout opened to "C.D" for append. Once control returns to the calling
program, the definitions of the standard streams from the time of the system() call
are restored. For example, when program B finally returns control to program A,
stdout is restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling
programs depend on whether the standard streams are opened for binary, text, or
record I/O.

Since the I/O Stream standard streams are implemented in terms of the C standard
streams, behavior of the I/O Stream standard streams across a system() call is
based on the behavior of the C standard streams across system().

Passing Binary Streams

If the standard stream being passed across a system() call is opened in binary
mode, any reads or writes issued in the called program occur at the next byte in
the file. On return, the position of the file is wherever the called program is
positioned. This includes any possible repositions made by the called program if
the file is enabled for positioning. Because output to binary files is done byte by
byte, all bytes are written to stdout and stderr in the order they are written. This
is shown in the following example:
printf("123");
printf("456");
system("CHILD"); ------> int main(void) { putc('7',stdout);}
printf("89");

The output from this example is:
123456789

Chapter 10. Using C and C++ Standard Streams and Redirection 95

Memory files are always opened in binary mode, even if you specify text. Any
standard streams redirected to memory files and passed across system() calls will
be treated as binary files. HFS files are also treated as binary files, because they do
not contain any real record boundaries. Memory files are not passed across calls to
the POSIX system() function.

If freopen() is applied to a C standard stream, thereby creating a binary stream,
the results of I/O to the associated I/O Stream standard stream across a system()
call are undefined.

Passing Text Streams

If the C standard stream being passed across a system() call is opened in text
mode (the default), the file position in the called program is placed at the next
record boundary, if it is not already at the start of a record. Any data in the current
record that is unread is skipped. Here is an example:

When you write to a spanned file, the file position moves to the beginning of the
next record, if that record exists. If not, the position moves to the end of the
incomplete record.

For non-spanned standard streams opened for output, if the caller has created a
text record missing an ending control character, the last record is hidden from the
called program. The called program can append new data if the stream is open in
append mode. Any appends made by the called program will be after the last
record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record
with a new-line; the addition of the new-line does not move the file position. Once
any incomplete record is completed, the file position moves to the next record
boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the
time of the system() call is restored to the end of the file. If the called program is
at EOF when it is terminated and the caller was within an incomplete record at the
time of the system() call, the position upon return is restored to the original record
offset at the time of the system() call. This position is usually the end of the
incomplete record. Generally, if the caller is writing to a standard stream and does
not complete the last record before it calls system(), writes continue to add to the
last record when control returns to the caller. For example:

INPUT FILE ROOT C PROGRAM CHILD PROGRAM
---------- int main() { int main() {
abcdefghijklm char c[4]; char d[2];
nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();
0123456789ABC c[1] = getchar(); d[1] = getchar();
DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",

c[2] = getchar(); d);
c[3] = getchar(); }
printf("%.4s\n",c);

}

OUTPUT

no ---> from the child
ab01 ---> from root

96 OS/390 V2R8.0 C/C++ Programming Guide

The output from this example is as follows:
test
hello world
abcdef

If stdout had been opened for "w+" in this example, and a reposition had been
made to the character 'b' before the system() call, upon return, the incomplete
record "abc" would have been restored and the position would have been at the
'b'. The subsequent write of def would have performed an update to give test
hello world adef.

C++ I/O Streams Considerations

The following sections describe considerations for I/O streams standard input and
output.

Output with sync_with_stdio(): When an I/O Streams standard output stream is
open in text mode (the default), and sync_with_stdio() has been called, the output
across a system() call behaves the same as an OS/390 C standard stream:
v If the parent program writes a newline character, the line will be flushed before

the child program is invoked;
v Otherwise, the output from the parent will be held in a buffer until the child

returns.

Output without sync_with_stdio(): When an I/O Streams standard output stream
is open in text mode, and sync_with_stdio() has not been called, the behavior is
as follows:
v If the parent program writes a newline character, and explicitly flushes it, the

line will be written out before the child program is invoked;
v Otherwise, the behavior is undefined.

Input with sync_with_stdio(): When cin is open in text mode (the default), and
sync_with_stdio() has been called, the input across a system() call behaves the
same as stdin:
v The child program begins reading at the next record boundary, that is, unread

data in the current record in the parent is hidden.
v When the child program returns, the parent program begins reading at the next

record boundary, that is, unread data in the current record in the child is lost.

Input without sync_with_stdio(): When cin is open in text mode, and
sync_with_stdio() has not been called, the behavior is as follows:
v The parent program must either not read from cin before calling the child, or

must read to the end of a complete record.
v The child program begins reading at the next record boundary, that is, unread

data in the current record in the parent is hidden.
v When the child program returns, the parent program begins reading at the next

record boundary, that is, unread data in the current record in the child is lost.
v If the parent program read only part of a record before calling the child, the

behavior upon returning from the child is undefined.

printf("test");
printf("abc");
system("hello"); ------> int main(void) { printf("hello world\n");}
printf("def\n");

Chapter 10. Using C and C++ Standard Streams and Redirection 97

Passing Record I/O Streams

For record I/O, all reads and writes made by the called program occur at the next
record boundary. Since complete records are always read and written, there is no
change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/O file.

The output from this code fragment is as follows:
test
abc
hello world
def

If freopen() is applied to a C standard stream, creating a stream with
"type=record", then behavior of the associated I/O Stream standard stream is
undefined across a system() call.

Using Global Standard Streams

In the default inheritance model, the behavior of C standard streams is such that a
child main() function cannot affect the standard streams of the parent. The child
can use the parent’s definition or redirect a standard stream to a new location, but
when control returns to the parent, the standard stream reverts back to the
definition of the parent. In the global model, the C standard streams, stdin,
stdout, and stderr, can be redirected to a different location while running in a
child main() function and have that redirection stay in effect when control returns
to the parent. You can use the _EDC_GLOBAL_STREAMS environment variable to
set standard stream behavior to the global model. For more information, see
“_EDC_GLOBAL_STREAMS” on page 464.

Table 14 highlights the standard stream behavior differences between the default
inheritance model and the global model.

Table 14. Standard Stream Behavior Differences

Behavior Default Inheritance Model Global Model

POSIX(OFF) Standard streams are opened automatically on
first reference.

(Same)

POSIX(ON) Standard streams are opened during initialization
of the process, before the application receives
control.

Not supported.

default open modes As currently described in “Default Open Modes”
on page 84.

(Same)

default locations As currently described in “Chapter 10. Using C
and C++ Standard Streams and Redirection” on
page 83.

(Same)

command line
redirection

Changes the location for the main being called
and subsequent child programs.

Changes the location for the entire C
environment.

fwrite("test",1,4,stdout);
fwrite("abc",1,3,stdout);
system("hello"); ------> int main(void) {
fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout)

}

98 OS/390 V2R8.0 C/C++ Programming Guide

Table 14. Standard Stream Behavior Differences (continued)

Behavior Default Inheritance Model Global Model

direct assignment Affects the current main and subsequent child
programs.

Affects the current main only. This
definition is not passed on to a
subsequent child program. The child
gets the current global definition, if
there is one defined.

freopen() Changes location for the main from which it is
called and affects any subsequent child programs.

Changes location for the entire C
environment.

MSGFILE() run-time
option

Redirects stderr for the main being invoked and
affects any subsequent child programs. When
control returns to a parent program, stderr
reverts back to the definition of the parent. If
stderr is also redirected on the command line,
that redirection takes precedence.

(Same)

fclose() Closes standard stream in current main only. Closes the standard stream for the
entire C environment. The standard
stream cannot be global anymore.
Only direct assignment can be used
to use the standard stream, and that
would only be for the main in which
it is assigned.

file position and visible
data

As currently described in “Chapter 10. Using C
and C++ Standard Streams and Redirection” on
page 83.

File position and visible data across
mains are as if there were only one
main. No special processing occurs
during the ANSI system() call. The
standard streams are left untouched.
When either entering or returning
from a child program, reading or
writing to the standard streams begin
where previously left off,

C++ I/O Stream cin defaults to stdin
cout defaults to stdout
cerr defaults to stderr (unbuffered)
clog defaults to stderr (buffered)

(Same)

Notes:

1. The following environments do not allow global standard stream behavior as
an option:
v POSIX(ON)
v CICS
v SP C

2. You must identify the behavior of the standard streams to the C run-time
library before initialization of the first C main in the environment. The default
behavior uses the inheritance model. Once you set the standard stream
behavior, it cannot be changed. Attempts to change the behavior after the first
C main has been initialized are ignored.

3. The value of the environment variable, when queried, does not necessarily
reflect the standard stream behavior being used. This is because the value of
the environment variable can be changed after the standard stream behavior
has been set.

4. The behaviors described in Table 14 on page 98 only apply to the standard
streams that use the global behavior.

Chapter 10. Using C and C++ Standard Streams and Redirection 99

Command Line Redirection

In the C standard stream global model, command line redirection of the standard
streams is supported, but has much different behavior than the C standard stream
inheritance model.

The most important difference is that when redirection is done at system() call
time, the redirection takes effect for the entire C environment. When the child
program terminates, the standard stream definitions do not revert back to what
they were before the system() call.

Redirection of any of the standard streams, except when stderr is redirected to
stdout or vice versa, causes the standard stream to be flushed. This is because an
freopen() is done under the covers, which first closes the stream before reopening
it. Since the standard stream is global, the close causes the flush.

Redirecting stderr to stdout, or stdout to stderr, does not flush the redirected
stream. Any data in the buffer remains there until the stream is redirected again, to
something other than stdout or stderr. Only then is the buffer flushed.

Consider the following example:

When run from TSO terminal using the following command:
parent ENVAR(_EDC_GLOBAL_STREAMS=7)/

the output will be as follows:
(terminal) stdout.file stderr.file
line 1 line 7 line 10
line 3 line 8 line 6
line 2 line 9
line 4 line 5

#include <stdio.h>
#include <stdlib.h>
main() {

int rc;
printf("line 1\n");
printf("line 2");
fprintf(stderr,"line 3\n");
fprintf(stderr,"line 4");
rc=system("PGM=CHILD,PARM='/ >stdout.file 2>&1;'")
printf("line 5\n");
fprintf(stderr,"line 6\n");

}

Figure 9. PARENT.C

#include <stdio.h>
main() {

printf("line 7\n");
fprintf(stderr,"line 8\n");
stderr = freopen("stderr.file","w",stderr);
printf("line 9\n");
fprintf(stderr,"line 10\n");

}

Figure 10. CHILD.C

100 OS/390 V2R8.0 C/C++ Programming Guide

Attention: If the stdout or stderr stream has data in its buffer and it is redirected
to stderr or stdout, then the data is lost if stdout or stderr is not redirected
again.

Note: If either stdout or stderr is using global behavior, but not both, then any
redirection of stdout or stderr to stderr or stdout is ignored.

Direct Assignment

You can directly assign the C standard streams in any main program. This
assignment does not have any effect on the global standard stream. No flush is
done and the new definition is not passed on to a child program nor back to a
parent program. Once you directly assign a standard stream, there is no way to
re-associate it with the global standard stream.

freopen()

When you use freopen() to redirect a standard stream, the stream is closed,
causing a flush, and then redirected. The new definition affects all C mains
currently using the global stream.

MSGFILE() Run-Time Option

The MSGFILE() run-time option redirects the stderr stream similar to command
line redirection. However, this redirection is controlled by the Common Execution
Library and does not apply to all C mains in the environment. When control
returns to a parent program, stderr reverts back to the definition of the parent.

fclose()

When a global standard stream is closed, only direct assignment can be used to
begin using the standard stream again. That use would only be for the main
performing the direct assignment. There is no way to get back global behavior for
the standard stream that was closed.

File Position and Visible Data

The file position and amount of visible data in the called and calling program is as
if there is only one program. There is no data hidden from a called program. A
child program continues where the parent program left off. This is true for all
types of I/O: binary, text, and record.

C++ I/O Stream Class Library

Since cin, cout, cerr and clog are initially based on stdin, stdout and stderr, they
continue to be in the global model. For example, if stdout is redirected using
freopen() in a child program, then both stdout and cout retain that redirection
when control returns to the parent.

Chapter 10. Using C and C++ Standard Streams and Redirection 101

102 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 11. Performing OS I/O Operations

This chapter describes using OS I/O, which includes support for the following:
v Regular sequential DASD (including striped data sets)
v Partitioned DASD (PDS and PDSE)
v Tapes
v SYSOUT

v Printers
v In-stream JCL

Note: OS/390 C/C++ does not support BDAM or ISAM data sets.

OS I/O supports text, binary, and record I/O, in three record formats, fixed (F),
variable (V), and undefined (U).

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use the C++ I/O stream class library instead, refer to “Chapter 5.
Using the I/O Stream Class Library in C++” on page 45 for general
information and the OS/390 C/C++ IBM Open Class Library User’s Guide and
OS/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files

To open an OS file, you can use the standard C fopen() or freopen() library
functions. These are described in general terms in the OS/390 C/C++ Run-Time
Library Reference. Details about them specific to all OS/390 C/C++ I/O are
discussed in the ″Opening Files″ section. This section describes considerations for
using fopen() and freopen() with OS files.

Using fopen() or freopen()

When you open a file using fopen() or freopen(), you must specify the file name
(a data set name) or a ddname.

Using a Data Set Name

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The following diagram shows the syntax for the
filename argument on your fopen() or freopen() call:

© Copyright IBM Corp. 1996, 1999 103

ÊÊ
// '

»

.

qualifier
(member)

+ number
−

0
& qualifier
&&

Ê

Ê
'

ÊÍ

Note: The single quotation marks in the filename syntax diagram must be matched;
if you use one, you must use the other.

A sample construct is:
'qualifier1.qualifier2(member)'

// Specifying these slashes indicates that the filename refers to a non-POSIX file
or data set.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data-set name
is as follows:
v Generally, 44 characters, including periods.
v For a generation data group, 35 characters, including periods.

These numbers do not include a member name or GDG number and
accompanying parentheses.

Specifying one or two ampersands before a single qualifier opens a temporary
data set. Multiple qualifiers are not valid after ampersands, because the system
generates additional qualifiers. Opening two temporary data sets with the
same name creates two distinct files. If you open a second temporary data set
using the same name as the first, you get a distinct data set. For example, the
following statements open two temporary data sets:

fp = fopen("//&&myfile","wb+");
fp2 = fopen("//&&myfile","wb+");

You cannot fully qualify a temporary data-set name. The file is created at open
time and is empty. When you close a temporary data set, the system removes
it.

(member)
If you specify a member, the data set you are opening must be a PDS or a
PDSE. For more information about PDSs and PDSEs, see “Regular and
Extended Partitioned Data Sets” on page 110. For members, the member name
(including trailing blanks) can be up to 8 characters long. A member name
cannot begin with leading blanks. The characters in a member name may be

104 OS/390 V2R8.0 C/C++ Programming Guide

alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first
character should be either alphabetic or national.

+number

−number

0 You specify a Generation Data Group (GDG) by using a plus (+) or minus (−)
to precede the version number, or by using a 0. For more information about
GDGs, see “Generation Data Group I/O” on page 107.

The Resource Access Control Facility (RACF) expects the data-set name to have a
high-level qualifier that is defined to RACF. RACF uses the entire data-set name
when it protects a tape data set.

When you enclose a name in single quotation marks, the name is fully qualified. The
file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, OS/390 C/C++ does one of the following:
v If your system does not use RACF, OS/390 C/C++ does not add a high-level

qualifier to the name you specified.
v If you are running under TSO (batch or interactive), OS/390 C/C++ appends the

TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix. If
the name is fully qualified, OS/390 C/C++ does not append a user prefix. You
can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

v If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

If you want your code to be portable between the VM/CMS and OS/390 systems
and between memory files and disk files, use a name of the format name1.name2,
where name1 and name2 are up to 8 characters and are delimited by a period, or
use a ddname. You can also add a member name.

For example, the following piece of code can run under both Language
Environment for VM, and Language Environment for OS/390.

FILE *stream;

stream = fopen("parts.instock", "r");

Using a DDname

The DD statement enables you to write C or C++ source programs that are
independent of the files and input/output devices they use. You can modify the
parameters of a file or process different files without recompiling your program.

Use ddnames if you want to use non-DASD devices.

If you specify DISP=MOD on a DD statement and w or wb mode on the fopen() call,
OS/390 C/C++ treats the file as if you had opened it in append mode instead of
write mode.

To open a file by ddname under MVS batch, you must define the ddname first.
You can do this in any of the following ways:
v In batch (MVS, TSO, or IMS), you can write a JCL DD statement. For the

declaration shown above for the C or C++ file PARTS.INSTOCK, you write a JCL
DD statement similar to the following:

Chapter 11. Performing OS I/O Operations 105

//STOCK DD DSN=USERID.PARTS.INSTOCK,DISP=SHR

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations such as
freopen(), and the DD statement will be unallocated.

If you use SPACE=RLSE on a DD statement, OS/390 C/C++ releases space only if
all of the following are true:
– The file is open in w, wb, a, or ab mode
– It is not simultaneously open for read
– No positioning functions (fseek(), ftell(), rewind(), fgetpos(), fsetpos())

have been performed.

For more information on writing DD statements, refer to the job control language
(JCL) manuals listed in the OS/390 Information Roadmap.

v Under TSO (interactive and batch), you can issue an ALLOCATE command. The DD
definition shown above for the C file STOCK has an equivalent TSO ALLOCATE
command, as follows:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK) SHR

See the OS/390 Information Roadmap for manuals containing information on TSO
ALLOCATE.

v In the OS/390 environment, you can use the svc99() or dynalloc() library
functions to define ddnames. For information about these functions, refer to the
OS/390 C/C++ Run-Time Library Reference.

DCB Parameter: The DCB (data control block) parameter of the DD statement
allows you to describe the characteristics of the data in a file and the way it will be
processed at run time. The other parameters of the DD statement deal chiefly with
the identity, location, and disposition of the file. The DCB parameter specifies
information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in the OS/390 MVS JCL User’s
Guide.

The DCB parameter contains subparameters that describe:
v The organization of the file and how it will be accessed. Parameters supplied on

fopen() override those specified in DCB.
v Device-dependent information such as the recording technique for magnetic tape

or the line spacing for a printer (for example: CODE, DEN, FUNC, MODE, OPTCD=J,
PRTSP, STACK, SPACE, UNIT and TRTCH subparameters).

v The data-set format (for example: BLKSIZE, LRECL, and RECFM subparameters).

You cannot use the DCB parameter to override information already established for
the file in your C or C++ program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied by fopen() or freopen() are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

It specifies that fixed-length records, 40 bytes in length, are to be grouped in a
block 400 bytes long. You can copy attributes from another data set by either
setting the DCB parameter to DCB=(dsname) or using the SVC 99 services provided by
the svc99() and dynalloc() library functions.

106 OS/390 V2R8.0 C/C++ Programming Guide

Generation Data Group I/O

A Generation Data Group (GDG) is a group of related cataloged data sets. Each
data set within a generation data group is called a generation data set. Generation
data sets have sequentially ordered absolute and relative names that represent their
age. The absolute generation name is the representation used by the catalog
management routines in the catalog. The relative name is a signed integer used to
refer to the latest (0), the next to the latest (-1), and so forth, generation. The
relative number can also be used to catalog a new generation (+1). For more
information on GDGs see the Managing Non-VSAM Data Sets book.

If you want to open a generation data set by data-set name with fopen() or
freopen(), you will require a model. This model specifies parameters for the
group, including the maximum number of generations (the generation index). You
can define such a model by using the Access Method Services DEFINE command.
For more information on the DEFINE command, see MVS/DFP Access Method
Services for the Integrated Catalog Facility. Note also that fopen() does not support a
DCB= parameter. If you want to change the parameters, alter the JCL that describes
the model and open it in w mode.

MVS uses an absolute generation and version number to catalog each generation.
The generation and version numbers are in the form GxxxxVyy, where xxxx is an
unsigned 4-digit decimal generation number (0001 through 9999) and yy is an
unsigned 2-digit decimal version number (00 through 99). For example:
v A.B.C.G0001V00 is generation data set 1, version 0, in generation data group

A.B.C.
v A.B.C.G0009V01 is generation data set 9, version 1, in generation data group

A.B.C.

The number of generations kept depends on the size of the generation index.

When you open a GDG by relative number, OS/390 C/C++ returns the relative
generation in the __dsname field of the structure returned by the fldata() function.
You cannot use the rename() library function to rename GDGs by relative
generation number; rename GDG data sets by using their absolute names.

The following example defines a GDG. The fopen() fails because it tries to change
the RECFM of the data set.

Note: This example is valid only for C.

Chapter 11. Performing OS I/O Operations 107

CBC3GOS1

The following example is valid for C++:

//*---
//* This example demonstrates GDG I/O
//*---
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
//*---
//MODEL EXEC PGM=IDCAMS
//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(0)),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE GDG -

(NAME(userid.MYGDG) -
EMPTY -
SCRATCH -
LIMIT(255))

/*
//*---
//* Create GDG data set MYGDG(+1)
//*---
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Compile, link, and run an inlined C program.
//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).
//*---
//C EXEC EDCCLG,
// CPARM='NOSEQ,NOMARGINS'
//COMPILE.SYSIN DD DATA,DLM='/>'
#include <stdio.h>
#include <errno.h>

int main(void)
{

FILE *fp;

fp = fopen("MYGDG(+1)", "a,recfm=F");

if (fp == NULL)
{

printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");

}

printf("Finished\n");
}
/>

Figure 11. Generation Data Group Example for C

108 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GOS2

A relative number used in the JCL refers to the same generation throughout a job.
The (+1) used in the example above exists for the life of the entire job and not just
the step, so that fopen()’s reference to (+1) did not create another new data-set but
accessed the same data set as in previous steps.

//*---
//* This example demonstrates GDG I/O
//*---
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
//*---
//MODEL EXEC PGM=IDCAMS
//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(0)),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE GDG -

(NAME(userid.MYGDG) -
EMPTY -
SCRATCH -
LIMIT(255))

/*
//*---
//* Create GDG data set MYGDG(+1)
//*---
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Compile, bind, and run an inlined C++ program.
//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).
//*---
//*
//DOCLG1 EXEC CBCCBG,
// CPARM='NOSEQ,NOMARGINS'
//COMPILE.SYSIN DD DATA,DLM='<>'
#include <stdio.h>
#include <errno.h>
int main(void)
{

FILE *fp;

fp = fopen("MYGDG(+1)", "a,recfm=F");

if (fp == NULL)
{

printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");

}

printf("Finished\n");
}
<>

Figure 12. Generation Data Group Example for C++

Chapter 11. Performing OS I/O Operations 109

Note: You cannot use fopen() to create another generation dataset because fopen()
does not fully support the DCB parameter.

Regular and Extended Partitioned Data Sets

Partitioned data sets (PDS) and partitioned data sets extended (PDSE) are DASD
data sets divided into sections known as members. Each member can be accessed
individually by its unique 1- to 8-character name.

PDSEs are managed by the Storage Management Subsystem (SMS) and, while
similar to PDSs, contain a number of enhancements.

Table 15. PDSE and PDS Differences

PDSE Characteristics PDS Characteristics

Data set has a 123-extent limit Data set has a 16-extent limit

Directory is open-ended and indexed by
member name; faster to search directory

Fixed-size directory is searched sequentially

PDSEs are device-independent: records are
reblockable

Block sizes are device-dependent

Uses dynamic space allocation and
reclamation

Must use IEBCOPY COMPRESS to reclaim
space

Supports creation of more than one member
at a time*

Supports creation of only one member at a
time

Note: *OS/390 C/C++ allows you to open two separate members of a PDSE for writing at
the same time. However, you cannot open a single member for writing more than once.

You specify a member by enclosing its name in parentheses and placing it after the
data-set name. For example, the following JCL refers to member A of the data set
MY.DATA:

//MYDD DD DSN=userid.MY.DATA(A),DISP=SHR

You can specify members on calls to fopen() and freopen(). You can specify
members when you are opening a data set by its data set name or by a ddname.
When you use a ddname and a member name, the definition of the ddname must
not also specify a member. For example, using the DD statement above, the
following will fail:

fp = fopen("dd:MYDD(B)","r");

You cannot open a PDS or PDSE member using the modes a, ab, a+, a+b, w+, w+b,
or wb+. If you want to perform the equivalent of the w+ or wb+ mode, you must first
open the file as w or wb, write to it, and then close it. Then you can perform
updates by reopening the file in r+ or rb+ mode. You can use the C library
functions ftell() or fgetpos() to obtain file positions for later updates to the
member. Normally, opening a file in r+ or rb+ mode enables you to extend a file
by writing to the end; however, with these modes you cannot extend a member. To
do so, you must copy the contents of the old member plus any extensions to a new
member. You can remove the old member by using the remove() function and then
rename the new member to the old name by using rename().

All members have identical attributes for RECFM, LRECL, and BLKSIZE. For PDSs, you
cannot add a member with different attributes or specify a RECFM of FBS, FBSA, or
FBSM. OS/390 C/C++ verifies any attributes you specify.

110 OS/390 V2R8.0 C/C++ Programming Guide

For PDSEs, OS/390 C/C++ checks to make sure that any attributes you specify are
compatible with those of the existing data set. Compatible attributes are those that
specify the same record format (F, V, or U) and the same LRECL. Compatibility of
attributes enables you to choose whether to specify blocked or unblocked format,
because PDSEs reblock all the records. For example, you can create a PDSE as FB
LRECL=40 BLKSIZE=80, and later open it for read as FB LRECL=40 BLKSIZE=1600 or F
LRECL=40 BLKSIZE=40. The LRECL cannot change, and the BLKSIZE must be
compatible with the RECFM and LRECL. Also, you cannot change the basic format of
the PDSE from F to V or vice versa. If the PDS or PDSE already exists, you do not
need to specify any attributes, because OS/390 C/C++ uses the previously existing
ones as its defaults.

At the start of each partitioned data set is its directory, a series of records that
contain the member names and starting locations for each member within the data
set. You can access the directory by specifying the PDS or PDSE name without
specifying a member. You can open the directory only for read; update and write
modes are not allowed. The only RECFM that you can specify for reading the
directory is RECFM=U. However, you do not need to specify the RECFM, because
OS/390 C/C++ uses U as the default.

MVS/DFP Using Data Sets contains diagrams and more detailed explanations about
how to use PDSs and PDSEs.

Partitioned and Sequential Concatenated Data Sets

There are two forms of concatenated data sets: partitioned and sequential. You can
open concatenated data sets only by ddname, and only for read or update.
Specifying any of the write, or append modes fails. As with PDS members, you
cannot extend a concatenated data set.

Partitioned concatenation consists of specifying multiple PDSs or PDSEs under
one ddname. When you access the concatenation, it acts as one large PDS or PDSE,
from which you can access any member that has a unique name. If two or more
partitioned data sets in the concatenation contain a member with the same name,
using the concatenation ddname to specify that member refers to the first member
with that name found in the entire concatenation. You cannot use the ddname to
access subsequent members. For example, if you have a PDS named PDS1, with
members A, B, and C, and a second PDS named PDS2, with members C, D, and E,
and you concatenate the two data sets as follows:

//MYDD DD userid.PDS1,DISP=SHR
// DD userid.PDS2,DISP=SHR

and perform the following:
fp = fopen("DD:MYDD(C)","r");
fp2 = fopen("DD:MYDD(D)","r");

the first call to fopen() finds member C from PDS1, even though there is also a
member C in PDS2. The second call finds member D from PDS2, because PDS2 is the
first PDS in the concatenation that contains this member. The member C in PDS2 is
inaccessible.

When you are concatenating partitioned data sets, be aware of the DCB attributes
for them. The concatenation is treated as a single data set with the following
attributes:
v RECFM= the RECFM of the first data set in the concatenation
v LRECL= the LRECL of the first data set in the concatenation

Chapter 11. Performing OS I/O Operations 111

v BLKSIZE= the largest BLKSIZE of any data set in the concatenation

These are the rules for compatible concatenations:

Table 16. Rules for Possible Concatenations

RECFM of first
data set RECFM of subsequent data sets LRECL of subsequent data sets

RECFM=F RECFM=F Same as that of first one

RECFM=FB RECFM=F or RECFM=FB Same as that of first one

RECFM=V RECFM=V Less than or equal to that of first
one

RECFM=VS RECFM=V or RECFM=VS Less than or equal to that of first
one

RECFM=VB RECFM=V or RECFM=VB Less than or equal to that of first
one

RECFM=VBS RECFM=V, RECFM=VB,
RECFM=VS, or RECFM=VBS

Less than or equal to that of first
one

RECFM=U RECFM=U or RECFM=F (see note
below)

Note: You can use a data set in V-format, but when you read it, you will see all of the
BDWs and RDWs or SDWs with the data.

If the first data set is in ASA format, all subsequent data sets must be ASA as well.
The preceding rules apply to ASA files if you add an A to the RECFMs specified.

If you do not follow these rules, undefined behavior occurs. For example, trying to
read a fixed-format member as RECFM=V could cause an exception or abend.

Repositioning is supported as it is for regular PDSs and PDSEs. If you try to read
the directory, you will be able to read only the first one.

Sequential concatenation consists of treating multiple sequential data sets or
partitioned data-set members as one long sequential data set. For example,

//MYDD DD userid.PDS1(A),DISP=SHR
// DD userid.PDS2(E),DISP=SHR
// DD userid.DATA,DISP=SHR

creates a concatenation that contains two members and a regular sequential data
set. You can read or update all of these in order. In partitioned concatenations, you
can read only one member at a time.

OS/390 C/C++ does not support concatenating data sets that do not have
compatible DCB attributes. The rules for compatibility are the same as those for
partitioned concatenations.

If all the data sets in the concatenation support repositioning, you can reposition
within a concatenation by using the functions fseek(), ftell(), fgetpos(),
fsetpos(), and rewind(). If the first one does not, all of the repositioning functions
except rewind() fail for the entire concatenation. If the first data set supports
repositioning but a subsequent one does not, you must specify the noseek
parameter on the fopen() or freopen() call. If you do not, fopen() or freopen()
opens the file successfully; however, an error occurs when the read position gets to
the data set that does not support repositioning.

112 OS/390 V2R8.0 C/C++ Programming Guide

In-stream Data Sets

An in-stream data set is a data set contained within a set of JCL statements.
In-stream data sets (also called inline data sets) begin with a DD * or DD DATA
statement. These DD statements can have any valid ddname, including SYSIN. If you
omit a DD statement before the input data, the system provides a DD * statement
with the ddname of SYSIN. This example shows you how to indicate an in-stream
data set:

//MYDD DD *
record 1
record 2
record 3
/*

The // at the beginning of the data set starts in column 1. The statement
fopen("DD:MYDD","rb"); opens a data set with lrecl=80, blksize=80, and
recfm=FB. In this example, the delimiter indicating the end of the data set is /*. In
some cases, your data may contain this string. For example, if you are using C
source code that contains comments, OS/390 C/C++ treats the beginning of the
first comment as the end of the in-stream data set. To avoid this occurrence, you
can change the delimiter by specifying DLM=nn, where nn is a two-character
delimiter, on the DD statement that identifies the file. For example:

//MYDD DD *,DLM=¢¢
#include <stdio.h>
/* Hello, world program */
int main() {printf("Hello, world\n"); }
¢¢

For more information about in-stream data sets, see the OS/390 MVS JCL User’s
Guide.

To open an in-stream data set, call the fopen() or freopen() library function and
specify the data-set’s ddname. You can open an in-stream data set only for reading.
Specifying any of the update, write, or append modes fails. Once you have opened
an in-stream data set, you cannot acquire or change the file position except by
rewinding. This means that calls to the fseek(), ftell(), fgetpos(), and fsetpos()
for in-stream data sets fail. Calling rewind() causes OS/390 C/C++ to reopen the
file, leaving the file position at the beginning.

You can concatenate regular data sets and in-stream data sets sequentially. If you
do so, note the following:
v If the first data set is in-stream, you cannot acquire or change the file position

for the entire concatenation.
v If the first data set is not in-stream and supports repositioning, you must specify

the noseek parameter on the fopen() or freopen() call that opens the
concatenation. If you do not, fopen() or freopen() opens the file successfully;
however, an error occurs when the read position gets to the in-stream.

v The in-stream data set is treated as FB 80 and the concatenation rules for
sequential concatenation apply.

SYSOUT Data sets

You can specify a SYSOUT data set by using the SYSOUT parameter on a DD statement.
OS/390 C/C++ supports opening SYSOUT data sets in two ways:

Chapter 11. Performing OS I/O Operations 113

1. Specifying a ddname that has the SYSOUT parameter. For information about
defining ddnames, see “Using a DDname” on page 105.

2. Specifying a data-set name of * on a call to fopen() or freopen() while you are
running under MVS batch or IMS online or batch.

On a DD statement, you specify SYSOUT=x, where x is the output class. If the class
matches the JOB statement MSGCLASS, the output appears with the job log. You can
specify a SYSOUT data set and get the job MSGCLASS by specifying SYSOUT=*. If you
want to create a job stream within your program, you can specify INTRDR on the DD
statement. This sends your SYSOUT data set to the internal reader to be read as an
input job stream. For example,

//MYDD DD SYSOUT=(A,INTRDR)

For more details about the SYSOUT parameter, refer to the OS/390 MVS JCL User’s
Guide.

You can specify DCB attributes for a SYSOUT data set on a DD statement or a call to
fopen() or freopen(). If you do not, OS/390 C/C++ uses the following defaults:

Binary or Record I/O
RECFM=VB LRECL=137 BLKSIZE=882

Text I/O
RECFM=VBA LRECL=137 BLKSIZE=882

Tapes

OS/390 C/C++ supports standard label (SL) tapes. If you are creating tape files,
you can only open them by ddname. OS/390 C/C++ provides support for opening
tapes in read, write, or append mode, but not update. When you open a tape for
read or append, any data-set control block (DCB) characteristics you specify must
match those of the existing data set exactly. The repositioning functions are
available only when you have opened a tape for read. For tapes opened for write
or append, calling rewind() has no effect; calls to any of the other repositioning
functions fail. To open a tape file for write, you must open it by ddname.

Opening FBS-format tape files with append-only mode is not supported.

When you open a tape file for output, the data-set name you specify in the JCL
must match the data-set name specified in the tape label, even if the existing tape
file is empty. If this is not the case, you must either change the JCL to specify the
correct data-set name or write to another tape file, or reinitialize the tape to
remove the tape label and the data. You can use IEBGENER with the following JCL
to create an empty tape file before passing it to the subsequent steps:
//ALLOC EXEC PGM=IEBGENER
//SYSUT1 DD *
/*
//SYSUT2 DD DSN=name-of-OUTPUT-tape-file,UNIT=xxxx,LABEL=(x,SL),
// DISP=(NEW,PASS),(DCB=LRECL=xx,BLKSIZE=xx,RECFM=xx),
// VOL=SER=xxx
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*

Note: For tapes, the value for UNIT= can be TAPE or CART.

114 OS/390 V2R8.0 C/C++ Programming Guide

Because the C library does not create tape files, you can append only to a tape file
that already exists. Attempting to append to a file that does not already exist on a
tape will cause an error. You can create an empty data set on a tape by using the
utility IEBGENER.

Multivolume Data Sets

OS/390 C/C++ supports data sets that span more than one volume of DASD or
tape. To open a multivolume data set for write, you must open it by ddname.

You can open multivolume tape data sets only for read or write. Opening them for
update or append is not supported.

You can open multivolume DASD data sets for read, write, or update, but not for
append. If you open one in r+ or rb+ mode, you can read and update the file, but
you cannot extend the data set.

The repositioning functions are available only when you have opened a
multivolume data set for read. For multivolume data sets opened for write, calling
rewind() has no effect; calls to any of the other repositioning functions fail. Here is
an example of a multivolume data set declaration:

//MYDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),
// VOLUME=(,,,3,SER=(333001,333002,333003)),
// SPACE=(TRK,(9,10)),UNIT=(3390,P)

This creates a data set that may span up to three volumes. For more information
about the VOLUME parameter on DD statements, refer to the OS/390 MVS JCL User’s
Guide.

Striped Data Sets

A striped data set is a special data set organization introduced with DFSMS
Version 1 Release 1.0. Striping spreads a data set over a specified number of
volumes such that I/O parallelism can be exploited. Unlike a multivolume data set
in which physical record n follows record n-1, a striped data set has physical
records n and n-1 on separate volumes. This enables asynchronous I/O to perform
parallel operations, making requests for multiple reads and writes faster. Striped
data sets also facilitate repositioning once the relative block number is known.
OS/390 C/C++ exploits this capability when it uses fseek() to reposition. This can
result in substantial savings for applications that use ftell() and fseek() with
data sets that have RECFMs of V, U, and FB (not FBS). data sets. When a data set is
striped, an fseek() can seek directly to the specified block just as an fsetpos() or
rewind() can. For a normal data set with the aforementioned RECFMs, OS/390
C/C++ has to read forward or rewind the data set to get to the desired position.
Depending on how large the data set is, this can be quite inefficient compared to a
direct reposition. Note that for such data sets, striping pads blocks to their
maximum size. Therefore, you may be wasting space if you have short records.

If your system has DFSMS Version 1 Release 1.0 and higher, you may not be able
to use striped data sets. This is because there is a hardware requirement by DFSMS
that all volumes of a striped data set be attached to ESCON channels. Contact your
system administrator for details on whether striped data sets are available on your
system and how to specify them.

Chapter 11. Performing OS I/O Operations 115

Other Devices

OS/390 C/C++ supports several other devices for input and output. You can open
these devices only by ddname. The following table lists a number of these devices
and tells you which record formats are valid for them.

Table 17. Other Devices Supported for Input and Output

Device Valid open modes Repositioning? fldata()__device

Printer w, wb, a, ab No __PRINTER

Card reader r, rb rewind() only __OTHER

Card punch w, wb, a, ab No __OTHER

Optical reader r, rb rewind() only __OTHER

DUMMY data set r, rb, r+, rb+, r+b, w,
wb, w+, wb+ w+b, a,
ab, a+, ab+, a+b

rewind() only __DUMMY

Note: For all devices above that support open modes a or ab, the modes are treated as if
you had specified w or wb.

None of the devices listed above can be opened for update except the DUMMY data
set.

OS/390 C/C++ queries each device to find out its maximum BLKSIZE.

The DUMMY data set is not truly a device, although OS/390 C/C++ treats it as one.
To use the DUMMY data set, specify DD DUMMY in your JCL. On input, the DUMMY data
set always returns EOF; on output, it is always successful. This is the way to specify
a DUMMY data set:

//MYDD DD DUMMY

For more information on DUMMY data sets, see the OS/390 MVS JCL User’s Guide.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are allowed and applicable for OS I/O,
and lists the option values that are valid for the applicable ones. Detailed
descriptions of these options follow the table.

Table 18. Parameters for the fopen() and freopen() Functions for OS/390 OS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes Any of the 27 record formats available
under OS/390 C/C++, plus * and A are
valid.

lrecl= Yes Yes 0, any positive integer up to 32760, or X is
valid. See the parameter list below.

blksize= Yes Yes 0 or any positive integer up to 32760 is
valid.

space= Yes Yes Valid only if you are opening a new data
set by its data-set name. See the parameter
list below.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

116 OS/390 V2R8.0 C/C++ Programming Guide

Table 18. Parameters for the fopen() and freopen() Functions for OS/390 OS
I/O (continued)

Parameter Allowed? Applicable? Notes

acc= Yes No Not used for OS I/O.

password= Yes No Not used for OS I/O.

asis Yes No Used to specify mixed-case file names. Not
recommended.

byteseek Yes Yes Used for binary files to specify that the
seeking functions should use relative byte
offsets instead of encoded offsets.

noseek Yes Yes Used to disable seeking functions for
improved performance.

OS Yes No Ignored.

recfm=
OS/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages 34, 37, and 41), as well as the OS/390 C/C++ RECFMs * and A.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any RECFM that you specify must match that of the
existing file, except that you may specify recfm=U to open any file for read, and
you may specify recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS
indicates to OS/390 C/C++ that there are no short blocks within the file. If
there are, undefined behavior results.

For variable-format OS files, the RDW, SDW, and BDW contain the length of
the record, segment, and block as well as their own lengths. If you open a file
for read with recfm=U, OS/390 C/C++ treats each physical block as an
undefined-format record. For files created with recfm=V, OS/390 C/C++ does
not strip off block descriptor words (BDWs) or record descriptor words
(RDWs), and for blocked files, it does not deblock records. Using recfm=U is
helpful for viewing variable-format files or seeing how records are blocked in
the file.

When you are opening an existing PDS or PDSE for write and you specify a
RECFM, it must be compatible with the RECFM of the existing data set. FS and FBS
formats are invalid for PDS members. For PDSs, you must use exactly the
same RECFM. For PDSEs, you may choose to change the blocked attribute (B),
because PDSEs perform their own blocking. If you want to read a PDS or
PDSE directory and you specify a RECFM, it must be recfm=U.

Specifying recfm=A indicates that the file contains ASA control characters. If
you are opening an existing file and you specify that ASA characters exist
(>recfm=A) when they do not, the call to fopen() or freopen() fails. If you
create a file by opening it for write or append, the A attribute is added to the
default RECFM. For more information about ASA, see “Chapter 8. Using ASA
Text Files” on page 69.

Specifying recfm=* causes OS/390 C/C++ to fill in any attributes that you do
not specify, taking the attributes from the existing data set. This is useful if you
want to create a new version of a data set with the same attributes as the
previous version. If you open a data set for write and the data set does not
exist, OS/390 C/C++ uses the default attributes specified in “fopen() Defaults”
on page 54

Chapter 11. Performing OS I/O Operations 117

on page 54. This parameter has no effect when you are opening for read or
append, and when you use it for non-DASD files.

lrecl= and blksize=
The LRECL that you specify on the fopen() call defines the maximum record
length that the C library allows. Records longer than the maximum record
length are not written to the file. The first 4 bytes of each block and the first 4
bytes of each record of variable-format files are used for control information.
For more information, see “Variable-Format Records” on page 37.

The maximum LRECL supported for fixed, undefined, or variable-blocked-
spanned format sequential disk files is 32760. For other variable-length format
disk files the maximum LRECL is 32756. Sequential disk files for any format
have a maximum BLKSIZE of 32760. The record length can be any size when
opening a spanned file and specifying lrecl=X. You can now specify lrecl=X
on the fopen() or freopen() call for spanned files. If you are updating an
existing file, the file must have been originally opened with lrecl=X for the
open to succeed. lrecl=X is useful only for text and record I/O.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any LRECL or BLKSIZE that you specify must match
that of the existing file, except when you open an F or FB format file on a disk
device without specifying the noseek parameter. In this case, you can specify
the S attribute to indicate to OS/390 C/C++ that the file has no imbedded
short blocks. Files without short blocks improve OS/390 C/C++’s performance.

When you are opening an existing PDS or PDSE for write and you specify an
LRECL or BLKSIZE, it must be compatible with the LRECL or BLKSIZE of the
existing data set. For PDSs, you must use exactly the same values. For PDSEs,
the LRECL must be the same, but the BLKSIZE may be different if you have
changed the blocking attribute as described under the RECFM parameter above.
You can change the blocking attribute, because PDSEs perform their own
blocking. The BLKSIZE you choose should be compatible with the RECFM and
LRECL. When you open the directory of a PDS or PDSE, do not specify LRECL or
BLKSIZE; OS/390 C/C++ uses the defaults. See Table 19 on page 122 for more
information.

space=(units,(primary,secondary,directory))
This keyword enables you to specify the space parameters for the allocation of
an MVS data set. It applies only to MVS data sets that you open by filename
and do not already exist. If you open a data set by ddname, this parameter has
no effect. You cannot specify any whitespace inside the value for the space
keyword. You must specify at least one value with this parameter. Any
parameter that you specify will be validated for syntax. If that validation fails,
then the fopen() or freopen() will fail even if the parameter would have been
ignored.

The supported values for units are as follows:

v Any positive integer indicating BLKSIZE
v CYL (mixed case)
v TRK (mixed case)

The primary quantity, the secondary quantity, and the directory quantity all
must be positive integers.

118 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|
|
|
|
|
|

If you specify values only for units and primary, you do not have to specify the
inside set of parentheses. You can use a comma to indicate a quantity is to take
the default value. For example:

space=(cyl,(100,,10)) - default secondary value
space=(trk,(100,,)) - default secondary and directory value
space=(500,(100,)) - default secondary, no directory

You can specify only the values indicated on this parameter. If you specify any
other values, fopen() or freopen() fails.

Any values not specified are omitted on the allocation. These values are filled
by the system during SVC 99 processing.

type=
You can omit this parameter. If you specify it, the only valid value for OS I/O
is type=record, which opens a file for record I/O.

acc=
This parameter is not valid for OS I/O. If you specify it, OS/390 C/C++
ignores it.

password=
This parameter is not valid for OS I/O. If you specify it, OS/390 C/C++
ignores it.

asis
If you use this parameter, OS/390 C/C++ does not convert your file names to
upper case. The use of the asis parameter is strongly discouraged, because
most of the I/O services used by OS/390 C/C++ require uppercase file names.

byteseek
When you specify this parameter and open a file in binary mode, all
repositioning functions (such as fseek() and ftell()) use relative byte offsets
from the beginning of the file instead of encoded offsets. In previous releases
of OS/390 C/C++, byteseeking was performed only for fixed format binary
files. To have the byteseek parameter set as the default for all your calls to
fopen() or freopen(), you can set the environment variable _EDC_BYTE_SEEK to
Y. See “Chapter 33. Using Environment Variables” on page 457 for more
information.

noseek
Specifying this parameter on the fopen() call disables the repositioning
functions ftell(), fseek(), fgetpos(), and fsetpos() for as long as the file is
open. When you have specified NOSEEK and have opened a disk file for read
only, the only repositioning function allowed on the file is rewind(), if the
device supports rewinding. Otherwise, a call to rewind() sets errno and raises
SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),
fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

The use of the noseek parameter may improve performance when you are
reading and writing data sets.

Note: If you specify the NOSEEK parameter when you open a file for writing,
you must specify NOSEEK on any subsequent fopen() call that
simultaneously opens the file for reading; otherwise, you will get
undefined behavior.

OS
If you specify this parameter, OS/390 C/C++ ignores it.

Chapter 11. Performing OS I/O Operations 119

Buffering

OS/390 C/C++ uses buffers to map C I/O to system-level I/O.

When OS/390 C/C++ performs I/O operations, it uses one of the following
buffering modes:
v Line buffering — characters are transmitted to the system when a new-line

character is encountered. Line buffering is meaningless for binary and record
I/O files.

v Full buffering — characters are transmitted to the system when a buffer is filled.

C/C++ provides a third buffering mode, unbuffered I/O, which is not supported
for OS files.

You can use the setvbuf() and setbuf() library functions to set the buffering
mode before you perform any I/O operation to the file. setvbuf() fails if you
specify unbuffered I/O. It also fails if you try to specify line buffering for an FBS
data set opened in text mode, where the device does not support repositioning.
This failure happens because OS/390 C/C++ cannot deliver records at line
boundaries without violating FBS format. Do not try to change the buffering mode
after you have performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf()
to specify line buffering. For binary files, record I/O files, and unblocked text files,
a block is written out as soon as it is full, regardless of whether you have specified
line buffering or full buffering. Line buffering is different from full buffering only
for blocked text files.

Multiple Buffering

Multiple buffering (or asynchronous I/O) is supported for MVS data sets. Multiple
buffering is not supported for a data set opened for read at the same time that
another file pointer has it opened for write or append. When you open files for
multiple buffering, blocks are read into buffers before they are needed, eliminating
the delay caused by waiting for I/O to complete. Multiple buffering may make
I/O less efficient if you are seeking within or writing to a file, because seeking or
writing may discard blocks that were read into buffers but never used.

To specify multiple buffering, code either the NCP=xx or BUFNO=yy subparameter of
the DCB parameter on the JCL DD statement (or allocation), where xx is an integer
number between 02 and 99, and yy is an integer number normally between 02 and
255. Whether OS/390 C/C++ uses NCP or BUFNO depends on whether you are using
BSAM or QSAM, respectively. NCP is supported under BSAM; BUFNO is supported
under QSAM. BSAM and QSAM are documented in DFSMS/MVS Using Data Sets.
If you specify noseek, OS/390 C/C++ uses QSAM if possible. If OS/390 C/C++ is
using BSAM and you specify a value for BUFNO, OS/390 C/C++ maps this value to
NCP. If OS/390 C/C++ is using QSAM and you specify a value for NCP, OS/390
C/C++ maps this value to BUFNO.

If you specify both NCP and BUFNO, OS/390 C/C++ takes the greater of the two
values, up to the maximum for the applicable value. For example, if you specify a
BUFNO of 120 and you are using BSAM, which uses NCP instead, OS/390 C/C++
will use NCP=99.

120 OS/390 V2R8.0 C/C++ Programming Guide

If you do not specify either, OS/390 C/C++ defaults to single buffering, except in
the following cases, where OS/390 C/C++ uses the system’s default BUFNO and
performs multiple buffering for both reading and writing:
v If you open a device that does not support repositioning, and specify read-only

or write-only mode (r, rb, w, wb, a, ab).
v If you specify the NOSEEK parameter on the call to fopen() or freopen(), and

specify read-only or write-only mode. When you specify NOSEEK, you get
multiple buffering for both reads and writes.

Here is an example of how to specify BUFNO:
//DD5 DD DSNAME=TORONTO.BLUEJAYS,DISP=SHR,DCB=(BUFNO=5)

You may need to update code from previous releases that relies on OS/390 C/C++
ignoring NCP or BUFNO parameters.

DCB (Data Control Block) Attributes

For OS files, the C run-time library creates a skeleton data control block (DCB) for
the file when you open it. File attributes are determined from the following sources
in this order:
1. The fopen() or freopen() function call
2. Attributes for a ddname specified previously (if you are opening by ddname)
3. Existing file attributes (if you specify recfm=* or you are opening an existing

file for read or append)
4. Defaults from fopen() or freopen() for creating a new file.

If you do not specify RECFM when you are creating a new file, OS/390 C/C++ uses
the following defaults:

If recfm is not specified in a fopen() call for an output binary file, recfm defaults
to:
v recfm=VB for spool (printer) files,
v recfm=FB otherwise.

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:
v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.

In this case, LRECL and BLKSIZE are both defaulted to 254.
v recfm=VBA for spool (printer) files.
v recfm=U for terminal files
v recfm=V if the LRECL or BLKSIZE is specified
v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.
The following table shows the defaults for LRECL and BLKSIZE when the OS/390
C/C++ compiler creates an OS file.

Chapter 11. Performing OS I/O Operations 121

Table 19. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral
multiple of 80 less
than or equal to max

All V, VB, VS, or VBS minimum of 1028 or
max–4

max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral
multiple of lrecl less
than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or FB blksize blksize

All V, VB, VS, or VBS minimum of 1028 or
blksize–4

blksize

All U 0 blksize

Note: All includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control
character (M) specifier.

In Table 19, the value max represents the maximum reasonable block size for the
device. These are the current default maximum block sizes for several devices that
OS/390 C/C++ supports:

Device Default Maximum Block Size

C OR C++
PROGRAM

DD STATEMENT

TAPE LABEL

file *f;

f = fopen("dd:master","r,
blksize=400, recfm=FB")

//MASTER DD UNIT=3480,
VOLUME=SER=1791
DSNAME=LIST,
DCB=(...,
RECFM=FB,
BLKSIZE=400,
LRECL=100)

Record format=FB
Record length=100
Block size=400
Recording density=1600

DATA CONTROL BOX

Record format

Block size

Record length

Device type

Recording density

FB

400

100

3480

1600

Figure 13. How the Operating System Completes the DCB. Information from the C or C++
program overrides that from the DD statement and the tape label. Information from the DD
statement overrides that from the data set label.

122 OS/390 V2R8.0 C/C++ Programming Guide

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes as returned by the DEVTYPE
macro, refer to the DFP System Programming Reference.

You can perform multiple buffering under MVS. See “Multiple Buffering” on
page 120 for details.

Reading from Files

You can use the following library functions to read from a file:
v fread()

v fgetc()

v fgets()

v fscanf()

v getc()

v gets()

v getchar()

v scanf()

fread() is the only interface allowed for reading record I/O files. A read operation
directly after a write operation without an intervening call to fflush(), fsetpos(),
fseek(), or rewind() fails. OS/390 C/C++ treats the following as read operations:
v Calls to read functions that request 0 bytes
v Read requests that fail because of a system error
v Calls to the ungetc() function

OS/390 C/C++ does not consider a read to be at EOF until you try to read past the
last byte visible in the file. For example, in a file containing three bytes, the feof()
function returns FALSE after three calls to fgetc(). Calling fgetc() one more time
causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See the
debugging section in this book for more details.

Chapter 11. Performing OS I/O Operations 123

Reading from Binary Files

OS/390 C/C++ reads binary records in the order that they were written to the file.
Any null padding is visible and treated as data. Record boundaries are
meaningless.

Reading from Text Files

For non-ASA variable text files, the default for OS/390 C/C++ is to ignore any
empty physical records in the file. If a physical record contains a single blank,
OS/390 C/C++ reads in a logical record containing only a new-line. However, if
the environment variable _EDC_ZERO_RECLEN was set to Y, OS/390 C/C++ reads an
empty physical record as a logical record containing a new-line, and a physical
record containing a single blank as a logical record containing a blank and a
new-line. OS/390 C/C++ differentiates between empty records and records
containing single blanks, and does not ignore either of them. For more information
about how OS/390 C/C++ treats empty records in variable format, see “Mapping
C Types to Variable Format” on page 39.

For ASA variable text files, if a file was created without a control character as its
first byte, the first byte defaults to the ' ' character. When the file is read back, the
first character is read as a new-line.

On input, ASA characters are translated to the corresponding sequence of control
characters. For more information about using ASA files, refer to “Chapter 8. Using
ASA Text Files” on page 69.

For undefined format text files, reading a file causes a new-line character to be
inserted at the end of each record. On input, a record containing a single blank
character is considered an empty record and is translated to a new-line character.
Trailing blanks are preserved for each record.

For files opened in fixed text format, rightmost blanks are stripped off a record at
input, and a new-line character is placed in the logical record. This means that a
record consisting of a single new-line character is represented by a fixed-length
record made entirely of blanks.

Reading from Record I/O Files

For files opened in record format, fread() is the only interface that supports
reading. Each time you call fread() for a record I/O file, fread() reads one record.
If you call fread() with a request for less than a complete record, the requested
bytes are copied to your buffer, and the file position is set to the start of the next
record. If the request is for more bytes than are in the record, one record is read
and the position is set to the start of the next record. OS/390 C/C++ does not strip
any blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size
argument equal to 1 and a count argument equal to the maximum expected length
of the record, fread() returns the length, in bytes, of the record read. If you pass a
size argument equal to the maximum expected length of the record, and a count
argument equal to 1, fread() returns either 0 or 1, indicating whether a record of
length size read. If a record is read successfully but is less than size bytes long,
fread() returns 0.

124 OS/390 V2R8.0 C/C++ Programming Guide

A failed read operation may lead to undefined behavior until you reposition
successfully.

Writing to Files

You can use the following library functions to write to a file:
v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputc()

v fputs()

v putc()

v putchar()

fwrite() is the only interface allowed for writing to record I/O files. See the
OS/390 C/C++ Run-Time Library Reference for more information on these library
functions.

A write operation directly after a read operation without an intervening call to
fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has
reached EOF. The file pointer does not reach EOF until after you have tried to read
past the last byte of the file.

OS/390 C/C++ counts a call to a write function writing 0 bytes or a write request
that fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, OS/390 C/C++ tries to set
the file position to the end of the last record updated successfully. For a
fully-buffered file, this is at the end of the last record in a block. For a line-buffered
file, this may be any record in the current block. If you are writing new data at the
time of a system failure, OS/390 C/C++ puts the file position at the end of the last
block of the file. In files opened for blocked output, you may lose data written by
other writes to that block before the system failure. The contents of a file after a
system write failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for
reading, the user who is reading the file can check for records that may have been
written past the end of the file by the other user. If the file is a spanned variable
text file, the reader can read part of a spanned record and reach the end of the file
before reading in the last segment of the spanned record.

Writing to Binary Files

Data flows over record boundaries in binary files. Writes or updates past the end
of a record go to the next record. When you are writing to files and not making
any intervening calls to fflush(), blocks are written to the system as they are
filled. If a fixed record is incomplete when you close the file, OS/390 C/C++
completes it with nulls. You cannot change the length of existing records in a file
by updating them.

Chapter 11. Performing OS I/O Operations 125

If you are using variable binary files, note the following:
v On input and on update, records that have no length are ignored; you will not

be notified. On output, zero-length records are not written. However, in spanned
files, if the first segment of a record has been written to the system, and the user
flushes or closes the file, a zero-length last segment may be written to the file.

v If you are writing new data in a recfm=VB file, OS/390 C/C++ may add a short
record at the end of a block, to fill the block out to the full block size.

v If your file is spanned, records are written up to length LRECL, spanning multiple
blocks if necessary. You can create a spanned file by specifying a RECFM
containing V and S on the fopen() call.

Writing to Text Files

OS/390 C/C++ treats the control characters as follows when you are writing to a
non-ASA text file:

\a Alarm. Placed directly into the file; OS/390 C/C++ does not interpret it.

\b Backspace. Placed directly into the file; OS/390 C/C++ does not interpret
it.

\f Form feed. Placed directly into the file; OS/390 C/C++ does not interpret
it.

\n New-line. Defines a record boundary; OS/390 C/C++ does not place it in
the file.

\r Carriage return. Defines a record boundary; OS/390 C/C++ does not place
it in the file. Treated like a new-line character.

\t Horizontal tab character. Placed directly into the file; OS/390 C/C++ does
not interpret it.

\v Vertical tab character. Placed directly into the file; OS/390 C/C++ does not
interpret it.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1. Placed into the file.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX >
1. Placed into the file. See “Chapter 9. OS/390 C Support for the
Double-Byte Character Set” on page 73 for more information about
MB_CUR_MAX.

The way OS/390 C/C++ treats text files depends on whether they are in fixed,
variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is
reserved for the ASA control character that represents a new-line, a carriage return,
or a form feed.

Table 20. C Control to ASA Characters

C Control Character
Sequence

ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

126 OS/390 V2R8.0 C/C++ Programming Guide

Table 20. C Control to ASA Characters (continued)

\r '+' overstrike

See “Chapter 8. Using ASA Text Files” on page 69 for more information.

Writing to Fixed-Format Text Files

Records in fixed-format files are all the same length. You complete each record
with a new-line or carriage return character. For fixed text files, the new-line
character is not written to the file. Blank padding is inserted to the LRECL of each
record of the block, and the block, when full, is written. For a more complete
description of the way fixed-format files are handled, see “Fixed-Format Records”
on page 34.

A logical record can be shortened to be an empty record (containing just a
new-line) or extended to a record containing LRECL bytes of data plus a new-line.
Because the physical record represents the new-line position by using padding
blanks, the new-line position can be changed on an update as long as it is within
the physical record.

Note: Using ftell() or fgetpos() values for positions that do not exist after you
have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the
old data and, if the new data is longer or shorter than the old data, changes the
size of the logical record by changing the number of blank characters in the
physical record. When you extend a record, thereby writing over the old new-line,
a new-line character is implied after the last character of the update. Calling
fflush() flushes the data out to the file and inserts blank padding between the last
data character and the end of the record. Once you have called fflush(), you can
call any of the read functions, which begin reading at the new-line. Once the
new-line is read, reading continues at the beginning of the next record.

Writing to Variable-Format Text Files

In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW).

For ASA and non-ASA, the '\n' (new-line) character implies a record boundary.
On output, the new-line is not written to the physical file; instead, it is assumed to
follow the data of the record.

If you have not set _EDC_ZERO_RECLEN, OS/390 C/C++ writes out a record
containing a single blank character to represent a single new-line, On input, a
record containing a single blank character is considered an empty record and is
translated to a new-line character. Note that a single blank followed by a new-line
is written out as a single blank, and is treated as just a new-line on input. When
_EDC_ZERO_RECLEN is set, writing a record containing only a new-line results in a
zero-length variable record.

Chapter 11. Performing OS I/O Operations 127

For more information about environment variables, refer to “Chapter 33. Using
Environment Variables” on page 457. For more information about how OS/390
C/C++ treats empty records in variable format, see “Mapping C Types to Variable
Format” on page 39.

Attempting to shorten a record on update by specifying less data before the
new-line causes the record to be padded with blanks to the original record size.
For spanned records, updating a record to a shorter length results in the same
blank padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The
exception to this rule is extending an empty record to a 1-byte record when the
environment variable _EDC_ZERO_RECLEN is not set. Because the physical
representation for an empty record is a record containing one blank character, it is
possible to extend the logical record to a single non-blank character followed by a
new-line character. For standard streams, truncation in text files does not occur;
data is wrapped automatically to the next record as if you had added a new-line.

When you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system when a new-line or
carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition
requests, if the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system when it is completed. If you are
using full buffering for a VB format file, a write may not fill a block completely.
The data does not go to the system unless a block is full; you can complete the
block with another write. If the subsequent write contains more data than is
needed to fill the block, it flushes the current block to the system and starts writing
your data to a new block.

When you are writing data to a spanned file without intervening flush or
reposition requests, if the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its
first byte or record (after the RDW and BDW), the first byte defaults to the ' '
character. When the file is read back, the first character is read as a new-line.

Writing to Undefined-Format Text Files

In an undefined-format file, there is only one record per block. Each record may be
a different length, up to a maximum length of BLKSIZE. Each record is completed
with a new-line or carriage return character. The new-line character is not written
to the physical file; it is assumed to follow the data of the record. However, if a
record contains only a new-line character, OS/390 C/C++ writes a record
containing a single blank to the file to represent an empty record. On input, the
blank is read in as a new-line.

Once a record has been written, you cannot change its length. If you try to shorten
a logical record by updating it with a shorter record, OS/390 C/C++ completes the
record with blank padding. If you try to lengthen a record by updating it with
more data than it can hold, OS/390 C/C++ truncates the new data. The only
instance in which this does not happen is when you extend an empty record so
that it contains a single byte. Any data beyond the single byte is truncated.

128 OS/390 V2R8.0 C/C++ Programming Guide

Truncation Versus Splitting

If you try to write more data to a record than OS/390 C/C++ allows, and the file
you are writing to is not one of the standard streams (the defaults, or those
redirected by freopen() or command-level redirection), output is cut off at the
record boundary and the remaining bytes are discarded. OS/390 C/C++ does not
count the discarded characters as characters that have been written out
successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not
SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more
information about SIGIOERR, ferror(), and other I/O-related debugging tools, see
“Chapter 18. Debugging I/O Programs” on page 227. OS/390 C/C++ continues to
discard new output until you complete the current record by writing a new-line or
carriage return character, close the file, or change the file position.

If you are writing to one of the standard streams, attempting to write more data
than a record can hold results in the data being split across multiple records.

Writing to Record I/O Files

fwrite() is the only interface allowed for writing to a file opened for record I/O.
Only one record is written at a time. If you attempt to write more new data than a
full record can hold or you try to update a record with more data than it currently
has, OS/390 C/C++ truncates your output at the record boundary. When OS/390
C/C++ performs a truncation, it sets errno and raises SIGIOERR, if SIGIOERR is not
set to SIG_IGN.

When you update a record, you can update less than the full record. The
remaining data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record I/O file, if you try to write a
short record, OS/390 C/C++ pads the record with nulls out to LRECL.

At the completion of an fwrite(), the file position is at the start of the next record.
For new data, the block is flushed out to the system as soon as it is full.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system()
function, all open streams are flushed before control is passed to the callee, and
again before control is returned to the caller. If you are running with POSIX(ON), a
call to the POSIX system() function does not flush any streams to the system.

Chapter 11. Performing OS I/O Operations 129

Updating Existing Records

Calling fflush() while you are updating flushes the updates out to the system. If
you call fflush() when you are in the middle of updating a record, OS/390
C/C++ writes the partially updated record out to the system. A subsequent write
continues to update the current record.

Reading Updated Records

If you have a file open for read at the same time that the file is open for write in
the same application, you will be able to see the new data if you call fflush() to
refresh the contents of the input buffer, as in the following example:

CBC3GOS3

Writing New Records

Writing new records is handled differently for:
v Binary streams

/* this example demonstrates how updated records are read */

#include <stdio.h>
int main(void)
{

FILE * fp, * fp2;
int rc, rc2, rc3, rc4;
fp = fopen("a.b","w+");

fprintf(fp,"first record");

fp2 = fopen("a.b","r"); /* Simultaneous Reader */

/* following gets EOF since fp has not completed first line
* of output so nothing will be flushed to file yet */

rc = fgetc(fp2);
printf("return code is %i\n", rc);

fputc('\n', fp); /* this will complete first line */
fflush(fp); /* ensures data is flushed to file */

rc2 = fgetc(fp2); /* this gets 'f' from first record */
printf("value is now %c\n", rc2);

rewind(fp);

fprintf(fp, "some updates\n");
rc3 = fgetc(fp2); /* gets 'i' ..doesn't know about update */
printf("value is now %c\n", rc3);

fflush(fp); /* ensure update makes it to file */

fflush(fp2); /* this updates reader's buffer */

rc4 = fgetc(fp2); /* gets 'm', 3rd char of updated record */
printf("value is now %c\n", rc4);

return(0);
}

Figure 14. Example of Reading Updated Records

130 OS/390 V2R8.0 C/C++ Programming Guide

v Text streams
v Record I/O

Binary Streams

OS/390 C/C++ treats line buffering and full buffering the same way for binary
files.

If the file has a variable length or undefined record format, fflush() writes the
current record out. This may result in short records. In blocked files, this means
that the block is written to disk, and subsequent writes are to a new block. For
fixed files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an
incomplete block out to the file. For all other types of FBS files, fflush() does not
flush an incomplete block out to the file.

For files in FB format, fflush() always flushes out all complete records in the
current block. For sequential DASD files, new completed records are added to the
end of the flushed block if it is short. For non-DASD or non-sequential files, any
new record will start a new block.

Text Streams
v Line-Buffered Streams

fflush() has no effect on line-buffered text files, because OS/390 C/C++ writes
all records to the system as they are completed. All incomplete new records
remain in the buffer.

v Fully Buffered Streams
Calling fflush() flushes all completed records in the buffer, that is, all records
ending with a new-line or carriage return (or form feed character, if you are
using ASA), to the system. OS/390 C/C++ holds any incomplete record in the
buffer until you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more
than one new-line is being updated, the remaining new-lines will be discarded and
a read will continue at the first data character. For example, if '\n\n\n' is updated
to be '\n\n' and a flush occurs, then a '0' will be written out in the ASA character
position.

Record I/O

OS/390 C/C++ treats line buffering and full buffering the same way for record
I/O. For files in FB format, calling fflush() writes all records in the buffer to the
system. For single-volume disk files in FBS format, fflush() will flush complete
records in an incomplete block out to the file. For all other types of FBS files,
fflush() will not flush an incomplete block out to the file. For all other formats,
calling fflush() has no effect, because fwrite() has already written the records to
disk.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for binary and text files.
ungetc() handles only single-byte characters. You can use it to push back as many
as four characters onto the ungetc() buffer. For every character pushed back with
ungetc(), fflush() backs up the file position by one character and clears all the

Chapter 11. Performing OS I/O Operations 131

pushed-back characters from the stream. Backing up the file position may end up
going across a record boundary. Remember that for text files, OS/390 C/C++
counts the new-lines added to the records as single-byte characters when it
calculates the file position.

For example, given the stream you can run the following code fragment:
fgetc(fp); /* Returns A and puts the file position at */

/* the beginning of the character B */
ungetc('Z',fp); /* Logically inserts Z ahead of B */
fflush(fp); /* Moves the file position back by one to A, */

/* removes Z from the logical stream */

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT
environment variable. See “Chapter 33. Using Environment Variables” on page 457
for more information.

Repositioning within Files

You can use the following library functions to help you position within an OS file:
v fseek()
v ftell()
v fgetpos()
v fsetpos()
v rewind()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Opening a file with fopen() and specifying the NOSEEK parameter disables all of
these library functions except rewind(). A call to rewind() causes the file to be
reopened, unless the file is a non-disk file opened for write-only. In this case,
rewind() sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is
its default).

Calling any of these functions flushes all complete and updated records out to the
system. If a repositioning operation fails, OS/390 C/C++ attempts to restore the
original file position and treats the operation as a call to fflush(), except that it
does not account for the presence of ungetc() or ungetwc() characters, which are
lost. After a successful repositioning operation, feof() always returns 0, even if the
position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than
ftell() and fseek(). The fgetpos() function can encode the current position into
a structure that provides enough room to hold the system position as well as
position data specific to C or C++. The ftell() function must encode the position
into a single word of storage, which it returns. This compaction forces fseek() to

A B C D

file pointer

132 OS/390 V2R8.0 C/C++ Programming Guide

calculate certain position information specific to C or C++ at the time of
repositioning. For variable-format binary files, you can choose to have ftell()
return relative byte offsets. In previous releases, ftell() returned only encoded
offsets, which contained the relative block number. Since you cannot calculate the
block number from a relative byte offset in a variable-format file, fseek() may
have to read through the file to get to the new position. fsetpos() has system
position information available within the the fpos_t structure and can generally
reposition directly to the desired location.

You can use the ftell() and fseek() functions to set the current position within
all types of files except for the following:
v Files on non-seekable devices (for example, printers)
v Files on tapes opened for write
v Partitioned data sets opened in w or wb mode.

ungetc() Considerations

For binary and text files, the library functions fgetpos() and ftell() take into
account the number of characters you have pushed back onto the input stream
with ungetc(), and adjust the file position accordingly. ungetc() backs up the file
position by a single byte each time you call it. For text files, OS/390 C/C++ counts
the new-lines added to the records as single-byte characters when it calculates the
file position.

If you make so many calls to ungetc() that the logical file position is before the
beginning of the file, the next call to ftell() or fgetpos() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point
for the reposition also accounts for the presence of ungetc() characters and
compensates as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the
_EDC_COMPAT environment variable. See “Chapter 33. Using Environment Variables”
on page 457 for details. ftell() is not affected by the setting of _EDC_COMPAT.

How Long fgetpos() and ftell() Values Last

As long as you do not re-create a file or shorten logical records, you can rely on
the values returned by ftell() and fgetpos(), even across program boundaries
and calls to fclose(). (Calling fopen() or freopen() with any of the w modes
re-creates a file.) Using ftell() and fgetpos() values that point to information
deleted or re-created results in undefined behavior. For more information about
shortening records, see “Writing to Variable-Format Text Files” on page 127.

Using fseek() and ftell() in Binary Files

With binary files, ftell() returns two types of positions:
v Relative byte offsets
v Encoded offsets

Relative Byte Offsets

You get byte offsets by default when you are seeking or positioning in fixed-format
binary files. You can also use byte offsets on a variable or undefined format file
opened in binary mode with the BYTESEEK parameter specified on the fopen() or

Chapter 11. Performing OS I/O Operations 133

freopen() function call. You can specify BYTESEEK to be the default for fopen()
calls by setting the environment variable _EDC_BYTE_SEEK to Y. See “Chapter 33.
Using Environment Variables” on page 457 for information on how to set
environment variables.

You do not need to acquire an offset from ftell() to seek to a relative position;
you may specify a relative offset to fseek() with a whence value of SEEK_SET.
However, you cannot specify a negative offset to fseek() when you have specified
SEEK_SET, because a negative offset would indicate a position before the beginning
of the file. Also, you cannot specify a negative offset with whence values of
SEEK_CUR or SEEK_END such that the resulting file position would be before the
beginning of the file. If you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the
current EOF. In such cases, a new end-of-file position is created; null characters are
automatically added between the old EOF and the new EOF.

fseek() support of byte offsets in variable-format files generally requires reading
all records from the whence value to the new position. The impact on performance
is greatest if you open an existing file for append in BYTESEEK mode and then call
ftell(). In this case, ftell() has to read from the beginning of the file to the
current position to calculate the required byte offset. Support for byteseeking is
intended to ease portability from other platforms. If you need better performance,
consider using ftell()-encoded offsets, discussed in the next section.

Encoded Offsets

If you do not specify the BYTESEEK parameter and you set the _EDC_BYTE_SEEK
variable to N, any variable- or undefined-format binary file gets encoded offsets
from ftell(). This keeps this release of OS/390 C/C++ compatible with code
generated by old releases of C/370.

Encoded offsets are values representing the block number and the relative byte
within that block, all within one long int. Because OS/390 C/C++ does not
document its encoding scheme, you cannot rely on any encoded offset not returned
by ftell(), except 0, which is the beginning of the file. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction). When
you call fseek() with the whence value SEEK_SET, you must use either 0 or an
encoded offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END,
however, you specify relative byte offsets. If you want to seek to a certain relative
byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the
beginning, and then you can use SEEK_CUR to specify the desired relative byte
offset.

In earlier releases, ftell() could determine position only for files with no more
than 131,071 blocks. In the new design, this number increases depending on the
block size. From a maximum block size of 32,760, every time this number
decreases by half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to specify a
position that is beyond the current EOF. In such cases, a new end-of-file position is
created; null characters are automatically added between the old EOF and the new
EOF. This does not apply to PDS members, as they cannot be extended. For
SEEK_SET, because you are restricted to using offsets returned by ftell(), any
offset that indicates a position outside the current file is invalid and causes fseek()
to fail.

134 OS/390 V2R8.0 C/C++ Programming Guide

Using fseek() and ftell() in Text Files (ASA and Non-ASA)

In text files, ftell() produces only encoded offsets. It returns a long int, in which
the block number and the byte offset within the block are encoded. You cannot rely
on any encoded offset not returned by ftell() except 0. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction).

When you call fseek() with the whence value SEEK_SET, you must use an encoded
offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END,
however, you specify relative byte offsets. If you want to seek to a certain relative
byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the
beginning, and then you can use SEEK_CUR to specify the desired relative byte
offset. OS/390 C/C++ counts new-line characters and skips to the next record each
time it reads one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that set
the file position past the end of the file. Any offset that indicates a position outside
the current file is invalid and causes fseek() to fail.

In earlier releases, ftell() could determine position only for files with no more
than 131071 blocks. In the new design, this number increases depending on the
block size. From a maximum block size of 32760, every time this number decreases
by half, the number of blocks that can be represented doubles.

Repositioning flushes all updates before changing position. An invalid call to
fseek() is now always treated as a flush. It flushes all updated records or all
complete new records in the block, and leaves the file position unchanged. If the
flush fails, any characters in the ungetc() buffer are lost. If a block contains an
incomplete new record, the block is saved and will be completed by another write
or by closing the file.

Using fseek() and ftell() in Record Files

For files opened with type=record, ftell() returns relative record numbers. The
behavior of fseek() and ftell() is similar to that when you use relative byte
offsets for binary files, except that the unit is a record rather than a byte. For
example,

fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.
fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().

You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting Old C Code That Uses fseek() or ftell()

The encoding scheme used by ftell() in non-BYTESEEK mode in the OS/390
C/C++ RTL is different from that used in older versions of the C/370 RTL. By
older versions of the RTL we mean versions of the C/370 RTL prior to version 2.2
and versions of LE/370 prior to version 1.3.

Chapter 11. Performing OS I/O Operations 135

v If your code obtains ftell() values and passes them to fseek(), the change to
the encoding scheme should not affect your application. On the other hand, your
application may not work if you have saved encoded ftell() values in a file
and your application reads in these encoded values to pass to fseek(). For
non-record I/O files, you can set the environment variable _EDC_COMPAT with the
ftell() encoding set to tell OS/390 C/C++ that you have old ftell() values.
Files opened for record I/O do not support old ftell() values saved across the
program boundary.

v In previous versions, the fseek() support for the ftell() encoding scheme
inadvertently supported seeking from SEEK_SET with a byte offset up to 32K.
This will no longer be supported. Users of this support will have to change to
BYTESEEK mode. You can do this without changing your source code; just use the
_EDC_BYTE_SEEK environment variable.

Closing Files

Use the fclose() library function to close a file. OS/390 C/C++ automatically
closes files on normal program termination and attempts to do so under abnormal
program termination or abend. See the OS/390 C/C++ Run-Time Library Reference for
more information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with
null characters when you close the file.

For files opened in variable binary mode, incomplete records are flushed to the
system. In a spanned file, closing a file can cause a zero-length segment to be
written. This segment will still be part of the non-zero-length record. For files
opened in undefined binary mode, any incomplete output is flushed on close.

Closing files opened in text mode causes any incomplete new record to be
completed with a new-line character. All records not yet flushed to the file are
written out when the file is closed.

For files opened for record I/O, closing causes all records not yet flushed to the
file to be written out.

Renaming and Removing Files

You can remove or rename an MVS data set that has an uppercase filename by
using the remove() or rename() library functions, respectively. rename() and
remove() both accept data-set names. rename() does not accept ddnames, but
remove() does. You can use remove() or rename() on individual members or entire
PDSs or PDSEs. If you use rename() for a member, you can change only the name
of the member, not the name of the entire data set. To rename both the member
and the data set, make two calls to rename(), one for the member and one for the
whole PDS or PDSE.

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename,
fldata_t *info);

136 OS/390 V2R8.0 C/C++ Programming Guide

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

Notes:

1. If you have opened the file by its data set name, filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase. If you
specified a member on the fopen() or freopen() function call, the member is
returned as part of filename.

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* */
__recfmBlk : 1, /* */
__recfmASA : 1, /* */
__recfmM : 1, /* */
__dsorgPO : 1, /* */
__dsorgPDSmem : 1, /* */
__dsorgPDSdir : 1, /* */
__dsorgPS : 1, /* */
__dsorgConcat : 1, /* */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* */
__reserve2 : 8; /* */

__device_t __device; /* one of: */
/* __DISK */
/* __TAPE */
/* __PRINTER */
/* __DUMMY */
/* __OTHER */

unsigned long __blksize, /* */
__maxreclen; /* */

unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 15. fldata() Structure

Chapter 11. Performing OS I/O Operations 137

2. Any of the __recfm bits may be set on for OS files.
3. The __dsorgPO bit will be set on only if you are reading a directory or member

of a partitioned data set, either regular or extended, regardless of whether the
member is specified on a DD statement or on the fopen() or freopen()
function call. The __dsorgPS bit will be set on for all other OS files.

4. The __dsorgPDSE bit will be set when processing an extended partitioned data
set (PDSE).

5. The __dsorgConcat bit will be set on for a concatenation of sequential data
sets, but not for a concatenation of partitioned data sets.

6. The __dsorgTemp bit will be set on only if the file was created using the
tmpfile() function.

7. The __blksize value may include BDW and RDWs.
8. The __maxreclen value may include the ASA character.
9. The __recfm bits and the __blksize and __maxreclen values correspond to the

attributes of the open stream. They do not necessarily reflect the attributes of
the existing data set.

10. The __dsname field is filled in for __DISK files with the data set name. The
member name is added if the file is a member of a partitioned data set, either
regular or extended. The __dsname value is uppercase unless the asis option
was specified on the fopen() or freopen() function call. The __dsname field is
set to NULL for all other OS files.

138 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 12. Performing Hierarchical File System I/O
Operations

You can create the following HFS file types:
v Regular
v Link
v Directory
v Character special
v FIFO

The Single UNIX Specification defines another type of file called STREAMS. Even
though the system interfaces are provided, it is impossible to have a valid STREAMS
file descriptor. These interfaces will always return a return code of -1 with errno
set to indicate an error such as, EBADF, EINVAL, or ENOTTY.

HFS streams follow the binary model, regardless of whether they are opened for
text, binary, or record I/O. You can simulate record I/O by using new-line
characters as record boundaries.

For information on the hierarchical file system and access to files within it from
other than the C or C++ language, see the OS/390 UNIX System Services User’s
Guide. For an introduction to and description of the behavior of a POSIX-defined
file system, see The POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick,
(Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991).

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

Creating Files

You can use library functions to create the following types of HFS files.
v Regular Files
v Link and Symbolic Link Files
v Directory Files
v Character Special Files
v FIFO Files

Regular Files

Use any of the following C functions to create HFS regular files:
v creat()

v fopen()

© Copyright IBM Corp. 1996, 1999 139

v freopen()

v open()

For a description of these and other I/O functions, see the OS/390 C/C++ Run-Time
Library Reference.

Link and Symbolic Link Files

Use either of the following C functions to create HFS link or symbolic link files:
v link()

v symlink()

Directory Files

Use the following C function to create an HFS directory file:
v mkdir()

Character Special Files

Use the following C function to create an HFS character special file:
v mknod()

You must have superuser authority to create a character special file.

Other functions used for character special files are:
v ptsname()

v grantpt()

v unlockpt()

v tcgetsid()

v ttyname()

v isatty()

FIFO Files

Use the following C function to create an HFS FIFO file (named pipe):
v mkfifo()

To create an unnamed pipe, use the following C function:
v pipe()

Opening Files

This section discusses the use of the fopen() or freopen() library functions to open
Hierarchical File System (HFS) I/O files. You can also access HFS files using
low-level I/O open() function. See “Low-Level OS/390 UNIX I/O” on page 153 for
information about low-level I/O, and the OS/390 C/C++ Run-Time Library Reference
for information about any of the functions listed above.

The name of an HFS file can include characters chosen from the complete set of
character values, except for null characters. If you want a portable filename, then
choose characters from the POSIX .1 portable filename character set.

140 OS/390 V2R8.0 C/C++ Programming Guide

The complete pathname can begin with a slash and be followed by zero, one, or
more filenames, each separated by a slash. If a directory is included within the
pathname, it may have one or more trailing slashes. Multiple slashes following one
another are interpreted as one slash.

If your program is running under POSIX(ON), all valid POSIX names are passed
asis to the POSIX open function.

You can access either HFS files or MVS data sets from programs. Programs
accessing files or data sets can be executed with either the POSIX(OFF) or POSIX(ON)
run-time options. There are basic file naming rules that apply for HFS files and
MVS data sets. However, there are also special OS/390 C/C++ naming
considerations that depend on how you execute your program.

The POSIX run-time option determines the type of OS/390 C/C++ services and
I/O available to your program. (See the OS/390 C/C++ User’s Guide for a discussion
of the OS/390 UNIX programming environment and overview of binding OS/390
UNIX C/C++ applications.)

Both the basic and special OS/390 C/C++ file naming rules for HFS files are
described in the sections that follow. Examples are provided. All examples must be
run with the POSIX(ON) option. For information about MVS data sets, see
“Chapter 11. Performing OS I/O Operations” on page 103.

Using fopen() or freopen()

When you open a file with fopen() or freopen(), you must specify the file name (a
data-set name) or a ddname.

File Naming Considerations

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode").

HFS Files: The following is the format for the pathname argument on the fopen()
or freopen() function:

ÊÊ pathname
" /

.
dd: ddname

// DD: (member) "

ÊÍ

The POSIX.1 standard defines pathname as the information that identifies a file. For
the OS/390 UNIX implementation of the POSIX.1 standard, a pathname can be up
to 1024 characters—including the null-terminating character. Optionally, it can
begin with a slash character (/) followed by directory names separated by slash
characters and a filename. For the pathname, each directory name or the filename
can be up to 255 characters long.

Note:

Regardless of whether your program is run as an OS/390 UNIX application
or a traditional MVS application, if the pathname that you attempt to open

Chapter 12. Performing Hierarchical File System I/O Operations 141

using fopen() or freopen() contains a slash character but does not begin
with exactly two slashes, an HFS file is opened. For example, if you code:
fopen("tradnsell/parts.order", "w+")

the HFS file tradnsell/parts.order from the working directory is opened.

If you begin the pathname value with ./, the specified HFS file in the
working directory is opened:
fopen("./parts.order", "w+")

Likewise, if you begin the pathname value with /, the specified HFS file in
the root directory is opened:
fopen("/parts.order", "w+")

If you specify more than two consecutive slash characters anywhere in a
pathname, all but the first slash character is ignored, as in the following examples:

"//a.b" MVS data set prefix.a.b

"///a.b" HFS file /a.b

"////a.b" HFS file /a.b

"a////b.c" HFS file a/b.c

"/a.b" HFS file /a.b

"/a///b.c" HFS file /a/b.c

If you specify /dd:pathname or ./dd:pathname, a file named dd:pathname is opened
in the file system root directory or your working directory, respectively. For
example, if you code:
fopen("/dd:parder", "w+")

the file dd:parder is opened in the HFS root directory.

For HFS files, leading and trailing white spaces are significant.

Opening a File by Name

Which type of file (HFS or MVS data set) you open may depend on whether the
OS/390 C/C++ application program is running under POSIX(ON).

For an application program that is to be run under POSIX(ON), you can include in
your program statements similar to the following to open the HFS file
parts.instock for reading in the working directory:
FILE *stream;

stream = fopen("parts.instock", "r");

To open the MVS data set user-prefix.PARTS.INSTOCK for reading, include statements
similar to the following in your program:
FILE *stream;

stream = fopen("//parts.instock", "r");

142 OS/390 V2R8.0 C/C++ Programming Guide

For an application program that is to be run as a traditional OS/390 C/C++
application program, with POSIX(OFF), to open the MVS data set
user-prefix.PARTS.INSTOCK for reading, include statements similar to the following in
your program:
FILE *stream;

stream = fopen("parts.instock", "r");

To open the HFS file parts.instock in the working directory for reading, include
statements similar to the following in your program:
FILE *stream;

stream = fopen("./parts.instock", "r");

Opening a File by DDname

The DD statement enables you to write OS/390 C/C++ source programs that are
independent of the files and I/O devices they will use. You can modify the
parameters of a file or process different files without recompiling your program.

When dd:ddname is specified to fopen() or freopen(), the OS/390 C/C++ library
looks to find and resolve the data definition information for the filename to open.
If the data definition information points to an MVS data set, MVS data set naming
rules are followed. If an HFS file is indicated using the PATH parameter, a ddname is
resolved to the associated pathname.

Note: Use of the OS/390 C/C++ fork() library function from an OS/390 UNIX
application program does not replicate the data definition information of the
parent process for the child process. Use of any of the exec() library
functions deallocates the data definition information for the application
process.

For the declaration just shown for the HFS file parts.instock, you should write a
JCL DD statement similar to the following:
//PSTOCK DD PATH='/u/parts.instock',...

For more information on writing DD statements, you should refer to the job control
language (JCL) manual OS/390 MVS JCL Reference.

To open the file by DD name under TSO/E, you must write an ALLOCATE
command.

For the declaration of an HFS file parts.instock, you should write a TSO/E
ALLOCATE command similar to the following:
ALLOCATE DDNAME(PSTOCK) PATH('/u/parts.instock')...

See the OS/390 TSO/E Command Reference for more information on TSO ALLOCATE.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are useful for HFS I/O, and lists the
values that are valid for the applicable ones.

Chapter 12. Performing Hierarchical File System I/O Operations 143

Table 21. Parameters for the fopen() and freopen() functions for HFS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes No HFS I/O uses a continuous stream of data
as its file format.

lrecl= Yes No HFS I/O uses a continuous stream of data
as its file format.

blksize= Yes No HFS I/O uses a continuous stream of data
as its file format.

space= Yes No Not used for HFS I/O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for HFS I/O.

password= Yes No Not used for HFS I/O.

asis Yes No Not used for HFS I/O.

byteseek Yes No Not used for HFS I/O.

noseek Yes No Not used for HFS I/O.

OS Yes No Not used for HFS I/O.

recfm=
Ignored for HFS I/O.

lrecl= and blksize=
Ignored for HFS I/O, except that lrecl affects the value returned in the
__maxreclen field of fldata() as described below.

acc=
Ignored for HFS I/O.

password
Ignored for HFS I/O.

space=
Ignored for HFS I/O.

type=
The only valid value for this parameter under HFS is type=record. If you
specify this, your file follows the HFS record I/O rules:
1. One record is defined to be the data up to the next new-line character.
2. When an fread() is done the data will be copied into the user buffer as if

an fgets(buf, size_item*num_items, stream) were issued. Data is read
into the user buffer up to the number of bytes specified on the fread(), or
until a new-line character or EOF is found. The new-line character is not
included.

3. When an fwrite() is done the data will be written from the user buffer
with a new-line character added by the RTL code. Data is written up to the
number of bytes specified on the fwrite(); the new-line is added by the
RTL and is not included in the return value from fwrite().

4. If you have specified an lrecl and type=record, fldata() of this stream will
return the lrecl you specified, in the __maxreclen field of the __fileData
return structure of stdio.h. If you specified type=record but no lrecl, the
__maxreclen field will contain 1024.
If type=record is not in effect, fldata() of this stream will return 0 in the
__maxreclen field of the __fileData return structure of stdio.h.

144 OS/390 V2R8.0 C/C++ Programming Guide

asis
Ignored for HFS I/O.

byteseek
Ignored for HFS I/O.

noseek
Ignored for HFS I/O.

OS Ignored for HFS I/O.

Reading from HFS Files

You can use the following library functions to read in information from HFS files:
v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

v read()

fread() is the only interface allowed for reading record I/O files. See the OS/390
C/C++ Run-Time Library Reference for more information on all of the above library
functions.

For OS/390 UNIX low-level I/O, you can use the read() and readv() function.

See “Low-Level OS/390 UNIX I/O” on page 153.

Opening and Reading from HFS Directory Files

To open an HFS directory, you can use the opendir() function.

You can use the following library functions to read from and position within HFS
directories:
v readdir()
v seekdir()
v telldir()

To close a directory, use the closedir() function.

Writing to HFS Files

You can use the following library functions to write to HFS files:
v fwrite()

v printf()

v fprintf()

Chapter 12. Performing Hierarchical File System I/O Operations 145

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

v write()

fwrite() is the only interface allowed for writing to record I/O files. See the
OS/390 C/C++ Run-Time Library Reference for more information on all of the above
library functions. For OS/390 UNIX low-level I/O, you can use the write() and
writev() function.

Flushing Records

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system()
function, all open streams are flushed before control is passed to the callee, and
again before control is returned to the caller. A call to the POSIX system() function
does not flush any streams.

For HFS files, the fflush() function copies the data from the run time buffer to the
file system. The fsync() function copies the data from the file system buffer to the
storage device.

Setting Positions within Files

You can use the following library functions to help you reposition within a regular
file:
v fseek()

v ftell()

v fgetpos()

v fsetpos()

v rewind()

v lseek()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Closing Files

You can use fclose(), freopen(), or close() to close a file. OS/390 C/C++
automatically closes files on normal program termination, and attempts to do so
under abnormal program termination or abend. See the OS/390 C/C++ Run-Time
Library Reference for more information on these library functions. For OS/390 UNIX

146 OS/390 V2R8.0 C/C++ Programming Guide

low-level I/O, you can use the close() function. When you use any exec() or
fork() function, files defined as “marked to be closed” are closed before control is
returned.

Deleting Files

Use the unlink() or remove() OS/390 C/C++ function to delete the following
types of HFS files:
v Regular
v Character special
v FIFO
v Link files

Use the rmdir() OS/390 C/C++ function to delete an HFS directory file. See the
OS/390 C/C++ Run-Time Library Reference for more information about these
functions.

Pipe I/O

POSIX.1 pipes represent an I/O channel that processes can use to communicate
with other processes. Pipes are conceptually like HFS files. One process can write
data into a pipe, and another process can read data from the pipe.

OS/390 UNIX C/C++ supports two types of POSIX.1-defined pipes: unnamed
pipes and named pipes (FIFO files).

An unnamed pipe is accessible only by the process that created the pipe and its
child processes. An unnamed pipe does not have to be opened before it can be
used. It is a temporary file that lasts only until the last file descriptor that
references it is closed. You can create an unnamed pipe by coding the pipe()
function.

A named pipe can be used by independent processes and must be explicitly opened
and closed. Named pipes are also referred to as first-in, first-out (FIFO) files, or
FIFOs. You can create a named pipe by coding the mkfifo() function. If you want
to do stream I/O after a pipe() function, call the fdopen() function to build a
stream on one of the file descriptors returned by pipe(). If you want to do stream
I/O on a FIFO, you must open the file with fopen(), freopen(), or open() and
fdopen() together. When the stream is built, you can then use normal C
programming language I/O functions such as fgets(), printf(), and so forth to
carry out input and output.

Using Unnamed Pipes

If your OS/390 UNIX C/C++ application program forks processes that need to
communicate among themselves for work to be done, you can take advantage of
POSIX.1-defined unnamed pipes. If your application program’s processes need to
communicate with other processes that it did not fork, you should use the
POSIX.1-defined named pipe (FIFO special file) support. See “Using Named Pipes”
on page 149 for more information.

When you code the pipe() function to create a pipe, you pass a pointer to a
two-element integer array where pipe() puts the file descriptors it creates. One

Chapter 12. Performing Hierarchical File System I/O Operations 147

descriptor is for the input end of the pipe, and the other is for the output end of
the pipe. You can code your application so that one process writes data to the
input end of the pipe and another process reads from the output end on a
first-in-first-out basis. You can also build a stream on the pipe by using fdopen(),
and use buffered I/O functions. The result is that you can communicate data
between a parent process and any of its child processes.

The opened pipe is assigned the two lowest-numbered file descriptors available.

OS/390 UNIX provide no security checks for unnamed pipes, because such a pipe
is accessible only by the parent process that creates the pipe and any of the parent
process’s descendent processes. When the parent process ends, an unnamed pipe
created by the process can still be used, if needed, by any existing descendant
process that has an open file descriptor for the pipe.

Consider the following example, where you open a pipe, do a write operation, and
later do a read operation from the pipe.

CBC3GHF1

/* this example shows how unnamed pipes may be used */

#include <unistd.h>
#include <stdio.h>
#include <errno.h>

int main() {
int ret_val;
int pfd[2];
char buff[32];
char string1[]="String for pipe I/O";

ret_val = pipe(pfd); /* Create pipe */
if (ret_val != 0) { /* Test for success */
printf("Unable to create a pipe; errno=%d\n",errno);

exit(1); /* Print error message and exit */
}

Figure 16. Unnamed Pipes Example (Part 1 of 2)

148 OS/390 V2R8.0 C/C++ Programming Guide

For more information on the pipe() function and the file I/O functions, see the
OS/390 C/C++ Run-Time Library Reference.

Using Named Pipes

If the OS/390 UNIX C/C++ application program you are developing requires its
active processes to communicate with other processes that are active but may not
be from the same program, code your application program to create a named pipe
(FIFO file). Named pipes allow transfer of data between processes in a FIFO
manner and synchronization of process execution. Use of a named pipe allows
processes to communicate even though they do not know what processes are on
the other end of the pipe. Named pipes differ from standard unnamed pipes,
created using the pipe() function, in that they involve the creation of a real file
that is available for I/O operations to properly authorized processes.

Within the application program, you create a named pipe by coding a mkfifo() or
mknod() function. You give the FIFO a name and an access mode when you create
it. If the access mode allows all users read and write access to the named pipe, any
process that knows its name can use it to send or receive data.

Processes can use the open() function to access named pipes and then use the
regular I/O functions for files, such as read(), write(), and close(), when
manipulating named pipes. Buffered I/O functions can also be used to access and
manipulate named pipe files. For more information on the mkfifo() and mknod()
functions and the file I/O functions, see the OS/390 C/C++ Run-Time Library
Reference.

OS/390 UNIX does security checks on named pipes.

The following steps outline how to use a named pipe from an OS/390 UNIX
C/C++ application program:
1. Create a named pipe using the mkfifo() function. Only one of the processes

that use the named pipe needs to do this.

if (fork() == 0) {
/* child program */
close(pfd[0]); /* close the read end */
ret_val = write(pfd[1],string1,strlen(string1)); /*Write to pipe*/
if (ret_val != strlen(string1)) {

printf("Write did not return expected value\n");
exit(2); /* Print error message and exit */

}
}
else {

/* parent program */
close(pfd[1]); /* close the write end of pipe */
ret_val = read(pfd[0],buff,strlen(string1)); /* Read from pipe */
if (ret_val != strlen(string1)) {

printf("Read did not return expected value\n");
exit(3); /* Print error message and exit */

}
printf("parent read %s from the child program\n",buff);

}
exit(0);
}

Figure 16. Unnamed Pipes Example (Part 2 of 2)

Chapter 12. Performing Hierarchical File System I/O Operations 149

2. Access the named pipe using the appropriate I/O method.
3. Communicate through the pipe with another process using file I/O functions:

a. Write data to the named pipe.
b. Read data from the named pipe.

4. Close the named pipe.
5. If the process created the named pipe file and the named pipe is no longer

needed, remove the named pipe using the unlink() function.

A process running the following simple example program creates a new named
pipe with the file pathname pointed to by the path value coded in the mkfifo()
function. The access mode of the new named pipe file is initialized from the mode
value coded in the mkfifo() function. The file permission bits of the mode
argument are modified by the process file creation mask.

As an example, a process running the following program code creates a child
process and then creates a named pipe called fifo.test. The child process then
writes a data string to the pipe file. The parent process reads from the pipe file and
verifies that the data string it reads is the expected one.

Note: The two processes are related and have agreed to communicate through the
named pipe. They need not be related, however. Other authorized users can
run the same program and participate in (or interfere with) the process
communication.

CBC3GHF2

/* this example shows how named pipes may be used */
#define _OPEN_SYS
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <wait.h>

Figure 17. Named Pipes Example (Part 1 of 4)

150 OS/390 V2R8.0 C/C++ Programming Guide

/* *
* Sample use of mkfifo() *
* */

main()

{ /* start of program */

int flags, ret_value, c_status;
pid_t pid;
size_t n_elements;
char char_ptr[32];
char str[] = "string for fifo ";
char fifoname[] = "temp.fifo";
FILE *rd_stream,*wr_stream;

if ((mkfifo(fifoname,S_IRWXU)) != 0) {
printf("Unable to create a fifo; errno=%d\n",errno);
exit(1); /* Print error message and return */

}

if ((pid = fork()) < 0) {
perror("fork failed");
exit(2);

}

if (pid == (pid_t)0) { /* CHILD process */
/* issue fopen for write end of the fifo */

wr_stream = fopen(fifoname,"w");
if (wr_stream == (FILE *) NULL) {

printf("In child process\n");
printf("fopen returned a NULL, expected valid stream\n");
exit(100);

}

/* perform a write */
n_elements = fwrite(str,1,strlen(str),wr_stream);

if (n_elements != (size_t) strlen(str)) {
printf("Fwrite returned %d, expected %d\n",

(int)n_elements,strlen(str));
exit(101);

}
exit(0); /* return success to parent */

}

Figure 17. Named Pipes Example (Part 2 of 4)

Chapter 12. Performing Hierarchical File System I/O Operations 151

else { /* PARENT process */

/* issue fopen for read */
rd_stream = fopen(fifoname,"r");
if (rd_stream == (FILE *) NULL) {

printf("In parent process\n");
printf("fopen returned a NULL, expected valid pointer\n");
exit(2);

}

/* get current flag settings of file */
if ((flags = fcntl(fileno(rd_stream),F_GETFL)) == -1) {

printf("fcntl returned -1 for %s\n",fifoname);
exit(3);

}

/* clear O_NONBLOCK and reset file flags */
flags &= ˜(O_NONBLOCK);
if ((fcntl(fileno(rd_stream),F_SETFL,flags)) == -1) {

printf("\nfcntl returned -1 for %s",fifoname);
exit(4);

}

/* try to read the string */
ret_value = fread(char_ptr,sizeof(char),strlen(str),rd_stream);
if (ret_value != strlen(str)) {

printf("\nFread did not read %d elements as expected ",
strlen(str));

printf("\nret_value is %d ",ret_value);
exit(6);

}

if (strncmp(char_ptr,str,strlen(str))) {
printf("\ncontents of char_ptr are %s ",

char_ptr);
printf("\ncontents of str are %s ",

str);
printf("\nThese should be equal");
exit(7);

}

ret_value = fclose(rd_stream);
if (ret_value != 0) {

printf("\nFclose failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(8);

}

Figure 17. Named Pipes Example (Part 3 of 4)

152 OS/390 V2R8.0 C/C++ Programming Guide

Character Special File I/O

A named pipe (FIFO file) is a type of character special file. Therefore, it obeys the
I/O rules for character special files rather than the rules for regular files:
v It cannot be opened in read/write mode. A process must open a named pipe in

either write-only or read-only mode.
v It must be opened in read mode by a process before it can be opened in write

mode by another process. Otherwise, the file is blocked from use for I/O by
processes. Blocked processes can cause an application program to hang.
A single process intending to access a named pipe can use an open() function
with O_NONBLOCK to open the read end of the named pipe. It can then open the
named pipe in write mode.

Note: The fopen() function cannot be used to accomplish this.

Low-Level OS/390 UNIX I/O

Low-level OS/390 UNIX I/O is the POSIX.1-defined I/O method. All input and
output is processed using the defined read(), readv(), write(), and writev()
functions.

For application programmers used to a UNIX environment, OS/390 UNIX behaves
in familiar and predictable ways. Standard UNIX programming practices for
shared resources, along with designing applications to respect locks put on files by
multiple threads running in a process, will ensure that data is handled predictably.

For a discussion of POSIX.1-defined low-level I/O and some of the practical
considerations to take into account when designing an application, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick (Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc., 1991).

Example of HFS I/O Functions

The following example demonstrates the use of OS/390 UNIX stream input/output
by writing streams to a file, reading the input lines, and replacing a line.

ret_value = remove(fifoname);
if (ret_value != 0) {

printf("\nremove failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(9);

}

pid = wait(c_status);
if ((WIFEXITED(c_status) !=0) &&; (WEXITSTATUS(c_status) !=0)) {
printf("\nchild exited with code %d",WEXITSTATUS(c_status));
exit(10);

}
} /* end of else clause */
printf("About to issue exit(0), \

processing completed successfully\n");
exit(0);

}

Figure 17. Named Pipes Example (Part 4 of 4)

Chapter 12. Performing Hierarchical File System I/O Operations 153

CBC3GHF3

/* this example uses HFS stream I/O */

#define _OPEN_SYS
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#undef _OPEN_SYS
FILE *stream;

char string1[] = "A line of text."; /* NOTE: There are actually 16 */
char string2[] = "Find this line."; /* characters in each line of */
char string3[] = "Another stream."; /* text. The 16th is a null */
char string4[16]; /* terminator on each string. */
long position, strpos; /* Since the null character */
int i, result, fd; /* is not being written to */
int rc; /* the file, 15 is used as */

/* the data stream length. */
ssize_t x;
char buffer[16];

int main(void)
{

/* Write continuous streams to file */

if ((stream = fopen("./myfile.data","wb"))==NULL) {
perror("Error opening file");
exit(0);

}

for(i=0; i<12;i++) {
int len1 = strlen(string1);
rc = fwrite(string1, 1, len1, stream);
if (rc != len1) {

perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 1 of 3)

154 OS/390 V2R8.0 C/C++ Programming Guide

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

}

for(i=0;i<12;i++) {
rc = fwrite(string1,1,sizeof(string1)-1,stream);

if (rc != sizeof(string1)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

}
}
fclose(stream);
/* Read data stream and search for location of string2. */
/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position = ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

while(!feof(stream)) {
if (rc != sizeof(string2)-1) {

perror("fread failed");
exit(99);

}

if (strstr(string4,string2) != NULL) /* If string2 is found */
strpos = position ; /* then save position. */

if ((position=ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 2 of 3)

Chapter 12. Performing Hierarchical File System I/O Operations 155

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename,
fldata_t
*info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

fclose(stream);
/* Replace line containing string2 with string3 */

fd = open("test.data",O_RDWR);

if (fd < 0){
perror("open failed\n");

}

x = write(fd,"a record",8);

if (x < 8){
perror("write failed\n");

}

rc = lseek(fd,0,SEEK_SET);
x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

}
printf("data read is %.8s\n",buffer);

close(fd);
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 3 of 3)

156 OS/390 V2R8.0 C/C++ Programming Guide

Notes:

1. The filename is the same as specified on the fopen() or freopen() function call.
2. The __maxreclen value is 0 for regular I/O (binary). For record I/O the value is

lrecl or the default of 1024 when lrecl is not specified.
3. The __dsname value is the real POSIX pathname.

struct __fileData {
unsigned int __recfmF : 1, /* always off */

__recfmV : 1, /* always off */
__recfmU : 1, /* always on */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* always on */
__openmode : 2, /* one of: */

/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* __HFS */
unsigned long __blksize, /* 0 */

__maxreclen; /* */
unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 19. fldata() Structure

Chapter 12. Performing Hierarchical File System I/O Operations 157

158 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 13. Performing VSAM I/O Operations

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets
in OS/390 C/C++. Three I/O processing modes for VSAM data sets are available
in OS/390 C/C++:
v Record
v Text Stream
v Binary Stream

Because VSAM is a record-based access method, record mode is the logical
processing mode and is specified by coding the type=record keyword parameter
on the fopen() function call. OS/390 C/C++ also provides limited support for
VSAM text streams and binary streams. Because of the record-based nature of
VSAM, this chapter is organized differently from the other chapters in this section.
The focus of this chapter is on record I/O. Only those aspects of text and binary
I/O that are specific to VSAM are discussed, at the end of the chapter.

For more information about the facilities of VSAM, see the list of “VSAM” on
page 902.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

VSAM Types (Data Set Organization)

There are three types of VSAM data sets supported by OS/390 C/C++, all of
which are held on direct-access storage devices.
v Key-Sequenced Data Set (KSDS) is used when a record is accessed through a key

field within the record (for example, an employee directory file where the
employee number can be used to access the record). KSDS also supports
sequential access. Each record in a KSDS must have a unique key value.

v Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in
the order it was created (or the reverse order). It supports direct access by
Relative Byte Address (RBA), and sequential access.

v Relative Record Data Set (RRDS) is used for data in which each item has a
particular number, and the relevant record is accessed by that number (for
example, a telephone system with a record associated with each number). It
supports direct access by Relative Record Number (RRN), and sequential access.

In addition to the primary VSAM access described above, for KSDS and ESDS,
there is also direct access by one or more additional key fields within each record.
These additional keys can be unique or nonunique; they are called an alternate
index (AIX).

© Copyright IBM Corp. 1996, 1999 159

Note: VSAM Linear Data Sets are not supported in OS/390 C/C++ I/O.

Access Method Services

Access Method Services are generally known by the name IDCAMS on MVS. For
more information, see the DFSMS/MVS Access Method Services for VSAM.

Before a VSAM data set is used for the first time, its structure is defined to the
system by the Access Method Services DEFINE CLUSTER command. This command
defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to
the system by the Access Method Services DEFINE ALTERNATEINDEX command. To
enable access to the base cluster records through the alternate index, use the
DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX
command.

When you have built the alternate index, you call fopen() and specify the PATH in
order to access the base cluster through the alternate index. Do not use fopen() to
access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM Data Set Types

When you plan your program, you must first decide the type of data set to use.
Figure 20 on page 161 shows you the possibilities available with the types of VSAM
data sets.

160 OS/390 V2R8.0 C/C++ Programming Guide

When choosing the VSAM data set type, you should base your choice on the most
common sequence in which you require data. You should follow a procedure
similar to the one suggested below to help ensure a combination of data sets and
indexes that provide the function you require.

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.

VALERIE SUZIE ANN MORGAN (1967)

FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

ANDY

FRED

JANE

SUZAN

Prime
Index

Alternate Indexes
By Birthdate (unique)

69

70

72

75

F

M

empty space

ANDY

FRED

empty space

empty space

JANE

SUZAN

70 M

69 M

75 F

72 F

Alternate Indexes

Alphabetically by name

(unique)

ANDY

FRED

JANE

SUZAN

F

M

FRED 69 M

By sex (non-unique)

By sex (non-unique)

No Alternate IndexesRelative record numbers

can be accessed and

used as keys

Each slot corresponds to a year

ANDY

SUZAN

JANE

70 M

72 F

75 F

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

69 M

70 M

72 F

75 F

1

2

3

4

5

6

7

8

Slot

Data component

Data component

Data component

Relative byte addresses

can be accessed and

used as keys

ANDREW M SMITH &

Figure 20. Types and Advantages of VSAM Data Sets

Chapter 13. Performing VSAM I/O Operations 161

1. Determine the type of data and its primary access.
v sequentially — favors ESDS
v by key — favors KSDS
v by number — favors RRDS

2. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you do, determine whether the
alternate index is to have unique or nonunique keys. You should keep in mind
that making an assumption that all future records will have unique keys may
not be practical, and an attempt to insert a record with a nonunique key in an
index that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported.

Keys, RBAs and RRNs

All VSAM data sets have keys associated with their records. For KSDS, KSDS AIX,
and ESDS AIX, the key is a defined field within the logical record. For ESDS, the
key is the relative byte address (RBA) of the record. For RRDS, the key is a relative
record number (RRN).

Keys for Indexed VSAM Data Sets

For KSDS, KSDS AIX, and ESDS AIX, keys are part of the logical records recorded
on the data set. For KSDS, the length and location of the keys are defined by the
DEFINE CLUSTER command of Access Method Services. For KSDS AIX and ESDS
AIX, the keys are defined by the DEFINE ALTERNATEINDEX command.

Relative Byte Addresses

Relative byte addresses enable you to access ESDS files directly. The RBAs are
unsigned long int fields, and their values are computed by VSAM.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can
change if an insert, delete or update operation is performed elsewhere in the
file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate()
with RBA values does not work across control intervals. Therefore, using RBAs
with RRDS clusters is not recommended. The RRDS access method does not
support RBAs. OS/390 C/C++ supports the use of RBAs in an RRDS cluster by
translating the RBA value to an RRN. It does this by dividing the RBA value by
the LRECL.

3. Alternate indexes do not allow positioning by RBA.

The RBA value is stored in the C structure __amrc, which is defined in the C
<stdio.h> header file. You can access the field __amrc->__RBA as shown in the
following example.

162 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GVS1

For more information about the __amrc structure, refer to “Chapter 18. Debugging
I/O Programs” on page 227.

Relative Record Numbers

Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record position. Only RRDS files support
accessing a record by its relative record number.

Summary of VSAM I/O Operations

Table 22 summarizes VSAM data set characteristics and the allowable I/O
operations on them.

Table 22. Summary of VSAM Data Set Characteristics and Allowable I/O Operations

KSDS ESDS RRDS

Record Length Variable. Length can
be changed by
update.

Variable. Length
cannot be changed
by update.

Fixed.

/* this example shows how to access the __amrc->__RBA field */
/* it assumes that an ESDS has already been defined, and has been */
/* assigned the ddname ESDSCLUS */

#include <stdio.h>
#include <stdlib.h>

main() {
FILE *ESDSfile;
unsigned long myRBA;
char recbuff[100]="This is record one.";
int w_retcd;
int l_retcd;
int r_retcd;

printf("calling fopen(\"dd:esdsclus\",\"rb+,type=record\");\n");
ESDSfile = fopen("dd:esdsclus", "rb+,type=record");
printf("fopen() returned 0X%.8x\n",ESDSfile);
if (ESDSfile==NULL) exit;

w_retcd = fwrite(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fwrite() returned %d\n",w_retcd);
if (w_retcd != sizeof(recbuff)) exit;
myRBA = __amrc->__RBA;

l_retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), __RBA_EQ);
printf("flocate() returned %d\n",l_retcd);
if (l_retcd !=0) exit;

r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fread() returned %d\n",r_retcd);
if (l_retcd !=0) exit;

return(0);
}

Figure 21. VSAM Example

Chapter 13. Performing VSAM I/O Operations 163

Table 22. Summary of VSAM Data Set Characteristics and Allowable I/O
Operations (continued)

KSDS ESDS RRDS

Alternate index Allows access using
unique or nonunique
keys.

Allows access using
unique or nonunique
keys.

Not supported by
VSAM.

Record Read
(Sequential)

The order is
determined by the
VSAM key

By entry sequence.
Reads proceed in key
sequence for the key
of reference.

By relative record
number.

Record Write (Direct) Position determined
by the value in the
field designated as
the key.

Record written at the
end of the file.

By relative record
number.

Positioning for
Record Read

By key or by RBA
value. Positioning by
RBA value is not
recommended
because changes to
the file change the
RBA.

By RBA value.
Alternate index
allows use by key.

By relative record
number.

Delete (Record) If not already in
correct position,
reposition the file;
read the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Not supported by
VSAM.

If not already in
correct position,
position the file; read
the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Update (Record) If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

Empty the file Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode.

Stream Read Supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

Stream Write/Update Not supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

Stream Repositioning Supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

Supported by
OS/390 C/C++.

164 OS/390 V2R8.0 C/C++ Programming Guide

Opening VSAM Data Sets

To open a VSAM data set, use the standard C library functions fopen() and
freopen() just as you would for opening non-VSAM data sets. The fopen() and
freopen() functions are described in the OS/390 C/C++ Run-Time Library Reference.

This section describes considerations for using fopen() and freopen() with VSAM
files. Remember that a VSAM file must exist and be defined as a VSAM cluster
before you call fopen().

Using fopen() or freopen()

This section covers using file names for MVS data sets, specifying fopen() and
freopen() keywords, and buffering.

File Names for MVS Data Sets: Using a Data Set Name

The following diagram shows the syntax for the filename argument on your
fopen() or freopen() call:

ÊÊ
// '

»

.

qualifier
'

ÊÍ

The following is a sample construct:
'qualifier1.qualifier2'

’ Single quotation marks indicate that you are passing a fully-qualified data set
name, that is, one which includes the high-level qualifier. If you pass a data set
name without single quotation marks, the OS/390 C/C++ compiler prefixes
the high-level qualifier (usually the user ID) to the name. See “Chapter 11.
Performing OS I/O Operations” on page 103 for information on fully qualified
data set names.

// Specifying these slashes indicates that the file names refer to MVS data sets.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character \xC0. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data set name
is generally 44 characters, including periods.

To open a data set by its name, you can code something like the following in your
C or C++ program:

infile=fopen("VSAM.CLUSTER1", "ab+, type=record");

File Names for MVS Data Sets: Using a DDname

To access a cluster or path by ddname, you can write the required DD statement
and call fopen() as shown in the following example.

Chapter 13. Performing VSAM I/O Operations 165

If your data set is VSAM.CLUSTER1, your C or C++ program refers to this data set by
the ddname CFILE, and you want exclusive control of the data set for update, you
can write the DD statement:

//CFILE DD DSNAME=VSAM.CLUSTER1,DISP=OLD

and code the following in your C or C++ source program:
#include <stdio.h>

FILE *infile;
main()
{

infile=fopen("DD:CFILE", "ab+, type=record");...

}

To share your data set, use DISP=SHR on the DD statement. DISP=SHR is the default
for fopen() calls that use a data set name and specify any of the r,rb, rb+, and
r+b open modes.

Note: OS/390 C/C++ does not check the value of shareoptions at fopen() time,
and does not provide support for read-integrity and write-integrity, as
required to share files under shareoptions 3 and 4.

For more information on shareoptions, see the information on DEFINE CLUSTER in
the books listed in “VSAM” on page 902.

Specifying fopen() and freopen() Keywords

The mode argument is a character string specifying the type of access requested for
the file.

The mode argument contains one positional parameter (access mode) followed by
keyword parameters. A description of these parameters, along with an explanation
of how they apply to VSAM data sets is given the following sections.

Specifying Access Mode: The access mode is specified by the positional
parameter of the fopen() function call. The possible record I/O and binary modes
you can specify are:

rb Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing
contents of the cluster are destroyed. If the cluster is defined as not
reusable (clusters with paths are, by definition, not reusable),
fopen() fails. However, if the cluster has been defined but not
loaded, this mode can be used to do the initial load of both
reusable and non reusable clusters.

ab Open for writing.

rb+ or r+b Open for reading, writing, and/or updating.

wb+ or w+b Open for reading, writing, and/or updating. If the cluster is
defined as reusable, the existing contents of the cluster are
destroyed. If the cluster is defined as not reusable (clusters with
paths are, by definition, not reusable), the fopen() fails. However,

166 OS/390 V2R8.0 C/C++ Programming Guide

if the cluster has been defined but not loaded, this mode can be
used to do the initial load of both reusable and non reusable
clusters.

ab+ or a+b Open for reading, writing, and/or updating.

For text files, you can specify the following modes: r, w, a, r+, w+, and a+.

Note: For KSDS, KSDS AIX and ESDS AIX in text and binary I/O, the only valid
modes are r and rb, respectively.

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for VSAM I/O, and lists the
values that are valid for the applicable ones.

Table 23. Keywords for the fopen() and freopen() Functions for VSAM Data Sets

Keyword Allowed? Applicable? Notes

recfm= Yes No Ignored.

lrecl= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes Yes Specifies the access direction for
VSAM data sets. Valid values are BWD
and FWD.

password= Yes Yes Specifies the password for a VSAM
data set.

asis Yes No Enables the use of mixed-case file
names. Not supported for VSAM.

byteseek Yes Yes Used for binary stream files to
specify that the seeking functions
should use relative byte offsets
instead of encoded offsets. This is
the default setting.

noseek Yes No Ignored.

OS Yes No Ignored.

rls= Yes Yes Indicates the VSAM RLS access
mode in which a VSAM file is to be
opened.

Keyword Descriptions
recfm=

Any values passed into fopen() are ignored.

lrecl= and blksize=
These keywords are set to the maximum record size of the cluster as initialized
in the cluster definition. Any values passed into fopen() are ignored.

space=
This keyword is not supported under VSAM.

Chapter 13. Performing VSAM I/O Operations 167

|

|

type=
If you use the type= keyword, the only valid value for VSAM data sets is
type=record. This opens a file for record I/O.

acc=
For VSAM files opened with the keyword type=record, you can specify the
direction by using the acc=access_type keyword on the fopen() function call.
For text and binary files, the access direction is always forward. Attempts to
open a VSAM data set with acc=BWD for either binary or text stream I/O will
fail.

The access_type can be one of the following:

FWD The acc=FWD keyword specifies that the file be processed in a forward
direction. When the file is opened, it will be positioned at the
beginning of the first physical record, and any subsequent read
operations sets the file position indicator to the beginning of the next
record.

The default value for the access keyword is acc=FWD.

BWD The acc=BWD keyword specifies that the file be processed in a backward
direction. When the file is opened, it is positioned at the beginning of
the last physical record and any subsequent read operation sets the file
position indicator to the beginning of the preceding record.

You can change the direction of sequential processing (from forward to
backward or from backward to forward) by using the flocate() library
function. For more information about flocate(), see “Repositioning within
Record I/O Files” on page 174.

Note: When opening paths, records with duplicate alternate index keys are
processed in order of arrival time (oldest to newest) regardless of the
current processing direction.

password=
VSAM facilities provide password protection for your data sets. You access a
data set that has password protection by specifying the password on the
password keyword parameter of the fopen() function call; the password resides
in the VSAM catalog entry for the named file. There can be more than one
password in the VSAM catalog entry; data sets can have different passwords
for different levels of authorization such as reading, writing, updating,
inserting, or deleting. For a complete description of password protection on
VSAM files, see the list of publications given on “VSAM” on page 902.

The password keyword has the form:
password=nx

where x is a 1- to 8-character password, and n is the exact number of
characters in the password. The password can contain special characters such
as blanks and commas.

If a required password is not supplied, or if an incorrect password is given,
fopen() fails.

asis
This keyword is not supported for VSAM.

168 OS/390 V2R8.0 C/C++ Programming Guide

byteseek
When you specify this keyword and open a file in binary stream mode,
fseek() and ftell() use relative byte offsets from the beginning of the file.
This is the default setting.

noseek
This keyword is ignored for VSAM data sets.

OS
This keyword is ignored for VSAM data sets.

rls=
Indicates the VSAM RLS access mode in which a VSAM file is to be opened.
This keyword is ignored for non-VSAM files. The following values are valid:
v nri — No Read Integrity
v cr — Consistent Read

Note: When the RLS keyword is specified, DISP is changed to default to SHR
when dynamic allocation of the data set is performed. In the rare case
when a batch job wants to use RLS without sharing the data set with
other tasks, DISP should be OLD. To set DISP to OLD, the application
must specify DISP=OLD in the DD statement and start the application
using JCL. You cannot specify DISP in the fopen() mode argument.

Buffering

Full buffering is the default. You can specify line buffering, but OS/390 C/C++
treats line buffering as full buffering for VSAM data sets. Unbuffered I/O is not
supported under VSAM; if you specify it, your setvbuf() call fails.

To find out how to optimize VSAM performance by controlling the number of
VSAM buffers used for your data set, refer to DFSMS/MVS Access Method Services
for VSAM.

Record I/O in VSAM

This section describes how to use record I/O in VSAM. The following topics are
covered:
v RRDS Record Structure
v RRDS Record Structure
v Reading Record I/O Files
v Writing to Record I/O Files
v Updating Record I/O Files
v Deleting Records
v Repositioning within Record I/O Files
v Flushing Buffers
v Summary of VSAM Record I/O Operations
v Reading from Text and Binary I/O Files
v Writing to and Updating Text and Binary I/O Files
v Deleting Records in Text and Binary I/O Files
v Repositioning within Text and Binary I/O Files
v Flushing Buffers

Chapter 13. Performing VSAM I/O Operations 169

|

|

v Summary of VSAM Text I/O Operations
v Summary of VSAM Binary I/O Operations

RRDS Record Structure

For RRDS files opened in record mode, OS/390 C/C++ defines the following key
structure in the C header file <stdio.h>:
typedef struct {

long unsigned int __fill,
__recnum; /* the RRN, starting at 1 */

}__rrds_key_type;

In your source program, you can define an RRDS record structure as either:
struct {

__rrds_key_type rrds_key; /* __fill value always 0 */
char data[MY_REC_SIZE];

} rrds_rec_0;

or:
struct {

__rrds_key_type rrds_key; /* __fill value always 1 */
char *data;

} rrds_rec_1;

The OS/390 C/C++ library recognizes which type of record structures you have
used by the value of rrds_key.__fill. Zero indicates that the data is contiguous
with rrds_key and 1 indicates that a pointer to the data follows rrds_key.

Reading Record I/O Files

To read from a VSAM data set opened with type=record, use the standard C
fread() library function. If you set the size argument to 1 and the count argument
to the maximum record size, fread() returns the number of bytes read successfully.
For more information on fread(), see the OS/390 C/C++ Run-Time Library Reference.

fread() reads one record from the system from the current file position. Thus, if
you want to read a certain record, you can call flocate() to position the file
pointer to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read
contains, fread() reads the entire record and returns the number of bytes read. If
you use fread() to request fewer bytes than the record about to read contains,
fread() reads the number of bytes that you specified and returns your request.

OS/390 C/C++ VSAM Record I/O does not allow a read operation to immediately
follow a write operation without an intervening reposition. OS/390 C/C++ treats
the following as read operations:
v Calls to read functions that request 0 bytes
v Read requests that fail because of a system error
v Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in
between, reads several records in sequence (sequential processing), which can be
forward or backward, depending on the access direction, as described in the
following.

170 OS/390 V2R8.0 C/C++ Programming Guide

v KSDS, KSDS AIX and ESDS AIX

The records are retrieved according to the sequence of the key of reference, or in
reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of
arrival time (oldest to newest) regardless of the current processing
direction.

v ESDS

The records are retrieved according to the sequence they were written to the file
(entry sequence), or in reverse entry sequence.

v RRDS

The records are retrieved according to relative record number sequence or
reverse relative record number sequence.
When records are being read, RRNs without an associated record are ignored.
For example, if a file has relative records of 1, 2, and 5, the nonexistent records 3
and 4 are ignored.
By default, in record mode, fread() must be called with a pointer to an RRDS
record structure. The field __rrds_key_type.__fill must be set to either 0 or 1
indicating the type of the structure, and the count argument must include the
length of the __rrds_key_type. fread() returns the RRN number in the __recnum
field, and includes the length of the __rrds_key_type in the return value. You
can override these operations by setting the _EDC_RRDS_HIDE_KEY environment
variable to Y. Once this variable is set, fread() is called with a data buffer and
not an RRDS data structure. The return value of fread() is now only the length
of the data read. In this case, fread() cannot return the RRN. For information on
setting environment variables, see “Chapter 33. Using Environment Variables” on
page 457.

Writing to Record I/O Files

To write new records to a VSAM data set opened with type=record, use the
standard C fwrite() library function. If you set size to 1 and count to the desired
record size, fwrite() returns the number of bytes written successfully. For more
information on fwrite() and the type=record parameter, see the OS/390 C/C++
Run-Time Library Reference.

In general, C I/O does not allow a write operation to follow a read operation
without an intervening reposition or fflush(). OS/390 C/C++ counts a call to a
write function writing 0 bytes or or a write request that fails because of a system
error as a write operation. However, OS/390 C/C++ VSAM record I/O allows a
write to directly follow a read. This feature has been provided for compatibility
with earlier releases.

The process of writing to a data set for the first time is known as initial loading.
Using the fwrite() function, you can write to a new VSAM file in initial load mode
just as you would to a file not in initial load mode. Writing to a KSDS PATH or an
ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record
size, fwrite() writes a record of the length you asked for and returns your request.
If your fwrite() call asks for more than the maximum record size, fwrite() writes
the maximum record size, sets errno, and returns the maximum record size. In
either case, the next call to fwrite() writes to the following record.

Chapter 13. Performing VSAM I/O Operations 171

Note: If an fwrite() fails, you must reposition the file before you try to read or
write again.

v KSDS, KSDS AIX

Records are written to the cluster according to the value stored in the field
designated as the prime key.
You can load a KSDS in any key order but it is most efficient to perform the
fwrite() operations in key sequence.

v ESDS, ESDS AIX

Records are written to the end of the file.
v RRDS

Records are written according to the value stored in the relative record number
field.
fwrite() is called with the RRDS record structure.
By default, in record mode, fwrite() and fupdate() must be called with a
pointer to an RRDS record structure. The __rrds_key_type fields __fill and
__recnum must be set. __fill is set to 0 or 1 to indicate the type of the structure.
The __recnum field specifies the RRN to write, and is required for fwrite() but
not fupdate(). The count argument must include the length of the
__rrds_key_type. fwrite() and fupdate() include the length of the
__rrds_key_type in the return value.

Updating Record I/O Files

The fupdate() function, a OS/390 C/C++ extension to the SAA C library, is used
to update records in a VSAM file. For more information on this function, see the
OS/390 C/C++ Run-Time Library Reference.
v KSDS, ESDS, and RRDS

To update a record in a VSAM file, you must perform the following operations:
1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified

as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to update,
reposition to that record.

3. Read in the record using fread().
Once the record you want to update has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fupdate().

4. Make the necessary changes to the copy of the record in your buffer area.
5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to
read or write.

Notes:

1. If a file is opened in update mode, a read operation can result in the locking
of control intervals, depending on shareoptions specification of the VSAM
file. If after reading a record, you decide not to update it, you may need to
unlock a control interval by performing a file positioning operation to the
same record, such as an flocate() using the same key.

2. If fupdate() wrote out a record the file position is the start of the next
record. If the fupdate() call did not write out a record, the file position
remains the same.

172 OS/390 V2R8.0 C/C++ Programming Guide

v KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not
exceed the maximum record size of the file, fupdate() writes a record of the
length requested and returns the request. If your request exceeds the maximum
record size of the file, fupdate() writes a record that is the maximum record
size, sets errno, and returns the maximum record size.
You cannot change the prime key field of the record, and in KSDS AIX, you
cannot change the key of reference of the record.

v ESDS

You cannot change the length of the record being updated. If the size of the
record being updated is less than the current record size, fupdate() updates the
amount you specify and does not alter the data remaining in the record. If your
request exceeds the length of the record that was read, fupdate() writes a record
that is the length of the record that was read, sets errno, and returns the length
of the record that was read.

v ESDS PATH

You cannot change the length of the record being updated or the key of
reference of the record. If the size of the record being updated is less than the
current record size, fupdate() updates the amount you specify and does not
alter the data remaining in the record. If your request exceeds the length of the
record that was read, fupdate() writes a record that is the length of the record
that was read, sets errno, and returns the length of the record that was read.

v RRDS

RRDS files have fixed record length. If you update the record with less than the
record size, only those characters specified are updated, and the remaining data
is not altered. If your request exceeds the record size of the file, fupdate() writes
a record that is the record size, sets errno, and returns the length of the record
that was read.

Deleting Records

To delete records, use the library function fdelrec(), a OS/390 C/C++ extension
to the SAA C library. For more information on this function, see the OS/390 C/C++
Run-Time Library Reference.
v KSDS, KSDS PATH, and RRDS

To delete records, you must perform the following operations:
1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified

as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to delete,
reposition to that record.

3. Read the record using the fread() function.
Once the record you want to delete has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fdelrec().

4. Delete the record using the fdelrec() function.

Note: If the data set was opened with an access mode of rb+ or r+b, a read
operation can result in the locking of control intervals, depending on
shareoptions specification of the VSAM file. If after reading a record, you

Chapter 13. Performing VSAM I/O Operations 173

decide not to delete it, you may need to unlock a control interval by
performing a file-positioning operation to the same record, such as an
flocate() using the same key.

v ESDS and ESDS PATH

VSAM does not support deletion of records in ESDS files.

Repositioning within Record I/O Files

You can use the following functions to locate a record within a VSAM data set:
v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see the OS/390 C/C++ Run-Time
Library Reference.

flocate()

The flocate() C library function can be used to locate a specific record within a
VSAM data set given the key, relative byte address, or the relative record number.
The flocate() function also sets the access direction.

The following flocate() parameters set the access direction to forward:
v __KEY_FIRST (the key and key_len parameters are ignored)
v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are
only valid for record I/O:
v __KEY_LAST (the key and key_len parameters are ignored)
v __KEY_EQ_BWD

v __RBA_EQ_BWD

Note: The __RBA_EQ and __RBA_EQ_BWD parameters are not valid for paths and are
not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.
v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ, __KEY_GE, and
__KEY_EQ_BWD is a pointer to the key of reference of the data set. The key_len
parameter is the key length as defined for the data set for a full key search, or
less than the defined key length for a generic key search (a partial key match).
For KSDSs, __RBA_EQ and __RBA_EQ_BWD are supported, but are not
recommended.
Alternate indexes do not allow positioning by RBA.

v ESDS

174 OS/390 V2R8.0 C/C++ Programming Guide

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

v RRDS

For __KEY_EQ, __KEY_GE, and __KEY_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified relative record
number. For __RBA_EQ and __RBA_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified RBA. However,
seeking to RBA values is not recommended, because it is not supported across
control intervals. The key_len parameter is 4, because RRNs and RBAs are
unsigned long integers.

fgetpos() and fsetpos()

fgetpos() is used to store the current file position and access direction. fsetpos()
is used to relocate to a file position stored by fgetpos() and restore the saved
access direction.
v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions, or updates.

v KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.
v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

ftell() is used to store the current file position. fseek() is used to relocate to one
of the following:
v A file position stored by ftell()

v A calculated record number (SEEK_SET)
v A position relative to the current position (SEEK_CUR)
v A position relative to the end of the file (SEEK_END).

ftell() and fseek() offsets in record mode I/O are relative record offsets. For
example, the following call moves the file position to the start of the previous
record:

fseek(fp, -1L, SEEK_CUR);

You cannot use fseek() to reposition to a file position before the beginning of the
file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.
v KSDS and RRDS

There are no special considerations.
v KSDS AIX and ESDS AIX

ftell() and fseek() are not supported.
v ESDS

ftell() is not supported.
v RRDS

Chapter 13. Performing VSAM I/O Operations 175

fseek() seeks to a relative position in the file, and not to an RRN value. For
example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK_SET);
followed by an fread() would read in RRN 7, which is at offset 3 in the file.

rewind()

The rewind() function repositions the file position to the beginning of the file, and
clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()
with __KEY_LAST sets the file pointer to the end of the file and sets the access
direction to backwards. A subsequent call to rewind() sets the file pointer to the
beginning of the file, but the access direction remains backwards.

Flushing Buffers

You can use the C library function fflush() to flush buffers. However, fflush()
writes nothing to the system, because all records have already been written there
by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see the OS/390 C/C++ Run-Time Library
Reference.

Summary of VSAM Record I/O Operations
Table 24. Summary of VSAM Record I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+

fwrite() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

rb+, ab, ab+

fread() rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb, rb+, ab+

ftell() rb, rb+, ab, ab+,
wb, wb+ 3

rb, rb+, ab, ab+,
wb, wb+

fseek() rb, rb+, ab, ab+,
wb, wb+ 3

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fgetpos() rb, rb+, ab, ab+,
wb, wb+ 4

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fsetpos() rb, rb+, ab, ab+,
wb, wb+ 4

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

flocate() rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb, rb+, ab+

rewind() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fflush() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

176 OS/390 V2R8.0 C/C++ Programming Guide

Table 24. Summary of VSAM Record I/O Operations (continued)

KSDS ESDS RRDS PATH

fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not
ESDS)

fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+

ferror() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

feof() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

clearerr() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fclose() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

fldata() rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+

VSAM Record Level Sharing

VSAM Record Level Sharing (RLS) provides for the sharing of VSAM data at the
record level, using the locking and caching functions of the coupling facility
hardware. For more information on Record Level Sharing, see the DFSMS/MVS
General Information.

The C/C++ run-time library provides the following support for VSAM RLS:
v Specification of RLS-related keywords in the mode string of fopen() and

freopen().
v Specification of RLS-related text unit key values in the __dyn_t structure, which

is used as input to the dynalloc() function.
v Provides the application with VSAM return and reason codes for VSAM I/O

errors.
v Performs implicit positioning for files opened for RLS access.

VSAM RLS has 2 read integrity file access modes. These modes tell VSAM the
level of locking to perform when records are accessed within a file that has not
been opened in update mode. The access modes are:

nri No Read Integrity indicates that requests performed by the application are
not to be serialized with updates or erases of the records by other calling
programs. VSAM accesses the records without obtaining a lock on the
record.

cr Consistent Read indicates that requests performed by the application are to
be serialized with updates or erases of the records by other calling
programs. VSAM obtains a share lock when accessing the record. This lock
is released once the record has been returned to the caller.

3. The saved position is based on the relative position of the record within the data set. Subsequent insertions or deletions may
invalidate the saved position.

4. The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may invalidate the saved
position.

Chapter 13. Performing VSAM I/O Operations 177

|
|

|
|
|
|

|

|
|

|
|

|
|

|

|
|
|

||
|
|
|

||
|
|
|

VSAM RLS locks records to support record integrity. An application may wait for
an exclusive record lock if another user has the record locked. The application is
also subject to new locking errors such as deadlock or timeout errors.

If the file has been opened in update mode, and RLS=CR is specified, VSAM also
serializes access to the records within the file. However, the type of serialization
differs from non-update mode in the following ways:
v A reposition within the file causes VSAM to obtain a share lock for the record.
v A read of a record causes VSAM to obtain an exclusive lock for the record. The

lock is held until the record is updated in the file, or another record is read.

Notes:

1. When a file is opened, it is implicitly positioned to the first record to be
accessed.

2. You can also specify the RLS keyword on the JCL DD statement. When
specified on both the JCL DD statement and in the mode string on fopen() or
freopen(), the read integrity options specified in the mode string override
those specified on the JCL DD statement.

3. VSAM RLS access is supported for the 3 types of VSAM files that the C/C++
run-time library supports: Key-Sequenced (KSDS), Entry-Sequenced (ESDS),
and Relative Record (RRDS) data sets.

4. VSAM RLS functions require the use of a Coupling Facility. For more
information on using the Coupling Facility, see the DFSMS/MVS General
Information, and the OS/390 Parallel Sysplex Overview.

5. In an environment where one thread opens and another thread issues record
management requests, VSAM RLS requires that record management requests be
issued from a thread whose Task Control Block (TCB) is subordinate to the TCB
of the thread which opened the file.

6. VSAM RLS does not support the following:
v Key range data sets.
v Direct open of an AIX cluster as a KSDS.
v Acces to individual components of a cluster.
v OS Checkpoint and Restart.

Error Reporting

Errors are reported through the __amrc structure and the SIGIOERR signal. The
following are additional considerations for error reporting in a VSAM RLS
application:
v VSAM RLS uses the SMSVSAM server address space. When a file open fails for

the rare condition that the server is not available, the C run-time library places
the error return code and error value in the __amrc structure, and returns a null
file descriptor. Record management requests return specific error return/reason
codes, if the SMSVSAM server is not available. The server address space is
automatically restarted. To recover from this type of error, an application should
first close the file to clean up the file status, and then open the file prior to
attempting record management requests. The close for the file returns a return
code of 4, and an error code of 170(X’AA’). This is the expected result. It is not
an error.

v Opening a recoverable file for output is not supported. If you attempt to do so,
the open will fail with error return code 255 in the __amrc structure.

178 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

v Some of the VSAM errors, that are reported in the __amrc structure, are
situations from which an application can recover. These are problems that can
occur unpredictably in a sharing environment. Usually, the application can
recover by simply accessing another record. Examples of such errors are the
following:
– RC 8, 21(X’15’): Request cancelled as part of deadlock resolution.
– RC 8, 22(X’16’): Request cancelled as part of timeout resolution.
– RC 8, 24(X’18’): Request cancelled because transaction backout is pending on

the requested record.
– RC 8, 29(X’14’): Intra-luwid contention between threads under a given TCB.

The application can intercept errors by registering a condition handler for the
SIGIOERR condition. Within the condition handler, the application can examine
the information in the __amrc structure and determine how to recover from each
specific situation.

Refer to the DFSMS/MVS Macro Instructions for Data Sets for a complete list of
return and reason codes.

Text and Binary I/O in VSAM

Because VSAM is primarily record-based, this section only discusses those aspects
of text and binary I/O that are specific to VSAM. For general information on text
and binary I/O, refer to the respective sections in “Chapter 11. Performing OS I/O
Operations” on page 103.

Reading from Text and Binary I/O Files
v RRDS

All the read functions support reading from text and binary RRDS files. fread()
is called with a character buffer instead of an RRDS record structure.

Writing to and Updating Text and Binary I/O Files
v KSDS, KSDS AIX, and ESDS AIX

OS/390 C/C++ VSAM support for streams does not provide for writing and
updating these types of data sets opened for text or binary stream I/O.

v ESDS

Writes are supported for ESDSs opened as binary or text streams. Updating data
in an ESDS stream cannot change the length of the record in the external file.
Therefore, in a binary stream:
– updates for less than the existing record length leave existing data beyond the

updated length unchanged;
– updates for longer than the existing record length flow over the record

boundary and update the start of the next record.

In text streams:
– updates that specify records shorter than the original record pad the updated

record to the existing record length with blanks;
– updates for longer than the existing record length result in truncation, unless

the original record contained only a new-line character, in which case it may
be updated to contain one byte of data plus a new-line character.

v RRDS

Chapter 13. Performing VSAM I/O Operations 179

|
|
|
|
|

|

|

|
|

|

|
|
|
|

|
|

|

fwrite() is called with a character buffer instead of an RRDS record structure.
Records are treated as contiguous. Once the current record is filled, the next
record in the file is written to. For example, if the file consisted of only record 1,
record 5, and record 28, a write would complete record 1 and then go directly to
record 5.
Writing past the last record in the file is allowed, up to the maximum size of the
RRDS data set. For example, if the last record in the file is record 28, the next
record to be written is record 29.
Insertion of records is not supported. For example, in a file of records 1, 5, and
28, you cannot insert record 3 into the file.

Deleting Records in Text and Binary I/O Files

fdelrec() is not supported for text and binary I/O in VSAM.

Repositioning within Text and Binary I/O Files

You can use the following functions to locate a record within a VSAM data set:
v flocate()

v ftell() and fseek()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see the OS/390 C/C++ Run-Time
Library Reference.

flocate()

The flocate() C library function can be used to reposition to the beginning of a
specific record within a VSAM data set given the key, relative byte address, or the
relative record number. For more information on this function, see the OS/390
C/C++ Run-Time Library Reference.

The following flocate() parameters set the direction access to forward:
v __KEY_FIRST (the key and key_len parameters are ignored)
v __KEY_EQ
v __KEY_GE
v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are
not valid for text and binary I/O, because backwards access is not supported:
v __KEY_LAST (the key and key_len parameters are ignored)
v __KEY_EQ_BWD
v __RBA_EQ_BWD

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.
v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ and __KEY_GE is a
pointer to the key of reference of the data set. The key_len parameter is the key
length as defined for the data set for a full key search, or less than the defined
key length for a generic key search (a partial key match).

180 OS/390 V2R8.0 C/C++ Programming Guide

Alternate indexes do not allow positioning by RBA.

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.
v ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

v RRDS

For __KEY_EQ and __KEY_GE, the key parameter of flocate() is a pointer to an
unsigned long integer containing the specified relative record number. For
__RBA_EQ, the key parameter of flocate() is a pointer to an unsigned long
integer containing the specified RBA. However, seeking to RBA values is not
recommended, because it is not supported across control intervals. The key_len
parameter is 4, because RRNs and RBAs are unsigned long integers.

fgetpos() and fsetpos()

fgetpos() saves the access direction, an RBA value, and the file position, and
fsetpos() restores the saved access direction.

fgetpos() accounts for the presence of characters in the ungetc() buffer unless you
have set the _EDC_COMPAT variable. See “Chapter 33. Using Environment Variables”
on page 457 for information about _EDC_COMPAT. If ungetc() characters back the file
position up to before the start of the file, calls to fgetpos() fail.
v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions or updates.

v KSDS PATH and ESDS PATH

fgetpos() and fsetpos() are not supported for PATHs.
v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS
binary file results in the file being extended with nulls to the new position. An
incomplete last record is completed with nulls, records of length lrecl are added
as required, and the current record is filled with the remaining number of nulls
and left in the current buffer. This is supported for relative byte offset from
SEEK_SET, SEEK_CUR and SEEK_END. Table 25 on page 182 provides a summary of the
fseek() and ftell() parameters in binary and text.

Chapter 13. Performing VSAM I/O Operations 181

Table 25. Summary of fseek() and ftell() parameters in text and binary

Type Mode ftell() return
values

fseek() SEEK_SET SEEK_CUR SEEK_END

KSDS Binary relative byte
offset

relative byte
offset

relative byte
offset

relative byte
offset

Text not supported zero only relative byte
offset

relative byte
offset

ESDS Binary relative byte
offset

relative byte
offset

relative byte
offset

relative byte
offset

Text not supported zero only relative byte
offset

relative byte
offset

RRDS Binary encoded byte
offset

encoded byte
offset

relative byte
offset

relative byte
offset

Text encoded byte
offset

encoded byte
offset

relative byte
offset

relative byte
offset

PATH Binary not supported not supported not supported not supported

Text not supported not supported not supported not supported

Flushing Buffers

You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data
to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see the OS/390 C/C++ Run-Time Library
Reference.

Summary of VSAM Text I/O Operations
Table 26. Summary of VSAM Text I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

r r, r+, a, a+, w,
w+ (empty
cluster or reuse
specified for w
& w+)

r, r+, a, a+, w,
w+ (empty
cluster or reuse
specified for w
& w+)

r

fwrite() r+, a, a+, w, w+ r+, a, a+, w, w+

fprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fputs() r+, a, a+, w, w+ r+, a, a+, w, w+

fputc() r+, a, a+, w, w+ r+, a, a+, w, w+

putc() r+, a, a+, w, w+ r+, a, a+, w, w+

vfprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

vprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fread() r r, r+, a+, w+ r, r+, a+, w+ r

fscanf() r r, r+, a+, w+ r, r+, a+, w+ r

fgets() r r, r+, a+, w+ r, r+, a+, w+ r

182 OS/390 V2R8.0 C/C++ Programming Guide

Table 26. Summary of VSAM Text I/O Operations (continued)

KSDS ESDS RRDS PATH

fgetc() r r, r+, a+, w+ r, r+, a+, w+ r

getc() r r, r+, a+, w+ r, r+, a+, w+ r

ungetc() r r, r+, a+, w+ r, r+, a+, w+ r

ftell() r, r+, a, a+, w,
w+

fseek() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

fgetpos() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

fsetpos() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

flocate() r r, r+, a+, w+ r, r+, a+, w+ r

rewind() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fflush() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

ferror() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fdelrec()

fupdate()

feof() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

clearerr() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fclose() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

fldata() r r, r+, a, a+, w,
w+

r, r+, a, a+, w,
w+

r

Summary of VSAM Binary I/O Operations
Table 27. Summary of VSAM Binary I/O Operations

KSDS ESDS RRDS PATH

fopen(),
freopen()

rb rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb, rb+, ab, ab+,
wb, wb+ (empty
cluster or reuse
specified for wb
& wb+)

rb

fwrite() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fputs() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fputc() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

Chapter 13. Performing VSAM I/O Operations 183

Table 27. Summary of VSAM Binary I/O Operations (continued)

KSDS ESDS RRDS PATH

putc() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

vfprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

vprintf() rb+, ab, ab+, wb,
wb+

rb+, ab, ab+, wb,
wb+

fread() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

fscanf() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

fgets() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

fgetc() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

getc() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

ungetc() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

ftell() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fseek() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fgetpos() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

fsetpos() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

flocate() rb rb, rb+, ab+,
wb+

rb, rb+, ab+,
wb+

rb

rewind() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fflush() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

ferror() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fdelrec()

fupdate()

feof() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

clearerr() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fclose() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

fldata() rb rb, rb+, ab, ab+,
wb, wb+

rb, rb+, ab, ab+,
wb, wb+

rb

184 OS/390 V2R8.0 C/C++ Programming Guide

Closing VSAM Data Sets

To close a VSAM data set, use the standard C fclose() library function as you
would for closing non-VSAM files. See the OS/390 C/C++ Run-Time Library
Reference for more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer
that is less than the maximum record size, this record is written to the file at its
current size. A new RRDS binary record that is incomplete when the file is closed
is filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is
completed with a new-line.

VSAM Return Codes

When failing return codes are received from OS/390 C/C++ VSAM I/O functions,
you can access the __amrc structure to help you diagnose errors. The __amrc_type
structure is defined in the header file stdio.h (when the compiler option
LANGLVL(EXTENDED) is used).

Note: The __amrc struct is global and can be reset by another I/O operation (such
as printf()).

The following fields of the structure are important to VSAM users:

__amrc.__co de.__feedback.__rc
Stores the VSAM R15.

__amrc.__code.__feedback.__fdbk
Stores the VSAM error code or reason code.

__amrc.__RBA
Stores the RBA after some operations.

__amrc.__last_op
Stores a code for the last operation. The codes are defined in the header
file stdio.h.

For definitions of these return codes and feedback codes, refer to the publications
listed in “VSAM” on page 902.

You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

VSAM Examples

This section provides several examples of using I/O under VSAM.

KSDS Example

The example below shows two functions from an employee record entry system
with a mainline driver to process selected options (display, display next, update,
delete, create).

Chapter 13. Performing VSAM I/O Operations 185

The update routine is an example of KSDS clusters, and the display routine is an
example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as
follows:
v The KSDS cluster has a record size of 150 with a key length of 4 with offset 0.
v The unique KSDS AIX has a key length of 20 with an offset of 10.
v The non-unique KSDS AIX has a key length of 40 with an offset of 30.

The update routine is passed the following:
v data_ptr, which points to the information that is to be updated
v orig_data_ptr, which points to the information that was originally displayed

using the display option
v A file pointer to the KSDS cluster

The display routine is passed the following:
v data_ptr, which points to the information that was entered on the screen for the

search query
v orig_data_ptr, which is returned with the information for the record to be

displayed if it exists
v File pointers for the primary cluster, unique alternate index and non-unique

alternate index

By definition, the primary key is unique and therefore the employee number was
chosen for this key. The user_id is also a unique key; therefore, it was chosen as
the unique alternate index key. The name field may not be unique; therefore, it was
chosen as the non-unique alternate index key.

186 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GVS2

/* this example demonstrates the use of a KSDS file */
/* part 1 of 2-other file is CBC3GVS3 */

#include <stdio.h>
#include <string.h>

/* global definitions */

struct data_struct {
char emp_number[4];
char user_id[8];
char name[20];
char pers_info[37];

};

#define REC_SIZE 69
#define CLUS_KEY_SIZE 4
#define AIX_UNIQUE_KEY_SIZE 8
#define AIX_NONUNIQUE_KEY_SIZE 20

static void print_amrc() {
__amrc_type currErr = *__amrc; /* copy contents of __amrc */

/* structure so that values */
/* don't get jumbled by printf */

printf("R15 value = %d\n", currErr.__code.__feedback.__rc);
printf("Reason code = %d\n", currErr.__code.__feedback.__fdbk);
printf("RBA = %d\n", currErr.__RBA);
printf("Last op = %d\n", currErr.__last_op);
return;

}

Figure 22. KSDS Example (Part 1 of 6)

Chapter 13. Performing VSAM I/O Operations 187

/* update_emp_rec() function definition */

int update_emp_rec (struct data_struct *data_ptr,
struct data_struct *orig_data_ptr,
FILE *fp)

{
int rc;
char buffer[REC_SIZE+1];

/* Check to see if update will change primary key (emp_number) */
if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

/* Check to see if changed primary key exists */
rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);
if (rc == 0) {

print_amrc();
printf("Error: new employee number already exists\n");
return 10;

}

clearerr(fp);

/* Write out new record */
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: write with new employee number failed\n");
return 20;

}

/* Locate to old employee record so it can be deleted */
rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS_KEY_SIZE,

__KEY_EQ);
if (rc != 0) {

print_amrc();
printf("Error: flocate to original employee number failed\n");
return 30;

}

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: reading old employee record failed\n");
return 40;

}

rc = fdelrec(fp);
if (rc != 0) {

print_amrc();
printf("Error: deleting old employee record failed\n");
return 50;

}

Figure 22. KSDS Example (Part 2 of 6)

188 OS/390 V2R8.0 C/C++ Programming Guide

} /* end of checking for change in primary key */
else { /* Locate to current employee record */

rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);
if (rc == 0) {

/* record exists, so update it */
rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: reading old employee record failed\n");
return 60;

}

rc = fupdate(data_ptr,REC_SIZE,fp);
if (rc == 0) {

print_amrc();
printf("Error: updating new employee record failed\n");
return 70;

}
}
else { /* record doesn't exist so write out new record */

clearerr(fp);
printf("Warning: record previously displayed no longer\n");
printf(" : exists, new record being created\n");
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();
printf("Error: write with new employee number failed\n");
return 80;

}
}

}
return 0;

}

/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,
struct data_struct *orig_data_ptr,
FILE *clus_fp, FILE *aix_unique_fp,
FILE *aix_non_unique_fp)

{
int rc = 0;
char buffer[REC_SIZE+1];

/* Primary Key Search */
if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {

rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,
__KEY_EQ);

if (rc != 0) {
printf("Error: flocate with primary key failed\n");
return 10;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);
if (rc != REC_SIZE || ferror(clus_fp)) {

printf("Error: reading employee record failed\n");
return 15;

}
}

Figure 22. KSDS Example (Part 3 of 6)

Chapter 13. Performing VSAM I/O Operations 189

/* Unique Alternate Index Search */
else if (data_ptr->user_id[0] != '\0') {

rc = flocate(aix_unique_fp,data_ptr->user_id,AIX_UNIQUE_KEY_SIZE,
__KEY_EQ);

if (rc != 0) {
printf("Error: flocate with user id failed\n");
return 20;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);
if (rc != REC_SIZE || ferror(aix_unique_fp)) {

printf("Error: reading employee record failed\n");
return 25;

}
}
/* Non-unique Alternate Index Search */
else if (data_ptr->name[0] != '\0') {

rc = flocate(aix_non_unique_fp,data_ptr->name,
AIX_NONUNIQUE_KEY_SIZE,__KEY_GE);

if (rc != 0) {
printf("Error: flocate with name failed\n");
return 30;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);
if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {

printf("Error: reading employee record failed\n");
return 35;

}
}
else {

printf("Error: invalid search argument; valid search arguments\n"
" : are either employee number, user id, or name\n");

return 40;
}
/* display record data */
printf("Employee Number: %.4s\n", orig_data_ptr->emp_number);
printf("Employee Userid: %.8s\n", orig_data_ptr->user_id);
printf("Employee Name: %.20s\n", orig_data_ptr->name);
printf("Employee Info: %.37s\n", orig_data_ptr->pers_info);
return 0;

}

Figure 22. KSDS Example (Part 4 of 6)

190 OS/390 V2R8.0 C/C++ Programming Guide

/* main() function definition */

int main() {
FILE* clus_fp;
FILE* aix_ufp;
FILE* aix_nufp;
int i;
struct data_struct buf1, buf2;

char data[3][REC_SIZE+1] = {
" 1LARRY LARRY HI, I'M LARRY, ",
" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",
" 3DARRYL2 DARRYL "

};

/* open file three ways */
clus_fp = fopen("dd:cluster", "rb+,type=record");
if (clus_fp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:cluster\"...) failed\n");
return 5;

}
/* assume base cluster was loaded with at least one dummy record */
/* so aix could be defined */
aix_ufp = fopen("dd:aixuniq", "rb,type=record");
if (aix_ufp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:aixuniq\"...) failed\n");
return 10;

}
/* assume base cluster was loaded with at least one dummy record */
/* so aix could be defined */
aix_nufp = fopen("dd:aixnuniq", "rb,type=record");
if (aix_nufp == NULL) {

print_amrc();
printf("Error: fopen(\"dd:aixnuniq\"...) failed\n");
return 15;

}

/* load sample records */
for (i = 0; i < 3; ++i) {

if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {
print_amrc();
printf("Error: fwrite(data[%d]...) failed\n", i);
return 66+i;

}
}

Figure 22. KSDS Example (Part 5 of 6)

Chapter 13. Performing VSAM I/O Operations 191

The following JCL can be used to test the previous example.

CBC3GVS3

/* display sample record by primary key */
memcpy(buf1.emp_number, " 1", 4);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 69;

/* display sample record by nonunique aix key */
memset(buf1.emp_number, '\0', 4);
buf1.user_id[0] = '\0';
memcpy(buf1.name, "DARRYL ", 20);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 70;

/* display sample record by unique aix key */
memcpy(buf1.user_id, "DARRYL2 ", 8);
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 71;

/* update record just read with new personal info */
memcpy(&buf1, &buf2, REC_SIZE);
memcpy(buf1.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);
if (update_emp_rec(&buf1, &buf2, clus_fp) != 0) return 72;

/* display sample record by unique aix key */
if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

return 73;

return 0;
}

Figure 22. KSDS Example (Part 6 of 6)

//* this example illustrates the use of a KSDS file
//* part 2 of 2-other file is CBC3GVS2
//*--
//* Delete cluster, and AIX and PATH
//*--
//DELETEC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE -
userid.KSDS.CLUSTER -
CLUSTER -
PURGE -
ERASE

Figure 23. KSDS Example (Part 1 of 3)

192 OS/390 V2R8.0 C/C++ Programming Guide

/*
//*--
//* Define KSDS
//*--
//DEFINE EXEC PGM=IDCAMS
//VOLUME DD UNIT=SYSDA,DISP=SHR,VOL=SER=(XXXXXX)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER -
(NAME(userid.KSDS.CLUSTER) -
FILE(VOLUME) -
VOL(XXXXXX) -
TRK(4 4) -
RECSZ(69 100) -
INDEXED -
NOREUSE -
KEYS(4 0) -
OWNER(userid)) -

DATA -
(NAME(userid.KSDS.DA)) -

INDEX -
(NAME(userid.KSDS.IX))

/*
//*--
//* Repro data into KSDS
//*--
//REPRO EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO INDATASET(userid.DUMMY.DATA) -
OUTDATASET(userid.KSDS.CLUSTER)

/*
//*--
//* Define unique AIX, define and build PATH
//*--
//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX -
(NAME(userid.KSDS.UAIX) -
RECORDS(25) -
KEYS(8,4) -
VOL(XXXXXX) -
UNIQUEKEY -
RELATE(userid.KSDS.CLUSTER)) -

DATA -
(NAME(userid.KSDS.UAIXDA)) -

INDEX -
(NAME(userid.KSDS.UAIXIX))

DEFINE PATH -
(NAME(userid.KSDS.UPATH) -
PATHENTRY(userid.KSDS.UAIX))

BLDINDEX -
INDATASET(userid.KSDS.CLUSTER) -
OUTDATASET(userid.KSDS.UAIX)

/*

Figure 23. KSDS Example (Part 2 of 3)

Chapter 13. Performing VSAM I/O Operations 193

RRDS Example

The following program illustrates the use of an RRDS file. It performs the
following operations:

1. Opens an RRDS file in record mode (the cluster must be defined)
2. Writes three records (RRN 2, RRN 10, and RRN 32)
3. Sets the file position to the first record
4. Reads the first record in the file
5. Deletes it
6. Locates the last record in the file and sets the access direction to backwards

/*
//*--
//* Define nonunique AIX, define and build PATH
//*--
//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX -
(NAME(userid.KSDS.NUAIX) -
RECORDS(25) -
KEYS(20, 12) -
VOL(XXXXXX) -
NONUNIQUEKEY -
RELATE(userid.KSDS.CLUSTER)) -

DATA -
(NAME(userid.KSDS.NUAIXDA)) -

INDEX -
(NAME(userid.KSDS.NUAIXIX))

DEFINE PATH -
(NAME(userid.KSDS.NUPATH) -
PATHENTRY(userid.KSDS.NUAIX))

BLDINDEX -
INDATASET(userid.KSDS.CLUSTER) -
OUTDATASET(userid.KSDS.NUAIX)

/*
//*--
//* Run the testcase
//*--
//GO EXEC PGM=CBC3GVS2,REGION=5M
//STEPLIB DD DSN=userid.TEST.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CLUSTER DD DSN=userid.KSDS.CLUSTER,DISP=SHR
//AIXUNIQ DD DSN=userid.KSDS.UPATH,DISP=SHR
//AIXNUNIQ DD DSN=userid.KSDS.NUPATH,DISP=SHR
//*--
//* Print out the cluster
//*--
//PRINTF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

PRINT -
INDATASET(userid.KSDS.CLUSTER) CHAR

/*

Figure 23. KSDS Example (Part 3 of 3)

194 OS/390 V2R8.0 C/C++ Programming Guide

7. Reads the record
8. Updates the record
9. Sets the _EDC_RRDS_HIDE_KEY environment variable

10. Reads the next record in sequence (RRN 10) into a character string

CBC3GVS4

/* this example illustrates the use of an RRDS file */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <env.h>

struct rrds_struct {
__
rrds_key_type rrds_key;

char *rrds_buf;
};

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;
RRDS_STRUCT RRDSstruct;
RRDS_STRUCT *rrds_rec = &RRDSstruct;
char buffer1[80] =

"THIS IS THE FIRST RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 2. ";

char buffer2[80] =
"THIS IS THE SECOND RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 10. ";

char buffer3[80] =
"THIS IS THE THIRD RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 32. ";

char outputbuf[80];
unsigned long flocate_key = 0;

Figure 24. RRDS Example (Part 1 of 3)

Chapter 13. Performing VSAM I/O Operations 195

/*--*/
/*| select RRDS record structure 2 by setting __fill to 1 */
/*| */
/*| 1. open an RRDS file record mode (the cluster must be defined) */
/*| 2. write three records (RRN 2, RRN 10, RRN 32) */
/*--*/

rrds_rec->rrds_key.__fill = 1;

fileptr = fopen("DD:RRDSFILE", "wb+,type=record");
if (fileptr == NULL) {

perror("fopen");
exit(99);

}
rrds_rec->rrds_key.__recnum = 2;
rrds_rec->rrds_buf = buffer1;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 10;
rrds_rec->rrds_buf = buffer2;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 32;
rrds_rec->rrds_buf = buffer3;
fwrite(rrds_rec,1,88, fileptr);

/*--*/
/*| 3. set file position to the first record */
/*| 4. read the first record in the file */
/*| 5. delete it */
/*--*/

flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_FIRST);

memset(outputbuf,0x00,80);
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The first record in the file (this will be deleted):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

fdelrec(fileptr);

Figure 24. RRDS Example (Part 2 of 3)

196 OS/390 V2R8.0 C/C++ Programming Guide

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

/*--*/
/*| 6. locate last record in file and set access direction backwards*/
/*| 7. read the record */
/*| 8. update the record */
/*--*/

flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_LAST);

memset(outputbuf,0x00,80);
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The last record in the file (this one will be updated):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

memset(outputbuf,0x00,80);
memcpy(outputbuf,"THIS IS THE UPDATED STRING... ",30);
fupdate(rrds_rec,88,fileptr);

/*--*/
/*| 9. set _EDC_RRDS_HIDE_KEY environment variable */
/*|10. read the next record in sequence (ie. RRN 10) into a */
/*| + character string */
/*--*/

setenv("_EDC_RRDS_HIDE_KEY","Y",1);
memset(outputbuf,0x00,80);
fread(outputbuf, 1, 80, fileptr);
printf("The middle record in the file (read into char string):\n");
printf("%80s\n\n",outputbuf);

fclose(fileptr);
}

Figure 24. RRDS Example (Part 3 of 3)

Chapter 13. Performing VSAM I/O Operations 197

Notes:

1. If you have opened the file by its data set name, the filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase.

2. The __dsname field is filled in with the data set name. The __dsname value is
uppercase unless the asis option was specified on the fopen() or freopen()
function call.

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* always on */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__vsamRLS : 3, /* One of: */

/* __NORLS */
/* __RLS */

__reserve2 : 5; /* */
__device_t __device; /* __DISK */
unsigned long __blksize, /* */

__maxreclen; /* */
unsigned short __vsamtype; /* one of: */

/* __ESDS */
/* __KSDS */
/* __RRDS */
/* __ESDS_PATH */
/* __KSDS_PATH */

unsigned long __vsamkeylen; /* */
unsigned long __vsamRKP; /* */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 25. fldata() Structure

198 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 14. Performing Terminal I/O Operations

This chapter describes how to use input and output interactively with a terminal
(using TSO or OS/390 UNIX).

Terminal I/O supports text, binary, and record I/O, in undefined, variable and
fixed-length formats, except that ASA format is not valid for any text terminal files.

Note: You cannot use the OS/390 C/C++ I/O functions for terminal I/O under
either IMS or CICS. Terminal I/O under CICS is supported through the
CICS command level interface.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the IO Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and the OS/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files

You can use the library functions fopen() or freopen() to open a file.

Using fopen() and freopen()

This section covers:
v Opening a file by data set name
v Opening a file by DD name
v fopen() and freopen() keywords
v Opening a terminal file under the shell

Opening a File by Data Set Name

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The first character of the filename must be an asterisk
(*).

OS/390 UNIX Considerations: If you have specified POSIX(ON),
fopen("*file.data","r"); does not open a terminal file. Instead, it opens a file
called *file.data in the HFS file system. To open a terminal file under POSIX, you
must specify two slashes before the asterisk, as follows:

fopen("//*file.data","r"):

Terminal files cannot be opened in update mode.

Terminal files opened in append mode are treated as if they were opened in write
mode.

© Copyright IBM Corp. 1996, 1999 199

Opening a File by DD Name

The dataset name that is associated with the DD statement must be an asterisk(*).
For example:
TSO ALLOC f(ddname) DA(*)
fopen("dd:ddname", "mode");

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for terminal I/O, and lists the
values that are valid for the applicable ones.

Table 28. Keywords for the fopen() and freopen() Functions for Terminal I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes F, V, U and additional keywords A, B, S,
M are the valid values. A, B, S, and M are
ignored.

lrecl= Yes Yes See below.

blksize= Yes Yes See below.

space= Yes No Has no effect for terminal I/O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= No No Not used for terminal I/O.

password= No No Not used for terminal I/O.

asis Yes No Has no effect for terminal I/O.

byteseek Yes No Has no effect for terminal I/O.

noseek Yes No Has no effect for terminal I/O.

OS Yes No Not used for terminal I/O.

recfm=
OS/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages 34, 37, and 41). The default is recfm=U.

Any specification of ASA for the record format is ignored.

lrecl= and blksize=
The lrecl and blksize parameters allow you to set the record size and block
size, respectively.

The maximum limits on lrecl values are as follows:

32771 For input OS/390 variable terminals (data length of 32767)

32767 For input OS/390 fixed and undefined terminals

32770 For output OS/390 variable terminals (data length of 32766)

32766 For output OS/390 fixed and undefined terminals

In fixed and undefined terminal files, blksize is always the size of lrecl. In
variable terminal files, blksize is always the size of lrecl plus 4 bytes. It is not
necessary to specify values for lrecl and blksize. If neither is specified, the
default values are used. The default lrecl sizes (not including the extra 4 bytes
in the lrecl of variable length types) are as follows:

200 OS/390 V2R8.0 C/C++ Programming Guide

v Screen width for output terminals
v 1000 for input OS/390 text terminals
v 254 for all other input terminals

space=
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

type=
type=record specifies that the file is to be opened for sequential record I/O.
The file must be opened as a binary file.

acc=
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

password=
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

asis
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

byteseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

noseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

OS
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

When you perform input and output in an interactive mode with the terminal, all
standard streams and all files with * as the first character of their names are
associated with the terminal. Output goes to the screen; input comes from the
keyboard.

An input EOF can be generated by a /* if you open a stream in text mode. If you
open the stream in binary or record mode, you can generate an EOF by entering a
null string.

ASA characters are not interpreted in terminal I/O.

Opening a Terminal File Under the Shell

Files are opened with a call to fopen() in the format fopen("/dev/tty", "mode").

Buffering

OS/390 C/C++ uses buffers to map byte-level I/O (data stored in records and
blocks) to system-level C I/O.

In terminal I/O, line buffering is always in effect.

The setvbuf() and setbuf() functions can be used to control buffering before any
read or write operation to the file. If you want to reset the buffering mode, you

Chapter 14. Performing Terminal I/O Operations 201

must call setvbuf() or setbuf() before any other operation occurs on a file,
because you cannot change the buffering mode after an I/O operation to the file.

Reading from Files

You can use the following library functions to read in information from terminal
files:
v fread()
v fgets()
v gets()
v fgetc()
v getc()
v getchar()
v scanf()
v fscanf()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

A call to the rewind() function clears unread input data in the terminal buffer so
that on the next read request, the system waits for more user input.

With OS/390 Language Environment, an empty record is considered EOF in binary
mode or record mode. This remains in effect until a rewind() or clearerr() is
issued. When the rewind() is issued, the buffer is cleared and reading can
continue.

Under TSO, the virtual line size of the terminal is used to determine the line
length.

When reading from the terminal and the RECFM has been set to be F (for example,
by an ALLOCATE under TSO) in binary or record mode, the input is padded with
blanks to the record length.

On input, all terminal files opened for output flush their output, no matter what
type of file they are and whether a record is complete or not. This includes fixed
terminal files that would normally withhold output until a record is completed, as
well as text records that normally wait until a new-line or carriage return. In all
cases, the data is placed into one line with a blank added to separate output from
different terminal files. Fixed terminal files do not pad the output with blanks
when flushing this way.

Note: This flush is not the same as a call to fflush(), because fixed terminal files
do not have incomplete records and text terminal files do not output until
the new-line or carriage return. This flush occurs only when actual input is
required from the terminal. When data is still in the buffer, that data is read
without flushing output terminal files.

202 OS/390 V2R8.0 C/C++ Programming Guide

Reading from Binary Files

This discussion includes reading from fixed binary files and from variable or
undefined binary files.

Reading from Fixed Binary Files
v Any input that is smaller than the record length is padded with blanks to the

record length. The default record length is 254.
v The carriage return or new-line is not included as part of the data.
v An input line longer than the record length is returned to the calling program on

subsequent system reads.
For example, suppose a program requests 30 bytes of user input from an input
fixed binary terminal with record length 25. The full 30 bytes of user input
returns to satisfy the request, so that you do not need to enter a second line of
input.

v An empty input line indicates EOF.

Reading from Variable or Undefined Binary Files

These files behave like fixed-length binary files, except that no padding is
performed if the input is smaller than the record length.

Reading from Text Files

This discussion includes reading from fixed text files and from variable or
undefined text files.

Reading from Fixed Text Files
v The carriage return indicates the end of the record.
v A new-line character is added as part of the data to indicate the end of an input

line.
v If the input is larger than the record length, it is truncated to the record length.

The truncation causes SIGIOERR to be raised, if the default action for SIGIOERR is
not SIG_IGN.

v When an input line is smaller than the record length, it is not padded with
blanks.

v The character sequence /* indicates that the end of the file has been reached.

Reading from Variable or Undefined Text Files

These files behave like fixed-length text files.

Reading from Record I/O Files

This discussion includes reading from fixed record I/O files and from variable or
undefined record I/O files.

Reading from Fixed Record I/O Files
v Records smaller than the record length are padded with blanks up to the record

length. The default record length is 254.
v Input record terminal records have an implicit logical record boundary at the

record length if the input size exceeds the record length.

Chapter 14. Performing Terminal I/O Operations 203

If you enter input data larger than the record length, each subsequent block of
record-length bytes from the user input satisfies successive read requests.

v The carriage return or new-line is not included as part of the data.
v An empty line indicates an EOF.

Reading from Variable or Undefined Record I/O Files

These files behave like fixed-length record files, except that no padding is
performed.

Writing to Files

You can use the following library functions to write to a terminal file:
v fwrite()
v printf()
v fprintf()
v vprintf()
v vfprintf()
v puts()
v fputs()
v fputc()
v putc()
v putchar()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

If no record length is specified for the output terminal file, it defaults to the virtual
line size of the terminal.

On output, records are written one line at a time up to the record length. For all
output terminal files, records are not truncated. If you are printing a long string, it
wraps around to another line.

Writing to Binary Files

This discussion includes writing to fixed binary files and to variable or undefined
binary files.

Writing to Fixed Binary Files
v Output data is sent to the terminal when the last character of a record is written.
v When closing an output terminal, any unwritten data is padded to the record

length with blanks before it is flushed.

Writing to Variable or Undefined Binary Files

These files behave the same as fixed-length binary files, except that no padding
occurs for output that is smaller than the record length.

Writing to Text Files

The following control characters are supported:

\a Alarm. Causes the terminal to generate an audible beep.

204 OS/390 V2R8.0 C/C++ Programming Guide

\b Backspace. Backs up the output position by one byte. If you are at the start
of the record, you cannot back up to previous record, and backspace is
ignored.

\f Form feed. Sends any unwritten data to the terminal and clears the screen
if the environment variable _EDC_CLEAR_SCREEN is set. If the variable is not
set, the \f character is written to the screen.

\n New-line. Sends the preceding unwritten character to the terminal. If no
preceding data exists, it sends a single blank character.

\t Horizontal tab. Pads the output record with blanks up to the next tab stop
(set at eight characters).

\v Vertical tab. Placed in the output as is.

\r Carriage return. Treated as a new-line, sends preceding unwritten data to
the terminal.

Writing to Fixed Text Files
v Lines that are longer than the record length are not truncated. They are split

across multiple lines, each LRECL bytes long. Subsequent writes begin on a new
line.

v Output data is sent to the terminal when one character more than the record
length is written, or when a \r, \n, or \f character is written. In the case of \f,
output is displayed only if the _EDC_CLEAR_SCREEN environment variable is set.

v No padding occurs on output when a record is smaller than the record length.

Writing to Variable or Undefined Text Files

These terminal files behave like fixed-length terminal files.

Writing to Record I/O Files

This discussion includes writing to fixed record I/O files and to variable or
undefined record I/O files.

Writing to Fixed Record I/O Files
v Any output record that is smaller than the record length is padded to the record

length with blanks, and trailing blanks are displayed.
v If a record is longer than the record length, all data is written to the terminal,

wrapping at the record length.
v Output data is sent to the terminal with every record write.

Writing to Variable or Undefined Record I/O Files

These files behave like fixed-length record files except that no padding occurs
when the output record is smaller than the record length.

Flushing Records

The action taken by the fflush() library function depends on the file mode. The
fflush() function only flushes buffers in binary files with Variable or Undefined
record format.

If you call one OS/390 C/C++ program from another OS/390 C/C++ program by
using the ANSI system() function, all open streams are flushed before control is

Chapter 14. Performing Terminal I/O Operations 205

passed to the callee, and again before control is returned to the caller. If you are
running with POSIX(ON), a call to the POSIX system() function does not flush any
streams to the system.

Text Streams
v Writing a new record:

Because a new-line character has not been encountered to indicate the
end-of-line, fflush() takes no action. The record is written as a new record
when one of the following takes place:
– A new-line character is written.
– The file is closed.

v Reading a record:
fflush() clears a previous ungetc() character.

Binary Streams
v Writing a new record:

If the file is variable or undefined length in record format, fflush() causes the
current record to be written out, which in turn causes a new record to be created
for subsequent writes. If the file is of fixed record length, no action is taken.

v Reading a record:
fflush() clears a previous ungetc() character.

Record I/O
v Writing a new record: fflush() takes no action.
v Reading a record: fflush() takes no action.

Repositioning within Files

In terminal I/O, rewind() is the only positioning library function available. Using
the library functions fseek(), fgetpos(), fsetpos(), and ftell() generates an
error.

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

When an input terminal reaches an EOF, the rewind() function:
1. Clears the EOF condition.
2. Enables the terminal to read again.

You can also use rewind() when reading from the terminal to flush out your
record buffer for that stream.

Closing Files

Use the fclose() library function to close a file. OS/390 C/C++ automatically
closes files on normal program termination and attempts to do so under abnormal
program termination or abend. When closing a fixed binary terminal, OS/390
C/C++ pads the last record with blanks if it is incomplete.

See the OS/390 C/C++ Run-Time Library Reference for more information on this
library function.

206 OS/390 V2R8.0 C/C++ Programming Guide

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

Notes:

1. The filename value is dd:ddname if the file is opened by ddname; otherwise, the
value is *. The ddname is uppercase.

2. Either __recfmF, __recfmV, or __recfmU will be set according to the recfm
parameter specified on the fopen() or freopen() function call.

struct __fileData {
unsigned int __recfmF : 1, /* */

__recfmV : 1, /* */
__recfmU : 1, /* */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* N/A -- always off */
__dsorgHiper : 1, /* N/A -- always off */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* one of: */

/* __TEXT */
/* __BINARY */
/* __RECORD */

__modeflag : 4, /* combination of: */
/* __READ */
/* __WRITE */
/* __APPEND */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* __TERMINAL */
unsigned long __blksize, /* */

__maxreclen; /* */
unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* N/A -- always NULL */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 26. fldata() Structure

Chapter 14. Performing Terminal I/O Operations 207

208 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 15. Performing Memory File and Hiperspace I/O
Operations

This chapter describes how to perform memory file and hiperspace I/O operations.

OS/390 C/C++ supports files known as memory files. Memory files are temporary
work files that are stored in main memory rather than in external storage.

There are two types of memory files:
v Regular memory files, which exist in your virtual storage
v Hiperspace memory files, which use special storage areas called hiperspaces. You

cannot share hiperspace memory files with an AMODE=24 OS/390 C or OS/390
C++ program.

Memory files can be written to, read from, and repositioned within like any other
type of file. Memory files exist for the life of your root program, unless you
explicitly delete them by using the remove() or clrmemf() functions. The root
program is the first main() to be invoked. Any main() program called by a
system() call is known as a child program. When the root program terminates,
OS/390 C/C++ removes memory files automatically. Memory files may give you
better performance than other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a
memory file and the bytes in some other external representation of the file,
such as a disk file. Applications that mix open modes on a file (for example,
writing a file as text file and reading it back as binary) may not port readily
from external I/O to memory file I/O.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the I/O Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and OS/390 C/C++ IBM Open Class Library Reference for specifics.

Using Hiperspace Operations

On MVS/ESA systems that support hiperspaces, large memory files can be placed
in hiperspaces to reduce memory requirements within your address space.

If your installation is MVS/ESA and supports hiperspaces, and you are not using
CICS, you can use hiperspace memory files (see the appropriate book as listed in
the OS/390 Information Roadmap for more information on hiperspaces). Whereas a
regular memory file stores all the file data in your address space, a hiperspace
memory file uses one buffer in your address space, and keeps the rest of the data
in the hiperspace. Therefore, a hiperspace memory file requires only a certain
amount of storage in your address space, regardless of how large the file is. If you
use setvbuf(), OS/390 C/C++ may or may not accept your buffer for its internal
use. For a hiperspace memory file, if the size of the buffer specified to setvbuf() is

© Copyright IBM Corp. 1996, 1999 209

4K or more, it will affect the number of hiperspace blocks read or written on each
call to the operating system; the size is rounded down to the nearest multiple of
4K.

Opening Files

Use the standard C fopen() or freopen() library functions to open a memory file.
Details about these functions that apply to all OS/390 C/C++ I/O operations are
discussed in “Chapter 6. Opening Files” on page 47.

Using fopen() or freopen()

This section describes considerations for using fopen() and freopen() with
memory files. Memory files are always treated as binary streams of bytes,
regardless of the parameters you specify on the function call that opens them.

File-Naming Considerations

When you open a file using fopen() or freopen(), you must specify the filename
(a data set name) or the ddname.

Using a Data Set Name: Files are opened with a call to fopen() or freopen() in
the format fopen("filename", "mode"). The following diagram shows the syntax
for the filename argument on your fopen() or freopen() call:

ÊÊ
// '

»

.

qualifier
(member)

0 '

ÊÍ

The following is a sample construct:
'qualifier1.qualifier2(member)'

// Ignored for memory files.

qualifier
Each qualifier is a 1- to 8-character name. There is no restriction on the length
of each qualifier. All characters are considered valid.

(member)
If you specify a member, the data set you are opening is considered to be a
simulated PDS or a PDSE. For more information about PDSes and PDSEs, see
“Simulating Partitioned Data Sets” on page 214. For members, the member
name (including trailing blanks) can be up to 8 characters long. A member
name cannot begin with leading blanks.

When you enclose a name in single quotation marks, the name is fully qualified. The
file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, OS/390 C/C++ does one of the following:
v If your system does not use RACF, OS/390 C/C++ does not add a high-level

qualifier to the name you specified.
v If you are running under TSO (batch or interactive), OS/390 C/C++ appends the

TSO user prefix to the front of the name. For example, the statement

210 OS/390 V2R8.0 C/C++ Programming Guide

fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix.
You can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

v If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

Using a DDname: You can specify names that begin with dd:, but OS/390
C/C++ treats the dd: as part of the file name.

OS/390 UNIX Considerations: Using the fork() library function from an OS/390
UNIX application program causes the memory file to be copied into the child
process. The memory file data in the child is identical to that of the parent at the
time of the fork(). The memory file can be used in either the child or the parent,
but the data is not visible in the other process.

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for memory file I/O, and lists
the values that are valid for the applicable ones.

Table 29. Keywords for the fopen() and freopen() Functions for Memory File I/O

Keyword Allowed? Applicable? Notes

recfm= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a RECFM,
it must have correct syntax. Otherwise the
fopen() call fails.

lrecl= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify an
LRECL, it must have correct syntax.
Otherwise fopen() call fails.

blksize= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a
BLKSIZE, it must have correct syntax.
Otherwise fopen() call fails.

acc= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify an
ACC, it must have correct syntax.
Otherwise fopen() fails.

password= No No Ignored for memory files.

space= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a
SPACE, it must have correct syntax.
Otherwise, fopen() call fails.

type= Yes Yes Valid values are memory and
memory(hiperspace). See the parameter list
below.

asis Yes Yes Enables the use of mixed-case file names.

byteseek Yes No Ignored for memory files, as they use
byteseeking by default.

noseek Yes No This parameter is ignored for memory file
and hiperspace I/O.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 211

Table 29. Keywords for the fopen() and freopen() Functions for Memory File I/O (continued)

Keyword Allowed? Applicable? Notes

OS No No This parameter is not valid for memory file
and hiperspace I/O. If you specify OS,
your fopen() call fails.

recfm=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

lrecl= and blksize=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

acc=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

password=
This parameter is not valid for memory file and hiperspace I/O. If you specify
PASSWORD, your fopen() call fails.

space=
OS/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

type=
To create a memory file, you must specify type=memory. You cannot specify
type=record; if you do, fopen() or freopen() fails.

To create a hiperspace memory file, you must specify
type=memory(hiperspace).

asis
If you use this parameter, you can specify mixed-case filenames such as JaMeS
dAtA or pErCy.FILE. If you are running with POSIX(ON), asis is the default.

byteseek
This parameter is ignored for memory file and hiperspace I/O.

noseek
This parameter is ignored for memory file and hiperspace I/O.

OS
This parameter is not allowed for memory file and hiperspace I/O. If you
specify OS, your fopen() call fails.

Once a memory file has been created, it can be accessed by the module that
created it as well as by any function or module that is subsequently invoked
(including modules that are called using the system() library function), and by any
modules in the current chain of system() calls, if you are running with POSIX(OFF).
If you are running with POSIX(ON), the system() function is the POSIX one, not the
ANSI one, and it does not propagate memory files to a child program. Once the
file has been created, you can open it with the same name, without specifying the
type=memory parameter. You cannot specify type=record for a memory file.

212 OS/390 V2R8.0 C/C++ Programming Guide

This is how OS/390 C/C++ searches for memory files:
1. fopen("my.file","w....,type=memory"); OS/390 C/C++ checks the open files

to see whether a file with that name is already open. If not, it creates a memory
file.

2. fopen("my.file","w......"); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, it then checks to see
whether a memory file exists with that name. If so, it opens the memory file; if
not, it creates a disk file.

3. fopen("my.file","a.....,type=memory"); OS/390 C/C++ checks the open files
to see whether a file with that name is already open. If not, it searches the
existing memory files to see whether a memory file exists with that name. If so,
OS/390 C/C++ opens it; if not, it creates a new memory file.

4. fopen("my.file","a...."); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, OS/390 C/C++ searches
existing files (both disk and memory) according to file mode, and opens the
first file that has that name. If there is no such file, OS/390 C/C++ creates a
disk file.

5. fopen("my.file","r....,type=memory"); OS/390 C/C++ searches the memory
files to see whether a file with that name exists. If one does, OS/390 C/C++
opens it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); OS/390 C/C++ searches first through memory
files. If it does not find the specified one, it then tries to open a disk file.

If you specify a memory file name that has an asterisk (*) as the first character, a
name is created for that file. (You can acquire this name by using fldata().) For
example, you can specify fopen("*","type=memory");. Opening a memory file this
way is faster than using the tmpnam() function.

You cannot have any blanks or periods in the member name of a memory file.
Otherwise, all valid data set names are accepted for memory files. Note that if
invalid disk file names are used for memory files, difficulties could occur when
you try to port memory file applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open
mode. There is no blank padding, and control characters such as the new line are
written directly into the file (even if the fopen() specifies text mode).

Opening Hiperspace Files

To create a memory file in hiperspace, specify type=memory(hiperspace) on the
fopen() call that creates the file. If hiperspace is not available, you get a regular
memory file. Under systems that do not support hiperspaces, as well as when you
are running with POSIX(ON) and TRAP(OFF), a specification of
type=memory(hiperspace) is treated as type=memory. Use of TRAP(OFF) is not
recommended.

You must decide whether a file is to be a hiperspace memory file before you create
it. You cannot change a memory file to a hiperspace memory file by specifying
type=memory(hiperspace) on a subsequent call to fopen() or freopen(). If the
hiperspace to store the file cannot be created, the fopen() or freopen() call fails.

Once you have created a hiperspace memory file, you do not have to specify
type=memory(hiperspace) on subsequent function calls that open the file.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 213

If you open a hiperspace memory file for read at the same time that it is opened
for write, you can attempt to read extensions made by the writer, even after the
EOF flag has been set on by a previous read. If such a read succeeds, the EOF flag is
set off until the new EOF is reached. If you have opened a file once for write and
one or more times for read, a reader can now read past the original EOF.

Simulating Partitioned Data Sets

You can create memory files that are conceptually grouped as a partitioned data
set (PDS). Grouping the files in this way offers the following advantages:
v You can remove all the members of a PDS by stating the data set name.
v You can rename the qualifiers of a PDS without renaming each member

individually.

Once you have established that a memory file has members, you can rename and
remove all the members by specifying the file name and no members, just as with
a PDS or PDSE. None of the members can be open for you to perform this action.
Once a memory file is created with or without a member, another memory file
with the same name (with or without a member) cannot be created as well. For
example, if you open memory file a.b and write to it, OS/390 C/C++ does not
allow a memory file named a.b(c) until you close and remove a.b. Also, if you
create a memory file named a.b(mbr1), you cannot open a file named a.b until
you close and remove a.b(mbr1).

The following example demonstrates the removal of all the members of the data
set a.b. After the call to remove(), neither a.b(mbr1) nor a.b(mbr2) exists.

CBC3GMF1

The following example demonstrates the renaming of a PDS from a.b to c.d.

/* this example shows how to remove members of a PDS */

#include <stdio.h>

int main(void)
{

FILE * fp1, * fp2;
fp1=fopen("a.b(mbr1)","w,type=memory");
fp2=fopen("a.b(mbr2)","w,type=memory");
fwrite("hello, world\n", 1, 13, fp1);
fwrite("hello, world\n", 1, 13, fp2);
fclose(fp1);
fclose(fp2);
remove("a.b");
fp1=fopen("a.b(mbr1)","r,type=memory");
if (fp1 == NULL) {

perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

"the file has been removed\n");
}
else {

printf("fopen() should have failed\n");
}

return(0);
}

Figure 27. Removing Members of a PDS

214 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GMF2

Note: If you are using simulated PDSs, you can change either the name of the
PDS, or the member name. You cannot rename a.b(mbr1) to either c.d(mbr2)
or c.d, but you can rename a.b(mbr1) to a.b(mbr2), and a.b to c.d.

Memory files that are open as a sequential data set cannot be opened again with a
member name specified. Also, if a data set is already open with a member name,
the sequential data set version with only the data set name cannot be opened.
These operations result in fopen() returning NULL. For example, fopen() returns
NULL in the second line of the following:

fp = fopen("a.b","w,type=memory");
fp1 = fopen("a.b(m1)","w,type=memory");

You cannot use the rename() or remove() functions on open files.

Buffering

Regular memory files are not buffered. Any parameters passed to setvbuf() are
ignored. Each character that you write is written directly to the memory file.

/* this example shows how to rename a PDS */

#include <stdio.h>

int main(void)
{

FILE * fp1, * fp2;

fp1=fopen("a.b(mbr1)","w,type=memory");
fp2=fopen("a.b(mbr2)","w,type=memory");
fclose(fp1);
fclose(fp2);
rename("a.b","c.d");

/* after renaming, you cannot access members of PDS a.b */

fp1=fopen("a.b(mbr1)","r,type=memory");
if (fp1 == NULL) {

perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

"the file has been renamed\n");
}
else {

printf("fopen() should have failed\n");
}

fp2=fopen("c.d(mbr2)","r,type=memory");
if (fp2 != NULL) {

printf("fopen(\"c.c(mbr1)\"...) worked as expected: "
"the file has been renamed\n");

}
else {

perror("fopen():");
printf("fopen() should have worked\n");

}

return(0);
}

Figure 28. Renaming Members of a PDS

Chapter 15. Performing Memory File and Hiperspace I/O Operations 215

Hiperspace memory files are fully buffered. The default size of the I/O buffer in
your own address space is 16KB. You can override this buffer size by using the
setvbuf() function (see the OS/390 C/C++ Run-Time Library Reference for more
information).

If you call setvbuf() for a hiperspace memory file:
v If the size value is greater than or equal to 4K, it will be rounded down to the

nearest multiple of 4K and this buffer size will be used. Otherwise, the size
value is ignored.

v If a pointer to a buffer is passed, the buffer size is greater than or equal to 4K,
and the buffer is aligned on a 4K boundary, the buffer may be used. Otherwise,
OS/390 C/C++ will allocate a buffer.

Reading from Files

You can use the following library functions to read information from memory files:
v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getchar()

v scanf()

v fscanf()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The gets(), getchar(), and scanf() functions read from stdin, which can be
redirected to a memory or hiperspace memory file.

You can open an existing file for read one or more times, even if it is already open
for write. You cannot open a file for write if it is already open (for either read or
write). If you want to update or truncate a file or append to a file that is already
open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an
intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. OS/390 C/C++
treats the following as read operations:
v Calls to read functions that request 0 bytes
v Read requests that fail because of a system error
v Calls to the ungetc() function

You can set up a SIGIOERR handler to catch read or write system errors that happen
when you are using hiperspace memory files. See “Chapter 18. Debugging I/O
Programs” on page 227 for more information.

216 OS/390 V2R8.0 C/C++ Programming Guide

Writing to Files

You can use the following library functions to write to a file:
v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putchar()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which
can be redirected to a memory or hiperspace memory file.

In hiperspace memory files, each library function causes your data to be moved
into the buffer in your address space. The buffer is written to hiperspace each time
it is filled, or each time you call the fflush() library function.

OS/390 C/C++ counts a call to a write function writing 0 bytes or or a write
request that fails because of a system error as a write operation. For regular
memory files, the only possible system error that can occur is an error in acquiring
storage.

Flushing Records

fflush() does not move data from an internal buffer to a memory file, because the
data is written to the memory file as it is generated. However, fflush() does make
the data visible to readers who have a regular or hiperspace memory file open for
reading while a user has it open for writing.

Hiperspace memory files are fully buffered. The fflush() function writes data
from the internal buffer to the hiperspace.

Any repositioning operation writes data to the hiperspace.

The fclose() function also invokes fflush() when it detects an incomplete buffer
for a file that is open for writing or appending.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for memory files. ungetc()
handles only single-byte characters. You can use it to push back as many as four
characters onto the ungetc() buffer. For every character pushed back with ungetc(),
fflush() backs up the file position by one character and clears all the pushed-back
characters from the stream. Backing up the file position may end up going across a
record boundary.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 217

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT
environment variable. See “Chapter 33. Using Environment Variables” on page 457
for more information.

Repositioning within Files

You can use the following library functions to help you position within a memory
or hiperspace memory file:
v fgetpos()

v fsetpos()

v fseek()

v ftell()

v rewind()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Using fseek() to seek past the end of a memory file extends the file using null
characters. This may cause OS/390 C/C++ to attempt to allocate more storage than
is available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets
from SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftell() are relative byte offsets from the beginning of the
file. fseek() supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and and ftell() handle ungetc()
characters unless you have set the _EDC_COMPAT environment variable, in which
case fgetpos() and fseek() do not. See “Chapter 33. Using Environment
Variables” on page 457 for more information about _EDC_COMPAT. If in handling
these characters, if the current position goes beyond the start of the file, fgetpos()
returns the EOF value, and ftell() returns -1.

fgetpos() values generated by code from previous releases of the OS/390 C/C++
compiler are not supported by fsetpos().

Closing Files

Use the fclose() library function to close a regular or hiperspace memory file. See
the OS/390 C/C++ Run-Time Library Reference for more information on this library
function. OS/390 C/C++ automatically closes memory files at the termination of
the C root main environment.

Performance Tips

You should use hiperspace memory files instead of regular memory files when
they will be large (1MB or greater).

Regular memory files perform more efficiently if large amounts of data (10K or
more) are written in one request (that is, if you pass 10K or more of data to the

218 OS/390 V2R8.0 C/C++ Programming Guide

fwrite() function). You should use fopen("*", "type=memory") both to generate a
name for a memory file and to open the file instead of calling fopen() with a name
returned by tmpnam(). You can acquire the file’s generated name by using fldata().

Removing Memory Files

The memory file remains accessible until the file is removed by the remove() or
clrmemf() library functions or until the root program has terminated. You cannot
remove an open memory file, except when you use clrmemf(). See the OS/390
C/C++ Run-Time Library Reference for more information on these library functions.

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure. For more information on the
fldata() function, refer to the OS/390 C/C++ Run-Time Library Reference.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 219

Notes:

1. The filename is the fully qualified version of the filename specified on the
fopen() or freopen() function call. There are no quotation marks. However, if
the filename specified on the fopen() or freopen() function call begins with an
*, a unique filename is generated in the format ((n)), where n is an integer.

2. The __dsorgMem bit will be set on only for regular memory files.
3. The __dsorgHiper bit will be set on only for hiperspace memory files.
4. The __dsname is identical to the filename value.

Example Program

The following example shows the use of a memory file. The program PROGA creates
a memory file, calls program PROGB, and redirects the output of the called program
to the memory file. When control returns to the first program, the program reads
and prints the string in the memory file.

For more information on the system() library function, see the OS/390 C/C++
Run-Time Library Reference.

struct __fileData {
unsigned int __recfmF : 1, /* always on */

__recfmV : 1, /* always off */
__recfmU : 1, /* always off */
__recfmS : 1, /* always off */
__recfmBlk : 1, /* always off */
__recfmASA : 1, /* always off */
__recfmM : 1, /* always off */
__dsorgPO : 1, /* N/A -- always off */
__dsorgPDSmem : 1, /* N/A -- always off */
__dsorgPDSdir : 1, /* N/A -- always off */
__dsorgPS : 1, /* N/A -- always off */
__dsorgConcat : 1, /* N/A -- always off */
__dsorgMem : 1, /* */
__dsorgHiper : 1, /* */
__dsorgTemp: 1, /* N/A -- always off */
__dsorgVSAM: 1, /* N/A -- always off */
__dsorgHFS : 1, /* N/A -- always off */
__openmode : 2, /* __BINARY */
__modeflag : 4, /* combination of: */

/* __READ */
/* __WRITE */
/* __APPEND */
/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */
__reserve2 : 8; /* */

__device_t __device; /* one of: */
/* __MEMORY */
/* __HIPERSPACE */

unsigned long __blksize, /* */
__maxreclen; /* */

unsigned short __vsamtype; /* N/A */
unsigned long __vsamkeylen; /* N/A */
unsigned long __vsamRKP; /* N/A */
char * __dsname; /* */
unsigned int __reserve4; /* */

};
typedef struct __fileData fldata_t;

Figure 29. fldata() Structure

220 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GMF3

/* this example demonstrates the use of a memory file */
/* part 1 of 2-other file is CBC3GMF4 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char buffer[20];
char *rc;

/* Open the memory file to create it */
if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)
{
/* Close the memory file so that it can be used as stdout */
fclose(fp);

/* Call CBC3GMF4 and redirect its output to memory file */
/* CBC3GMF4 must be an executable MODULE */
system("CBC3GMF4 >PROG.DAT");

/* Now print the string contained in the file */

fp = fopen("PROG.DAT","rb");
rc = fgets(buffer,sizeof(buffer),fp);
if (rc == NULL)
{

perror(" Error reading from file ");
exit(99);

}
printf("%s", buffer);

}

return(0);

}

Figure 30. Memory File Example

Chapter 15. Performing Memory File and Hiperspace I/O Operations 221

CBC3GMF4

/* this example demonstrates the use of a memory file */
/* part 2 of 2-other file is CBC3GMF3 */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char item1[] = "Hello World\n";
int rc;

/* Write the data to the stdout which, at this point, has been
redirected to the memory file */

rc = fputs(item1,stdout);
if (rc == 0) {

perror("Error putting to file ");
exit(99);

}

return(0);

}

Figure 31. Memory File Example

222 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 16. Performing CICS I/O Operations

OS/390 C/C++ under CICS supports only three kinds of I/O:

CICS I/O
OS/390 C/C++ applications can access the CICS I/O commands through the
CICS command level interface. The CICS/ESA 4.1 Application Programmer’s
Guide/Reference discusses this interface in detail.

Files
Memory files are the only type of file that OS/390 C/C++ supports under
CICS. Hiperspace files are not supported.

VSAM files can be accessed through the CICS command level interface.

CICS data queues
Under CICS, OS/390 C/C++ implements the standard output (stdout) and
standard error (stderr) streams as CICS transient data queues. These data
queues must be defined in the CICS Destination Control table (DCT) by the
CICS system administrator before the CICS cold start. Output from all users’
transactions that use stdout (or stderr) is written to the queue in the order of
occurrence. To help differentiate the output, place a user’s terminal name, the
CICS transaction identifier, and the time at the beginning of each line printed
to the queue.

The queues are as follows:

Stream Queue

stdout CESO

stderr CESE

stdin Not supported

To access any other queues, you must use the command level interface.

Note: If you are using the I/O Streams class library, cout maps to stdout, which
maps to CESO. cerr and clog both map to stderr, which maps to CESE. cin is
not supported under CICS. For more information about C++ I/O and the
I/O Stream class library, refer to “Chapter 5. Using the I/O Stream Class
Library in C++” on page 45 for general information and the OS/390 C/C++
IBM Open Class Library User’s Guide and the OS/390 C/C++ IBM Open Class
Library Reference for specifics.

For complete information about using OS/390 C/C++ and OS/390 C/C++ I/O
under CICS, see “Using Input and Output” on page 574.

For information on using wide characters in the CICS environment, see “Chapter 9.
OS/390 C Support for the Double-Byte Character Set” on page 73.

© Copyright IBM Corp. 1996, 1999 223

224 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 17. Language Environment Message File Operations

This chapter describes input and output with the OS/390 Language Environment
message file. This file is write-only; it is nonreadable and nonseekable.

The default open mode for the OS/390 Language Environment Message File is
text. Binary and record I/O modes are not supported.

See “Chapter 9. OS/390 C Support for the Double-Byte Character Set” on page 73
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the IO Stream class library instead, refer to
“Chapter 5. Using the I/O Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and the OS/390 C/C++ IBM Open Class Library Reference for specifics.

The standard stream stderr defaults to using the OS/390 Language Environment
message file. stderr will be directed to file descriptor 2, which is typically your
terminal if you are running under the OS/390 shell. There are some exceptions,
however:
v If the application has allocated the ddname in the MSGFILE(ddname) run-time

parameter, your output will go there. The default is MSGFILE(SYSOUT).
v If the application has issued one of the POSIX exec() functions, or it is running

in an address space created by the POSIX fork() function and the application
has not dynamically allocated a ddname for MSGFILE, then the default is to use
file descriptor 2, if one exists. If it doesn’t, then the default is to create a message
file in the user’s current working directory. The message file will have the name
that is specified on the message file run-time option, the default being SYSOUT.

Opening Files

The default is for stderr to go to the message file automatically. The message file
is available only as stderr; you cannot use the fopen() or freopen() library
function to open it.
v freopen() with the null string (″″) as filename string will fail.
v Record format (RECFM) is always treated as undefined (U). Logical record length

(LRECL) is always treated as 255 (the maximum length defined by OS/390
Language Environment Message File system write interface).

Reading from Files

The OS/390 Language Environment Message file is non-readable.

Writing to Files
v Data written to the OS/390 Language Environment Message File is always

appended to the end of the file.
v When the data written is longer than 255 bytes, it is written to the OS/390

Language Environment Message File 255 bytes at a time, with the last write
possibly less than 255 bytes. No truncation will occur.

© Copyright IBM Corp. 1996, 1999 225

v When the output data is shorter than the actual LRECL of the OS/390 Language
Environment Message File, it is padded with blank characters by the OS/390
Language Environment system write interface.

v When the output data is longer than the actual LRECL of the OS/390 Language
Environment Message File, it is split into multiple records by the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface splits the output data at the last blank
before the LRECL-th byte, and begins writing the next record with the first
non-blank character. Note that if there are no blanks in the first LRECL bytes
(DBCS for instance), the OS/390 Language Environment system write interface
splits the output data at the LRECL-th byte. It also closes off any DBCS string on
the first record with a X'0F' character, and begins the DBCS string on the next
record with a X'0E' character.

v The hex characters X'0E' and X'0F' have special meaning to the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface removes adjacent pairs of these characters
(normalization).

v You can set up a SIGIOERR handler to catch system write errors. See “Chapter 18.
Debugging I/O Programs” on page 227 for more information.

Flushing Buffers

The fflush() function has no effect on the OS/390 Language Environment
Message File.

Repositioning within Files

The ftell(), fgetpos(), fseek(), and fsetpos() functions are not allowed, because
OS/390 Language Environment Message File is a non-seekable file. The rewind()
function only resets error flags.

You cannot call fseek() on stderr when it is mapped to MSGFILE (the default
routing of stderr).

Closing Files

Do not use the fclose() library function to close the OS/390 Language
Environment message file. OS/390 C/C++ automatically closes files on normal
program termination and attempts to do so under abnormal program termination
or abend.

226 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 18. Debugging I/O Programs

This chapter will help you locate and diagnose problems in programs that use
input and output. It discusses several diagnostic methods specific to I/O.
Diagnostic methods for I/O errors include:
v Using return codes from I/O functions
v Using errno values and the associated perror() message
v Using the __amrc structure
v Using the __amrc2 structure

The information provided with the return code of I/O functions and with the
perror() message associated with errno values may help you locate the source of
errors and the reason for program failure. Because return codes and errno values
do not exist for every possible system I/O failure, return codes and errno values
are not useful for diagnosing all I/O errors. This chapter discusses the use of the
__amrc structure and the __amrc2 structure.

Using the __amrc Structure

__amrc is a structure defined in stdio.h (when the compile-time option
LANGLVL(EXTENDED) is in effect) to help you determine errors resulting from an I/O
operation. This structure is changed during system I/O and some C specific error
situations.

Note: __amrc is not used to record I/O errors in HFS files.

When looking at __amrc, be sure to copy the structure into a temporary structure
of __amrctype since any I/O function calls will change the value of __amrc.

Figure 32 on page 228 shows the __amrc structure as it appears in stdio.h.

© Copyright IBM Corp. 1996, 1999 227

«1¬ __code
The error or warning value from an I/O operation is in either __error,
__abend, __feedback, or __alloc. You must look at __last_op to determine
how to interpret the __code union.

«2¬ __error
__error contains the return code from the system macro or utility. Refer to
Table 30 on page 231 for further information.

«3¬ __abend
This struct contains the abend code when errno is set to indicate a
recoverable I/O abend. __syscode is the system abend code and __rc is the
return code. For more information on the abend codes, see the System
Codes manual as listed in the OS/390 Information Roadmap. The macros
__abendcode() and __rsncode() may be set to the abend code and reason
code of a TSO CLIST or command when invoked with system().

«4¬ __feedback
This struct is used for VSAM only. The __rc stores the VSAM register 15,
__fdbk stores the VSAM error code or reason code, and __RBA stores the
RBA after some operations.

«5¬ __alloc
This struct contains errors during fopen() or freopen() calls when

typedef struct __amrctype {

union { «1¬
long int __error; «2¬

struct {
unsigned short __syscode,

__rc;
} __abend; «3¬
struct {

unsigned char __fdbk_fill,
__rc,
__ftncd,
__fdbk;

} __feedback; «4¬
struct {

unsigned short __svc99_info,
__svc99_error;

} __alloc; «5¬
} __code;
unsigned long __RBA; «6¬

unsigned int __last_op; «7¬
struct {
unsigned long __len_fill;
unsigned long __len;
char __str[120];
unsigned long __parmr0;
unsigned long __parmr1;
unsigned long __fill2[2];
char __str2[64];

} __msg; «8¬
} __amrc_type;

Figure 32. __amrc Structure

228 OS/390 V2R8.0 C/C++ Programming Guide

defining files to the system using SVC 99. See the Systems Macros manual,
as listed in the OS/390 Information Roadmap, for more information on these
fields as set by SVC 99.

«6¬ __RBA
This is the RBA value returned by VSAM after an ESDS or KSDS record is
written out. For a RRDS, it is the calculated value from the record number.
It may be used in subsequent calls to flocate().

«7¬ __last_op
This field contains a value that indicates the last I/O operation being
performed by OS/390 C/C++ at the time the error occurred. These values
are shown in Table 30 on page 231.

«8¬ __msg
This may contain the system error messages from read or write operations
emitted from the BSAM SYNADAF macro instruction. This field will not
always be filled. If you print this field using the %s format, you should
print the string starting at the sixth position because of possible null
characters found in the first 6 characters. Special messages for PDSEs are
contained in the positions 136 through 184. See the Data Administration
manual as listed in OS/390 Information Roadmap for more information.

This field is used by the SIGIOERR handler.

Figure 33 demonstrates how to print the __amrc structure after an error has
occurred to get information that may help you to diagnose an I/O error.

CBC3GDI1

/* this example demonstrates how to print the __amrc structure */
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
FILE *fp;
__amrc_type save_amrc;
char buffer[80];
int i = 0;

/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, lrecl=80");
if (fp == NULL) exit(99);

memset(buffer, 'A', 80);

Figure 33. Example of Printing the __amrc Structure (Part 1 of 2)

Chapter 18. Debugging I/O Programs 229

The program writes to a file until it is full. When the file is full, the program fails.
Following the I/O failure the program makes a copy of the __amrc structure, and
prints the number of successful writes to the file, the errno, the __last_op code, the
abend system code and the return code.

Using the __amrc2 Structure

The __amrc2 structure is an extension of __amrc. Only 2 fields are defined for
__amrc2. Like the __amrc structure, __amrc2 is changed during system I/O and
some C specific error situations.

Note: See “Using the SIGIOERR Signal” on page 234 for information on restrictions
that exist when comparing file pointers if you are using the __amrc2
structure.

Figure 34 shows the __amrc2 structure as it appears in stdio.h.

«1¬ This field is a secondary error code that is used to store the reason code
from specific macros. The __last_op codes that can be returned to __amrc2
are __BSAM_STOW, __BSAM_BLDL, __IO_LOCATE, __IO_RENAME, __IO_CATALOG
and __IO_UNCATALOG. For information on the macros associated with these
codes see Table 30 on page 231.

For further information about the macros see the DFSMS/MVS DFSMSdfp
Diagnosis Reference.

«2¬ This field, __fileptr, of the __amrc2 structure is used by the signal
SIGIOERR to pass back a FILE pointer that can then be passed to fldata() to
get the name of the file causing the error. The __amrc2__fileptr will be
NULL if a SIGIOERR is raised before the file has been successfully opened.

/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

save_amrc = *__amrc; /* need copy of __amrc structure */

printf("number of successful fwrites of 80 bytes = %d\n", i);

printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",
errno,
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code.__abend.__rc);

return 0;
}

Figure 33. Example of Printing the __amrc Structure (Part 2 of 2)

struct {
long int __error2; «1¬ */
FILE *__fileptr; «2¬ */
long int __reserved[6];

}

Figure 34. __amrc2 Structure

230 OS/390 V2R8.0 C/C++ Programming Guide

Using __last_op Codes

The __last_op field is the most important of the __amrc fields. It defines the last
I/O operation OS/390 C/C++ was performing at the time of the I/O error. You
should note that the structure is neither cleared nor set by non-I/O operations so
querying this field outside of a SIGIOERR handler should only be done immediately
after I/O operations. Table 30 lists __last_op codes you may receive and where to
look for further information.

Table 30. __last_op Codes and Diagnosis Information

Code Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at
initialization.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg
(errno == 66) filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg
(errno == 65) filled in).

__BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

__BSAM_STOW Sets __error with return code from OS STOW macro.

__TGET_READ Sets __error with return code from TSO TGET macro.

__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__IO_RDJFCB Sets __error with return code from I/O RDJFCB macro.

__IO_TRKCALC Sets __error with return code from I/O TRKCALC macro.

__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.

__IO_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

__IO_CATALOG Sets __error with return code from I/O CAMLST CAT. The
associated macro is CATALOG.

__IO_UNCATALOG Sets __error with return code from I/O CAMLST UNCAT.
The associated macro is CATALOG.

__IO_RENAME Sets __error with return code from I/O CAMLST
RENAME.

__SVC99_ALLOC Sets __alloc structure with info and error codes from SVC 99
allocation.

__SVC99_ALLOC_NEW Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

__SVC99_UNALLOC Sets __unalloc structure with info and error codes from SVC
99 unallocation.

Chapter 18. Debugging I/O Programs 231

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__C_TRUNCATE Set when OS/390 C/C++ truncates output data. Usually
this is data written to a text file with no newline such that
the record fills up to capacity and subsequent characters
cannot be written. For a record I/O file this refers to an
fwrite() writing more data than the record can hold.
Truncation is always of rightmost data. There is no return
code.

__C_FCBCHECK Set when OS/390 C/C++ FCB is corrupted. This is due to a
pointer corruption somewhere. File cannot be used after
this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there
is no room left in a physical record for anymore double
byte characters. A new-line is not acceptable at this point.
Truncation will continue to occur until an SI is written or
the file position is moved. Cannot happen if MB_CUR_MAX is
1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to
start any DBCS string or else when a redundant SO is
written to the file before an SI. Cannot happen if
MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start
a DBCS string and data was written anyway, with an SI to
end it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double
byte character is completed, thereby forcing OS/390 C/C++
to fill in the last byte of the DBCS string with a padding
byte X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a partitioned dataset being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets
__rc and __fdbk fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

232 OS/390 V2R8.0 C/C++ Programming Guide

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_GET Set when the last op was a low level VSAM GET; if the
GET fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the
PUT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if
the ENDREQ fails, sets __rc and __fdbk in the __amrc
struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,
otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,
otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if
an I/O abend occurred.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if
an I/O abend occurred.

__QSAM_CLOSE Sets __error to result of OS CLOSE macro.

__QSAM_OPEN Sets __error to result of OS OPEN macro.

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails,
stores abend code in __amrc.__code.__abend.__syscode,
reason code in __amrc.__code.__abend.__rc.

__HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during
termination. If DELETE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a hiperspace.
If READ fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace. If
WRITE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write
to a hiperspace. If EXTEND fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ
TD.

Chapter 18. Debugging I/O Programs 233

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__LFS_OPEN Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_CLOSE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_READ Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_WRITE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_LSEEK Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_FSTAT Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

Using the SIGIOERR Signal

SIGIOERR is a signal used by the library to pass control to an error handler when
an I/O error occurs. The default action for this signal is SIG_IGN. Setting up a
SIGIOERR handler is like setting up any other error handler. The example in
Figure 35 adds a SIGIOERR handler to the example shown in Figure 33 on page 229.
Note the way fldata() and the __amrc2 field __fileptr are used to get the name of
the file that caused the error.

CBC3GDI2

#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

Figure 35. Example of Using SIGIOERR (Part 1 of 2)

234 OS/390 V2R8.0 C/C++ Programming Guide

When control is given to a SIGIOERR handler, the __amrc2 structure field __fileptr
will be filled in with a file pointer. The __amrc2__fileptr will be NULL if a
SIGIOERR is raised before the file has been successfully opened. The only operation
permitted on the file pointer is fldata(). This operation can be used to extract
information about the file that caused the error. Other than freopen() and
fclose(), all I/O operations will fail since the file pointer is marked invalid. Do
not issue freopen() or fclose() in a SIGIOERR handler that returns control. This
will result in unpredictable behavior, likely an abend.

void iohdlr(int);

#ifdef __cplusplus
}

#endif

int main(void) {
FILE *fp;
char buffer[80];
int i = 0;

signal(SIGIOERR, iohdlr);

/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, lrecl=80");
if (fp == NULL) exit(99);

memset(buffer, 'A', 80);

/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

printf("number of successful fwrites of 80 bytes = %d\n", i);

return 0;
}
void iohdlr (int signum) {

__amrc_type save_amrc;
__amrc2_type save_amrc2;
char filename[FILENAME_MAX];
fldata_t info;

save_amrc = *__amrc; /* need copy of __amrc structure */
save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */

/* get name of file causing error from fldata */

if (fldata(save_amrc2.__fileptr, filename, &info) == 0)
printf("error on file %s\n",filename);

perror("io handler"); /* give errno message */
printf("lastop=%d syscode=%X rc=%d\n",

save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code.__abend.__rc);

signal(SIGIOERR, iohdlr);
}

Figure 35. Example of Using SIGIOERR (Part 2 of 2)

Chapter 18. Debugging I/O Programs 235

If you choose not to return from the handler, the file is still locked from all
operations except fldata(), freopen(), or fclose(). The file is considered open and
can prevent other incorrect access, such as an MVS sequential file opened more
than once for a write. Like all other files, the file is closed automatically at
program termination if it has not been closed explicitly already.

When you exit a SIGIOERR handler and do not return, the state of the file at closing
is indeterminate. The state of the file is indeterminate because certain control block
fields are not set correctly at the point of error and they do not get corrected unless
you return from the handler.

For example, if your handler were invoked due to a truncation error and you
performed a longjmp() out of your SIGIOERR handler, the file in error would
remain open, yet inaccessible to all I/O functions other than fldata(), fclose(), and
freopen(). If you were to close the file or it was closed at termination of the
program, it is still likely that the record that was truncated will not appear in the
final file.

You should be aware that for a standard stream passed across a system() call, the
state of the file will be indeterminate even after you return to the parent program.
For this reason, you should not jump out of a SIGIOERR handler. For further
information on system() calls and standard streams, see “Chapter 10. Using C and
C++ Standard Streams and Redirection” on page 83.

I/O with files other than the file causing the error is perfectly valid within a
SIGIOERR handler. For example, it is valid to call printf() in your SIGIOERR
handler if the file causing the error is not stdout. Comparing the incoming file
pointer to the standard streams is not a reliable mechanism of detecting whether
any of the standard streams are in error. This is because the file pointer in some
cases is only a pointer to a file structure that points to the same __file as the
stream supplied by you. The FILE pointers will not be equal if compared, but a
comparison of the __file fields of the corresponding FILE pointers will be. See the
stdio.h header file for details of type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a
special log file in your handler to issue messages about the error.

236 OS/390 V2R8.0 C/C++ Programming Guide

Part 3. Interlanguage Calls with OS/390 C/C++

This part describes OS/390 C/C++ considerations about interlanguage calls in the
OS/390 Language Environment. For complete information about interlanguage
calls (ILCS) with OS/390 C/C++ and OS/390 Language Environment, refer to
OS/390 Language Environment Writing Interlanguage Applications.
v “Chapter 19. Using Linkage Specifications in C++” on page 239
v “Chapter 20. Combining C or C++ and Assembler” on page 241

© Copyright IBM Corp. 1996, 1999 237

238 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 19. Using Linkage Specifications in C++

This section describes how you can make linkages between C++ and assembler, C,
COBOL, PL/I, or FORTRAN. For more complete information on making
interlanguage calls to and from C++, see OS/390 Language Environment Writing
Interlanguage Applications.

Syntax for Linkage

You can create linkages between C++ and other languages by using linkage
specifications with the following syntax:
extern "string-literal" { [declaration-list] }
extern "string-literal" declaration

declaration-list:
declaration
declaration-list declaration

string-literal specifies the linkage associated with a particular function that is
not a class member (C++ methods cannot have COBOL linkage). The valid values
for string-literal in OS/390 C++ include:

"C++" Default

"C" C linkage

"OS" Operating System linkage

"COBOL" COBOL linkage

"PLI" PL/I linkage

"FORTRAN" FORTRAN linkage

If OS/390 C++ does not recognize the value of string-literal, it uses C linkage.

Kinds of Linkage used by C++ Interlanguage Programs

The following table describes the kinds of linkage used by C++ interlanguage
programs.

What calls or is
called by C++
program

Kind of linkage
used

Description of linkage Example

Assembler, GDDM,
or ISPF

OS Basic linkage defined by the
operating system. Use of OS
linkage with assembler is
detailed in “Specifying
Linkage for C or C++ to
Assembler” on page 241.

extern "OS"
{ ... }

PL/I PLI Modification of OS linkage.
It forces the compiler to read
and write parameter lists
using PL/I linkage
conventions.

extern "PLI"
{ ... }

© Copyright IBM Corp. 1996, 1999 239

What calls or is
called by C++
program

Kind of linkage
used

Description of linkage Example

COBOL COBOL Forces the compiler to read
and write parameter lists
using COBOL linkage
conventions. All calls from
C++ to COBOL must be
void functions.

extern "COBOL"
{ ... }

FORTRAN FORTRAN Forces the compiler to read
and write parameter lists
using FORTRAN linkage
conventions.

extern "FORTRAN"
{ ... }

C C Forces the compiler to read
and write parameter lists
using C linkage conventions.
C code and the Data
Window Services (DWS)
product both use C linkage.

extern "C"
{ ... }

In the following example, a function is prototyped in a piece of C++ code and
uses, by default, C++ linkage.
void CXX_FUNC (int); // C++ linkage

Note that C++ is case-sensitive, but PL/I, COBOL, assembler, and FORTRAN are
not. In these languages, external names are mapped to uppercase. To ensure that
external names match across interlanguage calls, code the names in uppercase in
the C++ program, supply an appropriate #pragma map specification, or use the
NOLONGNAME compiler option. This will truncate and uppercase names for functions
without C++ linkage.

To reference functions defined in other languages, you should use a linkage
specification with a literal string that is one of "C", "OS", "PLI", "COBOL", or
"FORTRAN". For example:
extern "OS" {
int ASMFUNC1(void);
int ASMFUNC2(int);

}

This specification declares the two functions ASMFUNC1 and ASMFUNC2 to have
assembler linkage. The function names are case-sensitive and must match the
definition exactly. You should also limit identifiers to 8 or fewer characters.

Use the reference type parameter (type&) in C++ prototypes if the called language
does not support pass-by-value parameters or if the called routine expects a
parameter to be passed by reference.
v OS/390 C/C++ supports the long long type for FORTRAN linkage functions.
v A C or C++ signed long long int maps to a FORTRAN INTEGER.
v A C or C++ unsigned long long int maps to FORTRAN LOGIC.
v OS/390 C/C++ does not support other non-C or C++ linkage functions.

Note: To have your program be callable by any of these other languages, include
an extern declaration for the function that the other language will call.

240 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 20. Combining C or C++ and Assembler

This chapter describes how to communicate between OS/390 C/C++ and
assembler programs.

To write assembler code that can be called from OS/390 C/C++, use the prolog
and epilog macros described in this chapter. For more information on how the
OS/390 Language Environment works with assembler, see OS/390 Language
Environment Writing Interlanguage Applications.

Access to OS/390 UNIX is intended to be through the OS/390 UNIX C/C++
extensions only. The OS/390 C/C++ compiler does not support the direct use of
OS/390 UNIX callable services such as the assembler interfaces. You should not
directly use OS/390 UNIX callable services from your OS/390 C/C++ application
programs, because problems can occur with the processing of the following:
v Signals
v Library transfers
v fork()

v exec()

v Threads

There are comparable OS/390 C/C++ functions for most OS/390 UNIX callable
services, and you should use those instead. Do not call assembler programs that
access OS/390 UNIX callable services.

Establishing the OS/390 C/C++ Environment

Before you can call an OS/390 C/C++ function from assembler, you must establish
a suitable environment.
v If you are using the C language, do one of the following:

– Call the assembler program from a C main(). This will establish the C
environment. You can then call assembler from C by following the OS linkage
conventions. Once you are in assembler, you can call any C function. See
“Calling Run-Time Library Routines from Assembler — C Example” on
page 245 for an example.

– Use preinitialization to set up the OS/390 Language Environment. See
“Retaining the C Environment Using Preinitialization” on page 248 for
information.

v If you are using C++, call the assembler program from a C++ main(). This will
establish the C++ environment. You can then call assembler from C++ by
following the OS linkage conventions. Once you are in assembler, you can call
any C++ function. For an example, see “Calling Run-Time Library Routines from
Assembler — C++ Example” on page 246.

Specifying Linkage for C or C++ to Assembler

The process for specifying the linkage to assembler differs for C and for C++. In C,
a #pragma linkage directive is used, while in C++ a linkage specifier is used.

© Copyright IBM Corp. 1996, 1999 241

v Under C, a #pragma linkage directive enables the compiler to generate and
accept parameter lists, using a linkage convention known as OS linkage.
Although functionally different, both calling an assembler routine and being called
by one are handled by the same #pragma. Its format is:
#pragma linkage(identifier, OS)
where identifier is the name of the assembler function to be called from C or the
C function to be called from assembler. The #pragma linkage directive must
occur before the call to the entry point.

v Under C++, a linkage specifier enables the compiler to generate and accept
parameter lists, using a linkage convention known as OS linkage. Although
functionally different, both calling an assembler routine and being called by one
are handled by the same linkage specifier. The format of the linkage specifier is:
extern "OS" {

fn1 desc;
fn2 desc;...

}

where fnx desc is the name of the OS entry point.

You can call OS/390 C/C++ library functions when using the OS linkage, but you
must do this indirectly, through intervening C or C++ code, as shown in Figure 37
on page 245.

In general, any type that can be passed between C and assembler can also be
passed between C++ and assembler. However, if a C++ class that uses features not
available to assembler (such as virtual functions, virtual base classes, private and
protected data, or static data members) is passed to assembler, the results will be
undefined.

Note: In C++, a structure is just a class declared with the keyword struct its
members and base classes are public by default. A union is a class declared
with the keyword union its members are public by default, and it holds only
one member at a time.

Parameter List for OS Linkage

A parameter list for OS linkage is a list of pointers. The most significant bit of the
last parameter in the parameter list is turned on by the compiler when the list is
created.

If a parameter is an address-type parameter, the address itself is directly stored
into the parameter list. Otherwise, a copy is created for a value parameter and the
address of this copy is stored into the parameter list.

The type of a parameter is specified by the prototype of a function. In the absence
of a prototype, the creation of a parameter list is determined by the types of the
actual parameters passed to the function. Figure 36 on page 243 shows an example
of the parameter list for OS linkage.

In the list, the first and third parameters are value parameters, and the second is
an address parameter.

242 OS/390 V2R8.0 C/C++ Programming Guide

Using Standard Macros

To communicate properly, assembler routines must preserve the use of certain
registers and particular storage areas, in a way that is consistent with code from
the C or C++ compiler. OS/390 C/C++ provides three macros for use with
assembler routines. These macros are in CEE.SCEEMAC. They must be assembled
using Assembler H. The macros are:

EDCPRLG Generates the prolog for assembler code

EDCEPIL Generates the epilog for assembler code

EDCDSAD Accesses automatic memory

EDCPROL, the old version of EDCPRLG, is shipped for compatibility with Version 1 of
C/370 and is unchanged. However, you should use EDCPRLG if you can.

The advantage of writing assembler code using these macros is that the assembler
routine will then participate fully in the OS/390 C/C++ environment, enabling the
assembler routine to call OS/390 C/C++ functions. The macros also manage
automatic storage, and make the assembler code easier to debug because the
OS/390 Language Environment control blocks for the assembler function will be
displayed in a formatted traceback or dump. See Debug Tool User’s Guide and
Reference for further information on OS/390 Language Environment tracebacks and
dumps.

Assembler Prolog

Use the EDCPRLG macro to generate assembler prolog code at the start of assembler
routines.

ÊÊ EDCPRLG
name USRDSAL=ulen

BASEREG=register
DSALEN=dlen

ÊÍ

name Is inserted in the prolog. It is used in the processing of certain
exception conditions and is useful in debugging and in reading
memory dumps. If name is absent, the name of the current CSECT
is used.

ptr of P1 copy

R1

ptr of P1 copy P2 ptr of P3 copy ...

copy of P1 copy of P3

Figure 36. Example of Parameter Lists For OS Linkages

Chapter 20. Combining C or C++ and Assembler 243

USRDSAL=ulen Is used only when automatic storage (in bytes) is needed. To
address this storage, see the EDCDSAD macro description. The ulen
value is the requested length of the user space in the DSA.

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is Register 3. If register equals NONE, no
code is generated for establishing addressability.

DSALEN=dlen Is the total requested length of the DSA. The default is 120. If
fewer than 120 bytes are requested, 120 bytes are allocated. If both
dlen and ulen are specified, then the greater of dlen or ulen+120 is
allocated. If DSALEN=NONE is specified, no code is generated for DSA
storage allocation, and R13 will still point to the caller’s DSA.
Therefore, you should not use the EDCEPIL macro to terminate the
assembler routine. Instead, you have to restore the registers
yourself from the current DSA. To do this, you can use an
assembler instruction such as
LM 14,12,12(R13)
BR 14

You should not use EDCDSAD to access automatic memory if you
have specified DSALEN=NONE, since DSECT is addressable using R13.

Assembler Epilog

Use the EDCEPIL macro to generate assembler epilog code at the end of assembler
routines. Do not use this macro in conjunction with an EDCPRLG macro that specifies
DSALEN=NONE.

ÊÊ EDCEPIL
name

ÊÍ

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

Accessing Automatic Memory

Use the EDCDSAD macro to access automatic memory. Automatic memory is reserved
using the USRDSAL, or the DSALEN operand of the EDCPRLG macro. The length of the
allocated area is derived from the ulen and/or dlen values specified on the EDCPRLG
macro. EDCDSAD generates a DSECT, which reserves space for the stack frame needed
for the C or C++ environment.

ÊÊ EDCDSAD
name

ÊÍ

name Is the optional name operand, which then becomes the name of the
generated DSECT.

The DSECT is addressable using Register 13. Register 13 is initialized by the prolog
code. If you have specified DSALEN=NONE with EDCPRLG you should not use EDCDSAD.

244 OS/390 V2R8.0 C/C++ Programming Guide

Calling Run-Time Library Routines from Assemble r — C Example

The following C example shows how to call library routines from assembler. There
are three parts to this example. The first part, shown in Figure 37, is a trivial C
routine that establishes the C run-time environment.

CBC3GCA4

The second part of the example, shown in Figure 38, is the assembler routine. It
calls an intermediate C function that invokes a run-time library function.

CBC3GCA2

Finally, the intermediate C routine calls a run-time library function as shown in
Figure 39 on page 246.

/* this example demonstrates C/Assembler ILC */
/* part 1 of 3 (other files are CBC3GCA2, CBC3GCA5) */

#pragma linkage(CALLPRTF, OS)

int main(void) {
CALLPRTF();

return(0);
}

Figure 37. Establishing the C Run-Time Environment

* this example demonstrates ILC with Assembler-part 2 of 3
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in r1
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*
INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character

END

Figure 38. Calling an Intermediate C Function from Assembler OS Linkage

Chapter 20. Combining C or C++ and Assembler 245

CBC3GCA5

Calling Run-Time Library Routines from Assembler — C++
Example

The following C++ example shows how to call library routines from assembler.
There are three parts to this example. The first part shown in Figure 40, is a trivial
C/C++ routine that establishes the C/C++ run-time environment. It uses extern OS
to indicate the OS linkage and calls the assembler routine.

CBC3GCA1

The second part of this example, shown in Figure 41 on page 247 is the assembler
routine. It calls an intermediate C/C++ routine that invokes a run-time library
function.

/* this example demonstrates C/Assembler ILC */
/* part 3 of 3 (other files are CBC3GCA2, CBC3GCA4) */
/***\
* This routine is an interface between assembler code *
* and the OS/390 C/C++ library function printf(). *
* OS linkage will not tolerate C-style variable length *
* parameter lists, so this routine is specific to a *
* formatting string and a single 4-byte substitution *
* parameter. It's specified as an int here. *

/***/

#pragma linkage(_printf4,OS) /*function will be called from assembler*/

#include <stdio.h>

#pragma map(_printf4,“@PRINTF4”)

int _printf4(char *str,int i) {

return printf(str,i); /* call run-time library function /

}

Figure 39. Intermediate C Routine Calling a Run-Time Library Function

// this example demonstrates C++/Assembler ILC
// part 1 of 3 (other files are CBC3GCA2, CBC3GCA3)

extern "OS" int CALLPRTF(void);

int main(void) {
CALLPRTF();

}

Figure 40. Establishing the C/C++ Run-Time Environment

246 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCA2

The third part of the example, shown in Figure 42, is an intermediate C routine
that calls a run-time library function.

CBC3GCA3

Register Content at Entry to an ASM Routine Using OS linkage

When control is passed to an assembler routine that uses OS linkage, the contents
of the registers are as follows:

Register Contents

R0 Undefined.

R1 Points to the parameter list. The parameter list consists of a vector

* this example demonstrates ILC with Assembler (part 2 of 3)
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in r1
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*
INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character

END

Figure 41. Calling an Intermediate C/C++ Function from Assembler using OS Linkage

// this example demonstrates C/C++/Assembler ILC
// part 3 of 3 (other files are CBC3GCA1, CBC3GCA2)

// This routine is an interface between assembler code
// and the Run-time library function printf(). OS linkage
// will not tolerate C-style variable length parameter lists,
// so this routine is specific to a formatting string
// and a single 4-byte substitution parameter. It's
// specified as an int here.

#include <stdio.h>
#pragma map(_printf4,"@PRINTF4")

extern "OS" int _printf4(char *str,int i) {
//function will be called from assembler

return printf(str,i); // call Run-time library function

}

Figure 42. Intermediate C/C++ Routine Calling a Run-Time Library Function

Chapter 20. Combining C or C++ and Assembler 247

of addresses, each of which points to an actual parameter. The
address of the last parameter has its high-order bit set on, to
indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called
routine but must be restored to its entry value if it calls a routine
that expects an OS/390 Language Environment environment.

R13 Points to the caller’s DSA. Part of the DSA is used by EDCPRLG and
EDCEPIL to save and restore registers. EDCPRLG can change R13 so
that it points to the called routine’s DSA from the caller’s DSA.

R14 The return address.

R15 The address of the entry point being called.

Register Content at Exit from an ASM Routine to OS/390 C/C++

Registers have the following content when control returns to the point of call:

Register Contents

R0 Undefined.

R1 Undefined.

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and
EDCPRLG.

R14 Return address.

R15 Return value for integer types (long int, short int, char) and
pointer types. Otherwise set to 0.

FP0 Returns value for float or double parameters.

FP0 Returns value if long double is passed.

FP2 Returns value if long double is passed.

Note: When in FLOAT(AFP) mode the callee must save and restore FPR’s 8 through
15.

All other floating point registers are undefined.

Retaining the C Environment Using Preinitialization

Note: This information pertains only to users of C programs.

If an assembler routine called the same C program repeatedly, the creation and
termination of the C environment for each call would be inefficient. The solution is
to create the C environment only once by preinitializing the C program. This
section discusses the existing OS/390 C preinitialization interface only for reasons
of compatibility. Under the OS/390 Language Environment, you should use the
callable service CEEPIPI instead to preinitialize the environment for your
applications. For more information about this service, see OS/390 Language
Environment Writing Interlanguage Applications.

If you are calling a C program multiple times from an assembler program, you can
establish the C environment and then repeatedly invoke the C program using the

248 OS/390 V2R8.0 C/C++ Programming Guide

already established C environment. You incur the overhead of initializing and
terminating the C environment only once instead of every time you invoke the C
program.

Because C detects programs that can be preinitialized dynamically during
initialization, you do not have to recompile the program or link-edit it again.

To maintain the C environment, you start the program with the C entry CEESTART,
and pass a special Extended Parameter List that indicates that the program is to be
preinitialized.

When you use preinitialization, you are initializing the library yourself with the
INIT call and terminating it yourself with the TERM call. In a non-preinitialized
program, the library closes any files you left open and releases storage. It does not
do this in a preinitialized program. Therefore, for every invocation of your
preinitialized program, you must release all allocated resources as follows:
v Close all files that were opened
v Free all allocated storage
v Release all fetched modules

If you do not release all allocated resources, you will waste memory.

Setting Up the Interface for Preinitializable Programs

The interface for preinitializing programs is shown in Figure 43.

Chapter 20. Combining C or C++ and Assembler 249

The LL field is a halfword containing the value of 16. The halfword that follows
must contain 0 (zero).

The Request field is 8 characters that can contain:

'INIT '
Initializes the C environment and, returns two tokens that represent the

R1
X'80000000' +

address

X'80000000' +

address

LL

LL

00 Request
Extended plist

address

Length of EPL

Token 1

Token 2

0

address

request modifier

address

address

Runtime Options

argc

pointer to
argv vector

pointer to
argv [0]

count of fields
defined

address of get-
storage routine

pointer to
argv [1]

user-defined
word

address of free-
storage routine

. . .

address of work
area for DSAS etc.

address of
exception router

. . .

pointer to
argv [argc-1]

address of
load routine

address of
attention router

0

address of
delete routine

address of
message router

argv [0]
(program name)

argv [1]

argv [argc-1]

Figure 43. Interface for Preinitializable Programs

250 OS/390 V2R8.0 C/C++ Programming Guide

environment, but does not run the program. Token 1 and token 2 must both
have the value of zero on an INIT call; otherwise, preinitialization fails.

You can initialize only one C environment at a time. However, you can make
the sequence of calls to INIT, CALL, and TERM more than once.

'CALL '
Runs the C program using the environment established by the INIT request,
and exits from the environment when the program completes. The CALL request
uses the two tokens that were returned by the INIT request so that C can
recognize the proper environment.

You can also initialize and call a C program by passing the CALL parameter
with two zero tokens. The C program processes this request as an INIT
followed by a CALL. You can still call the program repeatedly, but you should
pass the two zero tokens only on the first call. Once the C environment is
initialized, the values of the tokens are changed, and must not be modified on
any subsequent calls.

Calling a C program other than the one used to initialize the C environment is
not supported, especially if write-able static is needed by the program being
called. This is because write-able static was allocated and initialized based
upon the program used to initialize the C environment.

'TERM '
Terminates the C environment but does not run the program.

The program used to terminate the C environment should be the same as the
program used to initialize the C environment. Usage of a different program to
terminate the C environment is unsupported.

'EXECUTE '
Performs INIT, CALL, and TERM in succession.

No other value is valid.

The Extended PLIST address field is a pointer to the Extended Parameter List
(EPL). The EPL is a vector of fullwords that consists of:

Length of Extended Parameter List
The length includes the 4 bytes for the length field. Valid decimal values
are 20, 28, and 32.

First and Second C Environment Tokens:
These tokens are automatically returned during initialization; or, you can
use zeros for them when requesting a preinitialized CALL, and the effect is
that both an INIT and a CALL are performed.

Pointer to Your Program Parameters:
The layout of the parameters is shown in Figure 43 on page 250, Interface
for Preinitialization Programs. If no parameter is specified, use a fullword
of zeros.

Pointer to Your Run-Time Options:
To point to the character string of run-time options, refer to Figure 43. The
character string consists of a halfword LL field that contains the length of
the list of run-time options, followed by the actual list of run-time options.

Chapter 20. Combining C or C++ and Assembler 251

Pointer to an Alternative Main:
This field is not supported in C. However, if you want to use the seventh
or eighth fields, use a full word of zeros as a place holder.

Pointer to the Service Vector:
If you want certain services (such as load and delete) to be carried out by
other code supplied by you (instead of, for example, by the LOAD and
DELETE macros), use this field to point to the service vector. See Figure 43
on page 250.

Request Modifier Code:
When your request is INIT, CALL, or EXECUTE, you can specify any of the
following request modifier codes:

0 Does not change the request.

1 Loads all common library modules as part of the preinitialized
environment.

2 Loads all common and C library modules as part of the
preinitialized environment.

3 Reinitializes the environment. If the environment is already
established, frees all HEAP storage and any ISA overflow segments.

Do not use this code if subsequent calls depend on storage that is
still being allocated by previous calls.

4 Allows you to create more than one environment. The new
environment is chained with existing request modifier 4
environments or a batch environment, where possible, so that C
memory file sharing among the environments is possible. Details
on chaining and C memory file sharing support are covered in
“Multiple Preinitialization Compatibility Interface C Environments”
on page 260.

The user-supplied service routine vector is not supported when
you use request modifier value 4 in the extended parameter list.
Do not code this if you are using the service routine vector. If you
do, an abnormal end will occur.

5 Allows you to create more than one environment. The new
environment is separated from other environments which may
already exist. This environment does not support sharing of C
memory files with other preinitialization compatibility interface
environments.

When your request is TERM, you can specify either of the following request
modifier codes:

0 Does not change the request.

1 Forces termination. Ends the C environment without any of the
usual checks.

Code this field only when you cannot request normal termination.
You must ensure that the environment you are forcing to end is
not in use.

The length you specify in the first field of the extended parameter list makes it
known whether you have specified a request modifier code or not.

252 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|
|
|
|
|

|
|
|
|

||
|
|
|
|

Run-Time options are applied only at initialization and remain until termination.
You must code PLIST(MVS) in the called C program in order for the
preinitialization to work.

The options ARGPARSE|NOARGPARSE have no effect on preinitialized programs. The
assembler program has to provide parameters in the form expected by the C
program. Thus, if the C program is coded for the NOARGPARSE option, the argc
should be set to 2, and parameters passed as a single string.

Preinitializin g a C Program

A preinitialized C program is displayed in Figure 44 on page 254 which shows how
to:
v Establish the C environment using an INIT request
v Pass run-time parameters to the C initialization routine
v Set up a parameter to the C program
v Repeatedly call a C program using the CALL request
v Communicate from the C program to the driving program using a return code
v End the C program using the TERM request

The example C program is very simple. The parameters it expects are the file name
in argv[1] and the return code in argv[2]. The C program printf()s the value of
the return code, writes a record to the file name, and decrements the value in
return code.

The assembler program that drives the C program establishes the C environment
and repeatedly invokes the C program, initially passing a value of 5 in the return
code. When the return code set by the C program is zero, the assembler program
terminates the C environment and exits.

The program in Figure 44 on page 254 does not include the logic that would verify
the correctness of any of the invocations. Such logic is imperative for proper
operations.

Chapter 20. Combining C or C++ and Assembler 253

CBC3GCA6

CBC3GCA6 TITLE 'TESTING PREINITIALIZED C PROGRAMS'
***---
*** this example shows how to preinitialize a C program
*** part 1 of 3 (other files are CBC3GCA7 and CBC3GCA8)
*** Function: Demonstrate the use of Preinitialized C programs
*** Requests used: INIT, CALL, TERM
*** Parameters to C program: FILE_NAME, RUN_INDEX
*** Return from C Program: RUN_INDEX
***---
CBC3GCA6 CSECT
CBC3GCA6 RMODE ANY
CBC3GCA6 AMODE ANY

EXTRN CEESTART C Program Entry
STM R14,R12,12(R13) Save registers
BALR R3,0 Set base register
USING *,R3 Establish addressability
ST R13,SVAR+4 Set back chain
LA R13,SVAR Set this module's save area

***---
*** Initialize
***---
P_INIT DS 0H

MVC P_RQ,INIT Set INIT as the request
LA R1,PALIPT Load Parameter pointer
L R15,CEP Load C Entry Point
BALR R14,R15 Invoke C Program

***---
*** The C environment has been established.
*** Parameters include RUN_INDEX which will be counted down
*** by the C program. When the RUN_INDEX is zero, termination
*** will be requested.
*** The following code will set up C program parameters and
*** CALL request, invoke the C program and test for termination.
***---

LA R1,PGPAPT Pointer to C program parameters
ST R1,EP_PGPA ... to extended parameter list

DO_CALL DS 0H
MVC P_RQ,CALL set up CALL request
LA R1,PALIPT set parameter pointer
L R15,CEP set entry point
BALR R14,R15 invoke C program
L R0,RUN_INDEX Test Return Code
LTR R0,R0
BNZ DO_CALL Repeat CALL

Figure 44. Preinitializing a C Program (CBC3GCA6) (Part 1 of 3)

254 OS/390 V2R8.0 C/C++ Programming Guide

***---
*** C requested termination.
*** Set up TERM request and terminate the environment
***---
DO_TERM DS 0H

MVC P_RQ,TERM set up TERM request
SR R1,R1 mark no parameters
ST R1,EP_PGPA
LA R1,PALIPT set parameter pointer
L R15,CEP set entry point
BALR R14,R15 invoke termination

***---
*** Return to system
***---
XIT DS 0H

L R13,4(13)
LM R14,R12,12(13)
BR R14

***---
*** Constants and work areas
***---
VARCON DS 0D
PALIPT DC A(X'80000000'+PALI) Address of Parameter list
CEP DC A(CEESTART) Entry point address
***---
PALI DS 0F Parameter list
P_LG DC H'16' Length of the list

DC H'0' Must be zero
P_RQ DC CL8' ' Request - INIT,CALL,TERM,EXECUTE
P_EP_PT DC A(EPALI) Address of extended plist
***---
EPALI DS 0F Extended Parameter list

DC A(EP_LG) Length of this list
EP_TCA DC A(0) First token
EP_PRV DC A(0) Second token
EP_PGPA DC A(PGPAPT) Address of C program plist
EP_XOPT DC A(XOPTPT) Address of run-time options
EP_LG EQU *-EPALI Length of this list
***---
*** C program plist in argc, argv format
***---
PGPAPT DC F'3' Number of parameters (argc)

DC A(PGVTPT) parameter vector pter (argv)
PGVTPT DS 0A Parameter Vector

DC A(PGNM) Program name pointer (argv1)
DC A(FILE_NAME) File name pointer (argv2)
DC A(RUN_INDEX) Run index pointer (argv3)
DC XL4'00000000' NULL pointer

Figure 44. Preinitializing a C Program (CBC3GCA6) (Part 2 of 3)

Chapter 20. Combining C or C++ and Assembler 255

The program shown in Figure 45 on page 257 shows how to use the preinitializable
program.

***---
*** Run-Time options
***---
XOPTPT DC A(X'80000000'+XOPTLG) Run-Time options pter
XOPTLG DC AL2(XOPTSQ) Run-Time option list length
XOPTS DC C'STACK(4K) RPTSTG(ON)' Run-Time options list
XOPTSQ EQU *-XOPTS Run-Time options length
***---
PGNM DC C'CBC3GCA7',X'00' C program name
FILE_NAME DC C'PREINIT.DATA',X'00' File name for C program
RUN_INDEX DC F'5',X'00' changed by C Program
***---
*** Request strings for preinitialization
***---
INIT DC CL8'INIT'
CALL DC CL8'CALL'
TERM DC CL8'TERM'
EXEC DC CL8'EXECUTE'
***---
*** Assembler program's register save area
***---
SVAR DC 18F'0'

LTORG
***---
*** Register definitions
***---
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

Figure 44. Preinitializing a C Program (CBC3GCA6) (Part 3 of 3)

256 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCA7

/* this example shows how to use a preinitializable program */
/* part 2 of 3 (other files are CBC3GCA6 and CBC3GCA8) */

#pragma runopts(PLIST(MVS))

#include <stdio.h>
#include <stdlib.h>

#define MAX_MSG 50
#define MAX_FNAME 8

typedef int (*f_ptr)(int, char*);/* pointer to function returning int*/

int main(int argc, char **argv)
{
FILE *fp; /* File to be written to */
int *ptr_run; /* Pointer to the "run index" */
char *ffmsg; /* a pointer to the "fetched function msg"*/
char fname[MAX_FNAME+1]; /* name of the function to be fetched */
int fetch_rc; /* Return value of function invocation */
f_ptr fetch_ptr; /* Function pointer to fetched function */

/* Get the pointer to the "run index" */
ptr_run = (int *)argv[2];

if ((fp = fopen(argv[1],"a")) == NULL)
{
printf("Cannot open file %s\n",argv[1]);
ptr_run = 0; / Set to zero so it won't be called again */
return(0); /* Return to Assembler program */

}

/* Write the record to the file */
fprintf(fp,"Run index was %d.\n",*ptr_run);

/* Allocate the message returned from the fetched function */
if ((ffmsg=(char *)malloc(MAX_MSG + 1)) == NULL)
printf("ERROR -- malloc returned NULL\n");

/* fetch the function */
fetch_ptr = (f_ptr) fetch("MYFUNC");
if (fetch_ptr == NULL)
printf("ERROR - Fetch returned a null pointer\n");

/* execute the function */
fetch_rc = fetch_ptr(*ptr_run, ffmsg);

Figure 45. Using the Preinitializable Program (CBC3GCA7) (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler 257

CBC3GCA8

Return Codes

Preinitialized programs do not put their return codes in R15. If the address of the
return code is required, specify a parameter. The example on page on page 253
shows how you can use the RUN_INDEX parameter to evaluate the address of a
return code.

User Exits in Preinitializable Programs

C invokes user exits when initialization and termination are actually performed.
That is, the initialization user exit is invoked during the INIT request or the CALL
with the zero token request. Similarly, the termination user exit is called only
during the TERM request.

Run-Time Options

If run-time options are specified in the assembler program, the C program must be
compiled with EXECOPS in effect. EXECOPS is the default.

/* Write the function msg to file */
fprintf(fp,"%s\n",ffmsg);

/* Tell the user the value of the "run index" */
printf("Run index was %d.\n",*ptr_run);

/* Decrement the "run index" */
(*ptr_run)--;

/* Remember to close all opened files */
fclose(fp);

/* Remember to free all allocated storage */
free(fname);

/* Remember to release all fetched modules */
release((void(*)())fetch_ptr);

/* Return to Assembler program */
return(0);

}

Figure 45. Using the Preinitializable Program (CBC3GCA7) (Part 2 of 2)

/* this example shows how to use a preinitializable program */
/* part 3 of 3 (other files are CBC3GCA6 & CBC3GCA7) */

#include <string.h>

#pragma linkage(fetched, fetchable)

int fetched(int run_index, char *ffmsg) {
sprintf(ffmsg,"Welcome to myfunc: Run index was %d.",run_index);
return(0);

}

Figure 46. Using the Preinitializable Program (CBC3GCA8)

258 OS/390 V2R8.0 C/C++ Programming Guide

Calling a Preinitializable Program

Figure 47 shows sample JCL to run a preinitializable program in an OS/390
environment.

//youridA JOB
//*
// SET LIB='CEE'
// SET CMP='CBC'
//*
//PROCLIB JCLLIB ORDER=(&CMP..SCBCPRC)
//*===
//*--
//* ASSEMBLE THE DRIVING ASSEMBLER PROGRAM
//*--
//HLASM EXEC PGM=ASMA90,
// PARM='NODECK,OBJECT,LIST,ALIGN'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=&&OBJECT(ASSEM),SPACE=(80,(400,400,5)),
// DISP=(,PASS),UNIT=VIO,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSIN DD DSN=yourid.CBC3GCA6.ASM,DISP=SHR
//*===
//*---
//* COMPILE THE MAIN C PROGRAM
//*--
//COMP EXEC EDCC,INFILE='yourid.CBC3GCA7.C',
// OUTFILE='&&OBJECT(CMAIN),DISP=(OLD,PASS)',
// CPARM='NOOPT,NOSEQ,NOMAR',
// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//*===
//*---
//* COMPILE AND LINK THE FETCHED C PROGRAM
//*--
//CMPLK EXEC EDCCL,INFILE='yourid.CBC3GCA8.C',
// CPARM='NOOPT,NOSEQ,NOMAR',
// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//LKED.SYSLMOD DD DSN=&&LOAD(MYFUNC),DISP=(,PASS),
// UNIT=VIO,SPACE=(TRK,(1,1,5))

Figure 47. JCL for Running a Preinitializable C Program (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler 259

Multiple Preinitialization Compatibility Interface C
Environments

To establish multiple Preinitialized Compatibility Interface (PICI) environments,
you must specify either request modifier 4 or request modifier 5 in the extended
parameter list (EPL) at environment initialization.

Request Modifier 4 Environment Characteristics

Use request modifier 4 to establish an environment which is tolerant of an existing
environment. When a request modifier 4 environment is dormant, it is immune to
creation or termination of other environments.

Environments created using request modifier 4 normally intend to share C memory
files, but it is not required for the application to take advantage of this support. A
new environment of this type is chained to the currently active environment that
supports chaining, or it will set up a dummy environment which supports
chaining. This allows for C memory files to be shared.

The sharing of C memory files across request modifier 4 environments is only
supported within the boundary of the application. There are really only two types
of applications where request modifier 4 environments are involved. The first type
is a set of pure request modifier 4 environments; there are no batch environments.
The second type allows a single batch environment. In the second type, the batch
environment must be the first initialized and the last terminated.

If starting with non OS/390 Language Environment enabled assembler, the first
request modifier 4 environment creates a dummy environment (OS/390 Language

//*===
//*--
//* LINK THE ASSEMBLER DRIVER AND MAIN C PROGRAM
//*--
//LKED EXEC PGM=IEWL,PARM='MAP,XREF,LIST',
// COND=((4,LT,HLASM),(4,LT,COMP.COMPILE),(4,LT,CMPLK.LKED))
//OBJECT DD DSN=&&OBJECT,DISP=(OLD,PASS)
//SYSLIN DD *
INCLUDE OBJECT(ASSEM)
INCLUDE OBJECT(CMAIN)
ENTRY CBC3GCA6

/*
//SYSLIB DD DISP=SHR,DSN=&LIB..SCEELKED
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&&LOAD(PREINIT),DISP=(OLD,PASS)
//*===
//*--
//* RUN
//*--
//GO EXEC PGM=*.LKED.SYSLMOD,
// COND=(4,LT,LKED)
//STEPLIB DD DISP=OLD,DSN=&&LOAD
// DD DISP=SHR,DSN=&LIB..SCEERUN
//STDIN DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 47. JCL for Running a Preinitializable C Program (Part 2 of 2)

260 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

Environment region-level control blocks) in addition to its own. The dummy
environment remains pointed to by the TCB when the initialization is complete.
The next initialization using request modifier 4 recognizes an existing environment
that supports chaining and the new environment will be chained. This permits the
two environments to share C memory files. Request modifier 4 environments in
this model can be initialized and terminated in any order.

If starting with an OS/390 Language Environment batch environment (for
example, COBOL, PL/I or C), which supports chaining by default, and during
execution within that environment a call is made to an assembler routine which
initializes a request modifier 4 environment, the batch environment is recognized
and the new environment will be chained. This allows an initial batch environment
to share C memory files with the request modifier 4 environment. Request modifier
4 environments in this model can be initialized and terminated in any order, but
all request modifier environments must be terminated before the batch
environment is terminated.

Notes:

1. When an OS/390 Language Environment batch environment is chained with
request modifier 4 environments, the OS/390 Language Environment batch
environment must be the first environment that is initialized and the last
environment that is terminated. All request modifier 4 environments initialized
within the scope of a batch environment must be terminated prior to exiting
the batch environment. Failure to do so will leave the request modifier 4
environments in a state such that attempted call or termination requests will
result in unpredictable behavior.

2. Initialization of a request modifier 4 environment while running in a
non-sharable environment, such as a request modifier 5 environment, causes
the new request modifier 4 environment to be non-sharable.

Sharing C Memory Files with Request Modifier 4 Environments: You can use
request modifier 4 to create multiple Preinitialized Compatibility Interface (PICI) C
environments. When you create a new request modifier 4 environment, it is
chained under certain circumstances to the current environment.

The following list identifies the specific features that are or are not supported in
the multiple PICI C environment scenario:
v C memory files will be shared across all C environments (as long as at least one

C environment exists) that are on the chain. This includes all PICI C
environments that are initialized and possibly an initial batch C environment.

v Because the PICI C environments are chained, initialization and termination of
these PICI C environments can be performed in any order. The chaining also
requires that the C run-time library treat each PICI C environment as equal. In C
run-time library terms, each PICI C environment is considered a root enclave
(depth=0).

v Because there can be multiple C root enclaves, sharing of C standard streams
across the C root enclaves exhibits a special behavior. When a C standard stream
is referenced for the first time, its definition is made available to each of the C
root enclaves.

v C standard streams are inherited across the system() call boundary. When a PICI
C environment is initialized from a nested enclave, it does not inherit the
standard streams of the nested enclave. Instead, it shares the C standard stream
definitions at the root level.

v C regular (nonmemory, nonstandard stream) files are also shared across the PICI
C environments.

Chapter 20. Combining C or C++ and Assembler 261

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

v Nested C enclaves are created using the system() call. The depth is relative to
the root enclave that owns the system() call chain. You can have two C enclaves,
other than the C root enclaves, with the same depth. You can do this by calling
one of the PICI C environments from a nested enclave and then using system()
in the PICI C environment.

v C regular (nonmemory, nonstandard stream) files opened in a system() call
enclave are closed automatically when the enclave ends.

v C regular (nonmemory, nonstandard stream) files that are opened in a PICI C
environment root enclave are not closed automatically until the PICI C
environment ends. Before returning to the caller, you should close streams that
are opened by the PICI C environment. If you do not, undefined behavior can
occur.

v C memory files are not removed until the last PICI C environment is ended.
v The clrmemf() function will only remove C memory files created within the

scope of the C root enclave from which the function is called.
v When a PICI C environment is called, flushing of open streams is not performed

automatically as it is when you use the system() call.
v This function is not supported under CICS.
v This function is not supported under System Programming C (SP C).
v Use of POSIX(ON) is not supported with this feature.

Request Modifier 5 Environment Characteristics

Use request modifier 5 to establish an environment which is tolerant of an existing
environment. When a request modifier 5 environment is dormant, it is immune to
creation or termination of other environments.

Request modifier 5 environments cannot share C memory files with other
environments. Each environment of this type is created as a separate entity, not
connected to any other environment. Request modifier 5 environments can be
initialized and terminated in any order.

Restrictions on Using batch Environments with Preinitialization
Compatibility Interface C Environments

If a batch environment is to participate in C memory file sharing, such as with a
request modifier 4 environment, then the batch environment must be the first
environment created and the last one terminated. All PICI environments initialized
within the scope of the batch environment must be terminated before the batch
environment is terminated. This is required because the PICI environment shares
control blocks that belong to the batch environment. If the batch environment is
terminated, storage for those control blocks is released. Attempts to use or
terminate a PICI environment after the batch environment has terminated will
result in unpredictable behavior.

Behaviors When Mixing Request Modifier 4 and Request Modifier
5

While running in a request modifier 5 environment, initializing another
environment with request modifier 4 creates a new environment that is separated
from the rest. The new environment will not be able to share C memory files with
any other request modifier 4 environment that may already exist.

While running in a request modifier 4 environment, initialization of a request
modifier 5 environment creates a new environment that is separated from the rest.

262 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

If the new request modifier 5 environment is within the scope of a batch
environment, this new environment does not need to be terminated before the
batch environment is terminated.

Using the Service Vector and Associated Routines

The service vector is a list of addresses of user-supplied service routines. The
interface requirements for each of the service routines that you can supply,
including sample routines for some of the services, are provided in the following
sections.

Using the Service Vector

If you want certain services like load and delete to be carried out by other
programs supplied by you (instead of, for example, by the LOAD and DELETE
macros), you must place the address of your service vector in the seventh fullword
field of the extended parameter list. Define the service vector according to the
pattern shown in the following example:
SRV_COUNT DS F Count of fields defined
SRV_USER_WORD DS F User-defined word
SRV_WORKAREA DS A Addr of work area for DSAs etc
SRV_LOAD DS A Addr of load routine
SRV_DELETE DS A Addr of delete routine
SRV_GETSTOR DS A Addr of get-storage routine
SRV_FREESTOR DS A Addr of free-storage routine
SRV_EXCEP_RTR DS A Addr of exception router
SRV_ATTN_RTR DS A Addr of attention router
SRV_MSG_RTR DS A Addr of message router

Although you need not use labels identical to those above, you must use the same
order. The address of your load routine is ″fourth″, and the address of your
free-storage routine is ″seventh″.

Some other constraints apply:
v You cannot omit any fields on the template that precede the last one you specify

from your definition of the service vector. You can supply zeros for the ones you
want ignored.

v The field count does not count itself. The maximum value is therefore 9.
v You must specify an address in the work area field if you specify addresses in

any of the subsequent fields.
v This work area must begin on a doubleword boundary and start with a fullword

that specifies its length. This length must be at least 256 bytes.
v For the load and delete routines, you cannot specify one of the pair without the

other; if one of these two fields contains a value of zero, the other is
automatically ignored. The same is true for the get-storage and free-storage pair.

v If you specify the get-storage and free-storage services, you must also specify the
load and delete services.

You must supply any service routines pointed to in your service vector. When
called, these service routines require the following:
v Register 13 points to a standard 18–fullword save area.
v Register 1 points to a list of addresses of parameters available to the routine.
v The third parameter in the list must be the address of the user word you

specified in the second field of the service vector.

Chapter 20. Combining C or C++ and Assembler 263

|
|
|

The parameters available to each routine, and the return and reason codes that
each routine uses, are shown in the following section. The parameter addresses are
passed in the same order in which the parameters are listed.

Load Service Routine

The load routine loads named modules. The LOAD macro usually provides this
service.

The parameters passed to the load routine are shown in Table 31.

Table 31. Load Service Routine Parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Address of load point DS A Output

Size of module DS F Output

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will
contain zeros.

The load routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — module loaded above line when in AMODE 24

8/4 unsuccessful — load failed

16/4 unrecoverable error occurred

Delete Service Routine

The delete routine deletes named modules. The DELETE macro usually provides this
service.

The parameters passed to the delete routine are shown in Table 32.

Table 32. Delete Service Routine Parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will
contain zeros. Every delete action must have a corresponding load action, and the

264 OS/390 V2R8.0 C/C++ Programming Guide

task that does the load must also do the delete. Counts of deletes and loads
performed must be maintained by the service routines.

The delete routine can set the following return/reason codes:

0/0 successful

8/4 unsuccessful — delete failed

16/4 unrecoverable error occurred

Get-Storage Service Routine

The get-storage routine obtains storage. The GETMAIN macro usually provides this
service.

The parameters passed to the get-storage routine are shown in Table 33.

Table 33. Get-Storage Service Routine Parameters

Parameter ASM Attributes Type

Amount desired DS F Input

Subpool number DS F Input

User word DS A Input

Flags DS F Input

Address of obtained storage DS A Output

Amount obtained DS F Output

Return code DS F Output

Reason code DS F Output

The get-storage routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the storage could not be obtained

16/4 unrecoverable error occurred.

Free-Storage Service Routine

The free-storage routine frees storage. The FREEMAIN macro usually provides this
service.

The parameters passed to the free-storage routine are shown in Table 34.

Table 34. Free-Storage Service Routine Parameters

Parameter ASM Attributes Type

Amount to be freed DS F Input

Subpool number DS F Input

User word DS A Input

Address of storage DS A Input

Return code DS F Output

Reason code DS F Output

The free-storage routine can set the following return/reason codes:

Chapter 20. Combining C or C++ and Assembler 265

0/0 successful

16/4 unrecoverable error occurred

Exception Router Service Routine

The exception router traps and routes exceptions. The ESTAE and ESPIE macros
usually provide this service.

The parameters passed to the exception router are shown in Table 35.

Table 35. Exception Router Service Routine Parameters

Parameter ASM Attributes Type

Address of exception handler DS A Input

Environment token DS A Input

User word DS A Input

Abend flags DS F Input

Check flags DS F Input

Return code DS F Output

Reason code DS F Output

During initialization, if the ESTAE and/or ESPIE options are in effect, the common
library puts the address of the common library exception handler in the first field
of the above parameter list, and sets the environment token field to a value that is
passed on to the exception handler. It also sets abend and check flags as
appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following structure:
struct {

struct {
unsigned short abends : 1, /*control for system abends*/

reserved : 15;
} system;
struct {

unsigned short abends : 1, /*control for user abends*/
reserved : 15;

} user;
} abendflags;

The meaning of the bits in the check flags are given by the following structure:
struct {

struct {
unsigned short reserved : 1,

operation : 1,
privileged_operation : 1,
execute : 1,
protection : 1,
addressing : 1,
specification : 1,
data : 1,
fixed_overflow : 1,
fixed_divide : 1,
decimal_overflow : 1,
decimal_divide : 1,
exponent_overflow : 1,
exponent_divide : 1,
significance : 1,

266 OS/390 V2R8.0 C/C++ Programming Guide

float_divide : 1;
} type;
unsigned short reserved;

} checkflags;

The exception router service routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

Attention Router Service Routine

The attention router traps and routes attention interrupts. The STAX macro usually
provides this service.

The parameters passed to the attention router are shown in Table 36.

Table 36. Attention Router Service Routine Parameters

Parameter ASM Attributes Type

Address of attention router DS A Input

Environmental token DS A Input

User word DS A Input

Return code DS F Output

Reason code DS F Output

The attention router routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the
attention handler. Use the address in the attention handler field passing the
parameters shown in Table 37.

Table 37. Attention Handler Parameters

Parameter ASM Attributes Type

Environment token DS A Input

Return code DS F Output

Reason code DS F Output

The return/reason codes upon return from the attention handler are:

0/0 The attention interrupt has been or will be handled

If an attention interrupt occurs in the attention handler or when an attention
handler is not started, your attention router should ignore the attention interrupt.

Message Router Service Routine

The message router routes messages written by the run-time library. These
messages are normally written to the LE Message File.

Chapter 20. Combining C or C++ and Assembler 267

The parameters passed to the message router are are shown in Table 38.

Table 38. Message Router Service Routine Parameters

Parameter ASM Attributes Type

Address of message DS A Input

Message length in bytes DS F Input

User word DS A Input

Line length DS F Input

Return code DS F Output

Reason code DS F Output

If the address of the message is zero, your message router is expected to return the
size of the line to which messages are written (in the length field). The length field
allows messages to be formatted correctly, for example, broken at blanks.

The message routine must use the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

268 OS/390 V2R8.0 C/C++ Programming Guide

Part 4. Coding: Advanced Topics

This part contains the following coding topics:
v “Chapter 21. Building and Using Dynamic Link Libraries (DLLs)” on page 271
v “Chapter 22. Building Complex DLLs” on page 287
v “Chapter 23. Using Threads in an OS/390 UNIX Application” on page 311
v “Chapter 24. Reentrancy in OS/390 C/C++” on page 327
v “Chapter 25. Using the Decimal Data Type in C” on page 335
v “Chapter 26. Using Decimal Data in C++” on page 355
v “Chapter 27. Handling Exceptions, Error Conditions, and Signals” on page 363
v “Chapter 28. Optimizing Code” on page 383
v “Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis” on

page 399
v “Chapter 30. Network Communications under UNIX System Services” on

page 413
v “Chapter 31. Interprocess Communication Using OS/390 UNIX” on page 443
v “Chapter 32. Structuring a Program That Uses C++ Templates” on page 447
v “Chapter 33. Using Environment Variables” on page 457

© Copyright IBM Corp. 1996, 1999 269

270 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 21. Building and Using Dynamic Link Libraries (DLLs)

As of OS/390 Version 2, the C/C++ IBM Open Class Library is licensed with the
base operating system and enables access to the C/C++ Class Library by
applications that require the library at execution time. This eliminates the need to
license the C/C++ Compiler features or to use the DLL Rename Utility. Provided
you use the base operating system, the DLL Rename Utility discussed in this
chapter is not applicable.

A dynamic link library (DLL) is a collection of one or more functions or variables
in an executable module that is executable or accessible from a separate application
module. In an application without DLLs, all external function and variable
references are resolved statically at bind time. In a DLL application, external
function and variable references are resolved dynamically at run-time.

There are two types of DLLs: simple and complex. A simple DLL contains only
DLL code in which special code sequences are generated by the compiler for
referencing functions and external variables, and using function pointers. With
these code sequences, a DLL application can reference imported functions and
imported variables from a DLL as easily as it can non-imported ones.

The object code generated by the OS/390 C++ compiler is always DLL code. The
object code generated by the OS/390 C compiler with the DLL compiler option is
DLL code. Other types of object code are non-DLL code. For more information
about compiler options for DLLs, see the OS/390 C/C++ User’s Guide.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL
code. A typical complex DLL would contain some C++ code, which is always DLL
code, and some C object modules compiled with the NODLL compiler option bound
together.

This chapter defines DLL concepts and shows how to build simple DLLs.
“Chapter 22. Building Complex DLLs” on page 287 shows how to build complex
DLLs and discusses some of the compatibility issues of DLLs.

Note: If your application uses the IBM-supplied C++ Class Library DLLs for
execution on a system prior to OS/390 Version 2, you must rename them
using the DLL Rename utility. See the OS/390 C/C++ User’s Guide for more
information on using this utility.

Support for DLLs

DLL support is available for applications running under the following systems:
v OS/390 batch
v CICS
v IMS
v TSO
v OS/390 UNIX

It is not available for applications running under SP C, CSP or MTF.

© Copyright IBM Corp. 1996, 1999 271

Note: All potential DLL executable modules are registered in the CICS PPT control
table in the CICS environment and are invoked at run time.

DLL Concepts and Terms
DLL An executable module that exports functions, variable definitions, or both,

to other DLLs or DLL applications.

DLL application
An application that references imported functions, imported variables, or
both, from other DLLs.

Imported functions and variables
Functions and variables that are not defined in the executable module
where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module
where a reference to them is made.

Exported functions or variables
Functions or variables that are defined in one executable module and can
be referenced from another executable module. When an exported function
or variable is referenced within the executable module that defines it, the
exported function or variable is also nonimported.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically,
this area contains global variables and function and variable descriptors for
DLLs.

Function descriptor
An internal control block containing information needed by compiled code
to call a function.

Variable descriptor
An internal control block containing information about the variable needed
by compiled code.

Loading a DLL

The DLL is loaded implicitly when an application references an imported variable
or calls an imported function. DLLs can be explicitly loaded by calling dllload().
Due to optimizations performed, the DLL implicit load point may be moved and is
only done before the actual reference occurs.

Loading a DLL Implicitly

When an application uses functions or variables defined in a DLL, the compiled
code loads the DLL. This implicit load is transparent to the application. The load
establishes the required references to functions and variables in the DLL by
updating the control information contained in function and variable descriptors.

If the DLL contains static classes, constructors are run when the DLL is loaded,
typically before main(). Their destructors run once after they return from main().

To implicitly load a DLL, do one of the following:

272 OS/390 V2R8.0 C/C++ Programming Guide

1. Statically initialize a variable pointer to the address of an exported DLL
variable.

2. Reference a function pointer that points to an exported function.
3. Call an exported function.
4. Reference (use, modify, or take the address of) an exported variable.
5. Call through a function pointer that points to an exported function.

In the first situation, the DLL is loaded before main() is invoked, and if the DLL
contains C++ code, constructors are run before main() is invoked. In the other
situations, the DLL loading may be delayed until the time of the implicit call,
although optimization may move this load earlier.

Note: When a DLL is loaded, its writable static is initialized. If the DLL load
module contains C++ code, constructors are run once at initial load time,
and destructors are run once at program termination.

Loading a DLL Explicitly

The use of DLLs can also be explicitly controlled by the application code at the
source level. The application uses explicit source-level calls to one or more
run-time services to connect the reference to the definition. The connections for the
reference and the definition are made at run-time.

The DLL application writer can explicitly call the following run-time services:
v dllload(), which loads the DLL and returns a handle to be used in future

references to this DLL
v dllqueryfn(), which obtains a pointer to a DLL function
v dllqueryvar(), which obtains a pointer to a DLL variable
v dllfree(), which frees a DLL loaded with dllload()

For more information about the run-time services, see the OS/390 C/C++ Run-Time
Library Reference.

To explicitly call a DLL in your application:
v Determine the names of the exported functions and variables that you want to

use. You can get this information from the DLL provider’s documentation or by
looking at the definition side-deck file that came with the DLL. A definition
side-deck is a directive file that contains an IMPORT control statement for each
function and variable exported by that DLL.

v Include the DLL header file dll.h in your application.
v Compile your source as usual.
v Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling
the DLL explicitly with the run-time services.

Figure 48 on page 274 is an example of an application that uses explicit DLL calls.

Explicit Use of a DLL in an Application

The following example shows explicit use of a DLL in an application.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 273

#include <dll.h>
#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

typedef int (DLL_FN)(void);

#ifdef __cplusplus
}

#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

" where\n"
" <DLL-name> is the DLL to load,\n"
" <type> can be one of FUNCTION or VARIABLE\n"
" and <identifier> is the function or variable\n"
" to reference\n", progName);

return;
}

main(int argc, char* argv[]) {
int value;
int* varPtr;
char* dll;
char* type;
char* id;
dllhandle* dllHandle;

if (argc != 4) {
Syntax(argv[0]);
return(4);

}

Figure 48. Explicit Use of a DLL in an Application (Part 1 of 2)

274 OS/390 V2R8.0 C/C++ Programming Guide

For more information on the DLL functions, see the OS/390 C/C++ Run-Time Library
Reference.

Managing the Use of DLLs When Running DLL Applications

This section describes how OS/390 C/C++ manages loading, sharing and freeing
DLLs when you run a DLL application.

dll = argv[1];
type = argv[2];
id = argv[3];

dllHandle = dllload(dll);
if (dllHandle == NULL) {
perror("DLL-Load");
fprintf(stderr, "Load of DLL %s failed\n", dll);
return(8);

}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {
fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");

Syntax(argv[0]);
return(8);

}
/*
* variable request, so get address of variable
*/

varPtr = (int*)(dllqueryvar(dllHandle, id));
if (varPtr == NULL) {
perror("DLL-Query-Var");
fprintf(stderr, "Variable %s not exported from %s\n", id, dll);
return(8);

}
value = *varPtr;
printf("Variable %s has a value of %d\n", id, value);

}
else {
/*
* function request, so get function descriptor and call it
*/

DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));
if (fn == NULL) {
perror("DLL-Query-Fn");
fprintf(stderr, "Function %s() not exported from %s\n", id, dll);
return(8);

}
value = fn();
printf("Result of call to %s() is %d\n", id, value);

}
dllfree(dllHandle);

return(0);
}

Figure 48. Explicit Use of a DLL in an Application (Part 2 of 2)

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 275

Loading DLLs

When you load a DLL for the first time, either implicitly or via an explicit
dllload(), writable static is initialized. If the DLL is written in C++, constructors
are run.

You can load DLLs from an OS/390 UNIX HFS as well as from conventional data
sets. The following list specifies the order of a search for unambiguous and
ambiguous file names.
v Unambiguous file names

– If the file has an unambiguous HFS name (it starts with a ./ or contains a /),
the file is searched for only in the HFS.

– If the file has an unambiguous MVS name, and starts with two slashes (//),
the file is only searched for in MVS.

v Ambiguous file names

For ambiguous cases, the settings for POSIX are checked.
– When specifying the POSIX(ON) run-time option, the run-time library attempts

to load the DLL as follows:
1. An attempt is made to load the DLL from the HFS. This is done using the

system service BPX1LOD. For more information on this service, see
OS/390 UNIX System Services Programming: Assembler Callable Services
Reference.
If the environment variable LIBPATH is set, each directory listed will be
searched for the DLL. See “Chapter 33. Using Environment Variables” on
page 457 for information on LIBPATH. Otherwise the current directory will
be searched for the DLL. Note that a search for the DLL in the HFS is
case-sensitive.

2. If the DLL is found and contains an external link name of eight characters
or less, the uppercase external link name is used to attempt a LOAD from
the caller’s MVS load library search order. If the DLL is not found or the
external link name is more than eight characters, then the load fails.

3. If the DLL is found and its sticky bit is on, any suffix is stripped off. Next,
the name is converted to uppercase, and the base DLL name is used to
attempt a LOAD from the caller’s MVS load library search order. If the
DLL is not found or the base DLL name is more than eight characters, the
version of the DLL in the HFS is loaded.

4. If the DLL is found and does not fall into one of the previous two cases, a
load from the HFS is attempted.

If the DLL could not be loaded from the HFS, an attempt is made to load the
DLL from the caller’s MVS load library search order. This is done by calling the
OS/390 service LOAD with the DLL name, which must be eight characters or less
and is converted to uppercase. LOAD searches data sets in the following order:
1. Run-time library services (if active)
2. Job Pack Queue
3. Current STEPLIB/JOBLIB
4. LPA
5. Link List

v When POSIX(OFF) is specified the sequence is reversed.
– An attempt to load the DLL is made from the caller’s MVS load library search

order.

276 OS/390 V2R8.0 C/C++ Programming Guide

– If the DLL could not be loaded from the caller’s MVS load library then an
attempt is made to load the DLL from the HFS.

Sharing DLLs

DLLs are shared at the enclave level (as defined by the OS/390 Language
Environment). A referenced DLL is loaded only once per enclave and only one
copy of the writable static is created or maintained per DLL per enclave. Thus, one
copy of a DLL serves all modules in an enclave regardless of whether the DLL is
loaded implicitly or explicitly. A copy is implicit through a reference to a function
or variable. A copy is explicit through dllload(). You can access the same DLL
within an enclave both implicitly and by explicit run-time services.

All accesses to a variable in a DLL in an enclave refer to the only copy of that
variable. All accesses to a function in a DLL in an enclave refer to the only copy of
that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads
are counted and used to determine when the DLL can be deleted. For a given DLL
in a given enclave, there is one logical load for each explicit dllload() request.
DLLs that are referenced implicitly may be logically loaded at application
initialization time if the application references any data exported by the DLL, or
the logical load may occur during the first implicit call to a function exported by
the DLL.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded
the DLL can access functions and variables.

Freeing DLLs

You can free explicitly loaded DLLs with a dllfree() request. This request is
optional because the DLLs are automatically deleted by the run time library when
the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are
deleted by the run-time library at enclave termination. Therefore, if a DLL has been
both explicitly and implicitly loaded, the DLL can only be deleted by the run-time
when the enclave is terminated.

Creating a DLL or a DLL Application

Building a DLL or a DLL application is similar to creating a C or C++ application.
It involves the following steps:
1. Writing your source code
2. Compiling your source code
3. Binding your object modules

Building a Simple DLL

This section shows how to build a simple DLL.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 277

|
|
|
|
|
|
|

Writing Your C Code

To build a simple C DLL, write code using the #pragma export directive to export
specific external functions and variables as shown in Figure 49.

For the previous example, the functions bopen(), bclose(), bread(), and bwrite()
are exported; the variable berror is exported; and the variable buffer is not
exported.

Note: To export all defined functions and variables with external linkage in the
compilation unit to the users of the DLL, compile with the EXPORTALL
compile option. All defined functions and variables with external linkage
will be accessible from this DLL and by all users of this DLL. However,
exporting all functions and variables has a performance penalty, especially
with IPA. When you use EXPORTALL you do not need to include #pragma
export in your code.

Writing Your C++ Code

To create a simple C++ DLL:
v Ensure that classes and class members are exported correctly, especially if they

use templates.
v Use _Export or the #pragma export directive to export specific functions and

variables.
For example, to create a DLL executable module TRIANGLE, export the
getarea() function, the getperim() function, the static member objectCount and
the constructor for class triangle using #pragma export:

#pragma export(bopen)
#pragma export(bclose)
#pragma export(bread)
#pragma export(bwrite)
int bopen(const char* file, const char* mode) {
...

}
int bclose(int) {
...

}
int bread(int bytes) {
...

}
int bwrite(int bytes) {
...

}
#pragma export(berror)
int berror;
char buffer[1024];
...

Figure 49. Using #pragma export to Create a DLL Executable Module Named BASICIO

278 OS/390 V2R8.0 C/C++ Programming Guide

v Do not inline the function if you apply the _Export keyword to the function
declaration.

v Always export constructors and destructors when using the _Export keyword.
v Apply the _Export keyword to a class. This keyword automatically exports static

members and defined functions of that class, constructors, and destructors.
_class Export triangle
{

public:
static int objectCount;
double getarea();
double getperim();
triangle::triangle(void);

};

v To export all external functions and variables in the compilation unit to the users
of this DLL, you can also use the compiler option EXPORTALL. This compiler
option is described in the OS/390 C/C++ User’s Guide and #pragma directives are
described in detail in the OS/390 C/C++ Language Reference. If you use the
EXPORTALL option, you do not need to include #pragma export or _Export in your
code.

Compiling Your Code

For C source, compile with the DLL compiler option. When you specify the DLL
compiler option, the compiler generates special code when calling functions and
referencing external variables. Even if a simple application or DLL does not
reference any imported functions or imported variables from other DLLs, you
should specify the DLL compiler option. Compiling an application or DLL as DLL
code eliminates the potential compatibility problems that may occur when binding
DLL code with non-DLL code. See “Chapter 22. Building Complex DLLs” on
page 287 for more information on compatibility issues.

class triangle : public area
{

public:
static int objectCount;
getarea();
getperim();
triangle::triangle(void);

};
#pragma export(triangle::objectCount)
#pragma export(triangle::getarea())
#pragma export(triangle::getperim())
#pragma export(triangle::triangle(void))

Figure 50. Using #pragma Export to Create a DLL Executable Module TRIANGLE

class triangle : public area
{

public:
static int _Export objectCount;
double _Export getarea();
double _Export getperim();
_Export triangle::triangle(void);

};

Figure 51. Using _export to Create DLL Executable Module TRIANGLE

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 279

For C++ source, compile as you would any C++ program.

Binding Your Code

Except for the object modules you require for creating the DLL, no additional
object modules are required. The binder automatically creates a definition
side-deck that describes the functions and the variables that can be imported by
DLL applications. You must provide the generated definition side-deck to all users
of the DLL. Any DLL application that implicitly loads the DLL must include the
definition side-deck when they bind.

Note: To target a PDS load library, prelink and link your code rather than using
the binder. For information on prelinking and linking, see the appendix on
the Prelinker in OS/390 C/C++ User’s Guide.

When binding the C object module as shown in Figure 49 on page 278, the binder
generates the following definition side-deck:
IMPORT CODE 'BASICIO' bopen
IMPORT DATA ,BASICIO, bclose
IMPORT DATA ,BASICIO, bread
IMPORT DATA ,BASICIO, bwrite
IMPORT DATA ,BASICIO, berror

You can edit the definition side-deck to remove any functions or variables that you
do not want to export. For instance, in the above example, if you do not want to
expose berror, remove the control statement IMPORT DATA,BASICIO, berror from
the definition side-deck.

Note: You should also provide a header file containing the prototypes for exported
functions and external variable declarations for exported variables.

When binding the C++ object modules shown in Figure 50 on page 279, the binder
generates the following definition side-deck.
IMPORT CODE ,TRIANGLE, getarea__8triangleFv
IMPORT CODE ,TRIANGLE, getperim__8triangleFv
IMPORT CODE ,TRIANGLE, __ct__8triangleFv

You can edit the definition side-deck to remove any functions and variables that
you do not want to export. In the above example, if you do not want to expose
getperim(), remove the control statement IMPORT CODE ,TRIANGLE,
getperim__8triangleFv from the definition side-deck.

Note: Removing functions and variables from the side definition deck does not
minimize the performance impact caused by specifying the EXPORTALL
complier option.

The definition side-deck contains mangled names, such as getarea__8triangleFv.
To find the original function or variable name in your source module, review the
compiler listing created or use the CXXFILT utility. This will permit you to see both
the mangled and demangled names. For more information on the CXXFILT utility,
see the OS/390 C/C++ User’s Guide.

280 OS/390 V2R8.0 C/C++ Programming Guide

Building a Simple DLL Application

A simple DLL application contains object modules that are made up of only
DLL-code. The application may consist of multiple source modules. Some of the
source modules may contain references to imported functions, imported variables,
or both. Some of the files contain references to imported functions or imported
variables.

To use a load-on-call DLL in your simple DLL application:
1. Write your code as you would if the functions were statically bound.
2. Compile as follows:
v Compile your C source files with the following compiler options:

– DLL

– RENT

– LONGNAME

These options instruct the compiler to generate special code when calling
functions and referencing external variables.

v Compile your C++ source files normally. A C++ application is always DLL
code.

3. Bind your object modules as follows.
v If you are using OS/390 Batch, use the IBM-supplied procedure when you

bind your object modules.
v If you are not using the IBM-supplied procedure, specify the RENT binder

option when you bind your object modules.
v If you are using OS/390 UNIX specify the following option for the bind step

for c89 or c++.
-W l,DLL

Include the definition side-deck from the DLL provider in the set of object
modules to bind. The binder uses the definition side-deck to resolve references
to functions and variables defined in the DLL. If you are referencing multiple
DLLs, you must include multiple definition side-decks.

Note: Because definition side-decks in automatic library call (autocall)
processing will not be resolved, you must use the INCLUDE statement.

The following is a code fragment illustrating how an application can use the DLL
described previously. Compile normally and bind with the definition side-deck
provided with the TRIANGLE DLL.

See Figure 52 on page 283 for a summary of the processing steps required for the
application (and related DLLs).

extern int getarea(); /* function prototype */
main () {

...
getarea(); /* imported function reference */
...

}

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 281

Creating and Using DLLs

Figure 52 on page 283 summarizes the use of DLLs for both the DLL provider and
for the writer of applications that use them. In this example, application ABC is
referencing functions and variables from two DLLs, XYZ and PQR. The connection
between DLL preparation and application preparation is shown. Each DLL shown
contains a single compilation unit. The same general scheme applies for DLLs
composed of multiple compilation units, except that they have multiple compiles
and a single bind for each DLL. For simplicity, this example assumes that ABC
does not export variables or functions and that XYZ and PQR do not use other
DLLs.

282 OS/390 V2R8.0 C/C++ Programming Guide

DLL Restrictions

Consider the following restrictions when creating DLLs and DLL applications:
v The entry point for a DLL must be either an OS/390 C/C++ or a Language

Environment conforming entry point. An entry point is considered Language
Environment conforming if it includes CEESTART or if it was compiled using a
Language Environment conforming compiler.

Note: If the entry point for a DLL does not meet either of the above conditions,
Language Environment issues an error and terminates the application.

DLL DLLAPPLICATION

DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

DLL Source:

rooVar definition
sooVar definition
boo() definition
soo() definition

XYZ.c

XYZ.obj

XYZ.objdef

ABC.c

ABC.obj

PQR.c

PQR.obj

PQR.objdef

Compile with
EXPORTALL, DLL

Compile
with
DLL

Compile with
EXPORTALL, DLL

DLL TEXT DLL TEXTAPPL TEXT

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data 'PQR' rooVar
Import data 'PQR' sooVar

Link

Bind

XYZ.pobj ABC.pobj PQR.pobj

DLL program DLL programApplication program

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Application Source:

Bind Bind

Figure 52. Summary of DLL and DLL Application Preparation and Usage

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 283

|

|
|

v In a DLL application that contains main(), main() cannot be exported.
v The AMODE of a DLL application must be the same as the AMODE of the DLL

that it calls.
v DLL facilities are not available:

– Under MTF, CSP or SP C
– To application programs with main() written in PL/I that dynamically call

OS/390 C functions
v You cannot implicitly or explicitly perform a physical load of a DLL while

running C++ static destructors. However, a logical load of a DLL (meaning that
the DLL has previously been loaded into the enclave) is allowed from a static
destructor. In this case, references from the load module containing the static
destructor to the previously-loaded DLL are resolved.

v You cannot use the functions set_new_handler() or set_unexpected() in a DLL
if the DLL application is expected to invoke the new handler or unexpected
function routines.

v When using the explicit DLL functions in a multithreaded environment, avoid
any situation where one thread frees a DLL while another thread calls any of the
DLL functions. For example, this situation occurs when a main() function uses
dllload() to load a DLL, and then creates a thread that uses the ftw() function.
The ftw() target function routine is in the DLL. If the main() function uses
dllfree() to free the DLL, but the created thread uses ftw() at any point, you
will get an abend.
To avoid a situation where one thread frees a DLL while another thread calls a
DLL function, do either of the following:
– Do not free any DLLs by using dllfree() (the OS/390 Language

Environment will free them when the enclave is terminated).
– Have the main() function call dllfree() only after all threads have been

terminated.
v For DLLs to be processed by IPA, they must contain at least one function or

method. Data-only DLLs will result in a compilation error.
v Use of circular DLLs may result in unpredictable behavior related to the

initialization of non-local static objects. For example, if a static constructor (being
run as part of loading DLL ″A″) causes another DLL ″B″ to be loaded, then DLL
″B″ (or any other DLLs that ″B″ causes to be loaded before static constructors for
DLL ″A″ have completed) cannot expect non-local static objects in ″A″ to be
initialized (that is what static constructors do). You should ensure that non-local
static objects are initialized before they are used, by coding techniques such as
counters or by placing the static objects inside functions.

Improving Performance

This section contains some hints on using DLLs efficiently. Effective use of DLLs
may improve the performance of your application. Following are some suggestions
that may improve performance:
v If you are using a particular DLL frequently across multiple address spaces, the

DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the
dynamic LPA services should be used. Installing in the LPA/ELPA may give you
the performance benefits of a single rather than multiple load of the DLL.

v Be sure to specify the RENT option when you bind your code. Otherwise, each
load of a DLL results in a separately loaded DLL with its own writable static.

v Group external variables into one external structure.
v When using OS/390 UNIX avoid unnecessary load attempts.

284 OS/390 V2R8.0 C/C++ Programming Guide

|

|
|
|
|
|

|
|
|
|
|
|
|
|

OS/390 Language Environment supports loading a DLL residing in the HFS or a
dataset. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the run-time option POSIX(ON) or
POSIX(OFF).
If your application runs with POSIX(ON), OS/390 Language Environment tries to
load the DLL from the HFS first. If your DLL is a data set member, you can
avoid searching the HFS directories. To direct a DLL search to a dataset, prefix
the DLL name with two slashes (//) as is in the following example.
//MYDLL

If your application runs with POSIX(OFF), OS/390 Language Environment tries
to load your DLL from a dataset. If your DLL is an HFS file, you can avoid
searching a dataset. To direct a DLL search to the HFS, prefix the DLL name
with a period and slash (./) as is done in the following example.
./mydll

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found in the HFS.

– For IPA, you should only export subprograms (functions and C++ methods)
or variables that you need for the interface to the final DLL. If you export
subprograms or variables unnecessarily (for example, by using the EXPORTALL
option), you severely limit IPA optimization. In this case, global variable
coalescing and pruning of unreachable or 100% inlined code does not occur.
To be processed by IPA, DLLs must contain at least one subprogram.
Attempts to process a data-only DLL will result in a compilation error.

– The suboption NOCALLBACKANY of the compiler option DLL is more efficient than
the CALLBACKANY suboption. The CALLBACKANY option calls an OS/390
Language Environment routine at run-time. This run-time service enables
direct function calls. Direct function calls are function calls through function
pointers that point to actual function entry points rather than function
descriptors. The use of CALLBACKANY will result in extra overhead at every
occurrence of a call through a function pointer. This is unnecessary if the calls
are not direct function calls.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 285

286 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 22. Building Complex DLLs

Before you attempt to build complex DLLs it is important to understand the
differences between the terms DLL, DLL code, and DLL application.

A DLL (Dynamic Link Library) is a file containing executable code and data bound
to a program at run time. The code and data in a DLL can be shared by several
applications simultaneously. It is important to note that compiling code with the
DLL option does not mean that the produced executable will be a DLL. To create a
DLL, you must use the #pragma export or EXPORTALL compiler option.

DLL code is code that is compiled using the DLL option. Non-DLL code is compiled
without the DLL option. All C++ code is DLL code.

DLL applications use exported functions or variables. Note that not all source files
that make up a DLL application have to be compiled with the DLL option.
However, source files that reference to exported functions and exported global
variables must be compiled with the DLL option.

A key characteristic of a complex DLL or DLL application is that linking DLL code
with non-DLL code creates it. The following are reasons you might compile your
code as non-DLL:
1. Source modules do not use C or C++.
2. To prevent problems which occur when a non-DLL function pointer call uses

DLL code. This problem takes place when a function makes a call through a
function pointer that points to a function entry rather than a function
descriptor.

As of V2 R4.0, the compiler option DLL has the following two suboptions:
v NOCALLBACKANY (abbreviated as NOCBA)
v CALLBACKANY (abbreviated as CBA)

If you use the suboption NOCBA, which is the default, there is no change in the
behavior of either the DLL or NODLL compiler option. If you use CBA, a call is made
to an OS/390 Language Environment routine at run-time for each function call
through a function pointer. This call, made by a function pointer when you specify
the CBA suboption, eliminates the error that would occur when a non-DLL function
pointer passes to DLL code.

Note: All source modules compiled before the addition of CBA and NOCBA
suboptions are equivalent to those compiled with NOCBA, the default. In this
book, unless otherwise specified, all references to the DLL|NODLL compiler
option assume suboption NOCBA. For more information on the compiler
option DLL, see OS/390 C/C++ User’s Guide.

The steps for creating a complex DLL or DLL application are:
1. Determining how to compile your source modules.
2. Modifying the source modules that do not meet all the DLL rules.
3. Compiling the source modules to produce DLL code and non-DLL code as

determined in the previous steps.
4. Binding your DLL or DLL application.

© Copyright IBM Corp. 1996, 1999 287

The focus of this chapter is step 1 and step 2 . “Binding Your Code” on page 280
explains Step 4. You perform step 4 the same way you would for any other C or
C++ application.

Rules for Compiling Source Code

To create a complex DLL or DLL application, you must comply with the following
rules that dictate how you compile source modules. The first decision you must
make is how you should compile your code. You determine whether to compile
with either the DLL or NODLL compiler option based on whether or not your code
references any other DLLs. Even if your code is a DLL, it is safe to compile your
code with the NODLL compiler option if your code does not reference other DLLs.

The second decision you must make is whether to compile with the default
compiler suboption for DLL|NODLL, which is NOCBA, or use the alternative suboption
CBA. This decision is based upon your knowledge of the code you reference. If you
are sure that you do not reference any function calls through function pointers that
point to a function entry rather than a function descriptor, use the NOCBA suboption.
Otherwise, you should use the CBA suboption.

As of V2R4 of OS/390 C/C++, use the following options to ensure that you do not
have undefined results as a result of the function pointer pointing to a function
entry rather than a function descriptor:
1. Compile your source module with the CBA suboption of DLL|NODLL. This option

inserts extra code whenever you have a function call through a function
pointer. The inserted code invokes a run-time service of OS/390 Language
Environment which enables direct function calls through C/C++ function
pointers. Direct function calls are function calls through function pointers that
point to actual function entry points rather than function descriptors. The
drawback of this method is that your code will run slower. This occurs because
whenever you have function calls through function pointers OS/390 Language
Environment is called at run-time to enable direct function calls. See Figure 63
on page 298 for an example of the CBA suboption and an explanation of what

the called OS/390 Language Environment routine does at run-time when using
the CBA suboption.

2. Compile your C source module with the NOCBA suboption of DLL|NODLL. This
option has the benefit of faster running but with more restrictions placed on
your coding style. If you do not follow the restrictions, your code may behave
unpredictably. See “DLL Restrictions” on page 283 for more information.

Compile your C source modules as DLL when:
1. Your source module calls imported functions or imported variables by name.
2. Your source module contains a comparison of function pointers that may be

DLL function pointers.
The comparisons shown in “Function Pointer Comparison in Non-DLL Code”
on page 300 are undefined. To obtain valid comparisons, compile the source

modules as DLL code.
3. Your source module may pass a function pointer to DLL code through a

parameter or a return value.
If the sort() routine in Figure 62 on page 297 is compiled as DLL code instead
of non-DLL code, non-DLL applications can no longer call it. To be able to call
the DLL code version of sort(), the original non-DLL application must be
recompiled as DLL code.

288 OS/390 V2R8.0 C/C++ Programming Guide

4. Your source module may define a global function pointer and another source
module changes it.
Consider Figure 53 and Figure 54. You have the following two options when
compiling them.
a. If source module 1 is compiled as DLL code, source module 2 must also be

compiled as DLL code.
b. Alternately, you can compile source module 1 as DLL and source module 2

as NODLL(CBA).

The following table summarizes some of the ways that you could compile the
two source modules and lists the results. Both modules are linked into a single
executable.

How Modules Were Compiled Result

Source module 1 NODLL(NOCBA)
source module 2 DLL(NOCBA)

fp contains a function descriptor. Execution
of fp will succeed because it is valid to the
address of a function descriptor.

Source module 1 DLL(NOCBA)
Source module 2 NODLL(NOCBA)

fp contains the address of hello. The
execution of fp would abend because source
module 1 expects fp to contain a function
descriptor for hello.

Source module 1 DLL(CBA)
Source module 2 DLL(NOCBA)

fp contains a function descriptor. The
generated code will function correctly. It will
run slower than if the source modules were
compiled as DLL(NOCBA) because it will use
Language Environment to make the function
call.

Source module 1 NODLL(CBA)
Source module 2 DLL(NOCBA)

A call to Language Environment made by
the function call through the function
pointer prevents a problem that would have
occurred had a direct function call been
made.

If you do not use the DLL compiler option, and your source module calls
imported functions or imported variables by name, there will be unresolved
references to these variables and functions at bind time. A DLL or DLL

void (*fp)(void);
extern void goo (void);
void main() {
goo();
(*fp)(); /* call hello function */

}

Figure 53. Source Module 1

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {
printf("hello\n");

}
void goo(void) {
fp = hello;

}

Figure 54. Source Module 2

Chapter 22. Building Complex DLLs 289

application that does not comply with these rules may produce undefined
run-time behavior. For a detailed explanation of incompatibilities between DLL
and non-DLL code, see “Compatibility Issues Between DLL and Non-DLL
Code”.

Modifying Noncompliant Source

Sometimes source modules of a complex DLL or DLL application do not
simultaneously meet all the DLL rules. These rules are documented in the section
“Rules for Compiling Source Code” on page 288. When these situations occur, you
can use the following methods to solve the problem:
v Use the CBA suboption.
v Rewrite the source in C. Only C source can be compiled as either DLL or

non-DLL code. C++ source code is always DLL code.
v Split a C source module in two so that one of the new files is compiled as DLL

code and the other is compiled as non-DLL code.

Note: In rare cases, you may have to split a function into two functions before
you can successfully split the file.

An example of noncompliant source is a C++ source module that contains a
function call through a pointer that may be either a DLL pointer to a function
descriptor or a direct function pointer. Convert it to C code and compile as
non-DLL code or, preferably, as DLL(CBA) and recompile.

Compatibility Issues Between DLL and Non-DLL Code

This section describes the differences between DLL code and non-DLL code, and
discusses the related compatibility issues for linking them to create complex DLLs.

The following table and Figure 55 on page 291 illustrate DLL code referencing
functions and variables.

290 OS/390 V2R8.0 C/C++ Programming Guide

Table 39. Referencing Functions and External Variables

DLL

Imported Functions A function descriptor is created by the binder.
The descriptor is in the WSA class and contains
the address of the function and the address of
the writable static area associated with that
function.The function address and the address
of the WSA associated with the function is
resolved when the DLL is loaded. «1¬

Nonimported Functions Also called through the function descriptor but
the function address is resolved at link time.
«3¬

Imported Variables A variable descriptor is created in the WSA by
the binder. It contains addressing information
for accessing an imported variable. The address
is resolved when the DLL is loaded. «2¬

Nonimported Variables Direct access «4¬

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}
f();

x = 1;

g();

y = 2;

int g(void) {

2

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int g(void);
extern int x;
int y;

int f(void);
int x;

int f(void); {

Figure 55. Referencing Functions and External Variables in DLL code

Chapter 22. Building Complex DLLs 291

Pointer Assignment

In DLL code and non-DLL code, the actual address of a variable is assigned to a
variable pointer. A valid variable pointer always points to the variable itself and
causes no compatibility problems.

Function Pointers

In non-DLL code, the actual address of a nonimported function is assigned to a
function pointer. In DLL code, the address of a function descriptor is assigned to a
function pointer.

If you assign the address of an imported function to a pointer in non-DLL code,
the link step will fail with an unresolved reference. In a complex DLL or DLL
application, a pointer to a function descriptor may be passed to non-DLL code. A
direct function pointer (pointer to a function entry point) may be passed to DLL
code. 5

In a complex DLL or DLL application, a function pointer may point either to a
function descriptor or to a function entry, depending on the origin of the code. The
different ways of de-referencing a function pointer causes the compatibility
problem in linking DLL code with non-DLL code.

In Figure 56 on page 293, «1¬ assigns the address of the descriptor for the imported
function f to fp. «2¬ assigns the address of the imported variable x to xp. «3¬
assigns the address of the descriptor for the nonimported function g to gp. «4¬
assigns the address of the non-imported variable y to yp.

5. A parameter, a return value, or an external variable can pass a function pointer or an external variable.

292 OS/390 V2R8.0 C/C++ Programming Guide

In Figure 57 on page 294, «1¬ causes a bind error because the assignment to fp is
undefined. «2¬ causes a binder error because the assignment to xp is undefined.
«3¬ assigns gp to the address of the nonimported function, g. «4¬ assigns the
address of the nonimported variable y to yp.

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Figure 56. Pointer Assignment in DLL code

Chapter 22. Building Complex DLLs 293

DLL Function Pointer Call in Non-DLL Code

Because OS/390 C/C++ supports a DLL function pointer call in non-DLL code,
you are able to create a DLL to support both DLL and non-DLL applications. The
OS/390 C/C++ compiler inserts glue code at the beginning of a function descriptor
to allow branching to a function descriptor. Glue code is special code that enables
DLL function pointer calls in non-DLL code.

A function pointer in non-DLL code points to the function entry and a function
pointer call branches to the function address. However, a DLL function pointer
points to a function descriptor. A call made through this pointer in non-DLL code
results in branching to the descriptor.

OS/390 C/C++ executes a DLL function pointer call in non-DLL code by
branching to the descriptor and executing the glue code that invokes the actual
function.

Application

non-DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data Data

.

.

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx 1y x

Bind
1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Bind

Figure 57. Pointer Assignment in Non-DLL code

294 OS/390 V2R8.0 C/C++ Programming Guide

The following examples and Figure 62 on page 297 show a DLL function pointer
call in non-DLL code, where a simplified sort() routine is used. Note that the
sort() routine compiled as non-DLL code can be called from both a DLL
application and a non-DLL application.

C Example

File 1 and File 2 are bound together to create application A. File 1 is compiled with
the NODLL option. File 2 is compiled with the DLL option (so that it can call the DLL
function sort()). File 3 is compiled as DLL to create application B. Application A
and B can both call the imported function sort() from the DLL in file 4.

File 1 of Complex DLL Application compiled with NODLL option.

File 2 of Complex DLL Application compiled with DLL option.

typedef int CmpFP(int, int);
void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp); /* routine compiled as DLL */

/* which can call DLL routine sort() */

int comp(int e1, int e2) {
if (e1 == e2) {
return(0);

}
else if (e1 < e2) {
return(-1);

}
else {
return(1);

}
}

main() {
CmpFP* fp = comp;
int a[2] = {2,1};
callsort(a, 2, fp);
return(0);

}

Figure 58. File 1. Application A.

typedef int CmpFP(int, int);
void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp) {
sort(arr, size, fp);

}

Figure 59. File 2. Application A

Chapter 22. Building Complex DLLs 295

Simple DLL Application compiled with DLL option.

File 4 is compiled as NODLL and bound into a DLL. The function sort() will be
exported to users of the DLL.

DLL Compiled with NODLL Option

Note: Non-DLL function pointers can only safely be passed to a DLL if the
function referenced is naturally reentrant, that is, it is C code compiled with
the NORENT compiler option, or is C code with no global or static variables.
See the discussion on the CBA option to see how to make a DLL that can be
called by applications that pass constructed reentrant function pointers.

int comp(int e1, int e2) {
if (e1 == e2)
return(0);

else if (e1 < e2)
return(-1);

else
return(1); }

int (*fp)(int e1, int e2);
main()
{
int a[2] = { 2, 1 };
fp = comp; /* assign function address */
sort(a, 2, fp); /* call sort */

}

Figure 60. File 3. Application B

typedef int CmpFP(int, int);
int sort(int* arr, int size, CmpFP* fp) {
int i,j,temp,rc;

for (i=0; i<size; ++i) {
for (j=1; j<size-1; ++j) {
rc = fp(arr[j-1], arr[j]); /* call 'fp' which may be DLL or no-DLL code */
if (rc > 0) {
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;

}
}

}
return(0);

}
#pragma export(sort)

Figure 61. File 4. DLL

296 OS/390 V2R8.0 C/C++ Programming Guide

Non-DLL Function Pointer Call in DLL(CBA) Code

The following figure illustrates one situation where you could use the CBA
suboption. In the example, the DLL provider provides stub routines which the
application programmer can bind with their applications. These stub routines allow
an application programmer to use a DLL without recompiling the application with
the DLL option. This is an important consideration for library providers that want
to move from a static version of a library to a dynamic one. Stub routines are not
mandatory, however if they are provided, the application programmer only needs
to rebind, but not recompile the application. If stub routines are not provided by
the DLL provider, the application programmer must recompile the application.

DLL Application in C DLL in C

non-DLL Application in C

DLL Code Data Non-DLL Code

DLL Code

. . .

int comp (int e1, int e2)
{
. . .
}

branch to comp

func des

glue code
. . .

void sort (
int *a, int num,
int (*comp)(int el, int e2)

{
. . .
if ((*comp)(. . .) <0)
. . .

}

branch to des

. . .

int comp (int e1, int e2)
{

. . .
}
main ()
{

. . .
/* point to des */
fp = comp;
sort (a, 2, fp);

}

branch to
func entry

. . .

/* point to des */
fp = comp;
sort (a, 2, fp);
}

main ()
{

Figure 62. DLL Function Pointer Call in non-DLL code

Chapter 22. Building Complex DLLs 297

In the previous example, the DLL provider:
v Compiles the DLL parts as either DLL(CBA) or NODLL(CBA).

v Exports function dllsort() for use by other applications.
v Binds the DLL to produce a DLL executable module and a DLL definition

side-deck.
v Creates a stub function for every function exported from the DLL. The stub

function calls a corresponding function in the DLL.This routine is compiled with
the DLL option. The stub functions are provided to the application programmer
in a static library to be bound with the application.

The Application Programmer:
v Codes the program using any of the following compiler options;

– DLL

– NODLL

– RENT

– NORENT

v Calls the stub routines, not the exported functions.

Note: The stub routines must be called because the application programmer
may have compiled his code with the NODLL compiler option. Otherwise,
references to the DLL functions will be unresolved at bind time. Providing
the stub routines allows an application programmer to use a DLL without
recompiling the application with the DLL option. This is an important
consideration for library providers that want to move from a static

Compare

int compare (int el, int e2) {
. . .
. . .

}

Main

typedev void (CMP_FP) (int, int);
void main(void)
int x [10];
CMP_FP* fp=&compare;
stubsort (fp, x, l0) ;

Stub

typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP*, int*, int);
stubsort (CMP_FP* fp, int* arr, int len)
dllsort (fp, arr, len);) ;

IMPORT CODE DLL DLLSORT

DLL

#pragma export (dllsort)
typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP* fp, int* arr, int len)
. . .

rc = fp(arr[i], arr[i+i]);

Language Environment

APPLICATION

Definition Side Deck

1

2

3

4

5

Figure 63. DLL Function Pointer Call in Non-Dll Code

298 OS/390 V2R8.0 C/C++ Programming Guide

version of a library to a dynamic one. Providing stub routines requires the
application programmer to rebind but not recompile the application.

v Statically binds the definition side-deck, provided by the DLL provider, and the
stub routines with their program.

v Binds the DLL to produce a DLL executable module and a DLL definition
side-deck

v Creates a stub function for every function exported from the DLL. The stub
function calls the DLL directly

The reference keys in Figure 63 on page 298 illustrate the sequence of events. Note
that in «3¬, the user does not explicitly make a call to Language Environment. The
generated code for the fp function call makes the call to OS/390 Language
Environment. OS/390 Language Environment does the following at point«4¬ in the
figure:
v Saves the DLL environment
v Establishes the application environment
v Branches to the user’s function
v Reestablishes the DLL environment after execution of the function
v Returns control to the DLL.

Non-DLL Function Pointer Call in DLL Code

In DLL code, it is assumed that a function pointer points to a function descriptor.
A function pointer call is made by first obtaining the function address through
de-referencing the pointer; and then, branching to the function entry. When a
non-DLL function pointer is passed to DLL code, it points directly to the function
entry. An attempt to de-reference through such a pointer produces an undefined
function address. The subsequent branching to the undefined address may result in
an exception. The following is an example of passing a non-DLL function pointer
to DLL code via an external variable. Its behavior is undefined as shown in the
following example:

C and C++ Example

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {
printf("hello\n");

}
void goo(void) {
fp = hello; /* assign address of hello, to fp */

/* (refer to
Figure 57 on page 294). */
}

Figure 64. C Non-DLL Code

Chapter 22. Building Complex DLLs 299

In the following example, a non-DLL function pointer call to an assembler function
is resolved.

Function Pointer Comparison in Non-DLL Code

In non-DLL code, the results of the following function pointer comparisons are
undefined:
v Comparing a DLL function pointer to a non-DLL function pointer
v Comparing a DLL funtion pointer to another DLL function pointer
v Comparing a DLL function pointer to a constant function address

Comparing a DLL function pointer to a non-DLL function pointer
In Figure 70 on page 301, both the DLL function pointer and the non-DLL
function pointer point to the same function, but the pointers when compared
are unequal.

extern void goo(void);
void (*fp)(void);
void main (void) {
goo();
(*fp)(); /* Expect a descriptor, but get a function address, */

/* so it de-references to an undefined address and */
/* call fails */

}

Figure 65. C DLL Code

extern "C" void goo(void);
void (*fp)(void);
void main (void) {
goo();
(*fp)(); /* Expect a descriptor, but get a function address, */

/* so it de-references to an undefined address and */
/* call fails */

}

Figure 66. C++ DLL Code

/*
* This function must be compiled as DLL(CBA)
*/

extern "OS" {
typedef void OS_FP(char *, int *);

}
extern "OS" OS_FP* ASMFN(char*);

int CXXFN(char* p1, int* p2) {
OS_FP* fptr;

fptr = ASMFN("ASM FN"); /* returns pointer to address of function */
if (fptr) {
fptr(p1, p2); /* call asm function through fn pointer */

}
return(0);

}

Figure 67. C++ DLL Code Calling an Assembler Function

300 OS/390 V2R8.0 C/C++ Programming Guide

C Example

In the preceding examples, DLL code and non-DLL code can reside either in the
same executable file or in different executable files.

Comparing a DLL function pointer to another DLL function
pointer

The example in Figure 74 on page 303 compares addresses of function
descriptors. In the following examples, both of the DLL function pointers point
to the same function, but they compare unequal.

#include <stdio.h>
extern int foo(int (*fp1)(const char *, ...));
main ()
{
int (*fp)(const char *, ...);
fp = printf; /* assign address of a descriptor that */

/* points to printf. */
if (foo(fp))
printf("Test result is undefined\n");

}

Figure 68. C DLL code

int foo(int (*fp1)(const char *, ...))
{
int (*fp2)(const char *, ...);
fp2 = printf; /* assign the address of printf. */
if (fp1 == fp2) /* comparing address of descriptor to */

/* address of printf results in unequal.*/
return(0);

else
return(1);

}

Figure 69. C Non-DLL code

non-DLL code

...

if (fp1 == fp2)
...

Func Descriptor

...

func addr
...

C Library

int printf(...
}

...
}

Figure 70. Comparison of Function Pointers in non-DLL code

Chapter 22. Building Complex DLLs 301

C Example

Comparison of Two DLL Function Pointers in Non-DLL code

File 1 and file 2 reside in different executable modules. File 3 can reside in the
same executable module as file 1 or file 2 or it can reside in a different executable
module. In all cases, the addresses of the function descriptors will not compare
equally.

#include <stdio.h>
extern int goo(int (*fp1)(const char *, ...));
main ()
{
int (*fp)(const char *, ...);
fp = printf; /* assign address of a descriptor that */

/* points to printf. */
if (goo(fp))
printf("Test result is undefined\n");

}

Figure 71. File 1 C DLL Code

#include <stdio.h>
extern int foo(int (*fp1)(const char *, ...),

int (*fp2)(const char *, ...));
int goo(int (*fp1)(const char *, ...))
{
int (*fp2)(const char *, ...);
fp2 = printf; /* assign address of a different */

/* descriptor that points to printf. */
return (foo(fp1, fp2));

}

Figure 72. File 2 C DLL Code

int foo(int (*fp1)(const char *, ...),
int (*fp2)(const char *, ...))

{
if (fp1 == fp2) /* comparing the addresses of two */

/* descriptors results in unequal. */
return(0);

else
return(1);

}

Figure 73. File 3 C Non-DLL Code

302 OS/390 V2R8.0 C/C++ Programming Guide

Comparing a DLL function pointer to a constant function
address other than NULL

Here, you are comparing the constant function address to an address of a
function descriptor.

Note: Comparing a DLL function pointer to NULL is well defined, because
when a pointer variable is initialized to NULL in DLL code, it has a
value zero.

Function Pointer Comparison in DLL Code

In DLL code, a function pointer must be NULL before it is compared. For a
non-NULL pointer, the pointer is further de-referenced to obtain the function
address that is used for the comparison. For an uninitialized function pointer that
has a non-zero value, the de-reference can cause an exception to occur. This
happens if the storage that the uninitialized pointer points to is read-protected.

Usually, comparing uninitialized function pointers results in undefined behavior.
You must initialize a function pointer to NULL or the function address (from
source view). Two examples follow.

non-DLL code

...

if (fp1== fp2)
...

...

func addr
...

int printf(...
}

...
}

...

func addr
...

Func Des1

C Library

Func Des2

Figure 74. Comparison of Two DLL Dunction Pointers in Non-Dll Code

Chapter 22. Building Complex DLLs 303

Figure 76 shows that, when fp1 points to a read-protected memory block, an
exception occurs.

Following is an example of valid comparisons in DLL code:

#include <stdio.h>
int (*fp2)(const char *, ...) /* Initialize to point to the */

= printf; /* descriptor for printf */
int goo(void);
int (*fp2)(void) = goo;
int goo(void) {
int (*fp1)(void);
if (fp1 == fp2)
return (0);

else
return (1);

}
void check_fp(void (*fp)()) {

/* exception likely when -1 is de-referenced below */
if (fp == (void (*)())-1)
printf("Found terminator\n");

else
fp();

}
void dummy() {
printf("In function\n");

}

main() {
void (*fa[2])();
int i;

fa[0] = dummy;
fa[1] = (void (*)())-1;

for(i=0;i<2;i++)
check_fp(fa[i]);

}

Figure 75. Undefined Comparison in DLL Code (C or C++)

...

if (fp1 == fp2)
...

read-protected memory

...

...

A memory block
being accessed
as if a descriptor

A read attempt to access

read-protected memory
will cause an exception

DLL code

Figure 76. Comparison of Function Pointers in DLL code (C or C++)

304 OS/390 V2R8.0 C/C++ Programming Guide

Using DLLs That Call Each Other

An application can use DLLs that call each other. There are two methods for
building these applications. Examples of both methods follow, using the same
source code.

The APPL2 application (Figure 78) imports functions and variables from three
DLLs: (Figure 79 on page 306, Figure 80 on page 306, and Figure 81 on page 307).

#include <stdio.h>
int (*fp1)(const char *, ...); /* An extern variable is implicitly*/

/* initialized to zero */
/* if it has not been explicitly */
/* initialized in source. */

int (*fp2)(const char *, ...) /* Initialize to point to the */
= printf; /* descriptor for printf */

int foo(void) {
if (fp1 != fp2)
return (0);

else
return (1);

}

Figure 77. Valid Comparisons in DLL Code (C or C++)

#include <stdlib.h>

extern int var1_d1; /*imported from APPL2D1 */
extern int func1_d1(int); /*imported from APPL2D1 */

extern int var1_d2; /*imported from APPL2D2 */
extern int func1_d2(int); /*imported from APPL2D2 */

extern int var1_d3; /*imported from APPL2D3 */
extern int func1_d3(int); /*imported from APPL2D3 */

int main() {
int rc = 0;

printf("+-APPL2::main() starting \n");
/* ref DLL1 */

if (var1_d1 == 100) {
printf("| var1_d1=<%d>\n",var1_d1++);
func1_d1(var1_d1);

}
/* ref DLL2 */

if (var1_d2 == 200) {
printf("| var1_d2=<%d>\n",var1_d2++);
func1_d2(var1_d2);

}
/* ref DLL3 */

if (var1_d3 == 300) {
printf("| var1_d3=<%d>\n",var1_d3++);
func1_d3(var1_d3);

}

printf("+-APPL2::main() Ending \n");
}

Figure 78. Application APPL2

Chapter 22. Building Complex DLLs 305

The following application APPL2D1 imports functions from Figure 80 and
Figure 81 on page 307.

The following application APPL2D2 imports a function from Figure 81 on page 307.

The following application APPL2D3 imports variables from Figure 79 and
Figure 80.

#include <stdio.h>

int func1_d1(); /* A function to be externalized */
int var1_d1 = 100; /* export this variable */

extern int func1_d2(int); /*imported from APPL2D2 */
extern int func1_d3(int); /*imported from APPL2D3 */

int func1_d1 (int input)
{
int rc2 = 0;
int rc3 = 0;
printf("| +-APPL2D1() func1_d1() starting. Input is %d\n", input);
rc2 = func1_d2(200);
rc3 = func1_d3(300);
printf("| | func1_d1() dll1 - rc2=<%d> rc3=<%d>\n", rc2,

rc3);
printf("| +-APPL2D1() func1_d1() ending. \n");

}

Figure 79. Application APPL2D1

#include <stdio.h>

int func1_d2(); /* A function to be externalized */
int var1_d2 = 200;

extern int func1_d3(int); /* import this function */

int func1_d2 (int input)
{
int rc3 =0;
printf("| | +-APPL2D2() func1_d2() starting. Input is %d\n",

input);
rc3 = func1_d3(300);
printf("| | | func1_d2() dll2 - rc3=<%d>\n", rc3);
printf("| | +-APPL2D2() func1_d2() ending\n");

}

Figure 80. Application APPL2D2

306 OS/390 V2R8.0 C/C++ Programming Guide

The first method uses the JCL in Figure 82 on page 308. The following is processing
occurs:
1. APPL2D3 is compiled and bound to create a DLL. The binder uses the control

cards supplied through SYSLIN to import variables from APPL2D1 and
APPL2D2. The binder also generates a side-deck APPL2D3 that is used in the
following steps.

2. APPL2D2 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSLIN to include the side-deck from APPL2D3. The
following steps use the binder which generates the side-deck APPL2D2.

3. APPL2D1 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSLIN to include the side-decks from APPL2D2 and
APPL2D3. The following steps show the binder generating the side-deck
APPL2D1.

4. APPL2 is compiled, bound, and run. The binder uses the control statements
supplied through SYSLIN to include the side-decks from APPL2D1, APPL2D2,
and APPL2D3.

5. APPL2 runs.

#include <stdio.h>

int func1_d3(); /* A function to be externalized */
int var1_d3 = 300;

extern int var1_d1; /* imported variable from appl2D1 */
extern int var1_d2; /* imported variable from appl2D2 */

int func1_d3 (int input)
{
printf("| | | +-APPL2D3()-func1_d3() starting. Input is %d\n",

input);
printf("| | | | value of var1_d1=%d var1_d2=%d\n",

var1_d1, var1_d2);
printf("| | | +-APPL2D3()-func1_d3() ending\n");

}

Figure 81. Application APPL2D3

Chapter 22. Building Complex DLLs 307

The second method uses the JCL in Figure 83 on page 310. The following
processing occurs:
1. Once compiled, the object module APPL2D2 is saved for the following steps.
2. APPL2D1 is compiled, the object module is saved for the following steps.

//jobcard information...
//*
//* CBDLL3: -Compile and bind APPL2D3
//* -Explicit import of variables from APPL2D1 and APPL2D2
//* -Generate the side-deck APPL2D3
//*
//*CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE=*myid.LOAD,DISP=SHR'
//BIND.SYSIN DD*

INCLUDE OBJECT(APPL2D3)
IMPORT DATA APPL2D1 var1_d1
IMPORT DATA APPL2D2 var1_d1
NAME APPL2D3(R)*

//*
//*CDDLL2: -Compile and bind APPL2D2
//* -Include the side-deck APPL2D3
//* -Generate the side-deck APPL2D2
//*
//CBDLL2 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D2)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE OBJECT(APPL2D3)
NAME APPL2D3(R)

/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//*
//* CBDLL1: -Compile and bind APPL2D1
//* -Include the side-deck APPL2D2 and APPL2D3
//* -Generate the side-deck APPL2D1
//*
//CBDLL1 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D1)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE DSD(APPL2D2)
INCLUDE DSD(APPL2D3)
NAME APPL2D1(R)

/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//*
//* CBAPP2: -Compile, bind and run APPL2
//* -Include the side-deck APPL2D1, APPL2D2 and APPL2D3
//*
//CBAPP2 EXEC EDCCBG,INFILE='myid.SOURCE(APPL2)',
// CPARM='SO,LIST,DLL,RENT,LONG',
// OUTFILE='myid.LOAD,DISP=SHR'
//BIND.SYSIN DD *

INCLUDE DSD(APPL2D1)
INCLUDE DSD(APPL2D2)
INCLUDE DSD(APPL2D3)
NAME APPL2(R)

/*
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

Figure 82. Method 1 JCL

308 OS/390 V2R8.0 C/C++ Programming Guide

3. APPL2D3 is compiled and bound to generate the side-deck and the object
module is not used in the following steps. The load module for this step is not
saved, as it is not being used. The load module for APPL2D3 is generated at a
later step.

4. APPL2D2 is bound to create a DLL. The binder takes as input the object
module APPL2D2 and the side-deck APPL2D3. It also generates the side-deck
APPL2D3 that is used in the following steps.

5. APPL2D1 is bound to create a DLL. The binder takes as input the object
module APPL2D1 and the side-decks APPL2D3 and APPL2D2. It also generates
the side-deck APPL2D1 that is used in the following steps.

6. APPL2D3 is bound to create a DLL. The binder takes as input the object
module APPL2D3 and the side-decks APPL2D1 and APPL2D2. It also generates
the side-deck APPL2D3 that is used in the following step.

Note: The side-deck is the same as the one created in Step 3.
7. APPL2 is compiled, bound, and run. The binder takes as input the object

module APPL2 and the side-decks APPL2D1, APPL2D2, and APPL2D3.

Chapter 22. Building Complex DLLs 309

//jobcard information...
//* CDLL2: -Compile APPL2D2
//*
//CDLL2 EXEC EDCC,INFILE='myid.SOURCE(APPL2D2)',
// OUTFILE'myid.OBJ(APPL2D2),DISP=SHR ',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG'
//*
//* CDLL1: -Compile APPL2D1
//*
//CDLL1 EXEC EDCC,INFILE='myid.SOURCE(APPL2D1)',
// OUTFILE'myid.OBJ(APPL2D1),DISP=SHR ',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG'
//*
//* CBDLL3: -Compile and bind APPL2D3 with NCAL
//* -Generate the side-deck APPL2D3
//* -The load module will not be kept, as it will not be
//* used
//*
//CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)',
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',
// BPARM='NCAL,DLLNAME(APPL2D3)'
//COMPILE.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=(SHR,PASS)
//BIND.SYSIN DD DSN=myid.OBJ(APPL2D2),DISP=SHR
// DD DSN=myid.OBJ(APPL2D1),DISP=SHR
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
//*
//* BDLL2: -Bind APPL2D2
//* -Generate the side-deck APPL2D2
//*
//*
//BDLL2 EXEC CBCB,INFILE='myid.OBJ(APPL2D2)',
// BPARM='CALL,DLLNAME(APPL2D2)',
// OUTFILE='myid.LOAD(APPL2D2),DISP=SHR'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2D2(R)
/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
//*
//* BDLL1: -Bind APPL2D1
//* -Generate the side-deck APPL2D1
//*
//BDLL1 EXEC CBCB,INFILE='myid.OBJ(APPL2D1)',
// BPARM='CALL,DLLNAME(APPL2D1)',
// OUTFILE='myid.LOAD(APPL2D1)'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2D1(R)

Figure 83. Method 2 JCL (Part 1 of 2)

310 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 23. Using Threads in an OS/390 UNIX Application

A thread is a single flow of control within a process. The following section
describes some of the advantages of using multiple threads within a single process,
and functions that can be used to maintain this environment.

Models and Requirements

Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying
parallelism in the host can be exploited either by forking a process and creating a
new address space, or by using multiple threads within a single process. There are
advantages and disadvantages to both techniques, but it primarily comes down to
a compromise between the efficiency of using multiple threads versus the security
of working in separate address spaces.

Functions

The following table lists the functions provided to implement a multi-threaded
application:

Table 40. Functions used in creating multi-threaded applications

Function Purpose

pthread_create() Create a thread

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//*
//* BDLL3: -Bind APPL2D3
//* -Generate the side-deck APPL2D3
//*
//BDLL3 EXEC CBCB,INFILE='myid.OBJ(APPL2D3)',
// BPARM='CALL,DLLNAME(APPL2D3)',
// OUTFILE='myid.LOAD(APPL2D3)'
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD *

NAME APPL2D3(R)
/*
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
//*
//* CBAPP2: -Compile, bind and run APPL2
//* -Input the side-decks APPL2D1, APPL2D2 and APPL2D3
//*
//CBAPP2 EXEC EDCCBG,INFILE='myid.SOURCE(APPL2)',
// CPARM='SO,LIST,DLL,RENT,LONG'
// OUTFILE='myid.LOAD(APPL2),DISP=SHR '
//BIND.SYSIN DD DSN=myid.OBJ(APPL2),DISP=SHR
//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
// DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
// DD *

NAME APPL2(R)
/*

Figure 83. Method 2 JCL (Part 2 of 2)

© Copyright IBM Corp. 1996, 1999 311

Table 40. Functions used in creating multi-threaded applications (continued)

Function Purpose

pthread_join() Wait for thread termination

pthread_exit() Terminate a thread normally

pthread_detach() Detach a thread

pthread_self() Get your thread ID

pthread_equal() Compare thread IDs

pthread_once() Run a function once per process

pthread_yield() Yield the processor

Creating a Thread

To use a thread you must first create a thread attribute object with the
pthread_attr_init() function. A thread attribute object defines the modifiable
characteristics that a thread may have. Refer to the description of
pthead_attr_init() in the OS/390 C/C++ Run-Time Library Reference for a list of the
attributes and their default values. When the thread attribute object has been
created, you may use the following functions to change the default attributes.

Table 41. Functions to change default attributes

Function Purpose

pthread_attr_init() Initialize a thread attribute object

pthread_attr_destroy() Delete a thread attribute object

pthread_attr_getstacksize() Gets the stacksize for thread attribute object

pthread_attr_setstacksize() Sets the stacksize for thread attribute object

pthread_attr_getdetachstate() Returns current value of detachstate for
thread attribute object

pthread_attr_setdetachstate() Alters the current detachstate of thread
attribute object

pthread_attr_getweight_np() Obtains the current weight of thread setting

pthread_attr_setweight_np() Alters the current weight of thread setting

pthread_attr_getsynctype_np() Returns the current synctype setting of
thread attribute object

pthread_attr_setsynctype_np() Alters the synctype setting of thread
attribute object

The attribute object is only used when the thread is created. You can reuse it to
create other threads with the same attributes, or you can modify it to create
threads with other attributes. You can delete the attribute object with the
pthread_attr_destroy() function.

After you create the thread attribute object, you can then create the thread with the
pthread_create() function.

When a daughter thread is created, the function specified on the pthread_create()
as the start routine begins to execute concurrently with the thread that issued the
pthread_create(). It may use the pthread_self() function to determine its thread
ID. The daughter thread will continue to execute until a pthread_exit() is issued,
or the start routine ends. The function that issued the pthread_create() resumes as
soon as the daughter thread is created. The daughter thread ID is returned on a

312 OS/390 V2R8.0 C/C++ Programming Guide

successful pthread_create(). This thread ID, for example, can be used to send a
signal to the daughter thread using pthread_kill() or it can be used in
pthread_join() to cause the initiating thread to wait for the daughter thread to
end.

The following functions can be used to control the behavior of the individual
threads in a multi-threaded application.

Table 42. Functions used to control individual threads in a multi-threaded environment

Function Purpose

pthread_equal() Compares two thread IDs

pthread_yield() Allows threads to give up control

Refer to the OS/390 C/C++ Run-Time Library Reference for more information on these
functions.

Synchronization Primitives

This section covers the control of multiple threads that may share resources. In
order to maintain the integrity of these resources, a method must exist for the
threads to communicate their use of, or need to use, a resource. The threads can be
within a common process or in different processes.

Models

Mutexes, condition variables, and read-write locks are used to communicate
between threads. These constructs may be used to synchronize the threads
themselves, or they can also be used to serialize access to common data objects
shared by the threads.
v The mutex, which is the simple type of lock, is exclusive. If a thread has a mutex

locked, the next thread that tries to acquire the same mutex is put in a wait
state. This is beneficial when you want to serialize access to a resource. This
might cause contention however if several threads are waiting for a thread to
unlock a mutex. Therefore, this form of locking is used more for short durations.
It the mutex is a shared mutex, it must be obtained in shared memory accessable
among the cooperating processes.
A thread in mutex wait will not be interrupted by a signal.

v A condition variable provides a mechanism by which a thread can suspend
execution when it finds some condition untrue, and wait until another thread
makes the condition true. For example, threads could use a condition variable to
insure that only one thread at a time had write access to a dataset.
Threads in condition wait can be interrupted by signals.

v A read-write lock can allow many threads to have simultaneous read-only access
to data while allowing only one thread at a time to have write access. The
read-write lock must be allocated in memory that is writable. If the read-write
lock is a shared read-write lock, it must be obtained in shared memory
accessable among the cooperating processes.

Chapter 23. Using Threads in an OS/390 UNIX Application 313

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

Functions

The following functions allow for synchronization between threads:

Table 43. Functions that allow for synchronization between threads

Function Purpose

pthread_mutex_init() Initialize a Mutex

pthread_mutex_destroy() Destroy a Mutex

pthread_mutexattr_init() Initialize Default Attribute Object for a Mutex

pthread_mutexattr_destroy() Destroy Attribute Object for a Mutex

pthread_mutexattr_getkind_np() Get Kind Attribute for a Mutex

pthread_mutexattr_setkind_np() Set Kind Attribute for a Mutex

pthread_mutexattr_gettype() Get Type Attribute for a Mutex

pthread_mutexattr_settype() Set Type Attribute for a Mutex

pthread_mutexattr_getpshared() Get Process-shared Attribute for a Mutex

pthread_mutexattr_setpshared() Set Process-shared Attribute for a Mutex

pthread_mutex_lock() Acquire a Mutex Lock

pthread_mutex_unlock() Release a Mutex Lock

pthread_mutex_trylock() Allows lock to be tested

pthread_cond_init() Initialize a Condition Variable

pthread_cond_destroy() Destroy a Condition Variable

pthread_condattr_init() Initialize Default Attribute Object
for a Condition Variable

pthread_condattr_destroy() Destroy Attributes Object for a Condition Variable

pthread_condattr_getkind_np() Get Attribute for Condition Variable object

pthread_condattr_setkind_np() Set Attribute for Condition Variable object

pthread_cond_wait() Wait for a Condition Variable

pthread_cond_timedwait() Timed wait for a Condition Variable

pthread_cond_signal() Signal a Condition Variable

pthread_cond_broadcast() Broadcast a Condition Variable

pthread_rwlock_init() Initialize a Read-Write Lock

pthread_rwlock_destroy() Destroy a Read-Write Lock

pthread_rwlock_rdlock() Wait for a Read Lock

pthread_rwlock_tryrdlock() Allows Read Lock to be Tested

pthread_rwlock_trywrlock() Allows Read-Write Lock to be Tested

pthread_rwlock_unlock() Release a Read-Write Lock

pthread_rwlock_wrlock() Wait for a Read-Write Lock

pthread_rwlockattr_init() Initialize Default Attribute Object
for a Read-Write Lock

pthread_rwlockattr_destroy() Destroy Attribute Object for a Read-Write Lock

pthread_rwlockattr_getpshared() Get Process-shared Attribute
for a Read-Write Lock

pthread_rwlockattr_setpshared() Set Process-shared Attribute
for a Read-Write Lock

314 OS/390 V2R8.0 C/C++ Programming Guide

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

||

||
|

||
|

Creating a Mutex

To use the mutex lock you must first create a mutex attribute object with the
pthread_mutexattr_init() function. A mutex attribute object defines the
modifiable characteristics that a mutex may have. Refer to the description of
pthread_mutexattr_init() in the OS/390 C/C++ Run-Time Library Reference for a list
of these attributes and their defaults.

After the mutex attribute object has been created, you can use the following
functions to change the default attributes.
v pthread_mutexattr_getkind_np()
v pthread_mutexattr_setkind_np()
v pthread_mutexattr_gettype()
v pthread_mutexattr_settype()
v pthread_mutexattr_getpshared()
v pthread_mutexattr_setpshared()

The mutex attribute object is used only when creating the mutex. It can be used to
create other mutexes with the same attributes or modified to create mutexes with
different attributes. You can delete a mutex attribute object with the
pthread_mutexattr_destroy() function.

After the mutex attribute object has been created, the mutex can be created with
the pthread_mutex_init() function.

While using mutexes as the locking device, the following functions can be used:
pthread_mutex_lock()
pthread_mutex_unlock()
pthread_mutex_trylock()

To remove the mutex, use the pthread_mutex_destroy() function.

Creating a Condition Variable

Before creating a condition variable, you need to create a mutex (as shown above),
then you must use the pthread_condattr_init() function to create a condition
variable attribute object. This attribute object, like the mutex attribute object,
defines the modifiable characteristics that a condition variable may have. Refer to
the description of pthread_condattr_init() in the OS/390 C/C++ Run-Time Library
Reference for a list of these attributes and their defaults.

After the condition variable attribute object has been created, you may use the
following functions to change the default attributes:

pthread_condattr_getkind_np()
pthread_condattr_setkind_np()

The condition variable attribute object is used only when creating the condition
variable. It can be used to create other condition variables with the same attributes
or modified to create condition variables with different attributes. You can delete a
condition variable attribute object with the pthread_condattr_destroy() function.

After a condition variable attribute object has been created, the condition variable
itself can be created with the pthread_cond_init() function.

Condition variables can then be used as a synchronization primitive using the
following functions:

Chapter 23. Using Threads in an OS/390 UNIX Application 315

|
|
|
|

pthread_cond_wait()
pthread_cond_timedwait()
pthread_cond_signal()
pthread_cond_broadcast()

The condition variable can be removed with the pthread_cond_destroy() function.

Creating a Read-Write Lock

To use a read-write lock you must first create a read-write attribute object with the
pthread_rwlockattr_init() function. A read-write attribute object defines the
modifiable characteristics that a read-write lock may have. Refer to the description
of pthread_rwlockattr_init() in the OS/390 C/C++ Run-Time Library Reference for a
list of these attributes and their defaults.

After the read-write lock attribute object has been created, you can use the
following functions to change the default attributes.
v pthread_rwlockattr_getpshared()

v pthread_rwlockattr_setpshared()

The read-write lock attribute object is used only when creating the read-write lock.
It can be used to create other read-write locks with the same attributes or modified
to create read-write locks with different attributes. You can delete a read-write
attribute object with the pthread_rwlockattr_destroy() function.

After the read-write attribute has been created, the read-write lock can be created
with the pthread_rwlock_init() function.

While using read-write locks as the locking device, the following functions can be
used:
v pthread_rwlock_rdlock()

v pthread_rwlock_tryrdlock()

v pthread_rwlock_wrlock()

v pthread_rwlock_trywrlock()

v pthread_rwlock_unlock()

To remove the read-write lock, use the pthread_rwlock_destroy() function.

Thread-specific Data

While all threads can access the same memory, it is sometimes desirable to have
data that is (logically) local to a specific thread. The key/value mechanism provides
for global (process-wide) keys with value bindings that are unique to a thread.

You can also use the pthread_tag_np() function to set and query 65 bytes of thread
tag data associated with the caller’s thread.

Model

The key/value mechanism associates a data key with each data item. When the
association is made, the key identifies the data item with a particular thread. This
data key is a transparent data object of type pthread_key_t. The contents of this
key are not exposed to the user.

316 OS/390 V2R8.0 C/C++ Programming Guide

|

|

|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

|

|

|

|

|

|

The user gets a key by issuing the pthread_key_create() function. One of the
arguments on the pthread_key_create() function is a pointer to a local variable of
type pthread_key_t. This variable is then used with the pthread_set_specific()
function to establish a unique key value.

pthread_key_create() creates a unique identifier (a key) that is visible to all of the
threads in a process. This data key is returned to the caller of
pthread_key_create(). Threads can associate a thread unique data item with this
key using the pthread_setspecific() call. A thread can get its unique data value
for a key using the pthread_getspecific() call. In addition, a key can have an
optional ″destructor″ routine associated with it. This routine is executed during
thread termination and is passed the value of the key for the thread being
terminated. A typical use of a key and destructor is to have storage obtained by a
thread using malloc() and returned within the destructor at thread termination by
using free().

Functions

The following functions are used with thread-specific data:

Table 44. Functions used with thread-specific data

Function Purpose

pthread_key_create() Create a thread-specific data key

pthread_getspecific() Retrieve the value associated
with a thread-specific key

pthread_setspecific() Associate a value with a
thread-specific key

pthread_tag_np() Set and query the contents of the calling thread’s
tag data

Creating Thread-specific Data

The following example uses thread-specific data to insure that storage acquired by
a specific thread is freed when the thread ends.

Chapter 23. Using Threads in an OS/390 UNIX Application 317

CBC3GTH1:

Signals

Each thread has an associated signal mask. The signal mask contains a flag for
each signal defined by the system. The flag determines which signals are to be
blocked from being delivered to a particular thread.

Unlike the signal mask, there is one signal action per signal for all of the threads in
the process. Some signal functions work on the process level, having an impact on
multiple threads, while others work on the thread level, and only affect one
particular thread. For example, the function kill() operates at the process level,
whereas the functions pthread_kill() and sigwait() operate at the thread level.

The following are some other signal functions that operate on the process level and
can influence multiple threads:

alarm()
bsd_signal()

#define _OPEN_THREADS
#include <stdio.h>
#include <pthread.h>
pthread_key_t mykey; /* A place to get the key */
void mydestruct(void *value); /* My destructor routine */
main()
{
char * thddataptr;

/* Create a key, getting back the key from pthread_key_create(),
and associate a function to be executed at thread termination
for this key

*/

(void)pthread_key_create(&mykey,&mydestruct);

/*
Obtain some storage which this thread will manage (remember,
the main is also a thread), which we want freed by our
destructor upon thread termination. Associate the storage
pointer with the key using pthread_setspecific.

*/
thddataptr = (char *) malloc(100);
(void)pthread_setspecific(mykey,thddataptr);

/* the body of the function

/* now, the thread exits, causing the thread termination
key data destructor to be executed.

*/
pthread_exit((void *)0);

}
/*

The key data destructor function
*/
void mydestruct(void * value) {
/* value is the value in the key/value binding that is unique

to the thread being terminated. Thus, in the example,
it represents the pointer to the storage needing freed.

*/
free(value);

}

Figure 84. Referring to Thread-specific Data

318 OS/390 V2R8.0 C/C++ Programming Guide

kill()
killpg()
raise()
sigaction()
siginterrupt()
signal()
sigset()

Generating a Signal

A signal can be generated explicitly with the raise(), kill(), killpg(), or
pthread_kill() functions or implicitly with functions such as alarm() or by the
system when certain events occur. In all cases, the signal will be directed to a
specific thread running in a process.

The two primary functions for controlling signals are sigaction() and
sigprocmask(). sigaction() also includes bsd_signal(), signal(), and sigset().

sigaction()

sigaction() specifies the action when a signal is processed by the system. This
function is process-scoped instead of thread-specific. When a signal is generated
for a process, the state of each thread within that process determines which thread
is affected.

The three types of signal actions are:

catcher
Specifies the address of a function that will get control when the signal is
delivered

SIG_DFL
Specifies that the system should perform default processing when this
signal type is generated

SIG_IGN
Specifies that the system should ignore all signals of this type.

Attention: If a signal whose default action is to terminate is delivered to a thread
running in a process where there are multiple threads running, and no
signal catcher is designated for the signal, the entire process is
terminated. You can avoid this by blocking each of the terminating
signals, or by establishing a signal catcher for each of them.

In a multi-threaded application, when a signal is generated by a function or action
that is not thread specific, and the process has some threads set up for signals and
some threads that are not set up for signals, then the kernel’s signal processing
determines which thread has the most interest in the signal.

The following is a list of signal interest rules in their order of priority:
1. When threads are found in a sigwait() for this signal type, the signal is

delivered to the first thread found in a sigwait().
2. When all threads are blocking this signal type, the signal is left pending in the

kernel at the process level. The sigpending function moves blocked pending
signals at the process level to the thread level.

3. When all of the following are true:
v One or more threads are set up for signals

Chapter 23. Using Threads in an OS/390 UNIX Application 319

v All threads set up for signals have the signal blocked
v A thread not set up for signals has not blocked the signal

The signal is left pending in the kernel on the first thread set up for signals.
The signal remains pending on that thread until the thread unblocks the signal.

4. When the signal action is to catch, the signal is delivered to one of the threads
that has the signal unblocked.

sigprocmask()

sigprocmask() specifies a way to control which set of signals interrupt a specific
thread. Because sigprocmask() is thread-scoped, it blocks the signal for only the
thread that issues the function.

Thread Cancellation

When multiple threads are running in a process, thread cancellation permits one
thread to cancel another thread in that process. This is done with the
pthread_cancel() function, which causes the system to generate a cancel interrupt
and direct it to the thread specified on the pthread_cancel(). Each thread can
control how the system generates this cancel interrupt by altering the interrupt
state and type.

A thread may have the following interrupt states, in descending order of control:

disabled
For short code sequences, the entire code sequence can be disabled to
prevent cancel interrupts. The pthread_setintr() function enables or
disables cancel interrupts in this manner.

controlled
For larger code sequences where you want some control over the
interrupts but cannot be entirely disabled, set the interrupt type to
controlled and the interrupt state to enabled. The pthread_setintrtype()
function allows for this type of managed interrupt delivery by introducing
the concept of cancellation points.

Cancelation points consist of calls to a limited set of library functions.
Refer to the description of pthread_setintrtype() in the OS/390 C/C++
Run-Time Library Reference for a list of these cancellation points. The user
program can implicitly or explicitly solicit interrupts by invoking one of
the library functions in the set of cancellation points, thus allowing the
user to control the points within their application where a cancel may
occur.

asynchronous
For code sequences where you do not need any control over the interrupt,
set pthread_setintr() to enable and pthread_setintrtype() to
asynchronous. This will allow cancel interrupts to occur at any point
within your program.

For example, if you have a critical code section (a sequence of code that needs to
complete), you would turn cancel off or prevent the sequence from being
interrupted. If the code is relatively long, consider running using the control
interrupt and as long as the critical code section doesn’t contain any of the
functions that are considered cancellation points, it will not be unexpectedly
canceled.

320 OS/390 V2R8.0 C/C++ Programming Guide

For C++, destructors for automatic objects on the stack are run when a thread is
cancelled. The stack is unwound and the destructors are run in reverse order.

Functions
Table 45. Functions used to control cancelability

Function Purpose

pthread_cancel() Cancel a thread

pthread_setintr() Set thread cancelability
state

pthread_setintrtype() Set thread cancelability type

pthread_testintr() Establish a cancelabilty point

Cancelling a Thread

Three possible scenarios may cancel a thread, one for each of the interrupt states of
the thread being canceled.
v One thread issues pthread_cancel() to another thread whose cancelability state

is enabled and controlled. In this case the thread being canceled continues to run
until it reaches an appropriate cancellation point. When the thread is eventually
cancelled, just prior to termination of the thread, any cleanup handlers which
have been pushed and not yet popped will be executed. Then if the thread has
any thread-specific data, the destructor functions associated with this data will
be executed.

v One thread issues pthread_cancel() to another thread whose interruption state
is enabled and asynchronous. In this case the thread being canceled is
terminated immediately, after any cleanup handlers and thread-specific data
destructor functions are executed, as in the first scenario.

v One thread issues pthread_cancel() to another thread whose interruption state
is disabled. In this case the cancel request is ignored and the thread being
canceled continues to run normally.

In the first two interrupt states above, the caller of pthread_cancel() may get
control back before the thread is actually canceled.

Cleanup for Threads

Cleanup handlers are routines written by the user that include any special
processing the user finds necessary for termination of a thread. As the user’s
routine executes, it pushes cleanup handlers on to a stack. As the thread continues
to run and the routine progresses, these cleanup handlers can be taken off of the
stack by the user’s routine.

A list or stack of cleanup handlers is maintained for each thread. When the thread
ends, all pushed but not yet popped cleanup routines are popped from the cleanup
stack and executed in last-in-first-out (LIFO) order. This occurs when the thread:
v Calls pthread_exit()

v Does a return from or reaches the end of the start routine (that gets controls as a
result of a pthread_create())

v Is canceled because of a pthread_cancel().

Chapter 23. Using Threads in an OS/390 UNIX Application 321

Functions
Table 46. Functions used for cleanup purposes

Function Purpose

pthread_cleanup_push() Establish a cleanup handler

pthread_cleanup_pop() Remove a cleanup
handler

Behaviors and Restrictions in an OS/390 UNIX Application

The following are implementation-specified behaviors and restrictions that apply to
the C/C++ library functions when running a multi-threaded OS/390 UNIX
application.

Using Threads with MVS Files

MVS files that are opened by data-set names or ddnames are thread-specific in the
following ways:

Note: These restrictions specifically do not apply to Hierarchical File System (HFS)
files.

All opens and closes by the C library that result in calls to an underlying access
method for a given MVS file must occur on the same thread. Apart from this
requirement, file pointers can be freely used for any type of file access (reading,
writing, repositioning, and so forth) from any thread. Therefore, the following
specific functions are prohibited from any thread except the owning thread (the
one that does the initial fopen()) of the file:
v fclose()
v freopen()
v rewind()

Multivolume data sets and files that are part of a concatenated ddname are further
restricted in multithreaded applications. All I/O operations are restricted to the
thread on which the file is opened.

The above thread affinity restrictions on the use of MVS files apply to hiperspace
memory files but not to regular memory files.

When standard streams are directed to MVS files, they are governed by the above
restrictions. Standard streams are directed to MVS files in one of two ways:
v By default when a main() program is run from the TSO ready prompt or by a

JCL EXEC PGM= statement, that is, whenever it is not initiated by the exec()
function. This is regardless of whether you are running with POSIX(ON) or
POSIX(OFF). In these cases, the owning thread is the initial processing thread
(IPT), the thread on which main() is executed.

v By explicit action when the user redirects the streams by using command line
redirection, fopen(), or freopen(). The thread that is redirected (the IPT, if you
are using command line redirection) becomes the owning thread of the
particular standard stream. The usual MVS file thread affinity restrictions
outlined above apply until the end of program or until the stream is redirected
to the HFS.

322 OS/390 V2R8.0 C/C++ Programming Guide

Any operation that violates these restrictions causes SIGIOERR to be raised and
errno to be set with the following associated message:
EDC5024I: An attempt was made to close a file that had been
opened on another thread.

All MVS files opened from a given thread and still open when the thread is
terminated are closed automatically by the library during thread termination.

The getc(), getchar(), putc(), and putchar() functions have two versions, one
that is defined in the header file, stdio.h, which is a macro and the other which is
an actual library routine. The macros have better performance than their respective
function versions, but these macros are not thread safe, so in a multithreaded
application where _OPEN_THREADS feature test macro is defined, the macro version
of these functions are not exposed. Instead, the library functions are used. This is
done to ensure thread safety while multiple threads are executing.

Having more than one writer use separate file pointers to a single data set or
ddname is prohibited as always, regardless of whether the file pointers are used
from multiple threads or a single thread.

Thread-Scoped Functions

Thread-scoped functions are functions that execute independently on each thread
without sharing intermediate state information across threads. For example,
strtok() preserves pointers to tokens independently on each thread, regardless of
the fact that multiple threads may be examining the same string in a strtok()
operation. Some examples of thread-scoped functions are:
v strtok()
v rand(), srand()
v mblen(), mbtowc()
v strerror()
v asctime(), ctime(), gmtime(), localtime()
v clock()

The following are examples of process-scoped functions, which means that a call to
these functions on one thread influences the results of calls to the same function on
another thread. For example, tmpnam() is required to return a unique name for
every invocation during the life of the process, regardless of which thread issues
the call.
v tmpnam()
v getenv()
v setenv()
v clearenv()
v putenv()

Unsafe Thread Functions

The following functions are not thread-safe. In a multithreaded application,
therefore, they should only be used before the first invocation of pthread_create().
v setlocale() - (returns NULL if issued after pthread_create())
v tzset()
v fork()

Chapter 23. Using Threads in an OS/390 UNIX Application 323

Fetched Functions and Writable Statics

Fetched functions are recorded globally at the process level. Therefore a function
fetched from one thread can be executed from any thread.

Module boundary crossings are thread-scoped. Writable statics have a scope
between process and thread. They are process-scoped except that module crossings
are thread-scoped. This means that:
v All threads initially inherit the writable statics of the creating thread at the time

of the creation.
v When any thread executes a function pointer supplied by the fetch() function

and crosses a module boundary, only that thread has access to the writable
statics of the fetched module.

MTF and OS/390 UNIX Threading

MTF is not supported from applications running under POSIX(ON). A return value
of EWRONGOS is issued when running in a POSIX(ON) environment. An application
that requires multithreading must either use MTF with POSIX(OFF) or
pthread_create() with POSIX(ON).

Thread Queuing Function

The thread queuing function allows you to control whether or not threads should
be queued up while waiting for TCBs to become available. You can accomplish this
by switching the synctype attribute of a thread between synchronous and
asynchronous mode. With synchronous mode for example, if a process can only
have 50 TCBs active at any one time, then only 50 threads can be created. The 51st
thread create results in an error. With asynchronous mode, however, you can set
the synctype attribute for a thread such that the 51st thread is created. This thread
will not start until one of the other threads finishes and releases a TCB.

Functions that relate to the ability to control thread queuing are:
v pthread_set_limit_np()
v pthread_attr_getsynctype_np()
v pthread_attr_setsynctype_np()

Thread Scheduling

You can use the pthread_attr_setweight_np() and
pthread_attr_setsynctype_np() functions to establish priorities for threads. The
pthread_attr_setweight_np() threadweight variable can be set to the following:
__MEDIUM_WEIGHT

Each thread runs on a task. When the current thread exits, the task waits
for another thread to do a pthread_create(). The new thread runs on that
task.

__HEAVY_WEIGHT
The task is attached on pthread_create() and terminates when the thread
exits. When the thread exits, the associated task can no longer request
threads to process, and full MVS EOT resource manager cleanup occurs.

You can use the pthread_addt_setsynctype_np() function to set the
__PTATASYNCHRONOUS value. This enables you to create more threads than there are
TCBs available. For example, you could run 50 TCBs and create hundreds of

324 OS/390 V2R8.0 C/C++ Programming Guide

threads. The kernel queues the threads until a task is available. This frees your
application from managing the work. While a thread is queued and not executing
on an MVS task, you can still interact with the thread via pthread functions, such
as pthread_join() and pthread_kill().

iconv() Family of Functions

The conversion descriptor returned from a successful iconv_open() may be used
safely within a single thread for conversion purposes. It may, however, be opened
on one thread (iconv_open()), closed on another thread (iconv_close()), and used
on a third thread (iconv()). However, it is the user’s responsibility to ensure
operations are synchronized if they are used across multiple threads.

Chapter 23. Using Threads in an OS/390 UNIX Application 325

326 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 24. Reentrancy in OS/390 C/C++

This chapter describes the concept of reentrancy. It tells you how to use reentrancy
in C programs to help make your programs more efficient, and how C++ achieves
constructed reentrancy.

Reentrant programs are structured to allow multiple users to share a single copy of
an executable module or to use an executable module repeatedly without
reloading. C and C++ achieve reentrancy by splitting your program into two parts.
The first part, which consists of executable code and constant data, does not
change during program execution. The second part may be altered in the course of
the program. This part includes the dynamic storage area (DSA) and a piece of
storage known as the writable static area. This area contains all persistent data that
can be altered. Both of these parts are areas of memory that are maintained until
the program terminates.

If the program is installed in the Link Pack Area (LPA) or Extended Link Pack
Area (ELPA) of your operating system, only a single copy of the first (constant or
reentrant part) exists within a single address space. This occurs regardless of the
number of users that are running the program simultaneously. This reentrant part
may be shared across address spaces or across sessions. In this case, the executable
module is loaded only once. Separate concurrent invocations of the program share
or reenter the same copy of the write-protected executable module. If the program
is not installed in the LPA or ELPA area, each invocation receives a private copy of
the code part, but this copy may not be write-protected.

The modifiable writable static part of the program contains:
v All program variables with the static storage class
v All program variables receiving the extern storage class
v All writable strings
v All function linkage descriptors for all referenced DLL functions
v All variable linkage descriptors to reference imported variables

Each user running the program receives a private copy of the second (data or
non-reentrant) part. This part, the data area, is modifiable by each user.

The code part of the program contains:
v Executable instructions
v Read-only constants
v Global objects compiled with the #pragma variable (-NORENT)

Natural or Constructed Reentrancy

Reentrant programs contain natural or constructed reentrancy. Programs that
contain no references to the writable static objects listed above have natural
reentrancy. Programs that are not naturally reentrant, and refer to writable static
objects (C++ code, or C code compiled with RENT), must be bound with the
binder. These programs have constructed reentrancy.

© Copyright IBM Corp. 1996, 1999 327

If you are using C, you do not need to use the RENT compiler option if your
program is naturally reentrant.

All C++ programs are not naturally reentrant and must be bound with the binder.

Limitations of Constructed Reentrancy for C Programs

Even if a C program is large and will have more than one user at the same time,
there are also these limitations to consider:
v Load module reprocessing is limited. Programs in a load module referring to

writable static and processed by the prelinker cannot be reprocessed.
v If your source resides in a PDS, you must link-edit your code using the

prelinker. If your source resides in a PDSE, you must bind your code with the
binder.

v A system programmer can install only the shared portion of your program in the
LPA or ELPA of your operating system.

Controlling External Static in C Programs

Certain program variables with the extern storage class may be constant and never
written. If this is the case, every user does not need to have a separate copy of
these variables. In addition, there may be a need to share constant program
variables between C and another language.

You can force an external variable to be the part of the program that includes
executable code and constant data by using the #pragma variable(varname,
NORENT) directive. The following program fragment illustrates how this is
accomplished:

In this example, the source file is compiled with the RENT option. The external
variable rates are included in the executable code because #pragma
variable(rates, NORENT) is specified. The variable totals are included with the
writable static. Each user has a copy of the array totals, and the array rates are
shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. Program variables with the static
storage class are always included in the writable static. An informational message
will appear if you do try to write to a non-reentrant variable when you specify the
CHECKOUT compiler option.

#pragma options(RENT)

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {
/* ... */

}

Figure 85. Controlling External Static

328 OS/390 V2R8.0 C/C++ Programming Guide

When specifying #pragma variable(varname, NORENT), ensure that this variable is
never written; if it is written, program exceptions or unpredictable program
behavior may result. In addition, you must include #pragma variable(varname,
NORENT) in every source file where the variable is referenced or defined. It is good
practice to put these pragmas in a common header file.

Note: You can also use the keyword const to ensure that a variable is not written.
See the OS/390 C/C++ Language Reference for more information on this
keyword.

Controlling Writable Strings

In a large number of C programs, character strings may be constant and never
written to. If this is the case, every user does not need a separate copy of these
strings.

You can force all strings in a given source file to be the part of the program that
includes executable code and constant data by using #pragma strings(readonly).
“CBC3GRE1” illustrates how to make the strings constant:

CBC3GRE1

In this example, the string "hello world\n" is included with the executable code
because #pragma strings(readonly) is specified. This can yield a performance and
storage benefit.

Ensure that you do not write to read-only strings. The following code will try to
overwrite the literal string ″abcd″ because ’chrs’ is just a pointer:
char chrs[]= "abcd";
memcpy(chrs,"ABCD",4);

Program exceptions or unpredictable program behavior may result if you attempt
to write to a read-only string.

Controlling the Memory Area in C++

In C++, some objects may be constant and never modified. If your program is
reentrant, having such objects exist in the code part is a storage and performance
benefit.

/* this example demonstrates how to make strings constant */

#pragma strings(readonly)
#include <stdio.h>

int main(void)
{

printf("hello world\n");

return(0);
}

Figure 86. Making Strings Constant

Chapter 24. Reentrancy in OS/390 C/C++ 329

As a programmer, you control where objects with global names and string literals
exist. You can use the #pragma variable(objname, NORENT) directive to specify that
the memory for an object with a global name is to be in the code area.
/*--*/
/* RATES is constant and in code area */
#pragma variable(RATES, NORENT)
const float RATES[5] = { 1.0, 1.5, 2.25, 3.375, 5.0625 };
float totals[5];
/*--*/

In this example, the variable RATES exists in the executable code area because
#pragma variable(RATES,NORENT) has been specified. The variable totals exists in
writable static area. All users have their own copies of the array totals, but the
array RATES is shared among all users of the program.

When you specify #pragma variable(objname,NORENT) for an object, and the
program is to be reentrant, you must ensure that this object is never modified,
even by constructors or destructors. Program exceptions or unpredictable behavior
may result. Also, you must include #pragma variable(objname,NORENT) in every
source file where the object is referenced or defined. Otherwise, the compiler will
generate inconsistent addressing for the object, sometimes in the code area and
sometimes in the writable static area.

Controlling Where String Literals Exist in C++ Code

In OS/390 C/C++, the string literals exist in the code part by default, and are not
modifiable if the code is reentrant. In a large number of programs, string literals
may be constant. In this case, every user does not need a separate copy of these
strings.

By using the #pragma strings(writable) directive, you can ensure that the string
literals for that compilation unit will exist in the writable static area and be
modifiable. “CBC3GRE2” illustrates how to make the string literals modifiable:

CBC3GRE2

In this example, the string "wall\n" will exist in the writable static area because
#pragma strings(writable) is specified. This modifies the fourth character.

/* this example demonstrates how to make string literals modifiable */

#pragma strings(writable)
#include <iostream.h>
int main(void)
{
char * s;
s = "wall\n"; // point to string literal
*(s+3) = 'k'; // modify string literal
cout << s; // output "walk\n"

}

Figure 87. How to Make String Literals Modifiable

330 OS/390 V2R8.0 C/C++ Programming Guide

Using Writable Static in Assembler Code

Programming in C or C++ can eliminate most of the need to code in assembler.
However, in cases where you must code in assembler, you may have a need to
modify data in the writable static area of a C or C++ program, from within an
assembler program.

Note: To call assembler from C++, you must use extern "OS" as documented in
“Chapter 19. Using Linkage Specifications in C++” on page 239.

One way to modify data in the writable static area is to pass the address of the
writable static data item as a parameter to the assembler program. This may be
difficult in some cases. The following assembler macros makes this easier:
v EDCDXD

v EDCLA

v EDCDPLNK

These are in CEE.SCEEMAC(EDCDXD,EDCLA,EDCDPLNK). The restriction on the names of
writable static objects accessible in assembler code is that they are S-names. This
means that they may be at most 8 characters long and may contain only characters
allowed in external names by the assembler code.

The macro EDCDXD declares a writable static data item. EDCLA loads the address of
the writable static data item into a register. Using the EDCLA macro in assembler
code necessitates coding EDCDXD as well.

The EDCDPLNK macro defines reference writable static data with the OS/390 binder.
This macro must appear before the first executable control section is initiated in the
assembler source module. If there is more than one assembler source program in
the input file, EDCDPLNK must precede every assembler source program in any input
file that defines or references writable static data.

“CBC3GRE3” on page 332 illustrates their use:

Chapter 24. Reentrancy in OS/390 C/C++ 331

CBC3GRE3

In this example, the external variable TBLDSA is declared using the EDCDXD macro.
The size value of 0F (zero fullwords) indicates that DSA will be treated as an
extern declaration in C or C++. Because TBLDSA is an extern declaration and not a
definition, DSA must be defined in another C, C++, or assembler program. The
EDCLA macro loads the general purpose register 1 with the address of DSA, which
exists in the writable static area.

The external variable TBDLSA is declared using the EDCDXD macro. It is defined
because its size is 20F (20 fullwords or 80 bytes) and corresponds to an external
data definit ion in C or C++. When the program starts, TBDLSA is initialized to zero.
Because TBDLSA is an external data definition, there should not be another
definition of it in a C++, C, or assembler program.

When these macros are used, these pseudo-registers cannot be used within the
same assembler program.

There are no assembler macros for static initialization of a variable with a nonzero
value. You can do this by defining and initializing the variable in C or C++ and
making an extern declaration for it in the assembler program. In the example
assembler program, DSA is declared this way.

“CBC3GRE4” on page 333 illustrates how to call the above assembler program.

* this example shows how to reference objects in the writable *
* static area, from assembler code *
* part 1 of 2(other file is CBC3GRE4) *
* *
* parameters: none *
* return: none *
* action: store contents of register 13 (callers dynamic *
* storage area) in variable DSA which exists in *
* the writable static area *
* *
* Macros: EDCPRLG, EDCEPIL, EDCDXD, EDCLA in CEE.SCEEMAC *

XOBJHDR EDCDPLNK ;generate an XOBJ header
GETDSA CSECT
GETDSA AMODE ANY
GETDSA RMODE ANY

EDCPRLG ;prolog (save registers etc.)
EDCLA 1,DSA ;load register 1 with address of DSA
ST 13,0(,1) ;store contents of reg 13 in DSA
EDCEPIL ;epilog (restore registers etc.)

DSA EDCDXD 0F ;declaration of DSA in writable static
TBLDSA EDCDXD 20F ;definition of TBLDSA in writable static
END

Figure 88. Referencing Objects in the Writable Static Area-Part 1

332 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GRE4

/* this example shows how to reference objects in the writable */
/* static area, from assembler code */
/* part 2 of 2 (other file is CBC3GRE3) */

#include <stdio.h>

#ifdef __cplusplus
extern "OS" {

#endif
void GETDSA(void); /* assembler routine modifies DSA */
#ifdef __cplusplus

}
#endif

const int sz = 20; /* maximum call depth */
extern void * TBLDSA[sz]; /* defined in assembler program */
void * DSA; /* define it here, source name */

/* same as assembler name */

/* call yourself deeper and deeper */
/* save DSA pointers as you go */
void deeper(int i)
{
if (i >= sz) /* if deep enough just return */
return;

GETDSA(); /* assign value to DSA */
TBLDSA[i] = DSA; /* save value in table */
deeper(i+1); /* go deeper in call chain */

}

int main(void) {
int i;
deeper(0);
for(i=0; i<sz; i++)
printf("depth %3d, DSA was at %p\n", i, TBLDSA[i]);

return 0;
}

Figure 89. Referencing Objects in the Writable Static Area-Part 2

Chapter 24. Reentrancy in OS/390 C/C++ 333

334 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 25. Using the Decimal Data Type in C

This chapter refers to fixed-point decimal data types as “decimal types”. The
decimal type is an extension of the ANSI C language definition. You can use
decimal types to represent large numbers accurately, especially in business and
commercial applications for financial calculations. Decimal types are available only
if the LANGLVL is EXTENDED, as it is by default. If you need to, you can explicitly
specify #pragma langlvl(EXTENDED) in your code, or use the LANGLVL(EXTENDED)
compiler option.

The decimal types allow expressions of up to DEC_DIG significant digits including
integral and fractional parts. The header file <decimal.h> specifies the value of
DEC_DIG.

You can pass decimal arguments in function calls and define macros. You can also
declare decimal variables, typedefs, arrays, structures, and unions having decimal
members. The following operators apply on decimal variables:
v Arithmetic
v Relational
v Assignment
v Comma
v Conditional
v Equality
v Logical
v Primary
v Unary

When using the decimal types, you must include the decimal.h header file in your
source code.

Note: To generate more efficient code for decimal operations, use the OPTIMIZE(1)
compiler option.

Declaring Decimal Types

Use the type specifier decimal(n,p) to declare decimal variables and to initialize
them with fixed-point decimal constants. The decimal() macro is defined in
<decimal.h>.

The decimal(n,p) type specifier designates a decimal number with n digits and p
decimal places. In this specifier, n is the total number of digits for the integral and
decimal parts combined and p is the number of digits for the decimal part only.
For example, decimal(5,2) represents a number, such as 123.45, where n=5 and
p=2. Specifying the value for p is optional. If omitted, p has a default value of 0.

n and p have a range of allowed values according to the following rules:
p ≤ n
1 ≤ n ≤ DEC_DIG
0 ≤ p ≤ DEC_PRECISION

© Copyright IBM Corp. 1996, 1999 335

Note: The header file <decimal.h> defines DEC_DIG (the maximum number of digits
n) and DEC_PRECISION (the maximum precision p). Currently, there is a limit
of a maximum of 31 digits.

Declaring Fixed-Point Decimal Constants

The syntax for fixed-point decimal constants is:

fixed-point-decimal-constant:
fractional-constant fixed-point-decimal-suffix

fractional-constant (use any one of the following formats):
digit-sequence . digit-sequence
. digit-sequence
digit-sequence .
digit-sequence

digit-sequence (use any one of the following formats):
digit
digit-sequence digit

fixed-point-decimal-suffix (use any one of the following formats):
D
d

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The components of the numeric part may include a digit sequence
representing the integral part, followed by a decimal point (.), followed by a digit
sequence representing the fractional part. Either the integral part, the fractional
part, or both are present.

Each fixed-point decimal constant has the attributes number of digits (digits) and
number of decimal places (precision). Leading or trailing zeros are not discarded
when the digits and the precision are determined.

The following table gives examples of fixed-point decimal constants and their
corresponding attributes:

Table 47. Fixed-Point Decimal Constants and Their Attributes
Fixed-Point Decimal Constant (digits, precision)

1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d (8, 0)
.1234567890d (10, 10)
12345.99d (7, 2)
000123.990d (9, 3)
0.00D (3, 2)

Declaring Decimal Variables

The following example shows how you can declare a variable as a decimal type:

336 OS/390 V2R8.0 C/C++ Programming Guide

decimal(10,2) x;
decimal(5,0) y;
decimal(5) z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

In the previous example:
v x can have values between -99999999.99D and +99999999.99D.
v y and z can have values between -99999D and +99999D.
v ptr is a pointer to type decimal(18,10).
v arr is an array of 100 elements, where each element is of type decimal(8,2).

The syntax for the decimal type specifier is as follows:

ÊÊ decimal (constant-expression
, constant-expression

) ÊÍ

The constant-expression is evaluated as a positive integral constant expression.
Specifying a second constant-expression is optional. If left out, the default value is
0. Decimal variables decimal(n,0) and decimal(n) are type compatible.

Defining Decimal-Related Constants

Use the following numerical limits to define the decimal value in assignments and
expressions. <decimal.h> contains these predefined values.
v The smallest number in a decimal type

DEC_MIN
-9999999999999999999999999999999D

v The largest positive number in a decimal type

DEC_MAX
+9999999999999999999999999999999D

v The smallest number greater than zero in a decimal type

DEC_EPSILON
.0000000000000000000000000000001D

v Maximum number of significant digits that decimal types can hold

DEC_DIG
31

v Maximum number of decimal places that decimal types can hold

DEC_PRECISION
31

Using Operators

You can use arithmetic, relational, assignment, comma, conditional, equality,
logical, primary, and unary cast operators on a decimal data type. Conversions
follow these arithmetic conversion rules:
v First, if the type of either operand is long double, the other operand becomes

long double.

Chapter 25. Using the Decimal Data Type in C 337

v Otherwise, if the type of either operand is double, the other operand becomes
double.

v Otherwise, if the type of either operand is float, the other operand becomes
float.

v Otherwise, if the type of either operand is decimal, the other operand becomes
decimal.

v Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:
– If the type of either operand is unsigned long int, the other operand becomes

unsigned long int.
– Otherwise, if the type of one operand is long int and the other is unsigned

int, the operand of type unsigned int is converted to long int, if the long int
can represent all values of an unsigned int. If a long int cannot represent all
the values of an unsigned int, both operands become unsigned long int.

– Otherwise, if the type of either operand is long int, the other operand
becomes long int.

– Otherwise, if the type of either operand is unsigned int, the other operand
becomes unsigned int.

– Otherwise, the type of both operands is int.

Arithmetic Operators

Figure 90 shows how to use arithmetic operators, and then describes certain
arithmetic, assignment, unary, and cast operators in more detail. It summarizes
how to add, subtract, multiply and divide decimal variables.

CBC3GDC1

/*this example demonstrates arithmetic operations on decimal variables*/

#include <decimal.h> /* decimal header file */
#include <stdio.h>

int main(void)
{

decimal(10,2) op_1 = 12d;
decimal(5,5) op_2 = -.12345d;
decimal(24,12) op_3 = 12.34d;
decimal(20,5) op_4 = 11.01d;

Figure 90. Arithmetic Operators Example (Part 1 of 2)

338 OS/390 V2R8.0 C/C++ Programming Guide

Additive Operators

Additive and multiplicative operators follow the arithmetic conversion rules
defined in “Using Operators” on page 337.

Note: For performance reasons, generating negative zero is possible.

Refer to “Intermediate Results” on page 340 for details on how to get the
conversion type during alignment of the decimal point.

Relational Operators

Relational operators follow the arithmetic conversion rules defined in “Using
Operators” on page 337.

Figure 91 on page 340 shows you how to use a relational expression less than (<)
for decimals. In this example, decimal types are compared with other arithmetic
types (integer, float, double, long double). In addition, the implicit conversion of
the decimal types is performed using the arithmetic conversion rules in
“Converting Decimal Types” on page 343. Leading zeros in the example are shown
to indicate the number of digits in the decimal type. You do not need to enter
leading zeros in your decimal type variable initialization.

decimal(14,5) res_add;
decimal(25,2) res_sub;
decimal(15,7) res_mul;
decimal(31,14) res_div;

res_add = op_1 + op_2;
res_sub = op_3 - op_1;
res_mul = op_2 * op_1;
res_div = op_3 / op_4;

printf("res_add =%D(*,*)\n",digitsof(res_add),
precisionof(res_add),res_add);

printf("res_sub =%D(*,*)\n",digitsof(res_sub),
precisionof(res_sub),res_sub);

printf("res_mul =%D(*,*)\n",digitsof(res_mul),
precisionof(res_mul),res_mul);

printf("res_div =%D(*,*)\n",digitsof(res_div),
precisionof(res_div), res_div);

return(0);
}

Figure 90. Arithmetic Operators Example (Part 2 of 2)

Chapter 25. Using the Decimal Data Type in C 339

CBC3GDC2

Refer to “Intermediate Results” for details on how to get the conversion type
during alignment of the decimal point.

Equality Operators

Equality operators follow the arithmetic conversions defined in “Using Operators”
on page 337. Where the operands have types and values suitable for the relational
operators, the semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. In the following example,
the expression always evaluates to TRUE:
(-0.00d == +0.00000d)

Refer to “Intermediate Results” for details on how to get the convert type during
alignment of the decimal point.

Conditional Operators

Conditional operators follow the arithmetic conversions defined in “Using
Operators” on page 337. If both the second and third operands have an arithmetic
type, the usual arithmetic conversions are performed to bring them to a common
type. If both operands are decimal types, the operands are converted to the convert
type and the result has that type.

Refer to “Intermediate Results” for details on how to get the convert type during
alignment of the decimal point.

Intermediate Results

Use one of the following tables to calculate the size of the result. The tables
summarize the intermediate expression results with the four basic arithmetic

/* this example shows how to use a relational expression with the */
/* decimal type */

#include <decimal.h>

decimal(10,3) pdval = 0000023.423d; /* Decimal declaration*/
int ival = 1233; /* Integer declaration*/
float fval = 1234.34; /* Float declaration*/
double dval = 251.5832; /* Double declaration*/
long double lval = 37486.234; /* Long double declaration*/

int main(void)
{
decimal(15,6) value = 000485860.085999d;

/*Perform relational operation between other data types and decimal*/
if (pdval < ival) printf("pdval is the smallest !\n");
if (pdval < fval) printf("pdval is the smallest !\n");
if (pdval < dval) printf("pdval is the smallest !\n");
if (pdval < lval) printf("pdval is the smallest !\n");
if (pdval < value) printf("pdval is the smallest !\n");

return(0);
}

Figure 91. Relational Operators Example

340 OS/390 V2R8.0 C/C++ Programming Guide

operators and conditional operators when applied to the decimal types. Most of
the time, you can use Table 48 to calculate the size of the result. It assumes no
overflow. If overflow occurs, use Table 49 to determine the resulting type.

Both tables assume the following:
v x has type decimal(n₁, p₁)
v y has type decimal(n₂, p₂)
v decimal(n,p) is the resulting type

Table 48. Intermediate Results (without overflow in n or p)

Expression (n, p)

x * y n = n₁ + n₂ p = p₁ + p₂

x / y n = DEC_DIG p = DEC_DIG - ((n₁ - p₁) + p₂)

x + y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p + 1

x − y same rule as addition

z ? x : y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p

You can use Table 49 to calculate the size of the result, whether there is an
overflow or not.

Table 49. Intermediate Results (in the general form)

Expression (n, p)

x * y n = min(n₁ + n₂, DEC_DIG)
p = min(p₁ + p₂, DEC_DIG - min((n₁ - p₁)
+ (n₂ - p₂), DEC_DIG))

x / y n = DEC_DIG
p = max(DEC_DIG - ((n₁ - p₁) + p₂), 0)

x + y ir
= min(max(n₁ - p₁, n₂ - p₂) + 1, DEC_DIG)
p = min(max(p₁, p₂), DEC_DIG - ir)
n = ir + p

x − y same rule as addition

z
? x : y

ir = max(n₁
- p₁, n₂ - p₂)
p = min(max(p₁, p₂), DEC_DIG - ir)
n = ir + p

If overflow occurs in n or p, a message is issued and the decimal places are
truncated. As much of the integral part is reserved as possible. If the integral part
is truncated as an expression in the static or extern initialization, an error message
is issued. If the integral part is truncated inside the block scope, a warning is
issued. On each operation, the complete result is calculated before truncation
occurs.

Assignment Operators

Assignment operators follow the arithmetic conversion rules defined in “Using
Operators” on page 337.

When values are assigned, an SIGFPE exception is raised if the operands contain
values that are not valid.

Chapter 25. Using the Decimal Data Type in C 341

Unary Operators

Use the following unary operators to determine the digits in a decimal type:

sizeof Determines the total number of bytes occupied by the decimal type

digitsof Determines the number of digits (n)

precisionof Determines the number of decimal digits (p)

sizeof Operator

When you use the sizeof operator with decimal(n,p), the result is an integer
constant. The sizeof operator returns the total number of bytes occupied by the
decimal type.

Each decimal digit occupies a halfbyte. In addition, a halfbyte represents the sign.
The number of bytes used by decimal(n,p) is the smallest whole number greater
than or equal to (n + 1)/2, that is, sizeof(decimal(n,p)) = ceil((n + 1)/2). The
sizeof result is calculated using this method because the OS/390 C compiler uses
packed decimal to implement decimal types.

The following example shows you how to determine the total number of bytes
occupied by the decimal type:
int y;
decimal (5, 2) x;
y = sizeof(x); /* This would be calculated to be 3 bytes*/

/* (5+1)/2 = 3. */

digitsof Operator

When you use the digitsof operator with a decimal type, the result is an integer
constant. The digitsof operator returns the number of significant digits (n) in a
decimal type.

This example gives you the number of digits (n) in a decimal type.
decimal (5, 2) x;
int n;
n = digitsof(x); /* the result is n=5 */

Note: Apply digitsof only to a decimal type.

precisionof Operator

When you use the precisionof operator with a decimal type, the result is an
integer constant. The precisionof operator tells you the number of decimal digits
(p) of the decimal type.

This example gives you the number of decimal digits (p) of the decimal type.
decimal (5, 2) x;
int p;
p = precisionof(x); /* the result is p=2 */

Note: Apply precisionof only to a decimal type.

342 OS/390 V2R8.0 C/C++ Programming Guide

Cast Operator

You can convert the following types explicitly:
v Decimal types to decimal types
v Decimal types to and from floating types
v Decimal types to and from integer types

Note: When you are explicitly casting to a decimal type, the discarding of the
leading nonzero digits does not cause an exception at run-time. For more
information about suppressing compiler messages and run-time exceptions,
refer to “Converting Decimal Types” on page 343.

Summary of Operators Used With Decimal Types

Table 50 summarizes all of the operators to be used with decimal types.

Table 50. Operators Used With Decimal Types

Operator Name Associativity Operators

Primary left to right ()

Unary right to left ++ −− + − ! & (typename)
sizeof digitsof precisionof

Multiplicative left to right * /

Additive left to right + −

Relational left to right < > <= >=

Equality left to right == !=

Conditional right to left ? :

Assignment right to left = += −= *= /=

Comma left to right ,

Converting Decimal Types

The OS/390 C compiler implicitly converts the following types:
v Decimal types to decimal types
v Decimal types to and from floating types
v Decimal types to and from integer types

Converting Decimal Types to Decimal Types

If the value of the decimal type to be converted is within the range of values that
can be represented exactly, the value of the decimal type is not changed.

If the value of the decimal type to be converted is outside the range of values that
can be represented, the value of the decimal type is truncated. Truncation may
occur on either the integral part or the fractional part or both.

When truncation occurs on the fraction part, no compile-time message or a
run-time exception occurs.

Chapter 25. Using the Decimal Data Type in C 343

When truncation occurs on the integral part, a compile-time message, a run-time
exception or both are generated as follows:
v In the initialization of static or external variables

– Compile-time error if nonzero digits are truncated in the integral part
v In the initialization of automatic variables, an assignment or function call with

prototype
– Checkout warning at compile time
– Run-time exception SIGFPE occurs if nonzero digits are truncated in the

integral part at run time.

Note: An explicit cast is used to suppress compile-time messages and run-time
exceptions. A run-time exception occurs if the leading nonzero digits are
discarded and the operation is not an explicit cast operation.

Examples

In the following examples, message represents a compile-time message and
exception represents a run-time exception (that is, SIGFPE is raised).

Fractional Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with smaller precision involves truncation on the right of
the decimal point.

Integral Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with fewer digits involves truncation on the left of the
decimal point.

#include <decimal.h>

void func(void);
void dec_func(decimal(7, 1));
decimal(7, 4) x = 123.4567D;
decimal(7, 1) y;
decimal(7, 1) z = 123.4567D; /* z = 000123.4D <-- No message, */

/* No exception */
void func(void) {
decimal(7, 1) a = 123.4567D; /* a = 000123.4D <-- No message, * /

/* No exception */
y = x; /* y = 000123.4D <-- No message, No exception */
y = 123.4567D; /* y = 000123.4D <-- No message, No exception */
dec_func(x); /* <-- No message, No exception */

}

Figure 92. Fractional Part Cannot be Represented

344 OS/390 V2R8.0 C/C++ Programming Guide

Converting Decimal Types to and from Integer Types

Conversion to Integer Types

When a value of decimal type is converted to integer type, the fractional part is
discarded. If the value of the integral part cannot be represented by the integer
type, the result of the conversion is undefined. An exception does not occur and
execution continues.

When a negative decimal type is converted to an unsigned integer type, the
conversion proceeds as though these steps are followed:
1. The decimal type is converted to a signed integer type with the same size as

the unsigned integer type.
2. The signed integer type is converted to the unsigned integer type.

Example of Conversion to Integer Type

Conversion from Integer Types

When a value of integer type is implicitly converted to decimal type, the integer
type is converted to type decimal(10,0).

void func(void);
void dec_func(decimal(5, 2));
decimal(8, 2) w = 000456.78D;
decimal(8, 2) x = 123456.78D;
decimal(5, 2) y;
decimal(5, 2) z = 123456.78D; /* <-- Compile-time error */
decimal(5, 2) z1 = (decimal(5, 2)) 123456.78D;

/* z1 = 456.78D <-- No message, */
/* No exception */

void func(void) {
decimal(5, 2) a = 123456.78D; /* <-- Checkout warning */

/* and exception */
decimal(5, 2) a1 = (decimal(5, 2)) 123456.78D;

/* a1 = 456.78D <-- No message, */
/* No exception */

y = w; /* y = 456.78D <-- Checkout warning, No exception */
y = x; /* <-- Checkout warning and exception */
y = 123456.78D; /* <-- Checkout warning and exception */
dec_func(x); /* <-- Checkout warning and exception */

y = (decimal(5, 2)) w;
/* y = 456.78D <-- No message, No exception */

y = (decimal(5, 2)) x;
/* y = 456.78D <-- No message, No exception */

y = (decimal(5, 2)) 123456.78D;
/* y = 456.78D <-- No message, No exception */

dec_func((decimal(5, 2)) x);
/* <-- No message, No exception */

}

Figure 93. Integral Part Cannot be Represented

int i = 1234.5678d; /* i = 1234 */
int j = -789d; /* j = -789 */
int k = 9876543210d; /* k is undefined */

Figure 94. Conversion to Integer Type

Chapter 25. Using the Decimal Data Type in C 345

When a value of integer type is explicitly converted to decimal type, the
conversion proceeds as though these two steps are followed:
1. The integer type is converted to type decimal(10,0). A run-time exception can

never occur in this step.
2. Type decimal(10,0) is then converted to decimal(n,p). All rules for decimal

type to decimal type conversion apply in this step.

An unsigned integer type is converted to a positive decimal value.

If the value of the integral part cannot be represented by the decimal type, the
result of the conversion is undefined and an SIGFPE exception is raised.

Example of Conversion from Integer Type

Converting Decimal Types to and from Floating Types

Conversion to Floating Types

The result of the conversion might not be exact due to:
v The limitations of significant digits in different floating types
v The degree to which a value can be stored exactly in a floating type
v The loss of precision during conversion

In the following example, the content of each floating type variable depends on
their limitation of significant digits that are specified in <float.h>.

Conversion from Floating Types

When a value of floating type is converted to decimal type and the value being
converted cannot be represented by the decimal type, the result is rounded
towards zero. If the value of the floating type to be converted is within the range
of values that can be represented, but cannot be represented exactly, the result is
also rounded towards zero. The result retains as much value as possible. When the

#include <decimal.h>

decimal(10,2) pd01 = 1234; /* pd01 = 00001234.00d */
decimal(5,0) pd02 = 987654; /* compile-time error */
int main(void) {
decimal(5,0) pd03 = 987654; /* run-time exception */
decimal(13,4) pd04;

/* The number 321 is converted to decimal(10,0) before the */
/* addition is performed. */
pd04 = 1234.56d + 321; /* pd04 = 000001555.5600d */

}

Figure 95. Conversion from Integral Type

float a = 12345678901234567890.1234567890d;
double b = 12345678901234567890.1234567890d;
long double c = 12345678901234567890.1234567890d;

Figure 96. Conversion to Floating Type

346 OS/390 V2R8.0 C/C++ Programming Guide

leading nonzero digits are suppressed and the operation is not an explicit cast
operation, a decimal overflow exception occurs at run time and an SIGFPE
exception is raised.

When a conversion from a floating type is made with static or external variable
initialization, a compile-time error message is issued.

The result of the conversion may not be exact because the internal representation
of System/370 floating-point instructions is hexadecimal based if FLOAT(HEX) mode
is used. The mapping between the two representations is not one-to-one, even
when the value of a float type is within the range of the decimal type.

Example of Conversion from Floating Type

Calling Functions

There are no default argument promotions on arguments that have type decimal
when the called function does not include a prototype. If the expression for the
called function has a type that includes a prototype, the behavior is as documented
in ANSI, with the exception of prototype with an ellipsis (...). If the prototype ends
with an ellipsis (...), default argument promotions are not performed on arguments
with decimal types.

A function may change the values of its parameters, but these changes cannot
affect the values of the arguments. However, it is possible to pass a pointer to a
decimal object, and the function may change the value of the decimal object to
which it points.

Using Library Functions

You can use variable arguments and I/O operations with decimals.

Using Variable Arguments with Decimal Types

You can use the va_arg macro with a decimal type decimal(n,p).
var_type va_arg(va_list arg_ptr, var_type);

Each invocation of va_arg modifies arg_ptr so that the values of successive
arguments are returned in turn.

#include <decimal.h>

decimal(10,2) pd11 = 1234.0; /* pd11 = 00001234.00d */
decimal(5,0) pd12 = 987654.0; /* compile-time error */
int main(void) {
decimal(5,0) pd13 = 987654.0; /* run-time exception */
decimal(13,4) pd14 = 12.34567890; /* fractional part is truncated */

}

Figure 97. Conversion from Floating Type

Chapter 25. Using the Decimal Data Type in C 347

Formatting Input and Output Operations

Use the following functions to print the value of a decimal type:
v fprintf()

v printf()

v sprintf()

v vfprintf()

v vprintf()

v vsprintf()

Use the following functions to read the value of a decimal type:
v fscanf()

v scanf()

v sscanf()

For more information about these functions and their keywords, see the OS/390
C/C++ Run-Time Library Reference.

Validating Values

It is possible to have nonvalid representation of decimal value stored in memory,
such as input from file or overlay memory. If the nonvalid decimal value is used in
an operation or assignment, the result may not be as expected. A built-in function
can be used to report whether the decimal representation is valid or not. The
function call can be in the following form:
status = decchk (x);

The built-in function decchk() accepts a decimal-type expression as argument and
returns a status value of type int.

The status can be interpreted as follows:

0 Valid decimal representation value (including nonpreferred but valid sign,
A-F)

1 Leftmost halfbyte is not zero in a decimal-type number that has an even
number of digits (for example, 123 is stored in decimal(2,0))

2 Incorrect digits (not 0-9)

4 Incorrect sign (not A-F)

Macro define name for function return status (in <decimal.h>):
#define DEC_VALUE_OK 0
#define DEC_BAD_NIBBLE 1
#define DEC_BAD_DIGIT 2
#define DEC_BAD_SIGN 4

The function return status is masked to return multiple status.

348 OS/390 V2R8.0 C/C++ Programming Guide

Fix Sign

A built-in function can be used to fix nonpreferred sign variables. The function call
can be in the following form:
x = decfix (x);

The built-in function decfix() accepts a decimal-type expression as argument and
returns a decimal value that has the same size (that is, same decimal types) and
same value as the argument with the correct preferred sign. The function does not
change the content of the argument.

Decimal Absolute

The built-in function decabs() accepts a decimal-type expression as argument and
returns the absolute value of the decimal argument (that is, the same decimal type
as the argument). The function does not change the content of the argument. The
function call can be in the following form:
y = decabs (x);

See the OS/390 C/C++ Run-Time Library Reference for more information on the
decabs(), decchk(), and decfix() library functions.

Chapter 25. Using the Decimal Data Type in C 349

Programming Example

CBC3GDC3

/* this example demonstrates the use of the decimal type */
/* always include decimal.h when decimal type is used */

#include <decimal.h>

/* Declares a decimal(10,2) variable */
decimal(10,2) pd01;

/* Declares a decimal(15,4) variable and initializes it with the */
/* value 1234.56d */
decimal(15,4) pd02 = 1234.56d;

/* Structure that has decimal-related members */
struct pdec
{ /* members' data types */
int m; /* - integer */
decimal(23,10) pd03; /* - decimal(23,10) */
decimal(10,2) pd04[3]; /* - array of decimal(10,2) */
decimal(10,2) *pd05; /* - pointer to decimal(10,2) */
} pd06,
pd07 = &pd06; / pd07 points to pd06 */

/* Array of decimal(31,30) */
decimal(31,30) pd08[2];

/* Prototype for function that accepts decimal(10,2) and int as */
/* arguments and has return type decimal(25,5) */
decimal(25,5) product(decimal(10,2), int);

decimal(5,2) PdCnt; /* decimal loop counter */
int i;

int main(void)
{
pd01 = -789.45d; /* simple assignment */
pd06.m = digitsof(pd06.pd03) + precisionof(pd02); /* 23 + 4 */
pd06.pd03 = sizeof(pd01);
pd06.pd04[0] = pd02 + pd01; /* decimal addition */
*(pd06.pd04 + 1) = (decimal(10,2)) product(pd07->pd04[0], pd07->m);
pd07->pd04[2] = product(pd07->pd04[0], pd07->pd04[1]);
pd07->pd05 = &pd01; /* taking the address of a */

/* decimal variable */
/* These two statements are different */
pd08[0] = 1 / 3d;
pd08[1] = 1d / 3d;

printf("pd01 = %D(10,2)\n", pd01);
printf("pd02 = %*.*D(*,*)\n",

20, 5, digitsof(pd02), precisionof(pd02), pd02);
printf("pd06.m = %d, pd07->m = %d\n", pd06.m, pd07->m);
printf("pd06.pd03 = %D(23,10), pd07->pd03 = %D(23,10)\n",

pd06.pd03, pd07->pd03);

Figure 98. Decimal Type — Example 1 (Part 1 of 2)

350 OS/390 V2R8.0 C/C++ Programming Guide

Output from Programming Example One
pd01 = -789.45
pd02 = 1234.56000
pd06.m = 27, pd07->m = 27
pd06.pd03 = 6.0000000000, pd07->pd03 = 6.0000000000
pd06.pd04[0] = 445.11, pd07->pd04[0] = 445.11
pd06.pd04[1] = 12017.97, pd07->pd04[1] = 12017.97
pd06.pd04[2] = 5348886.87, pd07->pd04[2] = 5348886.87
*(pd06.pd05) = -789.45, *(pd07->pd05) = -789.45
pd08[0] = 0.333333333333333333333000000000
pd08[1] = 0.333333333333333333333333333333

/* You will get an infinite loop if floating type is */
/* used instead of the decimal types. */
for (PdCnt = 0.0d; PdCnt != 3.6d; PdCnt += 1.2d)
{
i = PdCnt / 1.2d;
printf("pd06.pd04[%d] = %D(10,2), \

pd07->pd04[%d] = %D(10,2)\n",
i, pd06.pd04[i], i, pd07->pd04[i]);

}

printf("*(pd06.pd05) = %D(10,2), *(pd07->pd05) = %D(10,2)\n",
*(pd06.pd05), *(pd07->pd05));

printf("pd08[0] = %D(31,30)\n", pd08[0]);
printf("pd08[1] = %D(31,30)\n", pd08[1]);

return(0);
}

/* Function definition for product() */
decimal(25,5) product(decimal(10,2) v1, int v2)
{

/* The following happens in the return statement */
/* - v2 is converted to decimal(10,0) */
/* - after the multiplication, the expression has resulting */
/* type decimal(20,2) (i.e. (10,2) * (10,0) ==> (20,2)) */
/* - the result is then converted implicitly to decimal(25,5) */
/* before it is returned */
return(v1 * v2);

}

Figure 98. Decimal Type — Example 1 (Part 2 of 2)

Chapter 25. Using the Decimal Data Type in C 351

CBC3GDC4

Note: See “Intermediate Results” on page 340 to understand the output from this
example and to see why decimal variables with size 31 should be used with
caution in arithmetic operations.

Output from Programming Example Two
pd01 = 1235.5670
pd02 = 1235.5678

Decimal Exception Handling

OS/390 C decimal instructions produce the following exceptions that are unique to
decimal operations:
v Data exception (interrupt code hex ’7’)

This may be caused by nonvalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions, for example, ADD DECIMAL or
COMPARE DECIMAL.
When an operation is performed on decimal operands and the assignment is not
through an explicit cast operation, the following situations cause run-time
exceptions at execution time and SIGFPE is raised.

v Decimal-overflow exception (interrupt code hex ’A’)
This exception may be caused when nonzero digits are lost because the
destination field in a decimal operation is too short to contain the result.

Note: The following unhandled decimal overflow message is the same for both
decimal overflow and fixed overflow conditions:
CEE3210S The system detected a Decimal-overflow exception.

/* this example demonstrates the use of the decimal type */

#include <decimal.h>

decimal(31,4) pd01 = 1234.5678d;
decimal(29,4) pd02 = 1234.5678d;

int main(void)
{
/* The results are different in the next two statements */
pd01 = pd01 + 1d;
pd02 = pd02 + 1d;

printf("pd01 = %D(31,4)\n", pd01);
printf("pd02 = %D(29,4)\n", pd02);

/* Warning: The decimal variable with size 31 should not be */
/* used in arithmetic operation. */
/* In the above example: (31,4) + (1,0) ==> (31,3) */
/* (29,4) + (1,0) ==> (30,4) */

return(0);
}

Figure 99. Decimal Type — Example 2

352 OS/390 V2R8.0 C/C++ Programming Guide

However, because the fixed overflow condition is normally disabled
(masked) and is ignored at run time, fixed overflow conditions should not
occur.

v Decimal-divide exception (interrupt code hex ’B’)
This exception may be caused when, in decimal division, the divisor is zero, or
the quotient exceeds the specified data-field size. The decimal divide is indicated
if the sign codes of both the divisor and dividend are valid, and if the digit or
digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:
CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.
v A decimal exception may be produced by the printf() family when processing

an nonvalid decimal operand. This may result in abnormal termination of your
program with the run-time message: Under OS/390:
CEE3207S The system detected a Data exception.

Under CICS:
EDCK007 ABEND=8097 Data Exception

Other exceptions indicated by the decimal instruction set are not unique.

System Programming Calls Restrictions

Decimal overflow conditions are supported for System Programming Calls only
with the run-time library.

printf() and scanf() Restrictions

You must ensure that valid packed decimal data is present when attempting to use
it with run-time library decimal routines. No additional validation is performed on
decimal to ensure format correctness. Use the decchk() routine to validate decimal
data operands in such circumstances.

Additional Considerations
v When the operands of a decimal operation contain nonvalid digits, the result is

undefined, and a run-time exception can occur. To validate a decimal number,
call the decchk() built-in function in your code.

v Code should be written in a manner that does not depend on the ability of the
run-time library to recover from a decimal overflow exception.

v In a multiprocessor configuration, decimal operations cannot be used safely to
update a shared storage location when the possibility exists that another
processor may also be updating that location. This possibility arises because the
bytes of a decimal operand are not necessarily accessed concurrently.

v If a decimal exception occurs in user code or library routines, the expected
results of the instruction causing the exception or the library routine where the
exception occurred are undefined. The results produced by the library routine’s
execution are also undefined.

Chapter 25. Using the Decimal Data Type in C 353

v If a SIGFPE handler is coded to handle decimal exceptions, it should reenable
itself before resuming normal execution or recovery from the error. This
reestablishes the exception environment and is consistent with good
programming practice.

Error Messages

If an overflow occurs at run time, the exception handler issues the following
run-time error messages:
IBM482I 'ONCODE'=0310 'FIXEDOVERFLOW' CONDITION RAISED

Unhandled exception. This result may be produced in a C-only environment only
for decimal overflow conditions. Fixed-point overflow exception is not allowed in
the Program Mask.

Note: The Program Mask in the Program Status Word (PSW) is enabled for
decimal overflow exceptions.

IBM301I 'ONCODE'=0320 'ZERODIVIDE' CONDITION RAISED

Unhandled decimal or fixed overflow. Fixed overflow is normally masked and
ignored at C run time, but it may occur in interlanguage calls.
IBM537I 'ONCODE'=8097 DATA EXCEPTION

Unhandled data exception

The error messages for FIXEDOVERFLOW and ZERODIVIDE mean that either the
fixed-point overflow condition or the decimal overflow condition has caused the
condition reported.

Under CICS

Decimal overflow condition exceptions are supported in CICS with C and the
following run-time message is produced:

EDCK017 ABEND=0320 Fixed or Decimal Overflow

Decimal Exceptions and Assembler Interlanguage Calls

Calls to an assembler language procedure or function assume that the called
routine will save and restore the value of the Program Mask if the routine alters it.
Ensure that the Program Mask is preserved across an assembler language interface.
If it is not preserved, the recognition of subsequent decimal overflow exceptions in
C code will be unpredictable.

354 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 26. Using Decimal Data in C++

This section describes how you use the IBinaryCodedDecimal class and the decimal
class to represent numerical quantities accurately in C++ business and commercial
applications for financial calculations.

The IBinaryCodedDecimal Class

The IBinaryCodedDecimal class allows representation of up to 31 significant digits,
including integral and fractional parts. Two digits can represent the fractional part
of a dollar accurately following the decimal point. You do not have to use
floating-point arithmetic, which is more suitable for scientific and engineering
computations. These computations often use numbers much larger than the largest
that the IBinaryCodedDecimal object can store.

The same declarations and operators that you use on other data types, such as
float, are applied to IBinaryCodedDecimal objects. You can declare typedefs,
arrays, and structures that have IBinaryCodedDecimal objects. You can apply
arithmetic, relational, assignment, comma, conditional, equality, logical, primary,
and unary operators on the IBinaryCodedDecimal object. You can pass
IBinaryCodedDecimal objects in function calls.

Header File and Constants for IBinaryCodedDecimal

You must include this statement in any file that uses the IBinaryCodedDecimal
class:

#include <idecimal.hpp>

The file must be included before any use of the IBinaryCodedDecimal object.

Constants Defined in idecimal.hpp

Table 51 lists the binary coded decimal constants that the Binary Coded Decimal
Class Library defines:

Table 51. Constants Defined in idecimal.hpp

Constant Name Description

DEC_DIG The maximum number of significant digits that
IBinaryCodedDecimal can hold.

DEC_MIN The minimum value that IBinaryCodedDecimal can
hold.

DEC_MAX The maximum value that IBinaryCodedDecimal can
hold.

DEC_EPSILON The smallest incremental or decremental value that
IBinaryCodedDecimal can hold.

DFT_DIG The default number of digits (15) for the default
constructor.

DFT_PREC The default number of precision (5) for the default
constructor.

© Copyright IBM Corp. 1996, 1999 355

Table 51. Constants Defined in idecimal.hpp (continued)

Constant Name Description

DFT_LNG_DIG The default number of digits (20) for a long type.

Constructing IBinaryCodedDecimal Objects

You can use the IBinaryCodedDecimal constructor to construct IBinaryCodedDecimal
objects or arrays of IBinaryCodedDecimal objects. The following example shows
how to construct an IBinaryCodedDecimal object to have a value (12) with
DFT_LNG_DIG, number of digits (20) and number of precisions (0):

IBinaryCodedDecimal a(12L);

The following example shows how to construct an IBinaryCodedDecimal object to
have a value INT_MAX with number of digits (16) and number of precisions (5):

IBinaryCodedDecimal b(16,5,INT_MAX);

IBinaryCodedDecimal Input and Output

You can use the input and output operators for the I/O Stream Library to perform
input and output operations on IBinaryCodedDecimal. See OS/390 C/C++ IBM Open
Class Library User’s Guide for more in-depth information on using the I/O Stream
Library.

Mathematical Operators for IBinaryCodedDecimal

The IBinaryCodedDecimal class defines a set of mathematical operators with the
same precedence as the corresponding real operators. With these operators, you
can code expressions on IBinaryCodedDecimal objects such as the expressions
shown in the example below:
IBinaryCodedDecimal BCD_1(2.220446049250313L);
IBinaryCodedDecimal BCD_2 = + BCD_1;
IBinaryCodedDecimal BCD_1(2.220446049250313L);
IBinaryCodedDecimal BCD_2 = -BCD_1;

Relational Operators

You can use the relational operators < > <= >= for IBinaryCodedDecimal objects
and compare IBinaryCodedDecimal objects with other arithmetic types (integer,
float, double, and long double):
IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 < BCD_2)
...

Equality Operators

You can use equality operators with IBinaryCodedDecimal objects to compare
IBinaryDecimalCoded objects for equality.

356 OS/390 V2R8.0 C/C++ Programming Guide

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 != BCD_2)
...

Converting IBinaryCodedDecimal Objects

The IBinaryCodedDecimal class defines a set of conversion operators. With these
operators you can convert IBinaryCodedDecimal objects to other data types.

An IBinaryCodedDecimal Object to a IBinaryCodedDecimal
Object

If the value of an IBinaryCodedDecimal object that is to be converted to another
IBinaryCodedDecimal object is not within the range of values that can be
represented exactly, the value of the IBinaryCodedDecimal object to be converted is
truncated. If truncation occurs in the fractional part, there is no exception raised. If
assignment causes truncation in the integral part, then there is an exception in
which a IDecimalDataError object is thrown. This exception occurs when an
integral value is lost during conversion to a different type, regardless of what
operation requires the conversion:

IBinaryCodedDecimal targ_1(4,2);
IBinaryCodedDecimal targ_2(4,2);
IBinaryCodedDecimal op_1("1234.56");
IBinaryCodedDecimal op_2("12.34");

targ_1=op_1; // An exception is generated because the integral
// part is truncated; targ_1=("34.56").

targ_2=op_2; // No exception is generated because neither the
// integral nor the fractional part is truncated;
// targ_2=("12.34").

An exception occurs on assignment to a smaller target only when the integral part
is truncated.

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller precision, the result is truncation of the fractional part:

IBinaryCodedDecimal x("123.4567");
IBinaryCodedDecimal y(7,1);

y = x; // y = ("123.4")

When assigning one IBinaryCodedDecimal object with another
IBinaryCodedDecimal object with a smaller integral part, the result is truncation of
the integral part. An exception occurs:

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(5,2);

y = x; // y = ("456.78")

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller integral part, and smaller precision, the result is truncation of
the integral, and fractional parts. An exception occurs:

Chapter 26. Using Decimal Data in C++ 357

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(4,1);

y = x; // y = ("456.7")

Number of Digits in an IBinaryCodedDecimal Object

When you use the member function digitsOf() with an IBinaryCodedDecimal
object, you can find out the total number of digits n in an IBinaryCodedDecimal
object:

int n;
IBinaryCodedDecimal x(5, 2);
n = x.digitsOf(); // the result is n=5

Precision of a IBinaryCodedDecimal Object

When you use the member function precisionOf() with an IBinaryCodedDecimal
object, you can find out the number of decimal digits p in an IBinaryCodedDecimal
object:

int p;
IBinaryCodedDecimal x(5, 2);
p=x.precisionOf(); // The result is p=2

IBinaryCodedDecimal Object Exceptions

The IDecimalDataError exception class is thrown whenever the integral part is
truncated as the result of any mathematical operation.

The Decimal Class

OS/390 C++ supports the decimal data type through the IBinaryCodedDecimal
class as well as the decimal class. Use the decimal class to improve the
performance of your applications relative to using the IBinaryCodedDecimal class.
The decimal class is compatible with the decimal data type in C. This class permits
you to represent up to 31 significant digits, including integral and fractional parts.

You can declare typedefs, arrays, and structures that have decimal objects. You can
apply arithmetic, relational, assignment, equality, and unary operators on the
decimal object. You can pass decimal objects in function calls.

Header File for the Decimal Class

You must include this statement in any file that uses the decimal class:
#include <idecimal.hpp>

The file must be included before any use of the decimal object.

Constructing Decimal Objects

You can use the decimal constructor to construct decimal objects or arrays of
decimal objects.

358 OS/390 V2R8.0 C/C++ Programming Guide

Use the template specifier decimal<w,p> to declare decimal objects. The template
specifier decimal<w,p> designates a decimal number with w digits, and p decimal
places. In the specifier, w is the total number of digits for the integral and decimal
parts combined, and p is the number of digits for the decimal part only. For
example, decimal <5,2> represents a number, such as 123.45, where w=5 and p=2.
Specifying the value for p is optional. If the value for p is omitted, OS/390 C++
creates a default value of 0.

In the specifier, w and p have a range of allowed values according to the following
rules:
0 ≤ p ≤ w
1 ≤ w ≤ 31

You can construct a decimal object using an integer, a char *, an
IBinaryCodedDecimal object, or another decimal object. The decimal class does not
support other object types.

The following example shows how you can construct a decimal type:
decimal<10,2> x("4.67"); // char *
decimal<5,0> y(7); // integer
decimal<5> z=y; // another decimal object
decimal<18,10> *ptr; // pointer
decimal<8,2> arr[100]; // array
IBinaryCodedDecimal a(12) //another IBinaryCodedDecimal object
decimal<10,3> b(a);

In the previous example:
v x has a value of +4.67.
v y and z have a value of +7.
v ptr is a pointer to type decimal <18,10 >.
v arr is an array of 100 elements, where each element is of type decimal <8,2>.
v b has the value of the IBinaryCodedDecimal object a, +12.

Decimal Class Input and Output

You can use the input and output operators for the I/O Stream Library to perform
input and output operations on decimal. See OS/390 C/C++ IBM Open Class Library
User’s Guide for more in-depth information on using the I/O Stream Library.

Operators for Decimal Class

Mathematical Operators

The decimal class defines a set of mathematical operators with the same
precedence as the corresponding real operators. With these operators, you can
perform arithmetic calculations between two decimal objects, or between a decimal
object and an integer.
decimal<5,2> x("9.45");
decimal<8,3> y(-3);
decimal <20,13> sum = x + y;

Intermediate Results: Use one of the following tables to calculate the size of the
result. The tables summarize the intermediate expression results with the four basic
arithmetic operators when applied to the decimal types. Most of the time, you can

Chapter 26. Using Decimal Data in C++ 359

use Table 52 to calculate the size of the result. It assumes no overflow. If overflow
occurs, use Table 53 to determine the resulting type.

Both tables assume the following:
v x has type decimal <w₁, p₁>
v y has type decimal <w₂, p₂>
v decimal<w,p> is the resulting type

Table 52. Intermediate Results (without overflow in w or p)

Expression (w, p)

x * y w = w₁ + w₂ p = p₁ + p₂

x / y w = 31 p = 31 - ((w₁ - p₁) + p₂)

x + y p = max(p₁, p₂) n = max(w₁ - p₁, w₂ - p₂) + p + 1

x − y same rule as addition

You can use Table 53 to calculate the size of the result, whether there is an
overflow or not.

Table 53. Intermediate Results (in the general form)

Expression (w, p)

x * y w = min(w₁ + w₂, 31)
p = min(p₁ + p₂, 31 - min((w₁ - p₁)
+ (w₂ - p₂), 31))

x / y w = 31
p = max(31 - ((w₁ - p₁) + p₂), 0)

x + y ir
= min(max(w₁ - p₁, w₂ - p₂) + 1, 31)
p = min(max(p₁, p₂), 31 - ir)
w = ir + p

x − y same rule as addition

Relational Operators

You can use the relational operators < > <= >= for decimal objects. You can
compare two decimal objects, or a decimal object with an integer.
decimal<5,2> x("10.0");
decimal<8,3> y("-2.3");

if (x < y)
...

Equality Operators

You can use equality operators with decimal objects to compare decimal equality
operators != == for decimal objects. You can compare two decimal objects, or a
decimal object with an integer for equality.

The following example compares two decimal objects with an integer for equality.
decimal<5,2> x(15);
decimal<5,2> y(-15);

if (x != y)
...

360 OS/390 V2R8.0 C/C++ Programming Guide

The following example compares a decimal object with an integer for equality.
decimal<5,2> x(15);

if (x != -15)
...

Converting Decimal Objects

The decimal class defines a set of conversion operators and functions. With these
operators and functions, you can convert decimal objects to and from other data
types.

If the value that is to be converted is not within the range of values that can be
represented exactly, OS/390 C++ truncates this value. If truncation occurs in the
fractional part, OS/390 C++ does not raise an exception. If assignment causes
truncation in the integral part, OS/390 C++ raises an exception. This exception
occurs when an integral value is lost during conversion to a different type,
regardless of the operation requires the conversion.

Decimal Object to a Decimal Object

The following is an example of converting a decimal object to another decimal
object:
decimal <5,2> x(3);
decimal <31,15> y;

y = x;

Decimal Object to an IString Object

OS/390 C++ provides a member function, asString(), to convert a decimal object
to an IString object. The following is an example of such a conversion:
decimal<5,2> x("3.46");
IString y = x.asString();

Decimal Object From a char * Type

The following is an example of converting a char * type to a decimal object:
char * x = "1234.5";
decimal<5,2> y;

y = x;

Decimal Object From an Integer Type

The following is an example of converting an integer to a decimal object:
int x=3;
decimal<3,1> y=x;

Decimal Object to and from IBinaryCodedDecimal Object

The following is an example of converting a decimal object from an
IBinaryCodedDecimal object:
IBinaryCodedDecimal y(12);
decimal<5,2> x(y);

OS/390 C++ provides a member function, asBCD(), to convert a decimal object to
an IBinaryCodedDecimal object. The following is an example of such a conversion:

Chapter 26. Using Decimal Data in C++ 361

decimal<5,2> x("3.46");
IBinaryCodedDecimal y = x.asBCD();

Number of Digits in an Decimal Object

When you use the member function digitsOf() with a decimal object, you can
find out the total number of digits w in a decimal object:

int w;
decimal<5, 2> x;
w = x.digitsOf(); // the result is w=5

Precision of a Decimal Object

When you use the member function precisionOf() with a decimal object, you can
find out the number of decimal digits p in a decimal object:

int p;
decimal<5,2> x;
p=x.precisionOf(); // The result is p=2

Decimal Object Exceptions

OS/390 C++ decimal instructions produce the following exceptions:
v Data exception (interrupt code hex ’7’)

This may be caused by invalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions.

v Decimal-overflow exception (interrupt code hex ’A’)
This exception may be caused when nonzero digits are lost because the
destination field in a decimal operation is too short to contain the result.
CEE3210S The system detected a Decimal-overflow exception.

v Decimal-divide exception (interrupt code hex ’B’)
This exception may be caused when, in decimal division, the divisor is zero, or
the quotient exceeds the specified data-field size. The decimal divide is indicated
if the sign codes of both the divisor and dividend are valid, and if the digit or
digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:
CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.
v SIGFPG exception

During the conversion of char * to the decimal object, there is a possibility that
the value of the integer part cannot be represented by the decimal type. In that
case, the result of the conversion is undefined and OS/390 C++ raises a SIGFPG
exception.

362 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 27. Handling Exceptions, Error Conditions, and
Signals

This chapter discusses how to handle error conditions and signals with OS/390
C/C++. It describes how to establish, enable and raise a signal, and provides a list
of signals supported by OS/390 C/C++.

This chapter also describes some aspects of C++ object-oriented exception
handling. The object-oriented approach uses the try, throw, and catch mechanism.
Refer to the OS/390 C/C++ Language Reference for a complete description. Some
library functions (abort(), atexit(), exit(), setjmp() and longjmp()) are affected
by C++ exception handling; refer to the OS/390 C/C++ Run-Time Library Reference
for more information.

C++ exception handling is supported in all OS/390 environments that are
supported by C++ (including CICS and IMS); you must run your application with
the TRAP(ON) run-time option. To turn off C++ exception handling, use the
compiler option NOEXH. For more information on this compiler option, see OS/390
C/C++ User’s Guide.

Note: If C++ exception handling is turned off you will get code which runs faster
but is not ANSI conformant.

The C error handling approach using signals is supported in a OS/390 C++
program, but there are some restrictions (refer to “Handling C Software Exceptions
under C++” on page 364).

OS/390 Language Environment uses a stack-based model to handle error
conditions. This environment establishes a last-in, first-out (LIFO) queue of 0 or
more user condition handlers for each stack frame. The OS/390 Language
Environment condition handler calls the user condition handler at each stack frame
to handle error conditions when they are detected. For more information about the
callable services in OS/390 Language Environment, refer to “Handling Signals
Using Language Environment Callable Services” on page 367.

The basis for error handling in OS/390 UNIX C/C++ application programs is the
generation, delivery, and handling of signals. Signals can be generated and
delivered as a result of system events or application programming. You can code
your application program to generate and send signals and to handle and respond
to signals delivered to it.

Two types of signal handling are supported for catching signals: ANSI C and
POSIX.1. Each of these has standard signal delivery rules, which are discussed in
this chapter. Asynchronous signal delivery under OS/390 UNIX is also discussed.
For additional information on the subject of POSIX-conforming signals, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick, (Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc., 1991).

© Copyright IBM Corp. 1996, 1999 363

Handling C Software Exceptions under C++

Using the C and C++ condition handling schemes together in an OS/390 C++
program may result in undefined behavior. This applies to the use of try, throw
and catch with signal() and raise(), with OS/390 Language Environment
condition handlers such as CEEHDLR, or with CICS HANDLE ABEND under CICS. The
behavior with respect to running destructors for automatic objects is undefined,
due to control being transferred to non-C++ exception handlers (such as signal
handlers) and stacks being collapsed. If a C software exception is not handled and
results in program termination, the behavior for destructors for static non-local
objects will also be undefined.

With OS/390 UNIX, in a multithreaded environment, OS/390 C++ exception stacks
are managed on a per-thread basis. This means an exception thrown on one thread
cannot be caught on another thread, including the IPT where main() was started. If
the exception is not handled by the thread from which it was thrown, then the
terminate() function is called.

Handling Hardware Exceptions under C++

You cannot use try, throw, and catch to handle hardware exceptions.

If a hardware exception resulting in abnormal termination occurs in a OS/390 C++
program, destructors for static and automatic objects are not run. If a hardware
exception occurs, and a handler was registered for the exception using signal(),
the behavior of destructors for automatic objects is undefined.

Tracebacks under C++

A traceback is not produced if a thrown object was caught and handled.

If an object is thrown, and no catch clauses exist that will handle the thrown
object, the program will call terminate(). By default, terminate() calls abort(),
and the traceback produced will show that this has occurred. The traceback will
not show the point from which the object was originally thrown. Instead, it will
show that the object was thrown from the last encountered catch clause.

In the following example, sub1() throws object a. Because sub1() does not have
any catch clauses to handle a, C++ attempts to find a suitable catch clause in the
calling sub function, and then in the main function. Because no catch clauses can
be found to handle object a, the traceback will show that object a was thrown from
main().

364 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCH1

If an object is thrown and a catch clause catches but then rethrows that object, or
throws another object, and no catch clauses exist for the rethrown or subsequently
thrown object, the traceback starts at the point from which the rethrow or
subsequent throw occurred. The first object thrown is considered to have been
caught and handled.

/* example of C++ exception handling */

#include <iostream.h>
#include <stdlib.h>

class A {
int i;
public:

A(int j) { i = j; cout << "A ctor: i= " << i << '\n'; }
A() { cout << "A dtor: i= " << i << '\n'; }

};
class B {

char c;
public:

B(char d) { c = d; cout << "B ctor: c= " << c << '\n'; }
B() { cout << "B dtor: c= " << c << '\n'; }

};
void sub(void);
void sub1(void);

main() {
try {

sub();
}
//traceback will show that the thrown object was from here because
//no catch clauses match the thrown object and the last rethrow
//occurred here.
catch(int i) { cout << "caught an integer" << '\n'; }
catch(char c) { cout << "caught a character" << '\n'; }
exit(55);

}

void sub() {
try {

sub1();
}
//neither catch clause will catch object a, so again a will be
//rethrown
catch(double d) { cout << "caught a double" << '\n'; }
catch(float f) { cout << "caught a float" << '\n'; }
return;

}

void sub1() {
A a(3001);
try {

throw(a);
}
//neither catch clause will catch object a, so a will be rethrown
catch(B b) { cout << "caught a B object" << '\n'; }
catch(short s) { cout << "caught a short" << '\n'; }
return;

}

Figure 100. Example Illustrating C++ Exception Handling/Traceback

Chapter 27. Handling Exceptions, Error Conditions, and Signals 365

In the following example, the traceback would show that the testeh function
rethrows an integer. Because there is no catch clause to handle the rethrown
integer, the traceback will also show that terminate() and then abort() were
called.

CBC3GCH2

/* example of C++ exception handling */

#include <iostream.h>
#include <stdlib.h>

int testeh(void);
class A {

int i;
public:

A(int j) { i = j; cout << "A ctor: i= " << i << '\n'; }
A() { cout << "A dtor: i= " << i << '\n'; }

};
class B {

char c;
public:

B(char d) { c = d; cout << "B ctor: c= " << c << '\n'; }
B() { cout << "B dtor: c= " << c << '\n'; }

};
A staticA(333);
B staticB('z');
void sub();

main() {
sub();
return(55);

}

void sub()
{

A c(3001);
try {

cout << "calling testeh" << '\n';
testeh(); // int will be rethrown from testeh()

}
// no catch clauses for the rethrown int
catch(char c) { cout << "caught char" << '\n'; }
catch(short s) { cout << "caught short s = " << s << '\n'; }
cout << "this line should not be printed" << '\n';
return;

}
testeh()
{

A a(2001),a1(1001);
B b('k');
short k=12;
int j=0,l=0;

try {
cout << "testeh running" << '\n';
throw (6); // first throw: an int

}
catch(char c) { cout << "testeh caught char" << '\n';}
catch(int j) { cout << "testeh caught int j = " << j << '\n';

try { // int should be caught here
cout << "testeh again rethrowing" << '\n';
throw; // rethrow the int

}
catch(char d) { cout << "char d caught" << '\n'; }

}
cout << "this line should not be printed" << '\n';
return(0);

}

Figure 101. Example Illustrating C++ Exception Handling/Traceback

366 OS/390 V2R8.0 C/C++ Programming Guide

Handling Signals with POSIX(OFF) Using signal() and raise()

The OS/390 C environment provides two functions that alter the signal handling
capabilities available in the run-time environment: signal() and raise(). The
signal() function registers a condition handler and the raise() function raises the
condition.

In general, for C++ programs you are encouraged to use try, throw, and catch to
perform exception handling. However, you can also use the OS/390 C signal()
and raise() functions.

You can use the signal() function to perform one of the following actions:
v Ignore the condition. For example, use the SIG_IGN condition to specify

signal(SIGFPE,SIG_IGN).
v Reset the Global Error Table for default handling. For example, use the SIG_DFL

condition to specify signal(SIGSEGV,SIG_DFL).
v Register a function to handle the specific condition. For example, pass a pointer

to a function for the specific condition with signal(SIGILL,cfunc1). The
function registered for signal() must be declared with C linkage.

Handling Signals Using Language Environment Callable Services

You can set up user signal handlers with the OS/390 Language Environment
condition handling services. Some of the OS/390 Language Environment callable
services available for condition handling are:

CEEHDLR
Register a user-written condition handler.

CEEHDLU
Remove a registered user-written condition handler.

CEESGL
Raise a OS/390 Language Environment condition.

In addition, with OS/390 Language Environment, when an exception occurs after
an interlanguage call, the exception may be handled where it occurs, or percolated
to its caller (written in any OS/390 Language Environment-conforming language),
or promoted. For more information on how to handle exceptions under the OS/390
Language Environment condition handling model, refer to the OS/390 Language
Environment Programming Guide.

Specific considerations for C and C++ under OS/390 Language Environment:

1. The TRAP run-time option (equivalent to the former C/370 run-time options
SPIE and STAE) determines how the OS/390 Language Environment condition
manager is to act upon error conditions and program interrupts. If the
TRAP(OFF) run-time option is in effect, conditions detected by the operating
system, often due to machine interrupts, will not be handled by the OS/390
Language Environment environment and thus cannot be handled by a OS/390
C/C++ program.

Note: TRAP(OFF) only blocks the handling of hardware (program checks) and
operating system (abend) conditions. It does not block software
conditions such those that are associated with a raise or CEESGL. Any
conditions that are blocked because of TRAP(OFF) are not presented to
any handlers (whether registered by a signal or by CEEHDLR). In

Chapter 27. Handling Exceptions, Error Conditions, and Signals 367

particular, even for TRAP(OFF), conditions that are initiated by a signal or
by CEESGL are presented to handlers registered by either signal() or
CEEHDLR.

The use of the TRAP(OFF) option is not recommended; refer to the OS/390
Language Environment Programming Reference for more information.

2. You can use the ERRCOUNT run-time option to specify how many errors are to be
tolerated during the execution of your program before an abend occurs. The
counter is incremented by one for every severity 2, 3, or 4 condition that
occurs. Both hardware-generated and software-generated signals increment the
counter.
If your C++ program uses try, throw, and catch, it is recommended that you
specify either ERRCOUNT(0), which allows an unlimited number of errors, or
ERRCOUNT(n), where n is a fairly high number. This is because OS/390 C++
generates a severity 3 condition for each thrown object. In addition, each catch
clause has the potential to rethrow an object or to throw a new object. In a
large C++ program, many conditions can be generated as a result of objects
being thrown, and thus the ERRCOUNT can be exceeded if the value used for it is
too low. The installation default used for ERRCOUNT is usually a low number.

Note: The OS/390 C/C++ registered condition handlers (those registered by
signal() and raise()), are activated after the OS/390 Language
Environment registered condition handlers for the current stack frame are
activated. This means that if there are condition handlers for both OS/390
C/C++ and OS/390 Language Environment, the OS/390 Language
Environment handlers are activated first.

Combining C++ condition handling (using try, throw, and catch), with
OS/390 Language Environment condition handling may result in undefined
behavior.

Handling Signals Using OS/390 UNIX with POSIX(ON)

OS/390 UNIX signal processing allows flags to control the behavior of signal
processing. Using these flags, you can simulate these signals and a wide variety of
other signals such as ANSI, POSIX.1, and BSD.

ANSI C has the following standard signal delivery rules:
v Traditionally, signal actions are established only through the signal().
v During signal delivery, the signal action is reset to SIG_DFL before the user signal

action catcher function receives control.
v During signal delivery to a user signal catcher function, the signal mask is not

changed.

POSIX.1 has the following standard signal delivery rules:
v Signal actions are typically established through the sigaction() function. With

the addition of XPG4 support, there are a number of new flags that have been
defined for sigaction() that extend its flexibility.

v During signal delivery, the signal action is not changed.
v During signal delivery to a user signal catcher function, the signal mask is

changed to the union of:
– The signal mask at the time of the interruption
– A signal mask that blocks the signal type being delivered

368 OS/390 V2R8.0 C/C++ Programming Guide

The signal mask is restored when the signal catcher function returns.

BSD signals for the most part are consistent with the POSIX rules above except for
the following:
v BSD signal mask is a 32-bit mask whereas the OS/390 UNIX signal mask is a

64-bit mask. The relationship of the bits to specific signals is not the same.
Therefore, we recommend you change to use the sigset manipulation functions,
such as, sigadd(), sigdelete(), sigempty().

v Traditionally, for BSD to generate a signal action, the signal() function was
used. However, because the signal() function is used in ANSI, BSD applications
should be changed to use the bsd_signal() function.

v During signal delivery, the signal action is not changed.
v During signal delivery to a user signal catcher function, the signal mask is

changed to the union of:
– The signal mask at the time of the interruption
– The signal mask specified in the sa_mask field of the sigaction() function

The signal mask is restored once the signal catcher function returns.

For compatibility, OS/390 C/C++ supports the three standards listed above, and
additional functions provided by XPG4.

Under OS/390 C/C++, the primary function for establishing signal action is the
sigaction() function. However, there are a number of other functions that you can
use to effect signal processing. All signal types are accessible regardless of the
function used to establish the signal action.

The following list includes functions that will establish a signal handler for a signal
action:

BSD Function Purpose

bsd_signal() BSD version of signal()

sigaction() Examine and/or change a signal action

sigignore() Set disposition to ignore a signal

sigset() Change a signal action and/or a thread’s signal mask

signal() Specify signal handling

The following is a list of other signal related functions:

Other Signal Related Functions Purpose

abort() Stop a program

kill() Send a signal to a process

pthread_kill() Send a signal to a thread

raise() Send a signal to yourself

sigaddset() Add a signal to a signal set

sigdelset() Delete a signal from a signal set

sigemptyset() Initialize a signal set to exclude all signals

sigfillset() Initialize a signal set to include all signals

sighold() Add a signal to a thread’s signal mask

siginterrupt() Allow signals to interrupt functions

Chapter 27. Handling Exceptions, Error Conditions, and Signals 369

Other Signal Related Functions Purpose

sigismember() Test if a signal is in a signal set

sigpause() Unblock a signal and wait for a signal

sigprocmask() Examine and/or change a thread’s signal mask

sigralse() Remove a signal from a thread’s signal mask

sigstack() Set and/or get signal stack context

sigaltstack() Set and/or get signal alternate stack context

sigsuspend() Change mask and suspend the thread

sigwait() Wait for asynchronous signal

sigpending() Examine pending signals

sigtimedwait() Wait for queued signals

sigwaitinfo() Wait for queued signals

Asynchronous Signal Delivery under OS/390 UNIX

An OS/390 UNIX application program that you are developing might require its
active processes to be able to react and respond to events occurring in the system
or resulting from the actions of other processes communicating with its processes.
One way of accomplishing such interprocess communication is for you to code
your application program to identify signal conditions and determine how to react
or respond when a signal condition is received from another application process.

Before you attempt to code your OS/390 UNIX C/C++ application program to
deliver and handle signals, you should identify all the processes that might cause
signal conditions to be received by your application program’s processes. You also
need to know which signal condition codes are valid for your OS/390 UNIX
C/C++ application program and where the signal.h header file will be located
and available to your application program. Your system programmer or the
application program’s designer should provide this information.

Note: Signal condition codes are defined in the signal.h include file.

A signal is a mechanism by which a process can be notified of, or affected by, an
event occurring in the system. Examples of such events include hardware
exceptions and specific actions by processes. The term signal also refers to an event
itself.

The POSIX.1-defined sigaction() function allows a calling application process to
examine a specific signal condition and specify the processing action to be
associated with it.

You can code your application program to use the sigaction() function in
different ways. Two simplistic examples of using signals within an OS/390 UNIX
C/C++ application program follow:
1. A process is forked but the process is aborted if the signal handler receives an

incorrect value.
2. A request is received from a client process to provide information from a

database. The server process is a single point of access to the database.

If coded properly for handling and delivering interprocess signals, your application
program can receive signals from other processes and interpret those signals such

370 OS/390 V2R8.0 C/C++ Programming Guide

||

||

that the appropriate processing procedure occurs for each specific signal condition
received. Your application program also can send signals and wait for responses to
signal handling events from other application processes. Note that signals are not
the best method of interprocess communication, because they can easily be lost if
more than one is delivered at the same time. You may want to use other methods
of interprocess communication, such as pipes, message queues, shared memory, or
semaphores.

For descriptions of the OS/390 UNIX supported OS/390 C/C++ signal handling
functions, see the OS/390 C/C++ Run-Time Library Reference

Note: If your OS/390 UNIX C/C++ application program calls another high-level
language program that is not an OS/390 UNIX C/C++ application program,
you need to disable signal handling to block all signals from the OS/390
UNIX C/C++ application program. If the called program encounters a
program interrupt check situation, the results are unpredictable.

C Signal Handling Features under OS/390 C/C++

The terms used to describe implementation features and concepts are:
v Establishing a signal handler
v Enabling a signal
v Interrupting a program
v Raising a signal

Establishing a Signal Handler

A signal handler for a signal, sig_num, becomes established when signal(sig_num,
sig_handler) is executed. (Two values of sig_handler are reserved: SIG_IGN and
SIG_DFL. They are special values that establish the action taken.) sig_handler is a
pointer to a function to be called when the signal is raised. This function is also
known as a signal handler. Under C++, the signal handler function must have C
linkage, by declaring it as extern "C". Under C, the function must be written in C
with the default linkage in effect. That is, sig_handler cannot have OS, PLI, C++,
or COBOL linkage. The signal handler for the signal ceases to be established when:
v The signal is explicitly reset to the system default by using signal(sig_num,

SIG_DFL).
v You indicate that a signal is to be ignored by using signal(sig_num, SIG_IGN).
v The signal is implicitly reset to the system default when the signal is raised.

When sig_handler is called, signal handling is reset to the default as if an
implicit signal(sig_num, SIG_DFL) had been executed. Depending on the
purpose of the signal handler, you may want to reestablish the signal from
within the signal handler.

v Under C, a loaded executable is deleted using the release() function and a
signal handler for the signal resides in the executable. In this case, default
handling will be reset for all the affected signals.

v A DLL module is explicitly loaded using dllload(), a function pointer in that
module is obtained using dllqueryfn(), a signal handler is establishing using
that function, and the DLL module is then explicitly deleted using dllfree().
Default handling will be reset for the affected signal.

Note: A C signal handler can be written in C, or can be written in C++ and
declared as extern "C" so that it has C linkage.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 371

Enabling a Signal

A signal is enabled when the occurrence of the condition will result in either the
execution of an established signal handler or the default system response. The
signal is disabled when the occurrence is to be ignored, such as, when the signal
action is SIG_IGN. This can be done by making the call signal(sig_num, SIG_IGN).
Using OS/390 UNIX with POSIX(ON), SIG_IGN may be set with several other
functions, such as, sigaction(). In addition to changing the signal action to
SIG_IGN, the signal can be enabled or disabled (blocked) using the sigprocmask()
function.

Interrupting a Program

Program interrupts or errors detected by the hardware and identified to the
program by operating system mechanisms are known as hardware signals. For
example, the hardware can detect a divide by zero and this result can be raised to
the program.

Raising a Signal

Signals that are explicitly raised by the user, by using the raise() function or
using OS/390 UNIX with POSIX(ON) using the kill(), killpg(), or
pthread_kill() functions, are known as software signals.

Identifying Hardware and Software Signals

The following is a list of signals supported with OS/390 C/C++ with POSIX(OFF):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGILL Invalid object module (hardware and software).

SIGINT Interactive attention interrupt by raise() (software only).

SIGIOERR Serious software error such as a system read or write. You can
assign a signal handler to determine the file in which the error
occurs or whether the condition is an abort or abend. This
minimizes the time required to locate the source of a serious error.

SIGSEGV Invalid access to memory (hardware and software).

SIGTERM Termination request sent to program (software only).

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

The following is a list of the OS/390 C/C++ supported signals (when running on
OS/390 UNIX with POSIX(ON)):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGALRM Asynchronous timeout signal generated as a result of an alarm().

SIGBUS Bus error.

372 OS/390 V2R8.0 C/C++ Programming Guide

SIGCHLD Child process terminated or stopped.

SIGCONT Continue execution, if stopped.

SIGDCE DCE event.

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGHUP Hangup, when a controlling terminal is suspended or the
controlling process ended.

SIGILL Invalid object module (hardware and software).

SIGINT Asynchronous CNTL-C from the OS/390 Shell or a software
generated signal.

SIGIO Completion of input or output.

SIGIOERR Serious software error such as a system read or write. Assign a
signal handler to determine the file in which the error occurs or
whether the condition is an abort or abend. Minimize the time
required to locate the source of a system error.

SIGKILL An unconditional terminating signal.

SIGPIPE Write on a pipe with no one to read it.

SIGPOLL Pollable event.

SIGPROF Profiling timer expired.

SIGQUIT Terminal quit signal.

SIGSEGV Invalid access to memory (hardware and software).

SIGSTOP Stop executing.

SIGSYS Bad system call.

SIGTERM Termination request sent to program (software only).

SIGTRAP Debugger event.

SIGTSTP Terminal stop signal.

SIGTTIN Background process attempting read.

SIGTTOU Background process attempting write.

SIGURG High bandwidth is available at a socket.

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

SIGVTALRM Virtual timer expired.

SIGXCPU CPU time limit exceeded.

SIGXFSZ File size limit exceeded.

The applicable hardware signals or exceptions are listed in Table 54 on page 374. It
also lists those hardware exceptions that are not supported (for example,
fixed-point overflow) and are masked.

The applicable software signals or exceptions that are supported with POSIX(OFF)
are listed in Table 55 on page 374 (see Table 56 on page 376 for the POSIX(ON)
signals).

Chapter 27. Handling Exceptions, Error Conditions, and Signals 373

Table 54. Hardware Exceptions - Default Run-Time Messages and System Actions

C Signal Hardware Exception

Default Run-Time
Message with OS/390
Language
Environment

Default System Action with
OS/390 Language Environment
Library

SIGILL Operation exception CEE3201 Abnormal termination MVS
rc=3000Privileged operation

exception
CEE3202

Execute exception CEE3203

SIGSEGV Protection exception CEE3204 Abnormal termination MVS
rc=3000Addressing exception CEE3205

Specification
exception

CEE3206

SIGFPE Data exception CEE3207 Abnormal termination MVS
rc=3000Fixed-point divide CEE3209

Decimal overflow (for
C only)

CEE3210

Decimal divide CEE3211

Exponent overflow CEE3212

Floating point divide CEE3215

Note: Under TSO, SIGINT will not be raised if you press the attention key. It must be raised
using raise().

The default run-time program mask is enabled for decimal overflow exceptions.

Table 55 shows software signals with POSIX(OFF) or exceptions, their origin,
default run-time messages and default system actions.

Table 55. Software Exceptions - Default Run-Time Messages and System Actions with
POSIX(OFF)

C Signal Software Exception Default Run-Time
Message with
OS/390 Language
Environment

Default System Action with
OS/390 Language Environment
Library

SIGILL raise(SIGILL) EDC6001 Abnormal Termination MVS
rc=3000

SIGSEGV raise(SIGSEGV) EDC6002 Abnormal Termination MVS
rc=3000

SIGFPE raise(SIGFPE) EDC6002 Abnormal Termination MVS
rc=3000

SIGABND raise(SIGABND) EDC6003 Abnormal Termination MVS
rc=3000

SIGTERM raise(SIGTERM) EDC6004 Abnormal Termination MVS
rc=3000

SIGINT raise(SIGINT) EDC6005 Abnormal Termination MVS
rc=3000

SIGABRT raise(SIGABRT) EDC6006 Abnormal Termination MVS
rc=2000

SIGUSR1 raise(SIGUSR1) EDC6007 Abnormal Termination MVS
rc=3000

374 OS/390 V2R8.0 C/C++ Programming Guide

Table 55. Software Exceptions - Default Run-Time Messages and System Actions with
POSIX(OFF) (continued)

C Signal Software Exception Default Run-Time
Message with
OS/390 Language
Environment

Default System Action with
OS/390 Language Environment
Library

SIGUSR2 raise(SIGUSR2) EDC6008 Abnormal Termination MVS
rc=3000

SIGIOERR raise(SIGIOERR) EDC6009 Signal is ignored

SIGABND Considerations

When the SIGABND signal is registered with an address of a C handler using the
signal() function, control cannot resume at the instruction following the abend or
the invocation of raise() with SIGABND. If the C signal handler is returned, the
abend is percolated and the default behavior occurs. The longjmp() or exit()
function can be invoked from the handler to control the behavior.

If SIG_IGN is the specified action for SIGABND and an abend occurs (or SIGABND was
raised), the abend will not be ignored because a resume cannot occur. The abend
will percolate and the default action will occur.

Two macros are available in signal.h header file that provide information about an
abend. The __abendcode() macro returns the abend that occurred and __rsncode()
returns the corresponding reason code for the abend. These values are available in
a C signal handler that has been registered with the SIGABND signal. If you are
looking for the abend and reason codes, using these macros, they should only be
checked when in a signal handler. The values returned by the __abendcode() and
__rsncode() macros are undefined if the macros are used outside a registered
signal handler.

SIGIOERR Considerations

When the SIGIOERR signal is raised, codes for the last operation will be set in the
__amrc structure to aid you in error diagnosis.

Default Handling of Signals

The run-time environment will perform default handling of a given signal unless
the signal is established (signal(sig_num, sig_handler)) or the signal is disabled
(signal(sig_num, SIG_IGN)). A user can also set or reset default handling by
coding:
signal(sig_num, SIG_DFL);

The default handling depends upon the signal that was raised. Refer to the two
preceding tables for information on the default handling of a given signal.

Note: When using the atexit() library function, the atexit list will not be run if
the application is abnormally terminated.

Using OS/390 UNIX

The following table describes the default actions for signals that may be delivered
to OS/390 UNIX C/C++ application programs:

Chapter 27. Handling Exceptions, Error Conditions, and Signals 375

Table 56. Default Signal Processing with POSIX(ON)

Signal Default Action

SIGABND Clean up the OS/390 C/C++ run-time library, issue message CEE5204, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5204 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGABRT Clean up the OS/390 C/C++ run-time library, issue message CEE5207 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGALRM Clean up the OS/390 C/C++ run-time library, issue message CEE5214 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGCHLD The signal is ignored.

SIGCONT The process is continued if it was stopped. Otherwise, the signal is ignored.

SIGDCE The signal is ignored.

SIGFPE Clean up the OS/390 C/C++ run-time library, issue message CEE5201, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5201 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGHUP Clean up the OS/390 C/C++ run-time library, issue message CEE5210 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGILL Clean up the OS/390 C/C++ run-time library, issue message CEE5202, and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. If the signal is
generated as a result of an abend condition, as opposed to being software generated by a
raise(), kill(), or pthread_kill() function, the CEE5202 message is issued along with a
trace-back message indicating a user function was in control when the abend occurred.

SIGINT Clean up the OS/390 C/C++ run-time library, issue message CEE5206 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases, the
default action for this signal was to ignore the signal.

SIGIO The signal is ignored.

SIGIOERR The signal is ignored. In a POSIX application running on OS/390 UNIX SIGIOERR is not
supported directly by the kernel. Instead, OS/390 C/C++ maps SIGIOERR to SIGIO. Any
application using SIGIOERR should not also use SIGIO.

SIGKILL End the process with no OS/390 C/C++ run-time cleanup.

SIGPIPE Clean up the OS/390 C/C++ run-time library, issue message CEE5213 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

376 OS/390 V2R8.0 C/C++ Programming Guide

Table 56. Default Signal Processing with POSIX(ON) (continued)

Signal Default Action

SIGQUIT Clean up the OS/390 C/C++ run-time library, issue message CEE5220 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSEGV Clean up the OS/390 C/C++ run-time library, issue message CEE5203 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSTOP The process is stopped.

SIGTERM Clean up the OS/390 C/C++ run-time library, issue message CEE5205 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGTRAP Clean up the OS/390 C/C++ run-time library, issue message CEE5222 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGTSTP The process is stopped.

SIGTTIN The process is stopped.

SIGTTOU The process is stopped.

SIGUSR1 Clean up the OS/390 C/C++ run-time library, issue message CEE5208 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases, the
default action for this signal was to ignore the signal.

SIGUSR2 Clean up the OS/390 C/C++ run-time library, issue message CEE5209 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system. In past releases, the
default action for this signal was to ignore the signal.

SIGPOLL Clean up the OS/390 C/C++ run-time library, issue message CEE5225 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGURG The signal is ignored.

SIGBUS Clean up the OS/390 C/C++ run-time library, issue message CEE5227 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGSYS Clean up the OS/390 C/C++ run-time library, issue message CEE5228 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGWINCH The signal is ignored.

SIGXCPU Clean up the OS/390 C/C++ run-time library, issue message CEE5230 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 377

Table 56. Default Signal Processing with POSIX(ON) (continued)

Signal Default Action

SIGXFSZ Clean up the OS/390 C/C++ run-time library, issue message CEE5231 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGVTALRM Clean up the OS/390 C/C++ run-time library, issue message CEE5232 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

SIGPROF Clean up the OS/390 C/C++ run-time library, issue message CEE5233 and end the process.
The signal exit status is returned to the parent process if it is waiting for a child process to
end. If the program is not running in a forked process, so that no parent process exists to
return the signal status to, the return code 3000 is returned to the system.

Dubbed Process: A process that is not from a call to a fork() function or to a program main() function through an
exec() function.

The following chart shows how the C and OS/390 Language Environment error
handling approaches interact.

378 OS/390 V2R8.0 C/C++ Programming Guide

MAP 0040: Summary of C and OS/390 Language Environment Error
Handling

001

Signal is raised. Is SIG_IGN set for the signal? Or is the signal blocked?
Yes No

002

Continue at Step 006.

003

Is the signal for a SIGABND?
Yes No

004

Resume at the next instruction.

005

Condition is percolated for default behavior.

006

Is the signal asynchronous (or previously blocked)?
Yes No

007

Is a OS/390 Language Environment user handler registered?
Yes No

008

Is a C handler established for the signal by signal() or sigaction()
with the SA_OLD_STYLE or SA_RESETHAND flag set?
Yes No

009

Continue at Step 017 on page 380.

010

Run C handler using ANSI rules and resume at the next instruction.

011

Run OS/390 Language Environment user handler. The handler can resume,
percolate or promote the signal. See the OS/390 Language Environment
Programming Guide for more details.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 379

012

Is a C handler established for the signal?
Yes No

013

Perform default processing.

014

Was the C handler established by signal() or sigaction() with the
SA_OLD_STYLE or SA_RESETHAND flag set?
Yes No

015

Run C handler using POSIX rules and transfer control to the next instruction
following the asynchronous interrupt.

016

Run C handler using ANSI rules and transfer control to the next instruction
following asynchronous interrupt.

017

At stack frame 0?
Yes No

018

Default handling for the signal and percolate to next stack frame.

019

Was a C handler established?
Yes No

020

Perform default processing.

021

Run C handler using POSIX signal delivery rules and resume at next instruction.

Signal Considerations using OS/390 UNIX

The following restrictions and inconsistencies exist for OS/390 UNIX C/C++
application program signal handling:
v Signal processing is blocked by the kernel when an OS/390 UNIX C/C++

application program is running on a request block (RB) other than the one the
main() routine was started on.

MAP 0040 (continued)

380 OS/390 V2R8.0 C/C++ Programming Guide

v An OS/390 UNIX C/C++ application program should not use the longjmp()
function to exit from a signal catcher established through the use of sigaction().
The sigsetjmp() and siglongjmp() functions should be used instead of setjmp()
and longjmp(). The longjmp() function can be used if the signal() function was
used to established the signal catcher.

v An OS/390 UNIX C/C++ application program must not use the macro versions
of the getc(), putc(), getchar(), and putchar() functions to perform I/O to the
same file from an asynchronous signal catcher function.

v Floating point registers are saved before a call to the signal catcher function and
restored when the signal catcher returns. This is done for all signals.

v For OS/390 UNIX C/C++ application programs, the errno value is saved before
a call to the signal catcher function and restored when the signal catcher returns.

Example of C Signal Handling under OS/390 C or OS/390 C++

In the following example, the call to signal() in main() establishes the function
signal handler to process the interrupt signal when it occurs. An error value
returned from this call to signal() causes the program to end with a printed error
message. The signal handler function asks you to enter a y or Y from the
keyboard if you want to halt the program. Entering any other character causes the
program to resume operation.

Chapter 27. Handling Exceptions, Error Conditions, and Signals 381

CBC3GEC1

/* this example demonstrates signal handling */

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

#ifdef __cplusplus /* __cplusplus is implicitly defined when */
extern "C" { /* the program is compiled with the OS/390 C/C++ */

#endif /* compiler */

void handler(int);

#ifdef __cplusplus
}

#endif

int main(void) {
if (signal(SIGINT,handler) == SIG_ERR) {

perror("Could not set SIGINT");
abort();

}
/* add code here if desired */

raise(SIGINT);
/* add code here if desired */

return(0);
}

void handler(int sig_num) {
char ch;

signal(SIGINT, handler);
printf("End processing?\n");
ch = getchar();
if (ch == 'y' ││ ch == 'Y')

exit(0);

}

Figure 102. Example Illustrating Signal Handling

382 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 28. Optimizing Code

This chapter describes ways to make an application compiled by the OS/390
C/C++ compiler perform better under OS/390. The chapter contains the following
sections.
1. “Programming Recommendations”

Things you should consider when designing, writing, and modifying your
program to help the compiler generate better code.

2. “Compile Time Considerations” on page 391

Things you should consider when compiling your code.
3. “Using Optimization Facilities” on page 392

Considerations for building and tuning a stable application. It also contains
information about how to use the compiler and library to tune your program
for better performance.

Interprocedural Analysis (IPA), through the IPA compiler option, can also improve
the execution time of your OS/390 C/C++ application. IPA is a mechanism for
performing optimizations across compilation unit boundaries. It also performs
optimizations not otherwise available with the OS/390 C/C++ compiler, such as:
v Inlining across compilation units
v Program partitioning
v Coalescing of global variables
v Code straightening
v Unreachable code elimination
v Call graph pruning of unreachable functions

For an overview of IPA, refer to the chapter “Chapter 29. Optimizing Your C/C++
Code with Interprocedural Analysis” on page 399.

Programming Recommendations

This section contains tips on how to write code to get the best results from the
optimization techniques used by the compiler.

Using Variables

Keep the following in mind when you choose the variables and data structures for
your application:
v Use local variables, preferably automatic variables, as much as possible.

The compiler can accurately analyze the use of local variables, while it has to
make several worst-case assumptions about global variables. These assumptions
tend to hinder optimizations. For example, if you code a function that uses
external variables, and calls several external functions, the compiler assumes that
every call to an external function could change the value of every external
variable.

v In some cases using local copies of global variables will help performance.
If none of the function calls will affect the global variables being used, and you
have to read them frequently with function calls interspersed, copy the global

© Copyright IBM Corp. 1996, 1999 383

variables to local variables. Next, use these local variables to help the compiler
perform optimizations that otherwise would not be done.
Using IPA can improve the performance of code written using global variables,
because it coalesces global variables. IPA puts global variables into one or more
structures and accesses them using offsets from the beginning of the structures.

v If you need to share variables only between functions within the same
compilation unit, use static variables instead of external variables.
Organize your source code so references to a given set of externally defined
variables occur only in one source file, and then use static variables instead of
external variables.
In a file with several related functions and static variables, the optimizer can
gather and use more information about the variables.
Use a local static variable instead of an external variable or a variable defined
outside the scope of a function.
The #pragma isolated_call preprocessor directive can improve the run-time
performance of optimized code by allowing the compiler to make fewer
assumptions about the storage of external and static variables. Refer to the
OS/390 C/C++ Language Reference for more information about the #pragma
isolated_call directive.
IPA global variable coalescing helps improve optimization in the same way that
changing external variables to static variables does. Global variable coalescing
causes variables that are frequently used together to be mapped close together in
memory.

v Group external data into structures (all elements of an external structure use the
same base address) or arrays wherever it makes sense to do so.
To access an external variable, the compiler has to make an extra memory access
to obtain the variable’s address. The compiler removes extraneous address loads,
but this means that the compiler has to use a register to keep the address. Using
many external variables simultaneously requires many registers, thereby causing
spilling of registers to storage.

v The compiler treats register variables the same way it treats automatic variables
that do not have their address taken.

v Minimize the use of pointers.
Use of pointers inhibits most memory optimizations such as dead store
elimination in C and C++.
Using the #pragma disjoint directive to list identifiers that do not share the
same physical storage can improve the run-time performance of optimized code.
See the OS/390 C/C++ Language Reference for more information on the #pragma
disjoint directive.

Passing Function Arguments

Optimization is effective when using function arguments. It is usually better to
pass a value as an argument to a function than to let the function take the value
from a global variable.

The #pragma isolated_call preprocessor directive lists functions that have no side
effects, that is, that do not modify global storage. Using it can improve the
run-time performance of optimized code. Refer to the OS/390 C/C++ Language
Reference for examples and more information about this directive.

384 OS/390 V2R8.0 C/C++ Programming Guide

Coding Expressions

When coding expressions consider the following recommendations:
v If components of an expression are duplicate expressions, code them either at

the left end of the expression or within parentheses. For example:
a = b*(x*y*z); /* Duplicates recognized */
c = x*y*z*d;
e = f + (x + y);
g = x + y + h;

a = b*x*y*z; /* No duplicates recognized */
c = x*y*z*d;
e = f + x + y;
g = x + y + h;

The compiler can recognize x*y*z and x + y as duplicate expressions because
they are coded in parentheses or coded at the left end of the expression.

v When components of an expression in a loop are constant, code the constant
expressions either at the left end of the expression or within parentheses. If c, d,
and e are constant and v, w, and x are variable, the following examples show the
difference in evaluation:
v*w*x*(c*d*e); /* Constant expressions recognized */
c + d + e + v + w + x;

v*w*x*c*d*e; /* Constant expressions not recognized */
v + w + x + c + d + e;

Coding Conversions

Avoid forcing the compiler to convert numbers between integer and floating-point
internal representations. Conversions require several instructions, including some
double-precision floating-point arithmetic. For example:

CBC3GOP3

When you must use mixed-mode arithmetic, code the integral, floating-point, and
decimal arithmetic in separate computations as much as possible.

/* this example shows how numeric conversions are done */

int main(void)
{

int i;
float array[10]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0}
float x = 1.0;
for (i = 0; i < 10; i++)

{
array[i] = array[i]*x; /* No conversions needed */
x = x + 1.0;

}

for (i = 1; i <= 9; i++)
array[i] = array[i]*i; /* Conversions may be needed */

return(0);
}

Figure 103. Numeric Conversions Example

Chapter 28. Optimizing Code 385

Arithmetic Considerations
v Wherever possible, use multiplication rather than division. For example,

x*(1.0/3.0); /* 1.0/3.0 is evaluated at compile time */

produces faster code than:
x/3.0;

v Assign the divisor’s reciprocal to a temporary variable and then multiply by that
variable. Divide many values by the same number in your code.

Using Loops and Control Constructs

For the for-loop index variable:
v Use int type variable whenever possible.
v Use the auto or register storage class over the extern or static storage class.
v If you use an enum variable, expand the variable to be a fullword.
v Do not use the address operator (&) on the index.
v The index should not be a member of union.

When using if statements:
v Order the if conditions efficiently; put the most decisive tests first and the most

expensive tests last.
By performing the most common tests first, you increase the efficiency of your
code; fewer tests are required to meet the test conditions.

if (command.is_classg &&
command.len == 6 &&

!strcmp (command.str, "LOGON")) /* call to strcmp() most expensive */
logon ();

Choosing a Data Type
v Use the int data type instead of char when performing arithmetic operations.

char_var += '0';
int_var += '0'; /* better */

v A char type variable is efficient when you are:
– Assigning a literal to a char variable
– Comparing the variable with a char literal
char_var = 27;
if (char_var == 'D')

v These data types are more expensive to reference:

Table 57. Referencing data types

More Expensive Less Expensive

signed short unsigned short

signed char unsigned char

long double double

Longer decimal Shorter decimal

v For storage efficiency, the compiler will pack enumeration variables in 1, 2 or 4
bytes depending on the largest value of a constant.
If performance is critical, expand the size to a fullword by adding an
enumeration constant with a large value.

386 OS/390 V2R8.0 C/C++ Programming Guide

enum byte { land, sea, air, space };
enum word { low, medium, high, expand_to_fullword = INT_MAX };

For example, fullword enumeration variables are preferred when used as
function parameters.

v For efficient use of extern variables:
– Place scalars ahead of arrays in extern struct.
– Copy heavily referenced scalars to auto or register variables (especially in a

loop).
v Consider the following points when using float

– When passing variables of type float to a function, an implicit widening to
double occurs (which takes time).

– On some machines divides of type float are faster than those of type double.
v When using bit fields:

– Even though the compiler supports a bit field spanning more than 4 bytes,
the cost of referencing it is higher.

– An unsigned bit field is preferred over a signed bit field.
– A bit field used to store integer values should have length 8, 16, or 24 bits

and be on a byte boundary.
struct { unsigned xval :8,

xbool :1,
xmany :6,
xset :1;

} b;

if (b.xval == 3)...

if (b.xmany + 5 == x) /* inefficient because it does not */
/* fall on a byte boundary */...

if (b.xbool)...

Using Built-In Library Functions and Macros
v Include the appropriate library header files to trigger the use of built-in

functions (that is, compiler-generated expansion for the function).
Including the proper library header files also prevents parameter type mismatch
and ensures optimal performance. For a list of the built-in functions, see
“Appendix I. Using Built-In Functions” on page 859. If you want to call a built-in
function explicitly, enclose the function name in parentheses when you make the
call, as follows: (memcpy)(buf1, buf2, len).

Note: At NOOPT the compiler may not expand all built-in functions.
v You should always include the ctype.h header file to use the following macros

rather than their equivalent functions:

isalpha()
isalnum()
iscntrl()
isdigit()
isgraph()

islower()
isprint()
ispunct()
isspace()

isupper()
isxdigit()
toupper()
tolower()

Chapter 28. Optimizing Code 387

v Arrays are compared using a loop (one element at a time). When comparing two
arrays for equality, the loop is replaced with a memcmp(). In some cases, this
means that the execution of many machine instructions are replaced by the
execution of a few.
For example:
if (!memcmp (a, b, sizeof(a)))
/* arrays are equal */

is more efficient than a comparison in a loop such as:
int a[1000], b[1000];

for (i = 0; i < 1000; ++i)
if (a[i] != b[i])
break;

if (i == 1000)
/* arrays are equal */

v Neither the C nor C++ language allows structure comparison, because structures
may contain padding bytes with undefined values. In cases where you know
that no padding bytes exist, use memcmp() to compare structures. The AGGREGATE
compiler option is used to obtain a structure and union map.

v The memset() library function should be used to initialize a character buffer and
when an array needs to be initialized to a repetitive byte pattern (such as zeros).

v As well, use memset() to clear structs, unions, arrays or character buffers as
follows:
char c[10];

for (i = 0; i < 10; i++) /* do not use */
c[i] = ' ';

memset (c, ' ', sizeof (c)); /* better */

v Use the alloca() function to automatically allocate memory from the stack. This
function frees memory at the end of a function call when OS/390 C/C++
collapses the stack. See the OS/390 C/C++ Run-Time Library Reference for more
information on this function.

v When using strlen() do not hide size information. Less code is needed for
strlen() when the upper bound is known at compile time.
char small_str_array[100];
char *small_str_ptr;...

x = strlen(small_str_ptr); /* unknown upper bound */

x = strlen(small_str_array); /* better */

v If you are concatenating strings, use strcat().
v If you are performing character to integer conversions, use atoi() rather than

sscanf().
v Try to replace strxxx() functions with their corresponding memxxx() functions,

because memxxx() functions are more efficient. To minimize the execution cost of
a strxxx() function, use fixed-length character buffers or to save the length of
incoming string (including null terminator) for subsequent calls to memcpy() and
memcmp().
total_len = strlen (s) + 1;...

for (i = 0; i < 10; i++)

388 OS/390 V2R8.0 C/C++ Programming Guide

if (memcmp (s, t[i], total_len) == 0) /* total_len ≤ sezeof(t) */...

memcpy (a, s, total_len);

Note: You cannot replace all strcmp() calls with a memcmp() call taking a
strlen() value of one of the strings. memcmp() will not stop comparing
strings when it encounters a null in one of the strings. This may result in
an attempt to access protected storage which follows the shorter string.
This, in turn, could result in an exception.

Input/Output Considerations

When Accessing MVS data sets
v Consider the use of the file when choosing DCB parameters:

– Specify largest possible BLKSIZE (blocked files).
– Use recfm = FBS or F over FB unless dealing with a PDS.
– fseek() on sequential files is most efficient when using recfm = F or recfm =

FBS.
– If you are accessing an existing sequential file created as FB, and you know

that there are no short blocks in the file, specify FBS on the call to fopen() or
freopen() to enable the library to perform faster repositions.

The proper choice of file attributes is important for efficient I/O.
v When you do not need to reposition within a file, take advantage of NOSEEK for

more efficient reading and writing to a data set. You can also specify NCP or
BUFNO on the DD statement for MVS DASD data sets, thereby reducing the clock
time of the application. See “Multiple Buffering” on page 120 for more
information.

v If possible, read or write a block at a time to minimize the I/O overhead and
elapsed time.

v Using text I/O for writing can be slower than using binary or record I/O. When
you use binary or record I/O, the application ensures that the data is written to
the file in the correct format.

v If you are using FB or FBS files, use binary I/O instead of record I/O. This way,
you can read or write more than one record at a time.

v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever
possible.

v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must read
or write a character.
The fputc() function, as defined by ANSI, puts a single character to the text
stream. Special action occurs when writing a control character. On the other
hand, the putc() macro buffers characters in storage and invokes fputc() only
when encountering a control character. This reduces call overhead when you are
writing characters one at a time.

v If you are using hiperspace memory files, you can use setvbuf() to set the
buffer size.
The default buffer size for memory files in hiperspace is 16K. You can override
this by calling setvbuf() after fopen(), but before performing any I/O
operations on the file. The minimum buffer size is 4K. If you specify a smaller
size, it is ignored, and the default is used instead.

Chapter 28. Optimizing Code 389

If your file will be large, you can improve execution time by increasing the
buffer size. This will result in less frequent flushing of the buffer to the
hiperspace, but will cost you memory in the user address space for the larger
buffers. For example,

rc = setvbuf(fp, NULL, _IOFBF, 32768);

Alternatively, if your memory is constrained, you can reduce requirements for
memory in the user address space by reducing the buffer size. This will result in
more frequent flushing of the buffer to the hiperspace. For example,

rc = setvbuf(fp, NULL, _IOFBF, 4096);

Please refer to “Chapter 15. Performing Memory File and Hiperspace I/O
Operations” on page 209 for more info on hiperspace memory files.

v When writing to text files that do not use DBCS characters, ensure that
MB_CUR_MAX is set to 1 for the current locale. This will prevent internal I/O
checks for DBCS strings.

v Avoid using fscanf() or fprintf() if you can use other I/O routines instead.
For example, use fwrite() rather than fprintf() to write out a format string
with no substitution variables.

v When using fflush() beware of NULL file pointers; fflush(NULL) flushes all open
streams.

v Specify DCB parameters on fopen() only when you are creating the file. When
you are appending, updating or reading a file, these attributes are retrieved from
the existing file.
Many file attributes (DCB parameters) are possible when you open a file with
OS/390 C/C++. DCB parameters specified on fopen() must be compatible with
those of the file or the ddname. This checking may cause unwanted overhead.

v Use fgetpos() and fsetpos() instead of ftell() and fseek() when you are
saving a position you will return to later. fgetpos() saves more information
about the position than ftell().

v Where possible, use striped data sets. These data sets improve overall I/O
throughput.

v For temporary files, use memory files rather than files created with tmpfile().
You can use MVS memory files from an OS/390 UNIX C++ application
program. However, use of the fork() function from the program clears a
memory file and removes access from a hiperspace memory file for the child
process. Use of an exec function from the program clears a memory file when
the process address space is cleared.

v For large memory files (1MB or larger) in which you perform random seeking,
use hiperspace memory files, if they are available.

v When your library is below the 16M line, use hiperspace memory files.
The non-hiperspace files use up your storage from below the line. Hiperspace
memory files do not reside in user virtual storage. Changing a memory file to a
hiperspace memory file saves user virtual storage only if the file is larger than
one hiperspace memory file buffer.

When Accessing HFS Files
v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever

possible.
v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must write

or read a character.

390 OS/390 V2R8.0 C/C++ Programming Guide

v When using fflush(), beware of NULL file pointers; fflush(NULL) flushes all
open streams.

v Changing the buffer size for access to HFS may provide advantages. You may
want to set the buffer size to be the length of the read or write operation that
you normally do. Use the setvbuf() function to change the buffer size.

Note: When you include the header file stdio.h, macros are defined for getc(),
putc(), getchar(), and putchar(). In order to use the function calls
instead of the macro calls, use #undef after the stdio.h header file is
included. If you are working with a threaded application, these macros are
automatically undefined forcing the application to use function calls, which
are thread safe. The feature test macro _ALL_SOURCE causes these four macros
to be undefined. However, if you require _ALL_SOURCE, and want these
macros to be used in a non multi-threaded application, you can use feature
test macro _ALL_SOURCE_NOTHREADS.

When Using the I/O Stream Class library with C++
v Unit-buffering incurs a significant performance penalty. Unit-buffering can be

enabled by setting the ios::unitbuf flag. It is enabled for the cerr object by
default.

v The sync_with_stdio() function enables unit-buffering of I/O Stream standard
streams, to ensure their synchronization with C standard streams.

v In many cases, the C I/O functions are faster than using the C++ I/O Stream
library. Mixing C I/O and the I/O Stream library to access the same file will
cause undefined results.

Using Library Extensions

If you are using C, consider fetch() or DLLs instead of system() for calling other C
modules; if you are using C++, use DLLs. (See “Chapter 21. Building and Using
Dynamic Link Libraries (DLLs)” on page 271 for more information on using DLLs.)

A system() call does full environment initialization and termination, but a fetched
module and a DLL shares the environment of the calling routine.

Note: Compiling source with the DLL option may cause a degredation in
performance.

Use memory files as efficient temporary files by using the type=memory attribute in
fopen() before creating the temporary file. Some applications use temporary files
to pass data between program modules. When using the OS/390 shell, whether an
MVS memory file makes an efficient temporary file depends on whether your
OS/390 UNIX C/C++ application program uses fork() and exec() functions to
call another program to run in a child process. The child process does not inherit
MVS memory files after an exec() function.

Compile Time Considerations

This section contains tips on what you can do to improve compile time.
v You can improve your compile time by using precompiled headers. Use the

options GENPCH and USEPCH together to automatically create and maintain
precompiled header files for your application. If you use these options

Chapter 28. Optimizing Code 391

consistently, precompiled header files are created if they do not exist, and used if
they do. When a source file changes, the precompiled version automatically
regenerates the next time you compile your program. See OS/390 C/C++ User’s
Guide for more information on precompiled headers.

v You can add code to the beginning and end of a header file to ensure that it is
not processed unnecessarily during compilation. The following example contains
code that is included in a header file called myh eader.

??=ifndef __myheader
??=ifdef __COMPILER_VER__

??=pragma filetag ("IBM-1047")
??=endif

#define __myheader 1
.
.
. /* header file contents */

??=endif

v You must ensure that the filetag statement, if used, appears before the first
statement or directive except for all conditional compilation directives. The
ifndef statement is the first non-comment statement in the header file (the actual
token used after the ifndef statement is your choice). The define statement must
follow; it cannot appear before the filetag statement, but it must appear before
any other preprocessor statement (other than comments).

Using Optimization Facilities

OS/390 C/C++ and OS/390 Language Environment provide several facilities to
allow you to tune your code for performance:
v INLINE tuning options for C and C++ (“Specifying Inline Functions”)
v Memory usage tuning options (“Optimizing Use of Dynamic Memory” on

page 396)
v The OPTIMIZE option (“Using the OPTIMIZE Option” on page 396)
v Interprocedural Analysis (IPA) as provided by the IPA compile-time option.

Refer to “Chapter 29. Optimizing Your C/C++ Code with Interprocedural
Analysis” on page 399 for an overview.

Specifying Inline Functions

Inlining replaces certain function calls with the actual code of the function and is
performed before all other optimizations. Inlining not only eliminates the linkage
overhead but also exposes the entire function to the caller and thus enables the
compiler to better optimize your code.

Note: See “Inlining under IPA” on page 395 for information on differences in
inlining under IPA.

Two types of calls are not inlined:
v A call where the number of parameters on the call does not match that on the

function definition. An example of this is a variable argument function call.
v A call that is directly recursive; the routine calls itself.

Consider the following C++ program:

392 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GOP1

In this example, if you specify the inline keyword for the function which_group(),
and compile with OPTIMIZE, after optimizations, the compiler determines that the
above code is equivalent to:

CBC3GOP2

The OS/390 C/C++ inliner supports two modes of running: selective and
automatic.

Selective Mode

Selective mode enables you to specify in your source code the functions that you
do and do not want inlined. If you know which functions are frequently invoked
from within a compile unit, using C you can simply add the appropriate #pragma
inline directives in your source and compile with INLINE (NOAUTO,REPORT,,). For
a C++ program, just add inline keywords to your source. (C++ programs cannot
be compiled in NOAUTO mode.)

/* this example demonstrates optimization */

#include <stdio.h>
inline int which_group (int a) {

if (a < 0) {
printf("first group\n");
return(99);

}
else if (a == 0) {

printf("second group\n");
return(88);

}
else {

printf("third group\n");
return(77);

}
}

int main (void) {

int j;

j = which_group (7);

return(j);
}

Figure 104. Optimization Example

/* this example demonstrates optimization */

#include <stdio.h>

int main(void) {

printf("third group\n"); /* a lot less code generation */

return(77);
}

Figure 105. Optimization Example

Chapter 28. Optimizing Code 393

If your code contains complex macros, the macros can be made into static routines
at no execution-time cost. All static routines that are interfaces to a data object can
be placed into a header file.

Automatic Mode in C

Automatic mode assists you with starting to optimize your code. It allows the
compiler to choose potential functions to inline. The compiler will inline all
routines that are less than the threshold in abstract code units (ACUs) until the
function that the functions are inlined into is greater than limit abstract code units.
The threshold and limit parameters are defined as follows:

threshold Maximum relative size of a function to inline. The default value is
100 Abstract Code Units (ACUs). ACUs are proportional in size to
the executable code in the function; your C code is translated into
ACUs by the compiler. Specifying a threshold of 0 is equivalent to
specifying NOAUTO.

Note that the proportion of ACUs to executable code in a function
is different under IPA.

limit Maximum relative size a function can grow before auto-inlining
stops. The default is 1000 ACUs for the specific function.
Specifying a limit of 0 is equivalent to specifying NOAUTO.

Note: When functions become too large, run-time performance can degrade.

Under the OS/390 shell, to provide assistance in choosing which routines to inline,
use the c89 -W option to pass the INLINE option to the OS/390 C compiler. For
example, at NOOPT, to get INLINE(AUTO,REPORT,100,1000), use the following c89
command:
c89 -W "0,inline"

To get the same value at OPT, pass the INLINE option to the OS/390 C compiler as
follows:
c89 -2 -W "0,inline(,report,,)"

Note: Inlining a function that is rarely invoked can degrade performance. Use the
#pragma noinline directive to instruct the automatic inliner not to inline
these types of functions. The #pragma inline and the #pragma noinline
directives are honored by automatic inlining regardless of the limit and
threshold you have specified.

Automatic Mode in C++

When you compile with the OS/390 C++ compiler and the OPTIMIZE option,
automatic mode inlining is done using a threshold of 100 and a limit of 2000. For
best performance, use #pragma noinline(...) to ensure that debugging routines
and routines that are not often used are not inlined. The inline keyword and the
#pragma noinline directive are honored by automatic inlining. See OS/390 C/C++
Language Reference for more information on this #pragma.

Improving Your Performance

While automatic inlining is the best choice the compiler can make for you, you can
further improve your performance. Use #pragma inline and #pragma noinline to

394 OS/390 V2R8.0 C/C++ Programming Guide

reduce the need to modify your inlining choices when you change your
application. You may want to wait until you have a stable application before you
do the following steps.
1. Compile with the OPTIMIZE option and ask for a report from the inliner.

a. For C, compile with INLINE(,REPORT,,) or INLRPT and OPTIMIZE.
b. For C++, compile with INLRPT and OPTIMIZE.

2. Look at the report to see if anything was inlined that should not have been; for
example, routines for debugging or handling exceptions. Add #pragma noinline
to your source to insure that these functions do not get inlined.

3. Add the inline keyword (for C++) or the #pragma inline directive (for C) to
any frequently used routines to ensure that it gets inlined.

4. Recompile with OPTIMIZE then, regenerate the inline report and reanalyze for
functions that should and should not be inlined.

5. For C you should also vary the limit and threshold values.
v The inline report tells you the abstract code units (ACUs) for each function.

These should help you determine an appropriate threshold to start from. In
general your initial threshold should be as small as possible, and your initial
limit should be in the 1000 to 2000 range.

v Increase the threshold by an increment small enough to catch a few more
routines each time.

v Change the limit when you wish. Because performance will improve as a
function of both the limit and the threshold values, it is not recommended
that you change both the limit and threshold at the same time.

6. Repeat the process until you feel that you have found the best performance
parameters. You should run your application to determine if the tuning has
found the best performance parameters.

7. When you are satisfied with the selection of inlined routines, add the
appropriate #pragma inline directives or inline keywords to the source. That is,
when the selected routines are forced with these directives, you can then
compile the program in selective mode. This way, you do not need to be
affected by changes made to the heuristics used in the automatic inliner.

Inline defaults

Automatic and selective inlining are performed when compiler option OPTIMIZE is
specified. In C, you can override this by specifying the NOINLINE option when you
specify your optimization level; in C++, you can override this by specifying the
#pragma noinline directive for a particular function. See the OS/390 C/C++
Language Reference for more information on this directive.

Inlining under IPA

The IPA Inliner functions differently from the regular inliner:
v It performs inlining across compilation units, rather than within a compilation

unit.
v It handles inlining of functions with variable argument lists.
v It inlines calls from recursive cycles (for example, where function A calls function

B calls function C calls function A). However, it avoids making the functions too
large.

Chapter 28. Optimizing Code 395

Optimizing Use of Dynamic Memory

Memory allocations can significantly affect your application’s performance. Use the
STACK, HEAP, and RPTSTG(ON) run-time options to optimize your run-time space
requirements.

You can use the RPTSTG(ON) option to find out about your storage usage for the
given run of your application. You can then use the STACK and HEAP run-time
options to ensure that the initial stacks and heaps are sufficiently large, and that
increments are of the optimal size. The initial STACK size should be large enough
that it will not need to be extended during the program’s execution.

You can also tune I/O storage by using the _EDC_STOR_INITIAL and
_EDC_STOR_INCREMENT environment variables. The I/O storage usage is not in the
storage report.

You can use the __heaprpt() function to obtain a summary heap storage report
while your application is running, without having to specify the RPTSTG(ON)
option. See the OS/390 C/C++ Run-Time Library Reference for more information on
the __heaprpt() function.

If your application is multi-threaded or often uses malloc(), realloc(), calloc(),
and free(), you should consider using the HEAPPOOLS run-time option. Although
storage requirements may increase, you can expect better performance.

See the OS/390 Language Environment Programming Guide for more information on
run-time storage.

Using the OPTIMIZE Option

During optimization, the compiler changes the unoptimized code sequences,
derived from the source code, into equivalent code sequences that execute faster
and usually require less memory space. It is possible for an expression that would
normally cause an exception to be removed by optimization, thus preventing the
exception.

Note: The OS/390 C/C++ compiler provides one level of optimization. Optimized
code takes significantly more time to compile then unoptimized code, but
will likely result in faster running code.

Because the optimization is achieved by transforming the code using knowledge
obtained from a larger program context, the direct correspondence between source
and object code is often lost. Optimized code is also more sensitive to subtle
coding errors.

One example of a subtle coding error is to type cast a pointer variable incorrectly.
The compiler assumes ANSI conformance when doing optimization. If your
program does not conform, you may receive undefined results. Refer to the
ANSIALIAS option in the OS/390 C/C++ User’s Guide for more information.

Optimizations Performed by the Compiler

The compiler performs the following optimizations:

396 OS/390 V2R8.0 C/C++ Programming Guide

Inlining
Inlining replaces certain function calls with the actual code of the function
being performed. For more information on inlining, see “Specifying Inline
Functions” on page 392.

For OS/390 C/C++, automatic inlining is performed by default when you
specify OPTIMIZE. For OS/390 C, you can override this inlining by using
the NOINLINE option. For further information on the INLINE option, refer to
the OS/390 C/C++ User’s Guide. For OS/390 C++, you can override this by
specifying the #pragma noinline directive for a particular function. See the
OS/390 C/C++ Language Reference for more information.

Value Numbering
Value numbering involves local constant propagation, local expression
elimination, and folding several instructions into a single instruction.

Straightening
Straightening is rearranging the program code to minimize branching logic
and to combine physically separate blocks of code.

Common Expression Elimination
Common expressions recalculate the same value in a subsequent
expression. The duplicate expression can be eliminated by using the
previous value. This is done even for intermediate expressions within
expressions. For example, if your program contains the following
statements:

a = c + d;
.
.
.

f = c + d + e;

the common expression c + d is saved from its first evaluation and is used
in the subsequent statement to determine the value of f.

Code Motion
If variables used in a computation within a loop are not altered within the
loop, it may be possible to perform the calculation outside of the loop and
use the results within the loop.

Strength Reduction
Less efficient instructions are replaced with more efficient ones. For
example, in array addressing, an add instruction replaces a multiply.

Constant Propagation
Constants used in an expression are combined and new ones generated.
Some mode conversions are done, and compile-time evaluation of some
intrinsic functions takes place.

Instruction Scheduling
Instructions are reordered to minimize execution time.

Dead Store Elimination
The compiler eliminates stores when the value stored is never referred to
again. For example, if two stores to the same location have no intervening
load, the first store is unnecessary, and is therefore removed.

Dead Code Elimination
The compiler may eliminate code for calculations that are not required.
Other optimization techniques may cause code to become dead.

Chapter 28. Optimizing Code 397

Graph Coloring Register Allocation
The compiler uses a global register allocation for the whole function,
thereby allowing variables to be kept in registers rather than in memory.

These optimization techniques may be performed both locally and globally.
Increases in storage and compilation time requirements over NOOPT will occur.

Additional Hints and Tips
v Consider compiling your C program with the C or C++ compiler.

– The performance of your C programs may improve if you compile them with
the OS/390 C++ compiler because C++ can perform function calls more
efficiently. However, C++ references global data less efficiently than C.

v Consider using the following compiler options:
– LIBANSI

– ANSIALIAS

– TUNE

– ARCHITECTURE

LIBANSI is used to specify whether or not all functions with the name of an
ANSI C library function are in fact the system functions. This allows the
optimizer to generate code based on existing knowledge concerning the
behaviour of the function. For example, whether or not there are any side effects
associated with a particular library function.

The ANSIALIAS option specifies whether type-based aliasing is to be used during
optimization. Type-based aliasing will improve optimization.

The ARCHITECTURE option specifies the architecture for which the executable
programs instructions are to be generated; the TUNE option specifies which
architecture the executable program will be optimized for. ARCHITECTURE allows
the optimizer to take advantage of specific hardware instruction sets. TUNE
allows the optimizer to take advantage of architectural differences such as
scheduling of instructions. See OS/390 C/C++ User’s Guide for more information
on these compiler options.

v To improve running time of your C++ code, consider using NOEXH. This option
will result in faster running code however, the code will not be ANSI
conformant. See OS/390 C/C++ User’s Guide for more information on this
compiler option.

398 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 29. Optimizing Your C/C++ Code with Interprocedural
Analysis

This chapter describes how you can optimize your code using OS/390 C/C++
Interprocedural Analysis (IPA).

Types of Procedural Analysis

The OS/390 C/C++ compiler performs both intraprocedural and interprocedural
analysis.

Intraprocedural analysis is a mechanism for performing optimization for each
function in a compilation unit, using only the information available for that
function and compilation unit.

Interprocedural analysis is a mechanism for performing optimization across
function boundaries. The C/C++ compiler performs limited interprocedural
analysis if inlining is in effect. But this form of interprocedural analysis only
applies within a compilation unit.

Interprocedural analysis through the IPA compiler option improves upon the
limited interprocedural analysis described above. When you invoke interprocedural
analysis through the IPA option, the compiler performs optimizations across the
entire program. It also performs optimizations not otherwise available with the
C/C++ compiler. The types of optimizations performed include:

Inlining across compilation units
Inlining replaces certain function calls with the actual code of the function.
Inlining not only eliminates the linkage overhead but also exposes the
entire function to the caller and thus enables the compiler to better
optimize your code.

Program partitioning
Program partitioning improves performance by reordering functions to
exploit locality of reference. Functions that call each other frequently will
be closer together in memory.

Coalescing of global variables
The compiler puts global variables into one or more structures and
accesses the variables by calculating the offsets from the beginning of the
structures. This lowers the cost of variable access and exploits data locality.

Code straightening
Code straightening streamlines the flow of your program.

Unreachable code elimination
Unreachable code elimination removes unreachable code within a function.

Call graph pruning of unreachable functions
Call graph pruning of unreachable functions removes code that is 100%
inlined or never referenced.

Intraprocedural constant and set propagation
IPA propagates floating point and integer constants to their uses and

© Copyright IBM Corp. 1996, 1999 399

computes constant expressions at compile time. Also, variable uses that are
known to be one of several constants can result in the folding of
conditionals and switches.

Intraprocedural pointer alias analysis
IPA tracks pointer definitions to their uses, resulting in more refined
information about memory locations that a pointer dereference may use or
define. This enables other parts of the compiler to better optimize code
around such dereferences. IPA tracks data and function pointer definitions.
When a pointer dereference can only refer to a single memory location or
function, the dereference is rewritten to be an explicit reference to the
memory location or function.

Intraprocedural copy propagation
IPA propagates expressions defining some variables to the uses of the
variable. This creates additional opportunities for constant expression
folding. It also eliminates redundant variable copies.

Intraprocedural unreachable code and store elimination
IPA removes definitions of variables that cannot be reached, along with the
computation feeding the definition.

Conversion of reference (address) arguments to value arguements
IPA converts reference (address) arguments to value arguments when the
formal parameter is not written in the called procedure.

Conversion of static variables to automatic (stack) variables
IPA converts static variables to automatic (stack) variables when their use
is limited to a single procedure invocation.

The execution time for code optimized using IPA is normally faster than for code
optimized using regular interprocedural analysis, intraprocedural analysis, or the
OPT compiler option. Not all applications are suited for IPA optimization, however,
and the performance gains realized from using IPA will vary.

This chapter provides an overview of the Interprocedural Analysis (IPA) processing
that is available through the IPA compiler option. For more information about the
effects of IPA on compiling, compiler options, and compiler listings, refer to the
OS/390 C/C++ User’s Guide . For more information about the effects of IPA on
#pragmas, refer to the OS/390 C/C++ Language Reference.

Compiler Processing Flow

IPA changes the flow of compiler processing. This section explains the differences.

Regular Compiler Execution

If you do not specify the IPA compiler option, or if you specify the NOIPA compiler
option, the compiler processes source files as shown in Figure 106 on page 401. The
output is an object module for each source file processed. You can then bind the
object modules to produce an executable module.

400 OS/390 V2R8.0 C/C++ Programming Guide

Compiler Execution with IPA

IPA processing consists of two steps: IPA Compile and IPA Link. You must run the
IPA Compile step once for each compilation unit, and run the IPA Link step once
for the program as a whole. The final output is a single IPA-optimized object
module which you must bind with the binder to produce an executable load
module. You must run both steps to achieve the optimization benefits of IPA.

You can invoke the IPA Compile step in the same environments that you use for a
regular compilation. You can only invoke the IPA Link step in MVS batch (without
the ISPF interface provided with the compiler) or in the OS/390 Shell
environnment through the c89 utility.

This section describes the flow of IPA processing under MVS batch. The flow of
processing with the c89 utility is the same, but there are differences in how you
invoke IPA. Refer to “Invoking IPA from the c89 Utility” on page 407 for more
information.

IPA Compile Step Processing

You invoke the IPA Compile step by specifying the IPA(NOLINK) compiler option (
NOLINK is the default suboption). During the IPA Compile step, the compiler creates
an IPA object that contains information for the IPA Link step.

The following processing takes place for each compilation unit that you specify for
the IPA Compile step:
1. The compiler determines the final suboptions for the IPA option, based upon

the compiler options and IPA suboptions that you specified. This is necessary
because the compiler does not support some combinations of compiler options
and IPA suboptions. The compiler issues a warning message if it finds
unsupported combinations.

2. The compiler promotes some IPA suboptions based upon the presence of
related compiler options and issues informational messages if it does so. Refer
to the Compiler Options chapter in the OS/390 C/C++ User’s Guide for more
information.

3. The compiler generates an IPA object file. This object file contains control
information for a compilation unit required for the IPA Link step.

Analysis phase

Invocation parameters

Compiler

Code generation
phase

Source file(s)
Listing sections
Messages

Object module(s)
Listing sections
Messages

Figure 106. Flow of regular compiler processing

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 401

The IPA object module produced by IPA (NOLINK,NOOBJECT) has the same
structure as a regular object module. It can not be used as input to the
prelinker, linker, or binder. If attempted, the binder will generate the following
error diagnostic message:
IEW2696E 3D01 AN ERROR WAS DETECTED IN AN EXTENDED OBJECT
MODULE AT RECORD 4 WITHIN MEMBER CBC3BL07 IDENTIFIED BY
DDNAME SYSLIN. ERRORID = 566.
IEW2307E 1032 CURRENT INPUT MODULE NOT INCLUDED BECAUSE OF INVALID DATA.

The prelinker and linker will appear to process these files correctly. To locate
this problem, the IPA object contains an external reference to @@DOIPA. This
reference remains unresolved unless the file is processed by the IPA Link step.
If you attempt to link the IPA object file, the linker issues an error message.

Each IPA object contains a CSECT that includes the ESD name @@IPAOBJ.
4. If you specify the OBJECT suboption of the IPA option, the compiler produces a

combined IPA and conventional object file. The IPA object connection occurs
through the conventional object through END records. While the conventional
object file is not required by the IPA Link step, creating it permits you to bind
this file to create an executable module without IPA optimization. It is difficult
to debug IPA optimized code. You can use an executable module that is not
optimized to debug your program.

During the IPA Compile step, the compiler generates information that allows you
to create object libraries with the C370LIB utility or to create OS/390 UNIX archives
with the ar utility. The information consists of XSD and ESD records for the
external symbols that were defined in the compilation units of your program. You
can use the object libraries and OS/390 UNIX archives for autocall searching in the
IPA Link step. During autocall searching, the IPA Link step searches these libraries
and archives for external references from your program.

IPA Compile step processing is shown in Figure 107.

IPA Link Step Processing

You invoke the IPA Link step by specifying the IPA(LINK) compiler option. During
this step, the compiler links the IPA objects that were produced by the IPA

Analysis phase

IPA object creation

Invocation parameters
(IPA or IPA(NOLINK),

other suboptions may be
specified)

Compiler

Code generation
phase (optional)

Source file(s)
Listing sections
Messages
IPA object(s)

Listing sections
Messages
Regular object(s)

Figure 107. IPA Compile step processing

402 OS/390 V2R8.0 C/C++ Programming Guide

Compile step (along with non-IPA object files and load modules, if specified), does
partitioning, performs optimizations, and generates the final object code.

The following processing takes place:
1. The compiler determines the final suboptions for the IPA option, based upon

the compiler options and IPA suboptions you specify. This is necessary because
some combinations of compiler options and IPA suboptions are unsupported.
The compiler issues informational and warning messages for unsupported
combinations.

2. The compiler links IPA object files, as well as non-IPA object files and load
modules (if specified). The compiler also merges information from the IPA
Compile step.
Input for the Link step comes from one of three sources:
v The primary input file (specified by the SYSIN ddname). This can be either:

– A set of IPA Link control statements that you create
These may be INCLUDE and LIBRARY IPA Link control statements that
explicitly identify secondary input files. IPA uses the same control
statement format (with some exceptions) used by the binder.

– The IPA object file from the compilation unit that contains the main
function or fetchable entry point. If you specify this file, the compiler
searches for all other IPA files using the SYSLIB ddname.

v One or more secondary input files
The secondary input file may contain:
– IPA object files or PDS libraries
– Conventional object files or PDS libraries
– Load module libraries
– OS/390 UNIX archive libraries
– IPA Link control statements

These secondary input files are to be used for autocall searches. You can
specify these files through the SYSLIB ddname or explicitly include them
through INCLUDE or LIBRARY IPA Link control statements on the IPA Link
step.

Load module libraries are used to support library interface routines (such as
CICS and Language Environment) that are implemented as load module
libraries. Since IPA must resolve all parts of your application program before
beginning optimization, make all of these libraries as well as your
application object modules available to the IPA Link step.

The IPA Link step resolves external references using explicit and autocall
resolution. This allows IPA to identify the static and global data and the
external references for the whole program.

Ensure that you do not accidentally specify FB, LRECL 80 source files as
input to the IPA Link step. The IPA Link step will assume that records from
these files contain valid object information, and will retain them in the object
file. When the linkage editor processes the object file, it will determine the
records to be invalid, and will issue diagnostic messages.

v The IPA Link step control file. This file contains additional IPA control
directives. The CONTROL suboption of the IPA compiler option identifies this
file.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 403

Refer to “Object Record Formats” on page 405 for more information about the
format of object records that you can specify on the IPA Link step. Refer to the
OS/390 C/C++ User’s Guide for more information about the IPA Link step
control file.

3. As objects are processed, IPA Link Step builds the program call graph, merging
the IPA object code according to its place in the call graph. If necessary, IPA
Link Step stores non-IPA object code for inclusion in the final object file, and
converts load module library members into object format for inclusion in the
final object file.

4. The compiler performs optimizations across the call graph. You specify the type
and extent of optimizations using the LEVEL suboption of the IPA compiler
option.

5. IPA Link Step divides the program call graph into separate units called
partitions. Refer to “Partitioning” on page 406 for more information.
Partitioning of the call graph is controlled by:
v The partition size limit that is specified in the IPA control file (refer to the

OS/390 C/C++ User’s Guide for a description of this file).
v The connectivity of your program. IPA places code that is isolated from the

rest of the program into a separate partition.
v Resolution of conflicting effects between the compiler options and #pragmas

specified for compilation units processed during the IPA Compile step. These
are the compiler options and #pragmas that generate information during the
analysis phase of the compiler for input to the code—generation phase.

IPA Link Step produces a final single object module for the program from these
partitions.

You must bind the IPA single object module to produce the executable module.

Note:

IPA Compile and IPA Link as follows:
v An object file produced by an OS/390 C/C++ IPA Compile that contains

IPA Object or combined IPA and conventional object information can be
used as input to the OS/390 C/C++ IPA Link of the same or later
Version/Release.

v An object file produced by an OS/390 C/C++ IPA Compile that contains
IPA Object or combined IPA and conventional object information cannot
be used as input by the OS/390 C/C++ IPA Link of an earlier
Version/Release. If this is attempted, the IPA Link will issue an error
diagnostic message.

v If the IPA object is recompiled by a later OS/390 C/C++ IPA Compile,
additional optimizations may be performed and the resulting application
program may perform better.

An exception to this is the IPA object files produced by the OS/390 Release
2 C IPA Compile. These must by recompiled from the program source using
an OS/390 Release 3 or later compiler before attempting to process them
with the OS/390 Version 2 Release 6 C/C++ IPA Link.

IPA Link step processing is shown in Figure 108 on page 405.

404 OS/390 V2R8.0 C/C++ Programming Guide

Object File Formats

There are two object file formats generated by the High Level Assembler (HLASM)
and other OS/390 compilers and language translators.

Object File Format
The standard S/370 ″TEXT″ object format, packaged as fixed-length 80 byte
records. Extensions to the basic format support long external symbols
when the OS/390 C/C++ compiler ″LONGNAME″ option is in effect. The
object file format is supported as input to IPA Link. The OS/390 C/C++
compiler produces only object file format files.

Generalized Object File Format (GOFF)
A hierarchical object file format introduced with HLASM R2, and the
OS/390 Binder. This format is NOT supported as input to IPA Link.

Refer to DFSMS/MVS Program Management for more information on object file
formats.

Object Record Formats

There are two basic types of object records which may be present in a file of object
file format. The descriptions follow below. For more information, refer to the IPA
Link chapter in the OS/390 C/C++ User’s Guide.

Note: You cannot use the vi editor to create these records.

Binary Object Records: Binary records may include IPA object information, or
they may include code and data generated through the OBJECT suboption of the
IPA compiler option during the IPA Compile step. The records include the
following types:

IPA object
link phase

Analysis/
optimization phase

Code generation
phase

Invocation parameters
(IPA(LINK, CONTROL(dsn))

(other IPA suboptions may be
specified)

Compiler

Primary input file (object)

IPA control file
Secondary input (object, load module)

Listing sections
Messages

Listing sections
Messages

Listing sections
Messages
Final object code

Figure 108. IPA Link step processing

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 405

v ESD
v XSD
v TXT
v END
v RLD

The OS/390 C/C++ compiler or an equivalent language translator may generate
these object records.

IPA Link Control Statements: The syntax and format of IPA Link control
statements are similar to those of the statements processed by the binder,Prelinker,
and Linkage Editor. These statements can include the following types:
v ALIAS

v INCLUDE

v IMPORT

v LIBRARY

v NAME

v RENAME

The INCLUDE and LIBRARY control statements explicitly identify secondary input
files.

You can specify the statements in a file or in a DD * stream. The logical records
can span multiple fixed-block, 80–column–wide physical records. The IPA Link
step allows but ignores blank records and comment control statements (those
starting with an asterisk in column 1).

The compiler performs syntax checking on the IPA Link Control Statement object
records. If it finds an error, it issues a diagnostic message and indicates the location
of the error.

Partitioning

The final object file created by the IPA Link step is comprised of partitions.
Partitions have three purposes:
v They improve the locality of reference in a program by concentrating related

code in the same regions of storage. This improves load module execution time.
This improvement may be less dramatic for program objects which are paged
into storage on demand.

v They reduce the compiler memory requirements during object code generation
for that partition.

v They allow you to create programs larger than the 16 MB limit for code and
data in an individual S/370 object code CSECT.

There are four types of partitions:
v An initialization partition. This contains initialization code and data, and

comment data (which ensures that #pragma comment information is clearly visible
at the beginning of the program file and storage region).

v The primary partition. This contains the information for the main function.
v Secondary or other partitions.
v Residual CSECT name partitions. These contain CSECT defintions for all CSECTs

provided by the user in csect directives in the IPA Link control file which were
not used for generating initialization, primary, or secondary partitions.

406 OS/390 V2R8.0 C/C++ Programming Guide

IPA determines the number of each type of partition through the following:
v The partition directive in the control file specified by the CONTROL suboption of

the IPA option. Abstract Code Units (ACU’s) define the partition directive.

Note: There is a 16 MB limit on the size of a CSECT. If the length of a CSECT in
a partition exceeds this limit, the compiler issues a severe error message
and stops code generation. You can resolve the error by specifying a
smaller value for the partition directive. Refer to the OS/390 C/C++
User’s Guide for more information about the IPA Link step control file.

v The connectivity within the program call graph. Connectivity refers to the
volume of calls between functions in a program.

v Conflict resolution between #pragmas and compiler options specified for different
compilation units. IPA attempts to resolve conflicts by applying a common
option across all compilation units. If it cannot, it forces the compilation units for
which the effects of the original option or #pragma are to be maintained into
separate partitions.

Refer to the OS/390 C/C++ User’s Guide for an example of the Partition Map listing
section.

Invoking IPA from the c89 Utility

You can invoke the IPA Compile step, the IPA Link step, or both. The step that c89
invokes depends upon the invocation parameters and type of files you specify. You
must specify the I phase indicator along with the W option of the c89 utility. You
can specify IPA suboptions as keywords separated by commas.

If you invoke the c89 utility with at least one source file and the -c c89 compiler
option, c89 automatically specifies the IPA(NOLINK) option and invokes the IPA
compile step. For example, the following command invokes the IPA Compile step
for the source file hello.c:
c89 -c -WI hello.c

If you invoke the c89 utility with at least one object file, do not specify the -c
option and do not specify any source files. c89 automatically specifies IPA(LINK)
and automatically invokes the IPA Link step and the binder. For example, the
following command invokes the IPA Link step and the binder, to create a program
called hello:
c89 -o hello -WI hello.o

If you invoke c89 with at least one source file for compilation and any number of
object files, and do not specify the -c c89 compiler option, c89 automatically
invokes the IPA Compile step once for each compilation unit and the IPA Link step
once for the entire program. It then invokes the binder. For example, the following
command invokes the IPA Compile step, the IPA Link step, and the binder to
create a program called foo:
c89 -o foo -WI,object foo.c

Specifying Options

When using c89, you can pass options to IPA, as follows:
v If you specify -WI, followed by IPA suboptions, the compiler passes those

suboptions to both the IPA Compile step and the IPA Link step.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 407

v If you specify -Wc, followed by compiler options, the compiler passes those
options only to the IPA Compile step.

v If you specify -Wl,I, followed by compiler options, the compiler passes those
options only to the IPA Link step.

The following is an example of passing options:
c89 -2 -WI,noobject -Wc,source -Wl,I,"maxmem(2048)" file.c

If you specify the previous command, you pass the IPA(NOOBJECT) option to both
the IPA Compile and IPA Link steps, the SOURCE option to only the IPA Compile
step, and the MAXMEM(2048) option to only the IPA Link step.

Other Considerations

The c89 utility automatically generates all INCLUDE and LIBRARY IPA Link control
statements.

IPA under c89 supports the following types of files:
v MVS PDS members
v sequential files
v Hierarchical File System (HFS) files
v OS/390 UNIX archive (.a) files

Note that the OS/390 C/C++ compiler, which includes IPA, is packaged in load
module format, not OS/390 UNIX executable format.

Refer to the OS/390 UNIX System Services Command Reference for more information
about the c89 utility.

Controlling IPA Execution

There are three ways to control IPA execution:
v Compiler options, including the IPA compiler option and its suboptions
v Compiler #pragma directives
v IPA Link step control file directives

This section discusses the first two methods. Refer to the chapter on the IPA Link
step in the OS/390 C/C++ User’s Guide for information about the control file.

Specifying Compiler Options with IPA

The IPA compiler option that invokes IPA includes suboptions that are not
discussed in this chapter. Refer to the OS/390 C/C++ User’s Guide for a complete
description of the IPA option.

You should keep the following points in mind when specifying compiler options
for an IPA Compile or IPA Link step. Refer to the compiler options section of the
OS/390 C/C++ User’s Guide for more information on specifying compiler options
under IPA.
v Many compiler options do not have any special effect on IPA. For example, the

PPONLY option, used for source control, processes source code prior to IPA
Compile step analysis.

408 OS/390 V2R8.0 C/C++ Programming Guide

v Any compiler options that affect the way an object module is generated for a
regular compilation have the same effect for an object module generated with
the OBJECT suboption of the IPA compiler option.

v Some compiler options specified for the IPA Compile step generate information
for the IPA Link step. You must specify these options on both steps. This is the
situation for options that control code generation.
You must specify compiler options that affect the IPA Link step when you
invoke that step, even if you specified the same options on the IPA Compile
step. The IPA Link step uses defaults for options that are not specified.

v Some compiler options have special behavior or restrictions other than the
description above.

v #pragma directives that you specify in your source code may conflict across
compilation units with compiler options that you specify for the IPA Compile
step.
#pragma directives that you specify in your source code or compiler options that
you specify for the IPA Compile step may conflict with options you specify for
the IPA Link step.
IPA will detect such conflicts and apply default resolutions with appropriate
diagnostic messages. The IPA Link step Compiler Options Map listing section
displays the conflicts and resolutions.
To avoid problems, use the same options and suboptions on the IPA Compile
and IPA Link steps. Also, if you use #pragma directives in your source code,
specify the corresponding options (if they exist) for the IPA Link step.

v You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you invoke the step
through the c89 utility). Otherwise, the compiler generates an unrecoverable
error.

v If you specify a compiler option that is irrelevant for a particular step, IPA
ignores it (without issuing a message).

v During the IPA Compile step, IPA handles conflicting effects between IPA
suboptions and certain compiler options that affect code generation. The
compiler uses a combination of compiler options and IPA suboptions to
determine the information that the IPA object contains.

Specifying Pragmas under IPA

Many #pragmas do not have any special behavior under IPA. They have the same
effect on a program compiled with the IPA option as they do for a program
compiled without the IPA option.

The following #pragmas do have special behavior under IPA. Refer to the OS/390
C/C++ Language Reference for details.
v comment

v csect

v export

v longname

v options

v pagesize

v runopts

v strings

v target

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 409

IPA may detect conflicting effects from #pragmas or compiler options that you
specified for different compilation units in the IPA Compile step. It resolves these
conflicting effects during the IPA Link step. There may also be conflicting effects
between #pragmas and equivalent compiler options specified for the IPA Link step.
IPA resolves these conflicts similarly to the way it resolves conflicting effects from
compiler options specified for the IPA Compile and IPA Link steps. The Compiler
Options Map section of the IPA Link step listing lists the conflicting effects of
options and #pragmas, and the corresponding resolutions.

You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you invoke the step
through the c89 utility). Otherwise, the compiler generates an unrecoverable error.

Effects of IPA on Your Program

If you compile your program with IPA, the execution time for your program is
normally faster than it would be if you requested inlining or other forms of
optimization.

For best optimization results, specify both the OPT and IPA options.

You should be aware that not all programs benefit equally from IPA. Those most
likely to show performance gains are those that:
v Contain a large number of functions
v Contain a large number of compilation units
v Contain a large number of functions that are not in the same compilation units

as their callers
v Do not perform a large number of input/output operations

You should debug your code before attempting to use IPA. The
IPA(NOLINK,OBJECT) option can help, by allowing you to create a conventional
object that you can bind without running the IPA Link step first.

You should also be aware that code that compiles without IPA may not compile
with it. This is because the IPA Link step enforces more rules than the regular
compiler does. The IPA Link step knows about your entire program.

The regular compiler only has an isolated (compilation unit based) view of your
program, and must assume that you have coded your entire application
consistently.

Other effects of IPA:
v IPA affects compilation time:

– If you invoke the IPA Compile step for each compilation unit in your
program, and the IPA Link step for the program as a whole, the combined
compilation time is higher than it is for a program compiled without IPA.
This is due to the IPA-specific optimizations that the IPA Compile and IPA
Link steps perform.

– If you specify IPA(NOOBJECT) for the IPA Compile step, the compilation time
for the IPA Compile step is comparable to that for a program compiled
without IPA. If you specify IPA(OBJECT), compilation time for the IPA
Compile step increases, but the benefit is that you can use the created object
to build an executable module for debugging.

410 OS/390 V2R8.0 C/C++ Programming Guide

v If you compile with the IPA compiler option, the size of your object file is larger
than it would be if you compiled without IPA. This is due to the extra
information that the IPA Compile step stores in the object file for the IPA Link
step.

v When you run the IPA Compile step, compiler storage requirements and
execution time rise.

v If you specify the OPT option on the IPA Link step, and your program is
complex, you may require 256 MB or more of memory.

Restrictions

You should be aware of the following restrictions when using IPA:
v IPA is not supported in an MTF environment.
v IPA is supported in an SP C environment only when the main function is

present.

Locale Support

The LOCALE compiler option has the following effects on IPA:
v It triggers the processing of pragma filetag. This only applies to the IPA

Compile step, as source code is only processed during this step.
v It indicates the code page to be used to generate the listings.
v It indicates the date and time formats to be used to generate the listings.

The LOCALE option only controls processing for the IPA step for which it is
specified. The locale that you specify for the IPA Compile step does not determine
the locale that the IPA Link step uses.

During the IPA Compile step, the compiler converts source code by using the code
page identified by the LOCALE compiler option. As with non-IPA compilations, the
conversion applies to identifiers, literals, and listings. The locale that you specify
for the IPA Compile step becomes recorded in the IPA object file.

The LOCALE option specified for the IPA Link step is used:
v For the encoding of the message and listing text
v For date and time formatting in the Source File Map section of the listing
v In the text in the object comment string that records the date and time of IPA

Link step processing

You should use the same code page for IPA Compile step processing for all of the
source files in your program. This code page should match the code page of the
run-time environment. Otherwise, your application may not run correctly. If the
code page used for any compilation unit for the IPA Compile step does not match
the code page used for the IPA Link step, the IPA Link step issues an informational
message.

Date and Time Stamps Within IPA Objects

IPA Compile step processing determines the values specified by the date and time
stamps. If you run the IPA Link step, the date and time stamps will reflect the
compilation date and time from the IPA Compile step. They will not reflect the
date and time when the IPA Link step generated the code.

Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysis 411

412 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 30. Network Communications under UNIX System
Services

This chapter discusses interprocess communication, including MVS Sockets for
OS/390 UNIX and the X/Open Transport Interface (XTI) for OS/390 UNIX and the
internetworking involved.

Many products today supply a socket interface. The three types of Application
Programmer’s Interfaces(API) for the sockets which will be covered in this chapter
are:
v X/Open Socket

v Berkeley Socket

v Open Socket

If you are running with some other socket API, this material will not necessarily
apply.

Your OS/390 UNIX C/C++ application program can take advantage of sockets or
XTI to communicate with a related application (server or client).

The X/Open Transport Interface (XTI) defines an independent transport service
interface that allows multiple users to communicate at the transport level of the
OSI reference model. More information can be found at the end of this chapter.

Understanding OS/390 UNIX Sockets and Internetworking

OS/390 UNIX provides support for an enhanced version of an industry-accepted
protocol for client/server communication known as sockets. The three types of
Application Programmer’s Interfaces(API), for the sockets which will be covered in
this chapter are:
v X/Open Socket: The API type of socket as defined by X/Open in XPG4.2.
v Berkeley Socket: The socket API that represents a migration path for programs

coded under the HOT1120 and HOT1130 element. It allows use of the BSD4.3
interface and function in the X/Open environment. Its purpose is to expedite the
porting of existing BSD4.3 applications.

v Open Socket: The API type of socket for the HOT1120 and HOT1130 OS/390
UNIX element, which use a BSD4.3 interface. In OS/390 UNIX, this interface is
available with the OS/390 C/C++ Language Environment; see Berkeley Socket.
This API will be deleted from any replacement of the HOT1130 OS/390 UNIX
element. Support for existing Open Sockets binding and running will continue to
be available.

The OS/390 UNIX socket API provides support for both UNIX domain sockets and
Internet domain sockets. UNIX domain sockets, or local sockets, allow interprocess
communication within MVS independent of TCP/IP. Local sockets behave like
traditional UNIX-domain sockets and allow processes to communicate with one
another on a single system. Internet sockets allow application programs to
communicate with others in the network using TCP/IP.

© Copyright IBM Corp. 1996, 1999 413

This chapter provides some background information about OS/390 UNIX sockets
and about network communication in general. It is intended to provide an
overview of the programming concepts associated with using OS/390 UNIX
sockets and network communication.

For information about using the socket API, see the OS/390 C/C++ Run-Time Library
Reference.

The Basics of Network Communication

This section takes a look at network communication from a very high level and
defines some terms used throughout the book. For more detailed information on
OS/390 network communication and TCP/IP sockets, see TCP/IP for MVS: User’s
Guide and TCP/IP for MVS: Programmer’s Reference.

Network communication, or internetworking, defines a set of protocols (that is, rules
and standards) that allow application programs to talk with each other without
regard to the hardware and operating systems where they are run. Internetworking
allows application programs to communicate independently of their physical
network connections.

Internetworking technology called TCP/IP is named after its two main protocols:
Transmission Control Protocol (TCP) and Internet Protocol (IP). To understand
TCP/IP, you should be familiar with the following terms:

client A process that requests services on the network.

server A process that responds to a request for service from a client.

datagram The basic unit of information, consisting of one or more data
packets, which are passed across an Internet at the transport level.

packet The unit or block of a data transaction between a computer and its
network. A packet usually contains a network header, at least one
high-level protocol header, and data blocks. Generally, the format
of data blocks does not affect how packets are handled. Packets are
the exchange medium used at the Internetwork layer to send data
through the network.

Transport Protocols for Sockets

A protocol is a set of rules or standards that each host must follow to allow other
hosts to receive and interpret messages sent to them. There are two general types
of transport protocols:
v A connectionless protocol is a protocol that treats each datagram as independent

from all others. Each datagram must contain all the information required for its
delivery.
An example of such a protocol is User Datagram Protocol (UDP). UDP is a
datagram-level protocol built directly on the IP layer and used for
application-to-application programs on a TCP/IP host. UDP does not guarantee
data delivery, and is therefore considered unreliable. Application programs that
require reliable delivery of streams of data should use TCP.

v A connection-oriented protocol requires that hosts establish a logical connection
with each other before communication can take place. This connection is

414 OS/390 V2R8.0 C/C++ Programming Guide

sometimes called a virtual circuit, although the actual data flow uses a
packet-switching network. A connection-oriented exchange includes three
phases:
1. Start the connection
2. Transfer data
3. End the connection

An example of such a protocol is Transmission Control Protocol (TCP). TCP
provides a reliable vehicle for delivering packets between hosts on an Internet.
TCP breaks a stream of data into datagrams, sends each one individually using
IP, and reassembles the datagrams at the destination node. If any datagrams are
lost or damaged during transmission, TCP detects this and retransmits the
missing datagrams. The data stream that is received is therefore a reliable copy
of the original.

These types of protocols are illustrated in Figure 110 on page 424, and in Figure 111
on page 425.

What Is a Socket?

A socket can be thought of as an endpoint in a two-way communication channel.
Socket routines create the communication channel, and the channel is used to send
data between application programs either locally or over networks. Each socket
within the network has a unique name associated with it called a socket
descriptor—a fullword integer that designates a socket and allows application
programs to refer to it when needed.

Using an electrical analogy, you can think of the communication channel as the
electrical wire with its plug and think of the port, or socket, as the electrical socket
or outlet, as shown in Figure 109.

Chapter 30. Network Communications under UNIX System Services 415

This figure shows many application programs running on a client and many
application programs on a server. When the client starts a socket call, a socket
connection is made between an application on the client and an application on the
server.

Another analogy used to describe socket communication is a telephone
conversation. Dialing a phone number from your telephone is similar to starting a
socket call. The telephone switching unit knows where to logically make the
correct switch to complete the call at the remote location. During your telephone
conversation, this connection is present and information is exchanged. After you
hang up, the connection is broken and you must start it again. The client uses the
socket() function call to start the logical switch mechanism to connect to the
server.

As with file access, user processes ask the operating system to create a socket
when one is needed. The system returns an integer, the socket descriptor (sd), that
the application uses every time it wants to refer to that socket. The main difference
between sockets and files is that the operating system binds file descriptors to a
file or device when the open() call creates the file descriptor. With sockets,
application programs can choose to either specify the destination each time they
use the socket—for example, when sending datagrams—or to bind the destination
address to the socket.

Sockets behave in some respects like UNIX files or devices, so they can be used
with such traditional operations as read() or write(). For example, after two
application programs create sockets and open a connection between them, one
program can use write() to send a stream of data, and the other can use read() to
receive it. Because each file or socket has a unique descriptor, the system knows
exactly where to send and to receive the data.

Figure 109. An Electrical Analogy Showing the Socket Concept

416 OS/390 V2R8.0 C/C++ Programming Guide

You can wait on a socket using the following asynchronous I/O functions:
v aio_read() - Asynchronous read from a socket
v aio_write() - Asynchronous write to a socket
v aio_cancel() - Cancel an asynchronous I/O request
v aio_suspend() - Wait for an asynchronous I/O request
v aio_error() - Retrieve error status for an asynchronous I/O operation
v aio_return() - Retrieve return status for an asynchronous I/O operation

You can suspend the invoking thread until a specified asynchronous I/O event,
timeout, or signal occurs. These functions are described in the OS/390 C/C++
Run-Time Library Reference.

OS/390 UNIX Socket Families

In OS/390 UNIX, there are two socket families supported—UNIX Domain Sockets,
known as local sockets, which are part of the UNIX Address Family (AF_UNIX),
and Internet Protocol Sockets, which are part of the Internet Address Family
(AF_INET).

AF_UNIX sockets provide communication between processes on a single system.
This socket family supports two types of sockets—stream and datagram sockets.
These socket types are described in the next section.

AF_INET sockets provide a means of communicating between application
programs that are on different systems using the Transport Control Protocol
provided by a TCP/IP product. This socket family supports both stream and
datagram sockets. Each of these socket types is described in the next section.

OS/390 UNIX Socket Types

The OS/390 UNIX socket API provides application programs with a network
interface that hides the details of the physical network. The socket API supports
both stream sockets and datagram sockets, each providing different services for
application programs. Stream and datagram sockets interface to the transport layer
protocols, UDP and TCP. You choose the appropriate interface for an application.

Stream Sockets

Stream sockets act like streams of information. There are no boundaries between
data, so communicating processes must agree on their own mechanism to
distinguish information. Usually, the process sending information sends the length
of the data, followed by the data itself. The process receiving information reads the
length and then loops, accepting data until all of it has been transferred. Stream
sockets guarantee delivery of the data in the order it was sent and without
duplication. The stream socket interface defines a reliable connection-oriented
service. Data is sent without errors or duplication and is received in the same
order as it is sent. Flow control is built in, to avoid data overruns. No boundaries
are imposed on the data; the data is considered to be a stream of bytes.

Stream sockets are more common, because the burden of transferring the data
reliably is handled by the system rather than by the application.

Chapter 30. Network Communications under UNIX System Services 417

|

|

|

|

|

|

|

|
|
|

Datagram Sockets

The datagram socket interface defines a connectionless service. Datagrams are sent
as independent packets. The service provides no guarantees; data can be lost or
duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction. No disassembly and
reassembly of packets is performed.

Guidelines for Using Socket Types

This section describes criteria to help you choose the appropriate socket type for an
application program.

If you are communicating with an existing application program, you must use the
same protocols as the existing application program. For example, if you
communicate with an application that uses TCP, you must use stream sockets. For
other application programs, you should consider the following factors:
v Reliability. Stream sockets provide the most reliable connection. Datagram

sockets are unreliable, because packets can be discarded, corrupted, or
duplicated during transmission. This may be acceptable if the application
program does not require reliability, or if the application program implements
the reliability on top of the sockets interface. The trade-off is the increased
performance available with datagram sockets.

v Performance. The overhead associated with reliability, flow control, packet
reassembly, and connection maintenance degrade the performance of stream
sockets in comparison with datagram sockets.

v Data transfer. Datagram sockets impose a limit on the amount of data
transferred in a single transaction. If you send less than 2048 bytes at a time, use
datagram sockets. As the amount of data in a single transaction increases, use
stream sockets.

Addressing within Sockets

The following sections describe the different ways to address within the socket
API.

Address Families

Address families define different styles of addressing. All hosts in the same
address family use the same scheme for addressing socket endpoints. OS/390
UNIX supports two address families—AF_INET and AF_UNIX. The AF_INET
address family defines addressing in the IP domain. The AF_UNIX address family
defines addressing in the OS/390 UNIX domain. In the OS/390 UNIX domain,
address spaces can use the socket interface to communicate with other address
spaces on the same host.

Note: In this case, the OS/390 UNIX domain is used in much the same way as the
UNIX domain on other UNIX-type systems.

Socket Address

A socket address is defined by the sockaddr structure in the sys/socket.h include
file. The structure has three fields, as shown in the following example:

418 OS/390 V2R8.0 C/C++ Programming Guide

struct sockaddr {
unsigned char sa_len;
unsigned char sa_family;
char sa_data[14]; /* variable length data */

};

The sa_len field contains the length of the sa_data field. The sa_family field contains
the address family. It is AF_INET for the Internet domain and AF_UNIX for the
UNIX domain. The sa_data field is different for each address family. Each address
family defines its own structure, which can be overlaid on the sockaddr structure.
See “Addressing within the AF_INET Domain” on page 420 for more information
about the Internet domain and “Addressing within the AF_UNIX Domain” on
page 420 for more information about the UNIX domain.

Internet Addresses

Internet addresses are 32-bit quantities that represent a network interface. Every
Internet address within an administered AF_INET domain must be unique. On the
other hand, it is not necessary that every host have a unique Internet address; in
fact, a host has as many Internet addresses as it has network interfaces.

Ports

A port is used to distinguish between different application programs using the
same network interface. It is an additional qualifier used by the system software to
get data to the correct application program. Physically, a port is a 16-bit integer.
Some ports are reserved for particular application programs or protocols and are
called well-known ports.

Network Byte Order

Ports and addresses are usually specified to calls using the network byte ordering
convention. This convention is a method of sorting bytes under specific machine
architectures. There are two common methods:
v Big-endian byte ordering places the most significant byte first. This method is

used in Motorola 6 microprocessors.
v Little-endian byte ordering places the least significant byte first. This method is

used in Intel 7 microprocessors.

Using network byte ordering for data exchanged between hosts allows hosts using
different architectures to exchange address information. See references in figures
Figure 113 on page 426, Figure 114 on page 427, and Figure 116 on page 428 for
examples of using the htons() call to put ports into network byte order. For more
information about network byte order, see OS/390 C/C++ Run-Time Library
Reference.

Note: The socket interface does not handle application program data byte ordering
differences. Application program writers must handle byte order differences
themselves.

6. Motorola is a trademark of Motorola Corporation.

7. Intel is a trademark of Intel Corporation.

Chapter 30. Network Communications under UNIX System Services 419

Addressing within the AF_INET Domain

A socket address in the Internet address family comprises five fields: the address
family (AF_INET), an Internet address, the length of that Internet address, a port,
and a character array. The structure of an Internet socket address is defined by the
following sockaddr_in structure, which is found in the netinet/in.h include file:
struct in_addr {

ip_addr_t s_addr;

struct sockaddr_in {
unsigned char sin_len;
unsigned char sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

};

The sin_len field is set to the length of the sin_addr field, which is the Internet
address of the network used by the application program. It is also in network byte
order.

The sin_family field is set to AF_INET. The sin_port field is the port used by the
application program, in network byte order. The sin_zero field should be set to all
zeros.

Addressing within the AF_UNIX Domain

A socket address in the AF_UNIX address family is comprised of three fields: the
address family (AF_UNIX), the length of the following pathname, and the
pathname itself. The structure of an AF_UNIX socket address is defined as follows:
struct sockaddr_un {

unsigned char sun_len;
unsigned char sun_family;
char sun_path[108]; /* pathname */

};

This structure is defined in the sockaddr_un structure found in sys/un.h include
file. The sun_family field is set to AF_UNIX; sun_path contains the null-terminated
pathname; and sun_len contains the length of the pathname.

The Conversation

The client and server exchange data using a number of functions. They can send
data using send(), sendto(), sendmsg(), write(), or writev(). They can receive
data using recv(), recvfrom(), recvmsg(), read(), or readv(). The following is an
example of the send() and recv() call:
send(s, addr_of_data, len_of_data, 0);
recv(s, addr_of_buffer, len_of_buffer, 0);

The send() and recv() function calls specify the sockets on which to communicate,
the address in memory of the buffer that contains, or will contain, the data
(addr_of_data, addr_of_buffer), the size of this buffer (len_of_data, len_of_buffer), and a
flag that tells how the data is to be sent. Using the flag 0 tells TCP/IP to transfer
the data normally. The server uses the socket that is returned from the accept()
call.

420 OS/390 V2R8.0 C/C++ Programming Guide

These functions return the amount of data that was either sent or received. Because
stream sockets send and receive information in streams of data, it can take more
than one call to send() or recv() to transfer all the data. It is up to the client and
server to agree on some mechanism of signaling that all the data has been
transferred.

When the conversation is over, both the client and server call the close() function
to end the connection. The close() function also deallocates the socket, freeing its
space in the table of connections. To end a connection with a specific client, the
server closes the socket returned by accept(). If the server closes its original
socket, it can no longer accept new connections, but it can still converse with the
clients it is connected to. The following is an example of the close() call:
close(s);

The Server Perspective

Before the server can accept any connections with clients, it must register itself
with TCP/IP and “listen” for client requests on a specific port.

Allocation with socket()

The server must first allocate a socket. This socket provides an endpoint that
clients connect to.

A socket is actually an index into a table of connections, so socket numbers are
usually assigned in ascending order. In the C language, the programmer calls the
socket() function to allocate a new socket, as shown in the following example:
s = socket(AF_INET, SOCK_STREAM, 0);

The socket() function requires the address family (AF_INET), the type of socket
(SOCK_STREAM), and the particular networking protocol to use (when 0 is
specified, the system automatically uses the appropriate protocol for the specified
socket type). A new socket is allocated and returned.

bind()

At this point, an entry in the table of communications has been reserved for your
application program. However, the socket has no port or IP address associated
with it until you use the bind() function, which requires the following:
v The socket the server was just given
v The number of the port on which the server wishes to provide its service
v The IP address of the network connection on which the server is listening (to

understand what is meant by “listening”, see “listen()”)

In C language, the server puts the port number and IP address into a sockaddr_in
structure, passing it and the socket to the bind() function. For example:
bind(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

listen()

After the bind, the server has specified a particular IP address and port. Now it
must notify the system that it intends to listen for connections on this socket. In C,
the listen() function puts the socket into passive open mode and allocates a
backlog queue of pending connections. In passive open mode, the socket is open
for clients to contact. For example:

Chapter 30. Network Communications under UNIX System Services 421

listen(s, backlog_number);

The server gives the socket on which it will be listening and the number of
requests that can be queued (known as the backlog_number). If a connection request
arrives before the server can process it, the request is queued until the server is
ready.

accept()

Up to this point, the server has allocated a socket, bound the socket to an IP
address and port, and issued a passive open. The next step is for the server
actually to establish a connection with a client. The accept() call blocks the server
until a connection request arrives, or, if there are connection requests in the
backlog queue, until a connection is established with the first client in the queue.
The following is an example of the accept() call:
client_sock = accept(s, &clientaddr, &addrlen);

The server passes its socket to the accept() call. When the connection is
established, the accept() call returns a new socket representing the connection
with the client. When the server wishes to communicate with the client or end the
connection, it uses this new socket, client_sock. The original socket s is now ready
to accept connections with other clients. The original socket is still allocated,
bound, and opened passively. To accept another connection, the server calls
accept() again. By repeatedly calling accept(), the server can establish almost any
number of connections at once.

select()

The server is now ready to start handling requests on this port from any client
with the server’s IP address and port number. Up to this point, it has been
assumed that the server will be handling only one socket. However, an application
program is not limited to one socket. Typically, a server listens for clients on a
particular socket but allocates a new socket for each client it handles. For
maximum performance, a server should operate only on those sockets that are
ready for communication. The select() call allows an application program to test
for activity on a group of sockets.

Note: The select() function can also be used with other descriptors, such as file
descriptors, pipes, or character special files.

To allow you to test any number of sockets with just a single call to select(),
place the sockets to test into a bit set, passing the bit set to the select() call. A bit
set is a string of bits where each possible member of the set is represented by a 0
or a 1. If the member’s bit is 0, the member is not in the set. If the member’s bit is
1, the member is in the set. Sockets are actually small integers. If socket 3 is a
member of a bit set, then the bit that represents it is set to 1 (on).

In C, the functions to manipulate the bit sets are the following:

FD_SET Sets the bit corresponding to a socket

FD_ISSET Tests whether the bit corresponding to a socket is set or cleared

FD_ZERO Clears the whole bit set

FD_CLR Clears a bit within the bit set

422 OS/390 V2R8.0 C/C++ Programming Guide

To be active, a socket is ready for reading data or for writing data, or an
exceptional condition may have occurred. Therefore, the server can specify three
bit sets of sockets in its call to the select() function: one bit set for sockets on
which to receive data; another for sockets on which to write data; and any sockets
with exception conditions. The select() call tests each socket in each bit set for
activity and returns only those sockets that are active.

A server that processes many clients at the same time can easily be written so that
it processes only those clients that are ready for activity.

The Client Perspective

The client first issues the socket() function call to allocate a socket on which to
communicate:
s = socket(AF_INET, SOCK_STREAM, 0);

To connect to the server, the client places the port number and the IP address of
the server into a sockaddr_in structure. If the client does not know the server’s IP
address, but does know the server’s host name, the gethostbyname() function is
called to translate the host name into its IP address. The client then calls
connect(). The following is an example of the connect() call:
connect(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

When the connection is established, the client uses its socket to communicate with
the server.

A Typical TCP Socket Session

You can use TCP sockets for both passive (server) and active (client) processes.
Whereas some functions are necessary for both types, some are role-specific. After
you make a connection, it exists until one of the following has occurred:
v The socket is closed by client or server
v A shutdown is performed by client or server for both read and write
v The socket is unconnected using a blank sockaddr structure with another

connect() call to the socket

During the connection, data is either delivered or an error code is returned by
TCP/IP.

See Figure 110 on page 424 for the general sequence of calls to be followed for most
socket routines using TCP, or stream sockets.

Chapter 30. Network Communications under UNIX System Services 423

A Typical UDP Socket Session

User Datagram Protocol (UDP) socket processes, unlike TCP socket processes, are
not clearly distinguished by server and client roles. The distinction is between
connected and unconnected sockets. An unconnected socket can be used to
communicate with any host; but a connected socket, because it has a dedicated
destination, can send data to, and receive data from, only one host.

Both connected and unconnected sockets send their data over the network without
verification. Consequently, after a packet has been accepted by the UDP interface,
the arrival and integrity of the packet cannot be guaranteed.

See Figure 111 for the general sequence of calls to be followed for most socket
routines using UDP, or datagram, sockets.

Figure 110. A Typical Stream Socket Session

424 OS/390 V2R8.0 C/C++ Programming Guide

A Typical Datagram Socket Session

Locating the Server’s Port

In the client/server model, the server provides a resource by listening for clients
on a particular port. Such application programs as FTP, SMTP, and Telnet listen on
a well-known port—a port assigned for use to a specific application program or
protocol. However, for your own client/server application programs, you need a
method of assigning port numbers to represent the services you intend to provide.
An easy method of defining services and their ports is to enter them into the
/etc/services file or the tcpip.ETC.SERVICES data set. In C, the programmer uses the
getservbyname() function to determine the port for a particular service. If the port
number for a particular service changes, only the /etc/services file or the
tcpip.ETC.SERVICES data set must be modified.

Note: TCP/IP is shipped with a tcpip.ETC.SERVICES file containing such
well-known services as FTP, SMTP, and Telnet.

Figure 111. A Typical Datagram Socket Session

Chapter 30. Network Communications under UNIX System Services 425

Network Application Example

The following example illustrates using socket functions in a network application
program. The steps are written using many of the basic socket functions, C socket
syntax, and conventions described in this book.

1. First, an application program must get a socket descriptor using the socket()
call, as in the example listed in Figure 112. For a complete description, see
OS/390 C/C++ Run-Time Library Reference

The code fragment in Figure 112 allocates a socket descriptor s in the Internet
address family. The domain parameter is a constant that specifies the domain
where the communication is taking place. A domain is the collection of
application programs using the same addressing convention. OS/390 UNIX
supports two domains: AF_INET and AF_UNIX. The type parameter is a
constant that specifies the type of socket, which can be SOCK_STREAM, or
SOCK_DGRAM.

The protocol parameter is a constant that specifies the protocol to use. For
AF_INET, it can be set to IPPROTO_UDP for SOCK_DGRAM and
IPPROTO_TCP for SOCK_STREAM. Passing 0 chooses the default protocol. If
successful, the socket() call returns a positive integer socket descriptor. For
AF_UNIX, the protocol parameter must be 0. These values are defined in the
netinet/in.h include file.

2. After an application program has a socket descriptor, it can explicitly bind a
unique address to the socket, as in the example listed in Figure 113. For a
complete description, see OS/390 C/C++ Run-Time Library Reference.

#include <sys/socket.h>...

int s;...

s = socket(AF_INET, SOCK_STREAM, 0);

Figure 112. An Application Using socket()

int bind(int s, struct sockaddr *name, int namelen);...

int rc;
int s;
struct sockaddr_in myname;

/* clear the structure to be sure that the sin_zero field is clear */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr = inet_addr("129.5.24.1");

/* specific interface */
myname.sin_port = htons(1024);...

rc = bind(s, (struct sockaddr *) &myname,
sizeof(myname));

Figure 113. An Application Using bind()

426 OS/390 V2R8.0 C/C++ Programming Guide

This example binds socket descriptor s to the address 129.5.24.1 and port
1024 in the Internet domain. Servers must bind to an address and port to
become accessible to the network. The example in Figure 113 on page 426
shows two useful utility routines:
v inet_addr() takes an Internet address in dotted-decimal form and returns it

in network byte order. For a complete description, see OS/390 C/C++
Run-Time Library Reference

v htons() takes a port number in host byte order and returns the port in
network byte order. For a complete description, see OS/390 C/C++ Run-Time
Library Reference.

Figure 114 shows another example of the bind() call. It uses the utility routine
gethostbyname() to find the Internet address of the host, rather than using
inet_addr() with a specific address.

3. After binding to a socket, a server that uses stream sockets must indicate its
readiness to accept connections from clients. The server does this with the
listen() call, as illustrated in the example in Figure 115.

The listen() call tells the TCP/IP address space that the server is ready to
begin accepting connections, and that a maximum of five connection requests
can be queued for the server. Additional requests are ignored. For a complete
description, see OS/390 C/C++ Run-Time Library Reference.

int bind(int s, struct sockaddr_in name, int namelen);...

int rc;
int s;
char *hostname = "myhost";
struct sockaddr_in myname;
struct hostent *hp;

hp = gethostbyname(hostname);

/*clear the structure to be sure that
the sin_zero field is clear*/

memset(&myname,0,sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = *((ip_addr_t

*)hp->h_addr);
myname.sin_port = htons(1024);...

rc = bind(s,(struct
sockaddr *) &myname, sizeof(myname));

Figure 114. A bind() Function Using gethostbyname()

int listen(int s, int backlog);...

int s;
int rc;...

rc = listen(s, 5);

Figure 115. An Application Using listen()

Chapter 30. Network Communications under UNIX System Services 427

4. Clients using stream sockets begin a connection request by calling connect(),
as shown in the following example.

The connect() call attempts to connect socket descriptor s to the server with
an address servername. This could be the server that was used in the previous
bind() example. The caller optionally blocks, until the connection is accepted
by the server. After a successful return, the socket descriptor s is associated
with the connection to the server. For a complete description, see OS/390
C/C++ Run-Time Library Reference.

5. Servers using stream sockets accept a connection request with the accept()
call, as shown in the example listed in Figure 117.

If connection requests are not pending on socket descriptor s, the accept() call
optionally blocks the server. When a connection request is accepted on socket
descriptor s, the name of the client and length of the client name are returned,
along with a new socket descriptor. The new socket descriptor is associated
with the client that began the connection, and s is again available to accept
new connections. For a complete description, see OS/390 C/C++ Run-Time
Library Reference.

6. Clients and servers have many calls from which to choose for data transfer.
The read() and write(), readv() and writev(), and send() and recv() calls
can be used only on sockets that are in the connected state. The sendto() and
recvfrom(), and sendmsg() and recvmsg() calls can be used at any time on

int connect(int s, struct sockaddr *name, int namelen);...

int s;
struct sockaddr_in servername;
int rc;...

memset(&servername, 0,sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr = inet_addr("129.5.24.1");
servername.sin_port = htons(1024);...

rc = connect(s, (struct sockaddr *) &servername,
sizeof(servername));

Figure 116. An Application Using connect()

int accept(int s, struct sockaddr *addr, int *addrlen);...

int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;...

addrlen = sizeof(clientaddress);...

clientsocket = accept(s, &clientaddress, &addrlen);

Figure 117. An Application Using accept()

428 OS/390 V2R8.0 C/C++ Programming Guide

datagram sockets. The example listed in Figure 118 illustrates the use of
send() and recv().

The example in Figure 118 shows an application program sending data on a
connected socket and receiving data in response. The flags field can be used to
specify additional options to send() or recv(), such as sending out-of-band
data. For more information see OS/390 C/C++ Run-Time Library Reference.

7. If the socket is not in a connected state, additional address information must
be passed to sendto() and can be optionally returned from recvfrom(). An
example of the use of the sendto() and recvfrom()calls is listed in Figure 119
on page 430.

int send(int socket, char *buf, int buflen, int flags);
int recv(int socket, char *buf, int buflen, int flags);...

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
int s;...

bytes_sent = send(s, data_sent,
sizeof(data_sent), 0);...

bytes_received = recv(s,
data_received, sizeof(data_received), 0);

Figure 118. An Application Using send() and recv()

Chapter 30. Network Communications under UNIX System Services 429

The sendto() and recvfrom() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the
data. For more information see OS/390 C/C++ Run-Time Library Reference.
Usually, sendto() and recvfrom() are used for datagram sockets, and send()
and recv() are used for stream sockets.

8. The writev(), readv(), sendmsg(), and recvmsg() calls provide the additional
features of scatter and gather data—two related operations where data is
received and stored in multiple buffers (scatter data), and then taken from
multiple buffers and transmitted (gather data). Scattered data can reside in
multiple data buffers. The writev() and sendmsg() calls gather the scattered
data and send it. The readv() and recvmsg() calls receive data and scatter it
into multiple buffers.

9. Applications can handle multiple descriptors. In such situations, use the
select() call to determine the descriptors that have data to be read, those that
are ready for data to be written, and those that have pending exceptional
conditions. An example of how the select() call is used is listed in Figure 120
on page 431.

int sendto(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int addrlen);

int recvfrom(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int *addrlen);...

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr from;
int addrlen;
int s;...

memset(&to, 0, sizeof(to));
to.sin_family = AF_INET;
to.sin_addr = inet_addr("129.5.24.1");
to.sin_port = htons(1024);...

bytes_sent = sendto(s, data_sent,
sizeof(data_sent), 0, &to, sizeof(to));...

addrlen = sizeof(from); /* must be initialized */
bytes_received = recvfrom(s, data_received,

sizeof(data_received), 0, &from, &addrlen);

Figure 119. An Application Using sendto() and recvfrom()

430 OS/390 V2R8.0 C/C++ Programming Guide

In this example, the application program uses bit sets to indicate that the
sockets are being tested for certain conditions and also indicates a timeout. If
the timeout parameter is NULL, the select() call blocks until a socket
becomes ready. If the timeout parameter is nonzero, select() waits up to this
amount of time for at least one socket to become ready on the indicated
conditions. This is useful for application programs servicing multiple
connections that cannot afford to block, waiting for data on one connection.
For a complete description, see OS/390 C/C++ Run-Time Library Reference.

10. In addition to select(), application programs can use the ioctl() or fcntl()
calls to help perform asynchronous (nonblocking) socket operations. An
example of the use of the ioctl() call is listed in Figure 121 on page 432.

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_of_sockets;
int number_found;...

/* number_of_sockets previously set to the socket number of largest
* integer value.
* Clear masks out.
*/
FD_ZERO(readoscks);; FD_ZERO(&writesocks); FD_ZERO(&exceptsocks);
/* Set masks for socket s only */
FD_SET(s, &readsocks)
FD_SET(s, &writesocks)
FD_SET(s, &exceptsocks)...

/* go into select wait for 5 minutes waiting for socket s to become
ready or the timer has popped*/
rc = select(number_of_sockets+1,

&readsocks, &writesocks, &exceptsocks, &timeout);...

/* Check rc for condition set upon exiting select */
number_found = select(number_of_sockets,

&readsocks, &writesocks, &exceptsocks, &timeout);

Figure 120. An Application Using select()

Chapter 30. Network Communications under UNIX System Services 431

This example causes the socket descriptor s to be placed into nonblocking
mode. When this socket is passed as a parameter to calls that would block,
such as recv() when data is not present, it causes the call to return with an
error code, and the global errno value is set to EWOULDBLOCK. Setting the mode
of the socket to be nonblocking allows an application program to continue
processing without becoming blocked. For a complete description, see OS/390
C/C++ Run-Time Library Reference.

11. A socket descriptor, s, is deallocated with the close() call. (For a complete
description, see OS/390 C/C++ Run-Time Library Reference. An example of
close() is shown next.

Using Common INET

With Common INET (CINET), you have the capability to define up to 32 AF_INET
stacks or transport providers. The stacks can all be active at the same time. The
information for modifying BPXPRMxx and bringing up Common INET is in
OS/390 UNIX System Services Planning.

For a server that you want to be able to listen to all of the available stacks at the
same time, specify INADDR_ANY and it will be listening to all at once.

The OS/390 UNIX Common INET layer performs a multiplexing/demultiplexing
function when more than one AF_INET stack is activated under OS/390 UNIX.
Each stack has its own home IP addresses and when a program binds to a specific

int ioctl(int s, unsigned long command, char *command_data);...

int s;
int dontblock;
char buf[256];
int rc;...

dontblock = 1;...

rc = ioctl(s, FIONBIO, (char *) &dontblock);...

if (((rc=recv(s, buf, sizeof(buf),
0)) < 0)&&(errno == EWOULDBLOCK))

/* no data available */
else

/* either got data or some other error occurred */

Figure 121. An Application Using ioctl()

int close(int s);...

int rc;
int s;
rc = close(s);

Figure 122. An Application Using close()

432 OS/390 V2R8.0 C/C++ Programming Guide

IP address that socket becomes associated with the one stack that is that IP
address. When a program binds to INADDR_ANY, 0.0.0.0, the socket remains
available to all the stacks.

There are three ways that an INADDR_ANY program can associate itself with a single
stack:
v Call setibmopt(IBMTCP_IMAGE) - This sets a process so all future socket() calls

create sockets with only the one specified stack.
v The _BPXK_SETIBMOPT_TRANSPORT environment variable can be used in the PARM=

parameter of an MVS started proc to effectively issue a SETIBMOPT outside of the
program.

v Call ioctl(SIOCSETRTTD) - This associates an existing socket with the one
specified stack, removing the others.

Also, you should be able to set up things so gethostbyname() returns the home IP
address of the local TCP/IP you are interested. With that, you can issue a specific
bind() to that IP address. This may not be useful though, if that stack has multiple
IP addresses and you really want to use INADDR_ANY to service all of them.

Compiling and Binding

This section describes how to bind, load, and run OS/390 C programs containing
OS/390 UNIX sockets. This information is specific to the OS/390 UNIX application
program interface and assumes that you are familiar with the information on
compiling and binding OS/390 UNIX application programs in the OS/390 C/C++
Programming Guide and the OS/390 Language Environment Programming Guide.

You compile and bind your sockets application program in the same way as for
any other C language program. The process is shown conceptually in Figure 123 on
page 434. You must make sure that the OS/390 UNIX socket application programs
have access to the files they need to compile and bind.

Chapter 30. Network Communications under UNIX System Services 433

As shown, whether an application program’s I/O request is targeted at the
network (TCP/IP) or at a file, the OS/390 UNIX logical file system (LFS) will route
the request to the appropriate physical file system (PFS).

If your C language statements contain information, such as sequence numbers,
which are not part of the input for the OS/390 C compiler, you must include the
following environmental statement in your program:
#pragma margins(1,72)

Notes:

1. These functions were first made available in the C/C++ for MVS/ESA Library
V3 (5655-121) and the Language Environment for MVS & VM Library V1R5M0
(5688-198). In order to compile and bind your program, you must at least have
the C/C++ for MVS/ESA Library V3 (5655-121) and the Language Environment
for MVS & VM Library V1R5M0 (5688-198) available or a subsequent release.

2. In order to use AF_INET sockets, you must have release 3.1 or a later level of
TCP/IP installed on your system.

3. The term data set prefix is used in a later section. It refers to the high-level
qualifier of your data sets. For example, in CEE.SCEELKED, the data set prefix is
CEE.

4. In the OS/390 implementation for Berkeley Sockets and X/Open Sockets, you
should not include manifest.h to remap the socket functions to the correct
run-time library names.

OpenEdition Kernel

LFS

PFS PFS. . .

HFS

TCP/IP (AF_INET)

headers library
(SEDCDHDR, SFOMHDRS)

linkedit library
(SCEELKED)

dynamic runtime libraries
(SCEERUN)

compile
C Application Source

Application Object

Executable Application

Socket Runtime Library run

(AF_UNIX)

file and socket
descriptor assignments

LFS=Logical File System PFS=Physical File SystemHFS=Hierarchical File System

(or prelink and link)

bind

object library
(SCEELKEX)

Figure 123. A Conceptual Overview of the Compile, Bind, and Run Steps

434 OS/390 V2R8.0 C/C++ Programming Guide

5. If your application program uses the remote procedure call (RPC) libraries, you
must use either Berkeley Sockets or X/Open Sockets instead of Open Sockets.
Open Sockets do not work with this RPC for the latest announced release level
of TCP/IP.

Using TCP/IP APIs

If you will be using the TCP/IP socket API, also called non-Berkeley sockets, you
will need to read and understand this section.

When an OS/390 UNIX C/C++ application program you are developing needs to
communicate with another program that is running simultaneously, it needs to
exploit, from within itself, both OS/390 UNIX POSIX.1 and one or more of the
following application programming interfaces (APIs) provided with the IBM
product TCP/IP:
v Socket APIs

– C sockets
– Inter-User Communication Vehicle (IUCV) sockets

v X Window System 8 interface
v remote procedure call (RPC)

With the exception of described restrictions, you can code an OS/390 UNIX C/C++
application program to take advantage of the documented APIs available as part of
the TCP/IP for MVS program product.

An OS/390 UNIX application program can use socket API calls from the TCP/IP
product to access HFS files or MVS data sets, communicate with other systems
running TCP/IP, or establish communication with and request services from a
workstation system acting as an X Windows server.

Note: For HFS file access to TCP/IP, the TCP/IP socket API calls must be used
instead of the POSIX file access functions to preserve the uniqueness of file
descriptors in the hierarchical file system (HFS).

Before you attempt to code your application program to use TCP/IP APIs, you
should understand the X Windows protocol running on the workstations that will
be used as application clients. You will also need to know how to invoke X
Windows to create a connection to the server on the workstation or OS/390
system.

Restrictions for Using MVS TCP/IP API with OS/390 UNIX

The restrictions can be grouped into categories:
v Header Files

– TCP/IP header file sequence numbers. The OS/390 UNIX c89 utility cannot
compile OS/390 C/C++ programs in which API functions from the TCP/IP
for OS/390 product are coded, because the OS/390 C/C++ compiler
interprets the sequence numbers in TCP/IP header files as valid data.
You can circumvent this problem by copying the MVS data set members for
the header files into a new data set and editing them to strip out the sequence

8. X Windows is a trademark of Massachusetts Institute of Technology.

Chapter 30. Network Communications under UNIX System Services 435

numbers. To have these new header files searched, specify the c89 -I option
to identify the search path for the header files.

Note: You can run into maintenance problems with the TCP/IP header files
when you copy them and strip out the sequence numbers. You must
ensure that you always have the current level of the header files.

– Header file conflicts between TCP/IP and OS/390 C/C++. OS/390 C/C++ and
TCP/IP have header files with the same name and overlapping function. For
example, both have a types.h file. If you use TCP/IP API functions in your
application but the OS/390 C/C++ header file is searched for and used, the
TCP/IP function does not work as intended.
You can circumvent this problem by developing your application program
with separate compilation source files for TCP/IP function and normal
OS/390 C/C++ function. You can then compile the TCP/IP source files
separately from the normal OS/390 C/C++ source files. Use the c89 -I
option to point to the MVS data sets to search for the TCP/IP header files.
Finally, you can bind all the application object files together to produce the
application executable file. For the bind step, use the c89 -l option to point
to the correct TCP/IP libraries on MVS. For example:
c89 -I "//'tcpip.sezacmac'" pgm.c -l "//'tcpip.sezarnt1'" ...

v TCP/IP Socket API. Both OS/390 UNIX POSIX.1-defined support and the
TCP/IP for OS/390 socket API use a small subset of common function calls that
cannot be resolved correctly between them:
– close()

– fcntl()

– read()

– write()

Use of these calls should be reserved for one or the other, but not both, of these
programming interfaces. For example, if an OS/390 UNIX C/C++ application
program is written to use the open(), close(), read(), and write() functions for
OS/390 TCP/IP socket communication, it cannot use them for HFS file access.
OS/390 C/C++ stream I/O functions (fopen(), fclose(), fread(), and fwrite())
must be used for HFS file access.

v Creating Child Processes. Generally speaking, an application program cannot
have a parent process open resources—in this case sockets—and then support
those resources for a child process created through a fork() function or in a
process following use of an exec function. The new child process does not
inherit sockets from the parent process if forked. If the child process needs
sockets, it must request TCP/IP for OS/390 socket support independently of the
parent process. In fact, if a child process is to be forked by an OS/390 UNIX
application program using TCP/IP sockets, all MVS resources to be opened
should be opened by the child process rather than by the parent process.

v TCP/IP Configuration File Access. An OS/390 UNIX application executable file
that uses TCP/IP APIs and was bound with the c89 utility cannot locate the
necessary TCP/IP configuration files, because they reside in MVS sequential
data sets rather than in HFS files.
To circumvent this problem, have the system programmer copy the TCP/IP
configuration data sets into the HFS root directory exactly as shown:

OPUT 'tcpip.tcpip.data' 'etc/resolv.conf' text

Copy the address of the name server, the name, and the domain name from
tcpip.HOST.LOCAL to \etc\hosts. You should not copy the entire file directly

436 OS/390 V2R8.0 C/C++ Programming Guide

because you only need the address and name. The entry in the \etc\hosts file
follows the BSD format. The case of the filenames and the use of the quote
characters as part of the name are significant. Use the TSO/E OPUT command to
copy the MVS sequential data sets to the HFS root directory. (Placing files in the
root file system requires superuser authority.)

v Program Reentrancy.The TCP/IP sockets and X Windows reentrant libraries
must have a special C370LIB-directory member created for them before an
application program using TCP/IP functions can be bound. The system
administrator must run the C370LIB DIR function against the reentrant libraries
to create it. The system administrator must do this once per library for an MVS
system.
Specify the TCP/IP libraries to search on the c89 utility when binding the
application program. For example:
c89 -I"//'tcpip.sezacmac'" pgm.c -l "//'tcpip.sezarnt1'" ...

For information on C370LIB, see the OS/390 C/C++ User’s Guide.

Using OS/390 UNIX Sockets

The following list describes the files that each OS/390 UNIX socket application
program must have access to in order to compile:
v List of OS/390 C include files:

In an MVS PDS or in the HFS directory
CEE.SCEEH.H /usr/include
CEE.SCEEH.ARPA.H /usr/include/arpa
CEE.SCEEH.NET.H /usr/include/net
CEE.SCEEH.NETINET.H /usr/include/netinet
CEE.SCEEH.SYS.H /usr/include/sys

— which contains all the C include files required by the OS/390 UNIX socket
API, as well as the OS/390 C include files.

Note: The data set prefix for each of the previous files must match the name
used at your installation. CEE is the default for the OS/390 Language
Environment.

v For Open Sockets using HOT1120, both EDC.V1R2M0.SEDCDHDR and
SYS1.SFOMHDRS together contain all the C include files required by this socket
API, as well as the OS/390 C include files.

v For Open Sockets using HOT1130, you need SYS1.SFOMHDRS which contains
all the C include files required by this socket API, as well as the OS/390 C
include files. You must compile your application program using both include
files in order to access the entire OS/390 UNIX socket API.

For Berkeley SOCKETS or X/OPEN SOCKETS, all you need are the OS/390 C
include files.

Note: The data set prefix for each of these files must match the name used at your
installation. CEE is the default for the OS/390 C library, and SYS1 is the
default for the Open Sockets library.

You must compile your application program using all include files in order to
access the entire OS/390 UNIX socket API. To compile a program written using a
particular API, you must include certain files specific to that API even though your
program may not require all of them.

Chapter 30. Network Communications under UNIX System Services 437

See the OS/390 C/C++ Run-Time Library Reference. It lists the header files that must
be included for each type API. They may be different for Open Sockets, Berkeley
Sockets, and X/Open Sockets.

The following list describes the files that each OS/390 UNIX socket application
program must have access to in order to bind:
v CEE.SCEELKED contains stub routines in the link library that are used to

resolve external references to OS/390 C and OS/390 UNIX socket APIs.
v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large

portion of the Language Environment function library, including the OS/390 C
and OS/390 UNIX socket APIs. When you IPA Link your application program,
place the SCEELKEX library ahead of the SCEELKED Load Module library in
the search order. This preserves long run-time function names in the object
module and listings generated by IPA Link. When you bind your application
program, place the SCEELKEX library ahead of the SCEELKED Load Module
library in the search order. This preserves long run-time function names in the
executable module and listings generated by the binder.

v CEE.SCEERUN contains the OS/390 C and OS/390 UNIX socket run-time
libraries.

Compiling under MVS Batch for Berkeley Sockets

You can use several methods to compile, bind, and run your sockets program. This
section describes one way to compile and bind your C source program, under
MVS batch, using then IBM-supplied EDCCB cataloged procedure.

Note: If you are planning on developing your application as a C++ application
and use sockets, you must use XOpen Sockets for your application. See
section “Compiling under MVS Batch for X/Open Sockets” on page 439 for
more information.

Sample EDCC Cataloged Procedure Additions and Changes

The following steps describe how to compile, and bind your program.

You must make the following changes to the EDCC cataloged procedure, which is
supplied with OS/390 C/C++ Compiler.
1. Change the CPARM parameters to:

CPARM='DEF(MVS,_OE_SOCKETS,_POSIX1_SOURCE=1),RENT,LO',

RENT is the reentrant option and LO is the long name option. You must specify
these options to use POSIX functions read(), write(), fcntl(), and close()
that are all included in OS/390 C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the
read(), write(), fcntl(), and close() functions in the OS/390 C include files.
Or, if you choose to access all OS/390 UNIX POSIX functions supported by
OS/390 C, you can specify the _OPEN_SYS feature test macro. The
_OE_Sockets feature test macro exposes the socket-related definitions in all of
the include files. For information on binding C code compiled with the RENT
and LO options, see OS/390 C/C++ User’s Guide.

2. To run your program under TSO/E, type the following:
C ALL 'USER.MYPROG.LOAD(PROGRAM1)' 'POSIX(ON)/'

438 OS/390 V2R8.0 C/C++ Programming Guide

This loads the run-time library from CEE.SCEERUN.

To use the POSIX OS/390 C functions, you must either specify the run-time
option POSIX(ON), or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

The OS/390 C/C++ Run-Time Library Reference identifies the POSIX OS/390 C
functions, in the standards information at the beginning of each function
description.

Compiling under MVS Batch with X Windows for Berkeley
Sockets

If you are using OS/390 UNIX sockets with the latest announced release level of
TCP/IP X Windows, and compiling and binding under MVS batch, you must do
the following:
v Bind your application program with the latest announced release level of

TCP/IP X Windows libraries that are enabled for use with OS/390 UNIX
sockets.

For a complete discussion of compiling and binding OS/390 UNIX sockets with
TCP/IP, see TCP/IP for MVS: Programmer’s Reference.

Compiling Using the c89 Utility for Berkeley Sockets

If you want to use the c89 utility to compile and bind your program, you must use
the following define options on the c89 command:
-D MVS
-D _OE_SOCKETS

For more information about compiling and binding, see OS/390 C/C++ User’s Guide.

Compiling Using c89 with X Windows

For IBM TCP/IP version 3 release 1, and for MVS and subsequent releases, see
TCP/IP Version 3 for OpenEdition MVS: Applications Feature Guide for a complete
discussion of compiling and binding with X Windows.

Compiling under MVS Batch for X/Open Sockets

You can use several methods to compile, bind, and run your sockets program. This
section describes one way to compile and link-edit your C source program, under
MVS batch, using IBM-supplied EDCCB cataloged procedure.

Sample EDCC Cataloged Procedure Additions and Changes

The following steps describe how to compile, bind , and run your program.

You must make the following changes to the EDCCB cataloged procedure, which is
supplied with OS/390 C/C++ Compiler.
1. Change the CPARM parameters to:

CPARM='DEF(MVS,_XOPEN_SOURCE_EXTENDED=1,_POSIX1_SOURCE=1),
RENT,LO',

Chapter 30. Network Communications under UNIX System Services 439

RENT is the reentrant option and LO is the long name option. You must specify
these options to use POSIX functions read(), write(), fcntl(), and close()
that are all included in OS/390 C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the
read(), write(), fcntl(), and close() functions in the OS/390 C include files.
Or, if you choose to access all OS/390 UNIX POSIX functions supported by
OS/390 C, you can specify the _OPEN_SYS feature test macro. The
_XOPEN_SOURCE_EXTENDED feature test macro exposes the socket-related
definitions in all of the include files.

Note: Because you are now required to compile with the RENT and LONGNAME
options, you must bind your sockets application with the OS/390 binder.

2. To run your program under TSO/E, type the following:
CALL 'USER.MYPROG.LOAD(PROGRAM1)' 'POSIX(ON)/'

To use the POSIX OS/390 C functions, you must either specify the run-time
option POSIX(ON), or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

Using API Data Sets and Files for Open Sockets

Applications developed for Open Sockets can continue to use the link-editor but
cannot be compiled.
v CEE.SCEELKED contains stub routines in the link library that are used to

resolve external references to OS/390 C and OS/390 UNIX socket APIs.
v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large

portion of the Language Environment function library, including the OS/390 C
and OS/390 UNIX socket APIs. When you IPA Link your application program,
place the SCEELKEX library ahead of the SCEELKED Load Module library in
the search order. This preserves long run-time function names in the object
module and listings generated by IPA Link. When you bind your application
program, place the SCEELKEX library ahead of the SCEELKED Load Module
library in the search order. This preserves long run-time function names in the
executable module and listings generated by the binder.

v CEE.SCEERUN contains the OS/390 C and OS/390 UNIX socket run-time
libraries.

Note: The data set prefix for each the previous files must match the name used
at your installation. CEE is the default for Language Environment for the
OS/390 & VM Library.

Understanding The X/Open Transport Interface (XTI)

The X/Open Transport Interface (XTI) specification defines an independent
transport-service interface that allows multiple users to communicate at the
transport level of the OSI reference model. Transport-layer protocols support the
following characteristics:
v connection establishment
v state change support
v event handling
v data transfer
v option manipulation

440 OS/390 V2R8.0 C/C++ Programming Guide

Although all transport-layer protocols support these characteristics, they vary in
their level of support and their interpretation of format.

In the next section we will discuss the TCP transport provider, since it is the only
one currently supported.

Transport endpoints

A transport endpoint specifies a communication path between a transport user
and a specific transport provider, which is identified by a local file descriptor (fd).
When a user opens a transport endpoint, a local file descriptor fd is returned
which identifies the endpoint. A transport provider is defined to be the transport
protocol that provides the services of the transport layer. All requests to the
transport provider must pass through a transport endpoint. The file descriptor fd
is returned by the function t_open() and is used as an argument to the subsequent
functions to identify the transport endpoint. A transport endpoint can support only
one established transport connection at a time.

To be active, a transport endpoint must have a transport address associated with it
by the t_bind() function. A transport connection is characterized by the association
of two active endpoints, made by using the transport connection establishment
functions t_listen(), t_accept(), t_connect(), and t_rcvconnect().

Transport providers for X/Open Transport Interface

The transport layer may comprise one or more transport providers at the same
time. The identifier parameter of the transport provider passed to the t_open()
function determines the required transport provider. To keep the applications
portable, the identifier parameter of the transport provider should not be
hard-coded into the application source code.

Currently, the only valid value for the identifier parameter for the t_open() function
is /dev/tcp, indicating the TCP transport provider. Even though no device with
this pathname actually exists, the library uses this value to determine which
transport provider to use.

General Restrictions for OS/390 UNIX

The following restrictions apply when you use XTI under OS/390 UNIX.
v If an endpoint is being shared among multiple processes, events such as,

T_LISTEN, T_DATA, and T_EXDATA, can be consumed by another process in the time
between calls to t_look() and t_rcv() or t_accept(). In order to avoid
processes not being aware of events occurring on endpoints, you should provide
explicit synchronization mechanisms between processes

v If an endpoint is shared:
– The process that issues the t_listen() should also issue for the pending

connection t_accept().
– If any other process accesses the endpoint in the time between the listen and

the accept, the behavior is undefined. In order to avoid this, you should
provide explicit synchronization between processes.

v If a process dies while an endpoint it was accessing is in T_INCON state, it is
impossible for any other sharing endpoints to bring it out of that state.

Chapter 30. Network Communications under UNIX System Services 441

v If access to endpoints is shared, the participating processes are responsible for
serialization of access to the endpoints. If no synchronization is performed, the
behavior is undefined.

v Functions are thread-safed; therefore, no two threads in a process can
manipulate an endpoint at the same time. Serialization of access to endpoints
beyond this level is the responsibility of the threads sharing the endpoint.

442 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 31. Interprocess Communication Using OS/390 UNIX

OS/390 UNIX offers software vendors and customers several ways for
programming processes to communicate:
v Message queues
v Semaphores
v Shared memory
v Memory mapping
v Issuing TSO Commands from the Shell

These forms of interprocess communication extend the possibilities provided by
the simpler forms of communication: pipes, named pipes or FIFOs, signals, and
sockets. Like these forms, message queues, semaphores, and shared memory are
used for communication between processes. (Sockets are the most common form of
interprocess communication across different systems.)

Message Queues

XPG4 provides a set of C functions that allow processes to communicate through
one or more message queues in an operating system’s kernel. A process can create,
read from, or write to a message queue. Each message is identified with a “type”
number, a length value, and data (if the length is greater than 0).

A message can be read from a queue based on its type rather than on its order of
arrival. Multiple processes can share the same queue. For example, a server process
can handle messages from a number of client processes and associate a particular
message type with a particular client process. Or the message type can be used to
assign a priority in which a message should be dequeued and handled.

A common client/server implementation on the same system uses two message
queues for communication between client and server. An inbound message queue
allows group write access and limits read access to the server. An outbound
message queue allows universal read access and limits write access to the server.
This implementation allows users to place invalid messages on the inbound queue
or remove messages belonging to another process from the outbound queue. To
solve this problem, you can use two new OS/390 message queue types,
ipc_SndTypePID and ipc_RcvTypePID to enforce source and destination process
identification.

Create the inbound queue to the server with ipc_SndTypePID and the outbound
queue from the server with ipc_RcvTypePID. This arrangement guarantees that the
server knows the process ID of the client, and that the client is the only process
that can receive the server’s returned message. The server can also issue msgrcv()
with TYPE=0 to see if any messages belong to process IDs that have gone away.
Security checks on clients are not needed, since clients are unable to receive
messages intended for another process.

© Copyright IBM Corp. 1996, 1999 443

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Semaphores

Semaphores, unlike message queues and pipes, are not used for exchanging data,
but as a means of synchronizing operations among processes. A semaphore value
is stored in the kernel and then set, read, and reset by sharing processes according
to some defined scheme. A semaphore is created or an existing one is located with
the semget() function. Typical uses include resource counting, file locking, and the
serialization of shared memory.

A semaphore can have a single value or a set of values; each value can be binary
(0 or 1) or a larger value, depending on the implementation. For each value in a
set, the kernel keeps track of the process ID that did the last operation on that
value, the number of processes waiting for the value to increase, and the number
of processes waiting for the value to become 0.

If you define a semaphore set without any special flags, semop() processing obtains
a kernel latch to serialize the semaphore set for each semop() or semctl() call. The
more semaphores you define in the semaphore set, the higher the probability that
you will experience contention on the semaphore latch. One alternative is to define
multiple semaphore sets with fewer semaphores in each set. To get the lesst
amount of latch contention, define a seingle semaphore in each semaphore set.

OS/390 has added the __IPC_BINSEM option to semget(). The __IPC_BINSEM option
provides significant performance improvement on semop() processing.
__IPC_BINSEM can only be specified if you use the semaphore as a binary
semaphore and do not specify UNDO on any semop() calls. __IPC_BINSEM also allows
semop() to use special hardware instructions to further reduce contention. With
__IPC_BINSEM, you can define many semaphores in a semaphore set without
impacting performance.

Shared Memory

Shared memory provides an efficient way for multiple processes to share data (for
example, control information that all processes require access to). Commonly, the
processes use semaphores to take turns getting access to the shared memory. For
example, a server process can use a semaphore to lock a shared memory area, then
update the area with new control information, use a semaphore to unlock the
shared memory area, and then notify sharing processes. Each client process sharing
the information can then use a semaphore to lock the area, read it, and then unlock
it again for access by other sharing processes.

Processes can also use shared mutexes and shared read-write locks to
communicate. For more information on mutexes and read-write locks see
“Synchronization Primitives” on page 313.

Memory Mapping

In OS/390, a programmer can arrange to transparently map into a hierarchical file
system (HFS) file process storage.

The use of memory mapping can reduce the number of disk accesses required
when randomly accessing a file.

444 OS/390 V2R8.0 C/C++ Programming Guide

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

The related mmap(), mprotect(), msync(), and munmap() functions that provide
memory mapping are part of the X/OPEN CAE Specification.

TSO Commands from the Shell

In OS/390 UNIX users of the OS/390 shell are able to issue TSO/E commands.
The user simply enters the shell command tso, followed by a TSO command
string. The user can specify whether the TSO command is to be run through the
shell (in which case the output will be displayed on the screen) or through a TSO
environment (in which case the command output will be written to the defined
standard output).

Chapter 31. Interprocess Communication Using OS/390 UNIX 445

446 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 32. Structuring a Program That Uses C++ Templates

A template allows you to specify the construction of an individual class, function,
or static data member by providing a blueprint description of classes or functions.

Unlike an ordinary class or function definition, a template definition contains the
template keyword. It also uses a type argument, instead of a type, in one or more
of the constructs used to define the class or function template. Individual classes or
functions are generated by specifying the template name and by naming the type
for the particular class or function as the type argument of the template. You can
use templates to define a family of types or functions.

Template Terms

Following is a list of template terms and descriptions.

Template Instantiation
Compiler-generated code for a class or function using the referenced types
and the corresponding class or function template definition.

Template Definition
A blueprint the compiler uses to generate a template instantiation.

Template Declaration
A prototype of a template that can optionally include a template definition.

Linkage
Refers to the binding between a reference and a definition. A function has
internal linkage if the function is defined inline as part of the class, and is
declared with the inline keyword. It also has internal linkage if it is a
nonmember function declared with the static keyword. All other functions
have external linkage.

Generalization
Refers to a class, function, or static data member that derives its definition
from a template. An instantiation of a template function would be a
generalization.

Specialization
A user-supplied definition that replaces a corresponding template
instantiation.

Generating Template Functions

When you use class templates and function templates in your program, the
compiler instantiates function bodies for all template function that are referenced.

The compiler follows four basic rules to determine when and where to instantiate
template functions, and applies them in the following order:
1. If a template function has internal linkage, the compiler instantiates the

function within the compilation unit. Multiple compilation units do not share it.

© Copyright IBM Corp. 1996, 1999 447

2. If a template function is referenced in a compilation unit and has external
linkage, the compiler looks for a template definition of the function in the same
compilation unit. If a definition appears, the function in the same compilation
unit is instantiated.

3. A template instantiation file is created if a template function is declared but not
defined in the same compilation unit and the TEMPINC option has been
specified. The functions required by the program are instantiated when the
template instantiation file compiles.

4. If a template function is declared but not defined in the same compilation unit,
and the NOTEMPINC option has been specified, the function is not instantiated.
This function must be instantiated in another compilation unit.

Class Template Example

The following class template Stack, illustrates the rules shown previously. The
Stack implements a stack of items.

Template Declaration

The declaration of the Stack class template is in the stack.h file. In this example,
the constructor is defined inline and has internal linkage.

«1¬The function isEmpty has internal linkage because it is defined in the class
template declaration.

«2¬The constructor is defined inline and has internal linkage.

Template Function Definition

The definition of the other functions declared in the class template Stack are
contained in the stack.c file.

//stack.h
template <class Item, int size> class Stack {
public:

void push(Item item); // Push operator
Item pop(); // Pop operator
int isEmpty(){ // «1¬

return (top==0); // Returns true if empty, otherwise false
}
Stack() { top = 0; } // «2¬ Constructor defined inline

private:
Item stack(){size} // The stack of items
int top; // Index to top of stack

};

Figure 124.

448 OS/390 V2R8.0 C/C++ Programming Guide

Use of the Stack Template

When you compile the following code, an object is created and the necessary
member functions are instantiated. This is also an example of a generalization.

Template Functions with Internal Linkage

If you define a template function with internal linkage, and the template is
instantiated, the compiler generates the function with internal linkage. The
function is not visible outside the compilation unit. If the same template function is
instantiated in multiple compilation units, the compiler generates the same
function in each of the compilation units. If you declare the function as an inline
function, the compiler may inline the function.

See isEmpty in Figure 124 on page 448 for an example of a function with internal
linkage.

Generation of Template Function Instantiations

If a compilation unit declares, defines, and references a template function, the
compiler instantiates the code for the function within the compilation unit. If
multiple compilation units declare, define, and instantiate the same template
function, multiple definitions for the same function are generated.

In the Stack class template example, any compilation units that include the file
stack.c will instantiate all Stack objects defined in that compilation unit. Consider
the following example:

#include "stack.h"
#include "stack.c"
void Swap(int i&,; Stack<int,20>&; s)
{
int j;
j=s.pop();
s.push(i);
i = j;

}

//stack.c
template <class Item, int size>

void Stack<Item,size>::push(Item item) {
if (top >= size) throw size;
stack[top++] = item;

}
template <class Item, int size>

Item Stack<Item,size>::pop() {
if (top <= 0) throw size;
Item item = stack[--top];
return(item);

}

Figure 125. Definition of operator Functions in stack.c

include "stack.h"
include "stack.c"
Stack<int,40> s; // definition of a stack of ints

Figure 126. Use of Stack Template

Chapter 32. Structuring a Program That Uses C++ Templates 449

Any compilation unit that contains the preceding code fragment will automatically
instantiate the following functions that defines the class stack<int,20>.:

Stack<int,20>::push(int)
int Stack<int,20>::pop()

Resolving Multiple Definitions of the Same Function

Multiple function definitions are resolved as follows:
v If a function has both a specialization and a generalization , the specialization

takes precedence.
v If there is more than one specialization, the binder issues a warning message.

Because the bind step does not remove unused instantiations from the executable
program, instantiating the same functions in multiple compilation units may
generate very large executable programs.

Using TEMPINC

Instead of instantiating multiple copies of the same template functions, you can
use the compiler to instantiate the functions only once for the entire program.

Organizing Source Code for the TEMPINC option

Follow these steps to organize your source code:
1. Place the class or function template declarations in a template-declaration file,

which is a header file in which you include your source program by using the
#include directive. If the function is a member of a template class, its
declaration is part of the class template declaration. If the function is a
nonmember function, you must declare (but not define) the function using a
function template.

2. Place the class or function template definitions in a template-definition file,
which is header file that you name as follows:
a. If your source resides in the HFS, use the same name for the

template-definition file as the template-declaration header file using a .c
suffix. Place these template-definition files in the same directories as the
corresponding template-declaration files.

b. If your source resides in a PDS, use the same name for the
template-definition file as the template-declaration file, but use a .C as the
low-level qualifier. An example of this would be MYUSERID.USER.C and
MYUSERID.USER.H, where the data set names are the same except for the
low-level qualifier.

3. Include the declarations of any classes that are the template-declaration file
must be included.

Instantiating the Functions

During compilation of your program, the compiler builds a template instantiation
file for each header file that contains template functions for instantiation. The
compiler stores the instantiation files in subdirectory TEMPINC of the working
directory, or in a PDS called TEMPINC under your TSO userid. The compiler creates
this TEMPINC destination if it does not already exist.

450 OS/390 V2R8.0 C/C++ Programming Guide

If you use the c++ shell utility to compile your source, the compiler does the
following before linking your program:
1. Checks the contents of the TEMPINC destination
2. Compiles the template-include files that it built
3. Generates the necessary template function definitions

If you use the TSO CXX utility or JCL to compile your source, compile the
TEMPINC destination PDS explicitly before binding your code.

When you build the TEMPINC destination, repeat any compiler options that you
specified at compile time. Make sure that you compile the TEMPINC destination in
one step, do not compile the files individually. Using the same compiler options
enables the compiler to find the template-include files that it generated at compile
time. In particular, use the same path names for the SEARCH and LSEARCH options, so
that the compiler uses the same include files.

Examples of Source Files

The following two compilation units use the push and pop functions defined in
the Stack template. The two source files are stackadd.cpp and stackops.cpp.
stackops.h contains the prototype for a function used in both.

stackadd.cpp

stackops.cpp

#include <iostream.h>
#include "stack.h"
#include "stackops.h"

main() {
Stack<int, 50> s; // create a stack of ints
int left=10, right=20;
int sum;

s.push(left); // push 10 on the stack
s.push(right); // push 20 on the stack
add(s); // pop the 2 numbers off the stack

// and push the sum onto the stack
sum = s.pop(); // pop the sum off the stack

cout << "The sum of: " << left << " and: " << right << " is: " << sum
<< endl;

return(0);
}

Figure 127. Stackadd.cpp File

Chapter 32. Structuring a Program That Uses C++ Templates 451

The following file contains the prototype for a function used in both source files.

stackops.h

JCL to Compile Examples

Figure 130 contains the JCL that does the following:
1. Compiles both cpp files and creates the TEMPINC destination
2. Compiles the template instantiation file in the TEMPINC destination.

Syntax to compile under the OS/390 Shell

Here is the syntax you would use to compile the program within the OS/390 shell.

#include "stack.h"
#include "stackops.h"

void add(Stack<int, 50>&; s) {
int tot = s.pop() + s.pop();
s.push(tot);
return;

}

Figure 128. Stackops.cpp file

void add(Stack<int, 50>&; s);

Figure 129. Stackops.h file

//CC EXEC CBCC,
// INFILE='MYUSERID.USER.CPP(STACKADD)',
// OUTFILE='MYUSERID.USER.OBJ(STACKADD),DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//CC EXEC CBCC,
// INFILE='MYUSERID.USER.CPP(STACKOPS)',
// OUTFILE='MYUSERID.USER.OBJ(STACKOPS),DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//CC EXEC CBCC,
// INFILE='MYUSERID.TEMPINC',
// OUTFILE='MYUSERID.USER.OBJ,DISP=SHR',
// CPARM='SEARCH(USER.+)'
//*---
//BIND EXEC CBCBG,
// INFILE='MYUSERID.USER.OBJ(STACKADD)',
// OUTFILE='MYUSERID.USER.LOAD(STACKADD),DISP=SHR'
//BIND.OBJ DD DSN=MYUSERID.USER.OBJ,DISP=SHR
//BIND.SYSIN DD *
INCLUDE OBJ(STACKOPS)
INCLUDE OBJ(STACK)

/*

Figure 130. JCL to compile Source Files and TEMPINC destination

452 OS/390 V2R8.0 C/C++ Programming Guide

Regenerating the Template-Instantiation File

The compiler builds a template-instantiation file corresponding to each
template-declaration file. After the compiler creates a template-instantiation file, it
may add information to after each compilation. However, the compiler never
removes information from the file.

As you develop your program, you may remove template function references or
reorganize your program so that the template-instantiation files become obsolete.
Because the compiler does not remove information from the template-instantiation
files, you may want to delete one or more of these files and recompile your
program periodically. Normally it is not necessary or advisable to edit these files.
To regenerate all of the template-instantiation files, delete the TEMPINC destination
and recompile your program.

Contents of Template-Instantiation Files

This section contains two examples of template-instantiation files. Figure 132 is the
file produced for the Stack class template example; Figure 133 is an example
showing the information that would be in a typical template-instantiation file.

The following example shows the layout of a typical template-instantiation file
generated by the compiler:

«1¬ list.h is the template-declaration file.

«2¬ list.c is the template-definition file that corresponds to the
template-declaration file in line 1.

«3¬ mytype.h is another header file that the compiler needs to compile the
template-declaration file. All other header files that the compiler needs to
compile the template-include file are inserted at this point. In this example,
the type MyType is used as a template argument and is defined in the
mytype.h header file.

c++ stackadd.C stackops.C

Figure 131. OS/390 UNIX Syntax

/*0831327039*/#include "'MYUSERID.USER.H(STACK)'"
/*0000000000*/#include "'MYUSERID.USER.C(STACK)'"
#pragma define(Stack<int,50>)
#pragma undeclared

Figure 132. Contents of the Template-Instantiation File

/*0698421265*/ #include "/home/myapp/src/list.h" «1¬
/*0000000000*/ #include "/home/myapp/src/list.c" «2¬
/*0698414046*/ #include "/home/myapp/src/mytype.h" «3¬
/*0698414046*/ #include "/usr/include/iostream.h" «4¬
pragma define(List<MyType>) «5¬
stream& operator<<(ostream&,List<MyType>); «6¬

pragma undeclared «7¬
int count(List<MyType>); «8¬

Figure 133. A Typical Template-Instantiation File

Chapter 32. Structuring a Program That Uses C++ Templates 453

«4¬ iostream.h is an include file inserted by the compiler. It is referenced in
the function declaration in line 6.

«5¬ The compiler inserts #pragma define directives that trigger instantiation
when the file compiles. The class List<MyType> is defined and its member
functions are be generated.

«6¬ The operator<< function is a nonmember function that matched a template
declaration in the list.h file. The compiler inserted this declaration to
force the generation of the function definition.

«7¬ #pragma undeclared is a special pragma used by the compiler in
template-instantiation files. It separates those functions that were
instantiated using a declaration, and those functions that were instantiated
using a call. All template functions that were explicitly declared in at least
one compilation unit appear before this line. All template functions that
were called, but never declared, appear after this line.

«8¬ count is an example of a template function that was called but not
declared. The template declaration of the function is contained in list.h,
but the instance count(List<MyType>) is never declared.

Using the NOTEMPINC Option

You can structure your program to define the template functions directly in your
compilation units. If you know the instances of a particular template function that
is required, you can define both the template functions and the necessary
declarations in one compilation unit.

If you use NOTEMPINC, you do not have to reference compiler-generated files.
However, if you change the body of the function template, you may have to
recompile many of the files. Compile and link time may be longer, and the object
file produced may become quite large.

Specify the NOTEMPINC option so that the compiler does not generate
template-instantiation files. For more information see the OS/390 C/C++ Language
Reference.

Organizing Source Code for the NOTEMPINC option

Follow these steps to organize your source code:
1. Place the template function definitions into one or more of your compilation

units.
2. Place a reference for each template function to be generated in a compilation

unit that also contains a definition of the function.

For a nonmember function, you can reference the function by including its
declaration.

For a member of a template class, reference the function by forcing the definition
of the template class with the #pragma define directive. This forces the definition
of a template class without having to create an object of that class. It has the
following form:
#pragma define (template-class-name)

You can insert this directive anywhere a declaration is allowed.

454 OS/390 V2R8.0 C/C++ Programming Guide

In the List class template example (see Figure 134), you can cause the compiler to
generate the necessary functions by including both list.h and list.c in all
compilation units that use instances of the list class. This will instantiate the
necessary functions, but may instantiate them multiple times and thus cause the
object files to be very large. Alternatively, if you know the instances of the List
class used, you can instruct the compiler to instantiate the necessary functions in a
separate compilation unit.

Example of Source Code Organized for the NOTEMPINC option

Using TEMPINC or NOTEMPINC

To use either TEMPINC or NOTEMPINC without restructuring your code, include a
multipurpose header file in each of your source files that use templates. If you
specify TEMPINC, this file will not include the .c file. If you specify NOTEMPINC, the .c
file will be included.

Example of a Multipurpose Header File

Figure 135 is an example of a multipurpose header file:

Example of Source Code with Multipurpose Header File

Figure 136 on page 456 is an example of a source file in which you would place the
multipurpose header file.

#include "list.h"
#include "list.c"
#include "myclass.h" // Declaration of "myClass" class
#pragma define(List<int>)
#pragma define(List<myClass>)

Figure 134. Listinst.cxx

/***/
/* Example TEMPINC/NOTEMPINC Header */
/***/

#ifndef LIST_H // This prevents processing of
#define LIST_H // a subsequent #include

/* Follow with the variable declarations */
.
.
.

#ifndef __TEMPINC__ // Handles NOTEMPINC
#include "list.c" // Brings in template function implementation

// if compiled with NOTEMPINC
#endif

Figure 135. List.h file

Chapter 32. Structuring a Program That Uses C++ Templates 455

|
|
|
|

If NOTEMPINC is specified at compile time, list.c is included; if TEMPINC is specified
list.c is not included.

#include "list.h"
#include "myclass.h" // Declaration of "myClass" class
#pragma define(List<int>)
#pragma define(List<myClass>)

Figure 136. Listinst.cxx file

456 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 33. Using Environment Variables

This chapter describes environment variables that affect the OS/390 C/C++
environment. You can use environment variables to define the characteristics of a
specific environment. They may be set, retrieved, and used during the execution of
a OS/390 C/C++ program.

The following environment variables affect the OS/390 C/C++ environment if they
are on when an application program runs. The variables that begin with _EDC_ and
CEE are described in detail in “Environment Variables Specific to the OS/390
C/C++ Library” on page 462. See “Locale Source Files” on page 715 for more
information on the locale-related environment variables.

Note: The settings of these variables affect your environment even if you are using
the I/O Streams Class Library for C++ I/O. For information about this
library, see the OS/390 C/C++ IBM Open Class Library User’s Guide and the
OS/390 C/C++ IBM Open Class Library Reference.

_CEE_DMPTARG
Used to specify the directory in which Language Environment dumps
(CEEDUMPs) are written for applications that are running as the result of
a fork, exec, or spawn. This environment variable is ignored if the
application is not run as a result of a fork, exec, or spawn.

_CEE_ENVFILE
Used to specify a file from which to read environment variables.

_CEE_RUNOPTS
Used to specify Language Environment run-time options to a program
invoked by using one of the exec functions, such as, a program which is
invoked from the OS/390 shell.

_EDC_ADD_ERRNO2
Appends errno2 information to the output of perror() and strerror().

_EDC_ANSI_OPEN_DEFAULT
Affects the characteristics of MVS text files opened with the default
attributes.

_EDC_BYTE_SEEK
Specifies that fseek() and ftell() should use relative byte offsets.

_EDC_CLEAR_SCREEN
Affects the behavior of output text-terminal files.

_EDC_COMPAT
Specifies that C/C++ should use specific functional behavior from previous
releases of C/370.

_EDC_GLOBAL_STREAMS
Allows the C standard streams stdin, stdout and stderr to have global
behavior.

_EDC_IP_CACHE_ENTRIES
Sets the size of the cache used for host names and IP addresses returned
by gethostbyaddr() and gethostbyname() calls that are resolved by a
domain name server.

© Copyright IBM Corp. 1996, 1999 457

|
|

_EDC_RRDS_HIDE_KEY
Relevant for VSAM RRDS files opened in record mode. Enables calls to
fread() that specify a pointer to a character string and do not append the
Relative Record Number to the beginning of the string.

_EDC_STOR_INCREMENT
Sets the size of increments to the internal library storage subpool.

_EDC_STOR_INITIAL
Sets the initial size of the internal library storage subpool.

_EDC_UMASK_DFLT
Allows the user to control how the C library sets the default umask used
when the program runs. If OS/390 UNIX services are available, the
possible values of the _EDC_UMASK_DFLT environment variable are:
v NO - the library will not change the value
v a valid octal value - the library sets this as the default
v any other value - the library uses 022 octal as the value.

_EDC_ZERO_RECLEN
Enables processing of zero-length records in an MVS data set opened in
variable format.

LANG
Determines the locale to use for the locale categories when neither the
LC_ALL environment variable nor the individual locale environment
variables specify locale information. This environment variable does not
interact with the language setting for messages.

LC_ALL
Determine the locale to be used to override any values for locale categories
specified by the settings of the LANG environment variable or any
individual locale environment variables.

LC_COLLATE
Determines the behavior of ranges, equivalence classes, and multicharacter
collating elements.

LC_CTYPE
Determines the locale for the interpretation of byte sequences of text data
as characters (for example, single-byte versus multibyte characters in
arguments and input files).

LC_MESSAGES
Determines the language in which messages are to be written.

LC_MONETARY
Determines the locale category for monetary-related numeric formatting
information.

LC_NUMERIC
Determines the locale category for numeric formatting (for example,
thousands separator and radix character) information.

LC_TIME
Determines the locale category for date and time formatting information.

LC_TOD
Determines the locale category for time of day and Daylight Savings Time
formatting information.

458 OS/390 V2R8.0 C/C++ Programming Guide

LIBPATH
Allows an absolute or relative pathname to be searched when loading a
DLL. If the input filename contains a slash (/), it is used as is to locate the
DLL. If the input filename does not contain a slash, then LIBPATH is used
to determine the pathname to load. LIBPATH specifies a list of directories
separated by colons. If the LIBPATH begins or ends with a colon, then the
working directory is also searched first or last, depending on the position
of the stand-alone colon. The ″::″ specification can only occur at the
beginning or end of the list of directories. If you are running POSIX(ON),
then HFS is searched first followed by MVS. If you are running
POSIX(OFF), then MVS is searched first followed by HFS. This double
search can be avoided by using unambiguous DLL names.

LOCPATH
Tells the setlocale() function the name of the directory in the HFS from
which to load the locale object files. It specifies a colon separated list of
HFS directories. If LOCPATH is defined, setlocale() searches HFS
directories in the order specified by LOCPATH for locale object files it
requires. Locale object files in the HFS are produced by the localedef utility
running under OS/390 UNIX. If LOCPATH is not defined and setlocale()
is called by a POSIX program, setlocale() looks in the default HFS locale
directory, /usr/lib/nls/locale, for locale object files it requires. If
setlocale() does not find a locale object it requires in the HFS, it converts
the locale name to a PDS member name and searches locale PDS load
libraries associated with the program calling setlocale().

PATH The set of HFS directories that some OS/390 C/C++ functions, such as
EXECVP, use in trying to locate an executable. The directories are
separated by a colon (:) delimiter. If the pathname contains a slash, the
PATH environment variable will not be used.

STEPLIB
Determines the STEPLIB environment that is created for an executable file.
It can be a sequence of MVS data set names separated by a colon (:), or can
contain the value CURRENT or NONE. If you do not want a STEPLIB
environment propagated to the environment of the executable file, specify
NONE. The STEPLIB environment variable defaults to the value CURRENT,
which will propagate your current environment to that of the executable
file.

See the OS/390 UNIX System Services Command Referencefor more
information on the use of the STEPLIB variable and changing the search
order for OS/390 programs.

TZ or _TZ
Time zone information. The TZ and _TZ environment variables are typically
set when you start a shell session, either through /etc/profile or .profile
in your home directory.For more information on TZ and _TZ see
“Chapter 52. Customizing a Time Zone” on page 751.

__POSIX_SYSTEM
Determines the behavior of the system() function when the POSIX(ON)
run-time option has been specified. If __POSIX_SYSTEM==NO, then system()
behaves as in Language Environment/370 1.2: it creates a nested enclave
within the same process as the invoker (allowing such things as sharing of
memory files). Otherwise, system() performs a fork() and exec(), and the
target program runs in a separate process (preventing such things as
sharing of memory files).

Chapter 33. Using Environment Variables 459

Working with Environment Variables

The following library functions affect environment variables:
v setenv()

v clearenv()

v getenv()

v __getenv()
v putenv()

The setenv() function adds, changes, and deletes environment variables in the
Environment Variable Table. The getenv() function retrieves the values from the
table. If it does not find an environment variable, getenv() returns NULL. The
clearenv() function clears the environment variable table, and resets to default
behavior the actions affected by OS/390 C/C++-specific environment variables.

The __getenv() function behaves almost the same as getenv() except getenv()
returns the address of the environment variable value string that has been copied
into a buffer, whereas __getenv() returns the address of the actual value string in
the environment variable array. Because the value is not buffered, __getenv()
cannot be used in a multithreaded application or in a single threaded application
where the function setenv() changes the value of the variables.

The putenv() function provides a subset of the function of setenv() and is
provided for convenience in porting UNIX applications. putenv(env_var) is the
same as setenv(var_name, var_value, i) where env_var represents the string
var_name=var_value.

For a complete description of these functions, refer to the OS/390 C/C++ Run-Time
Library Reference .

Environment variables may be set any time in an application program or user exit.
You can use the exit routine CEEBINT to set environment variables through calls to
setenv(). For more information on the OS/390 Language Environment user exit
CEEBINT, refer to “Using Run-Time User Exits in OS/390 Language Environment”
on page 525. You can also set environment variables by using the ENVAR run-time

option. The syntax for this option is
ENVAR("1st_var=1st_value", "2nd_var=2nd_value")

For more information on this run-time option, refer to the OS/390 Language
Environment Programming Reference.

Specifying the _CEE_ENVFILE environment variable with a filename on the ENVAR
option enables you to read more environment variables from that file. See
“Environment Variables Specific to the OS/390 C/C++ Library” on page 462 for
more information about _CEE_ENVFILE.

Environment variables set with the setenv() function exist only for the life of the
program, and are not saved before program termination. Child programs are
initialized with the environment variables of the parent. However, environment
variables set by a child program are not propagated back to the parent upon
termination of the child program.

460 OS/390 V2R8.0 C/C++ Programming Guide

Note: If you are running with POSIX(ON), environment variables are copied from a
parent process to a child process when a fork() function is called, and are
inherited by the new process image when an EXEC function is called.

When a parent process invokes a child process by using system(), using the ANSI
form of the system function, the child receives its environment variables from the
value of the ENVAR run-time option specified on the invocation of system(). For
example:

system("PGM=CHILD,PARM='ENVAR(ABC=5)/'");)

Naming Conventions

Avoid the following when creating names for environment variables:

= This is invalid and will generate an error message.

EDC
This is reserved for OS/390 C/C++ specific environment variables.

CEE This is reserved for OS/390 C/C++ specific environment variables used
with OS/390 Language Environment. See “Environment Variables Specific
to the OS/390 C/C++ Library” on page 462 for more information.

BPX This is reserved for OS/390 C/C++ specific environment variables used in
the kernel. See the spawn callable service in the OS/390 UNIX System
Services Programming: Assembler Callable Services Referencefor more
information.

DBCS Characters
Multibyte and DBCS characters should not be used in environment
variable names. Their use can result in unpredictable behavior.

Multibyte and DBCS characters are allowed in environment variable
values; however, the values are not validated, and redundant shifts are not
removed.

white space
Blank spaces are valid characters and should be used carefully in
environment variable names and values.

For example, setenv(" my name"," David ",1) sets the environment
variable <space>my<space>name to <space><space>David. A call to
getenv("my name"); returns NULL indicating that the variable was not
found. You must specifically query getenv(" my name") to retrieve the
value of " David".

The environment variable names are case-sensitive.

The empty string is a valid environment variable name.

Note: In general it is a good idea to avoid special characters, and to use portable
names containing just upper and lower case alphabetics, numerics, and
underscore characters. Environment variable names containing certain
special characters, such as slash (/), will not be propagated by the OS/390
shell. Therefore, these variable names would not be available to a program
called using the POSIX system() function.

Chapter 33. Using Environment Variables 461

Environment Variables Specific to the OS/390 C/C++ Library

The following OS/390 C/C++ specific environment variables are supported to
provide various functions. OS/390 C/C++ variables have the prefix _CEE_ or _EDC_.
You should not use these prefixes to name your own variables.
v _EDC_ADD_ERRNO2

v _EDC_ANSI_OPEN_DEFAULT

v _EDC_BYTE_SEEK

v _EDC_CLEAR_SCREEN

v _EDC_GLOBAL_STREAMS

v _EDC_IP_CACHE_ENTRIES

v _EDC_COMPAT

v _EDC_RRDS_HIDE_KEY

v _EDC_STOR_INCREMENT

v _EDC_STOR_INITIAL

v _EDC_ZERO_RECLEN

v _CEE_DMPTARG

v _CEE_ENVFILE

There are no default settings for the environment variables that begin with _EDC_.
There are, however, default actions that occur if these environment variables are
undefined or are set to invalid values. See the descriptions of each variable below.

The OS/390 C/C++ specific environment variables may be set with the setenv()
function.

_EDC_ADD_ERRNO2

The environment variable _EDC_ADD_ERRNO2 appends errno2 information to the
output of perror() and strerror(). For example, for perror() if errno was 121,
then the output would be ″EDC5121I Invalid argument.″ If _EDC_ADD_ERRNO2 was
defined, the ouput would be ″EDC5121I Invalid argument. (errno2=0x0C0F8402)″.

_EDC_ADD_ERRNO2 is set with the command:
setenv("_EDC_ADD_ERRNO2","1",1);

Note: errno2 is a residual error field. It contains the errno2 from the last kernel
failure. This errno2 value may or may not be related to the errno error
message.

_EDC_ANSI_OPEN_DEFAULT

The OS/390 C/C++ environment variable _EDC_ANSI_OPEN_DEFAULT affects the
characteristics of MVS text files opened with the default attributes.

Issuing the following command causes text files opened with the default
characteristics to be opened with a record format of FIXED and a logical record
length of 254 in accordance with the ANSI standard for C.

setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

462 OS/390 V2R8.0 C/C++ Programming Guide

|

|

|

|
|
|
|

|

|

|
|
|

|

When this environment variable is not specified and a text file is created without
its record format or LRECL defined, then the default is a variable record format.

_EDC_BYTE_SEEK

The environment variable _EDC_BYTE_SEEK indicates to OS/390 C/C++ that, for all
binary files, ftell() should return relative byte offsets, and fseek() should use
relative byte offsets as input. The default behavior is for only binary files with a
fixed record format to support relative byte offsets.

_EDC_BYTE_SEEK is set with the command:
setenv("_EDC_BYTE_SEEK","Y",1);

_EDC_CLEAR_SCREEN

The environment variable _EDC_CLEAR_SCREEN applies to output text terminal files.

_EDC_CLEAR_SCREEN is set with the command:
setenv("_EDC_CLEAR_SCREEN","Y",1);

When _EDC_CLEAR_SCREEN is set, writing a \f (form feed) character to a text
terminal sends all preceding unwritten data in the terminal buffer to the screen,
and then clears the screen.

When _EDC_CLEAR_SCREEN in not set, writing a \f (form feed) character to a text
terminal results in the character being treated as a non-control character. The
character is written to the terminal buffer as \f.

_EDC_COMPAT

The environment variable _EDC_COMPAT indicates to OS/390 C/C++ that it should
use old functional behavior for various items in code ported from old releases of
C/370. These functional items are specified by the value of the environment
variable. _EDC_COMPAT is set with the command
setenv("_EDC_COMPAT","x",1);

where x is an integer. OS/390 C/C++ converts the string "x" into its decimal
integer equivalent, and treats this value as a bit mask to determine which functions
to use in compatibility mode. The following table interprets the least significant bit
as bit zero.

Bit Function Affected

0 ungetc()

1 ftell()

2 fclose()

3 through 31 Unused

For this release, calls to fseek() with an offset of SEEK_CUR, fgetpos(), and
fflush() take into account characters pushed back with the ungetc() library
function. You must set the _EDC_COMPAT environment variable for ungetc() if you
want these functions to ignore ungetc() characters as they did in old C/370 code.

Chapter 33. Using Environment Variables 463

For ftell(), OS/390 C/C++ uses an encoding scheme that varies according to the
attributes of the underlying data set. You must set the _EDC_COMPAT environment
variable for ftell() if you want to use encoded ftell() values generated in old
C/370 code.

You can set _EDC_COMPAT to indicate that fclose() should not unallocate the
SYSOUT=* data set when it is closing "*" data sets created under batch. This is to
ensure that such data sets can be concatenated with the Job Log, if their attributes
are compatible.

Here are some examples of how you can set _EDC_COMPAT:
setenv("_EDC_COMPAT","1",1);

invokes old ungetc() behavior.
setenv("_EDC_COMPAT","2",1);

invokes old ftell() behavior.
setenv("_EDC_COMPAT","3",1);

invokes both old ungetc() behavior and old ftell() behavior.
setenv("_EDC_COMPAT","4",1);

invokes old behavior for spool data sets created by opening "*" in MVS or IMS
batch.

_EDC_GLOBAL_STREAMS

This environment variable is used during initialization of the first C main in the
environment to allow the C standard streams stdin, stdout, and stderr to have
global behavior. The environment variable settings and standard streams using the
global behavior, are as follows:

Setting Standard Streams Using Global Behavior

0 none

1 stderr

2 stdout

3 stderr,stdout

4 stdin

5 stderr,stdin

6 stdout,stdin

7 stderr,stdout,stdin

Note: The first C main would include any Pre-Init Compatibility Interface
initialization.

You can use one of the following methods to set the environment variable
_EDC_GLOBAL_STREAMS:
v CEEBXITA assembler user exit

You can modify the sample CSECT and assemble and link with the application.
The run-time options specified in the CEEBXITA assembler user exit override all

464 OS/390 V2R8.0 C/C++ Programming Guide

other sources of run-time options except those that are specified as NONOVR in
the installation default run-time options. These options are honored only during
initialization of the first enclave.

v ENVAR(_EDC_GLOBAL_STREAMS=<setting>)
You can call your program with the ENVAR run-time option. This overrides the
application defaults specified using CEEUOPT or the #pragma runopts directive.

v #pragma runopts(ENVAR(_EDC_GLOBAL_STREAMS=<setting>))
Use the #pragma runopts directive in your application source code.

v CEEUOPT application defaults
Modify the sample CSECT and assemble and link with the application. This
overrides corresponding overrideable CEEDOPT options.

v CEEDOPT installation defaults
This is not recommended. Do not use this method.

Notes:

1. Attempts to set this environment variable in the file specified by the
_CEE_ENVFILE environment variable are ignored. The standard streams are
initialized before that file is read.

2. You cannot use the CEEBINT user exit to set this environment variable. The
CEEBINT user exit gets control after the standard streams have been initialized.

_EDC_IP_CACHE_ENTRIES

The environment variable _EDC_IP_CACHE_ENTRIES, sets the size of the cache used
for host names and IP addresses returned by gethostbyaddr() and
gethostbyname() calls that are resolved by a domain name server. This cache is
searched first before sending the next gethostbyaddr() or gethostbyname() request
to a domain name server. The size of the cache is set only once. The first call to
either gethostbyaddr() or gethostbyname() uses the value of the
_EDC_IP_CACHE_ENTRIES environment variable to set the size of the cache. Setting
the size to 0 disables the cache. If you do not specify a value for this environment
variable, the default size is 20.

_EDC_IP_CACHE_ENTRIES is set with the command:
setenv("_EDC_IP_CACHE_ENTRIES", "50", 1);

_EDC_RRDS_HIDE_KEY

The OS/390 C/C++ environment variable _EDC_RRDS_HIDE_KEY applies to VSAM
RRDS files opened in record mode. When this environment variable is set, you can
call fread() with a pointer to a character string, and the Relative Record Number
is not appended to the beginning of the record.

The _EDC_RRDS_HIDE_KEY environment variable is set with the command
setenv("_EDC_RRDS_HIDE_KEY","Y",1);

By default, when you open a VSAM record in record mode, the fread() function is
called with the RRDS record structure, and the record is preceded by the Relative
Record Number.

Chapter 33. Using Environment Variables 465

_EDC_STOR_INCREMENT

This environment variable is used to set the size of increments to the internal
library storage subpool. By default, when the storage subpool is filled, its size is
incremented by 8K. When _EDC_STOR_INCREMENT is set, its value string is translated
to its decimal integer equivalent. This integer is then the new setting of the
subpool storage increment size.

The _EDC_STOR_INCREMENT value must be greater than zero, and must be a multiple
of 4K. If the value is less than zero, the default setting of 8K is used. If the value is
not a multiple of 4K, then it is rounded up to the next 4K interval. If
_EDC_STOR_INCREMENT is set to an invalid value that must be modified internally to
be divisible by 4K, this modification is not reflected in the character string that
appears in the environment variable table.

Consider the case where setenv() is called as follows:
setenv("_EDC_STOR_INCREMENT","9000",1);

Internally, the storage subpool increment value is set to 12288 (that is, 12K).
However, the subsequent call

getenv("_EDC_STOR_INCREMENT");

returns "9000", as set by the call to setenv().

_EDC_STOR_INITIAL

This environment variable is used to set the initial size of the internal library
storage subpool. The default subpool storage size is 12K. When
_EDC_STORE_INITIAL is set, its value string is translated to its decimal integer
equivalent. This integer is then the new setting of the subpool storage increment
size.

The _EDC_STORE_INITIAL value must be greater than zero, and must be a multiple
of 4K. If the value is less than zero, the default setting of 12K is used. If the value
is not a multiple of 4K, then it is rounded up to the next 4K interval. If
_EDC_STORE_INITIAL is set to an invalid value that must be modified internally to
be divisible by 4K, this modification is not reflected in the character string that
appears in the environment variable table.

Consider the case where setenv() is called from CEEBINT as follows:
setenv("_EDC_STORE_INITIAL","16000",1);

with the CEEBINT user exit linked to the application.

Internally, the storage subpool is initialized to 16384 (that is, 16K). However, the
subsequent call

getenv("_EDC_STORE_INITIAL");

returns "16000" as set by the setenv() call.

_EDC_ZERO_RECLEN

This environment variable allows processing of zero-length records in an MVS
Variable file opened in either record or text mode.

466 OS/390 V2R8.0 C/C++ Programming Guide

Note: This environment variable has no effect on streams based on HFS files. You
can always read and write zero-byte records in HFS files.

_EDC_ZERO_RECLEN is set with the command:
setenv("_EDC_ZERO_RECLEN","Y",1);

For details on the behavior of this environment variable, refer to “Chapter 11.
Performing OS I/O Operations” on page 103.

_CEE_DMPTARG

This environment variable specifies the directory in which Language Environment
dumps (CEEDUMPs) are written for applications that are running as the result of a
fork, exec, or spawn. This environment variable is ignored if the application is not
run as a result of a fork, exec, or spawn. When _CEE_DMPTARG is set in one of these
environments, its value is used as the directory name in which to place
CEEDUMPs. For example, if in the OS/390 UNIX shell, you set the environment
variable as follows:
export _CEE_DMPTARG=/u/userid/dmpdir

Language Environment dumps will be written to directory /u/userid/dmpdir. If in
the OS/390 UNIX shell, you set the environment variable as follows:
export _CEE_DMPTARG=dmpdir

Language Environment dumps will be written to directory "cwd"/dmpdir where
"cwd" is the current working directory

_CEE_ENVFILE

This environment variable enables a list of environment variables to be set from a
specified file. This environment variable only takes effect when it is set through the
run-time option ENVAR on initialization of a parent program.

When _CEE_ENVFILE is defined under these conditions, its value is taken as the
name of the file to be used. For example, to read the DDfile MYVARS, you would call
your program with the ENVAR run-time option as follows:

ENVVAR("_CEE_ENVFILE=DD:MYVARS")

The specified file is opened as a variable length record file. For an MVS data set,
the data set must be allocated with RECFM=V. RECFM=F is not recommended, since
RECFM=F enables padding with blanks, and the blanks are counted when calculating
the size of the line. Each record consists of NAME=VALUE. For example, a file with the
following two records:

_EDC_RRDS_HIDE_KEY=Y
World_Champions=New_York_Yankees

would set the environment variable _EDC_RRDS_HIDE_KEY to the value Y, and the
environment variable World_Champions to the value New_York_Yankees.

Notes:

1. Using _CEE_ENVFILE to set environment variables through a file is not
supported under CICS.

Chapter 33. Using Environment Variables 467

2. OS/390 Language Environment searches for an equal sign to delimit the
environment variable from its value. If an equal sign is not found, the
environment variable is skipped and the rest of the text is treated as comments.

Example

The following example sets the environment variable _EDC_ANSI_OPEN_DEFAULT. A
child program is then initiated by a system call. This example illustrates that
environment variables are propagated forward, but not backward.

CBC3GEV1

/* this example shows how environment variables are propagated */
/* part 1 of 2-other file is CBC3GEV2 */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

char *x;

/* set the environment variable _EDC_ANSI_OPEN_DEFAULT */
setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbc3gev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

/* call the child program */
system("cbc3gev2");

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbcgev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

return(0);
}

Figure 137. Environment Variables Example-Part 1

468 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GEV2

The preceding program produces the following output:
cbcgev1 _EDC_ANSI_OPEN_DEFAULT = Y
cbcgev2 _EDC_ANSI_OPEN_DEFAULT = Y
cbcgev2 _EDC_ANSI_OPEN_DEFAULT = undefined
cbcgev1 _EDC_ANSI_OPEN_DEFAULT = Y

/* this example shows how environment variables are propagated */
/* part 2 of 2-other file is CBC3GEV1 */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

char *x;

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");

printf("cbcgev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",
(x != NULL) ? x : "undefined");

/* clear the Environment Variables Table */
clearenv();

/* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */
x = getenv("_EDC_ANSI_OPEN_DEFAULT");
printf("cbcgev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

(x != NULL) ? x : "undefined");

return(0);
}

Figure 138. Environment Variables Example-Part 2

Chapter 33. Using Environment Variables 469

470 OS/390 V2R8.0 C/C++ Programming Guide

Part 5. OS/390 C/C++ Environments

This part describes the different OS/390 C/C++ environments. Note that the
MultiTasking Facility and the System Programming C Facilities are not available
for OS/390 C++. If you attempt to run an SPC application under OS/390 C++, it
will abend.
v “Chapter 34. Using the System Programming C Facilities” on page 473
v “Chapter 35. Library Functions for System Programming C” on page 519
v “Chapter 36. Using Run-Time User Exits” on page 525
v “Chapter 37. Using The OS/390 C MultiTasking Facility” on page 543

© Copyright IBM Corp. 1996, 1999 471

472 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 34. Using the System Programming C Facilities

This chapter explains how to use the system programming C (SP C) facilities with
OS/390 C.

Notes:

1. Using the system programming C facilities, by programs which have been
compiled with OS/390 C++ is not supported.

2. IPA is not supported in an SP C environment unless there is a main() function
present.

When OS/390 C applications are compiled, many routines are needed to support
the OS/390 C environment that are not included in your executable. These
routines, which are in OS/390 Language Environment, are dynamically loaded at
run time. This reduces the size of the program to its practical minimum and
provides for the sharing of OS/390 C library code by allowing its placement in
Extended Link Pack Areas.

OS/390 Language Environment provides facilities to set up the environment,
handle termination, provide storage management, error handling, interlanguage
calls and debugging support. Also, the C library functions are provided with
OS/390 Language Environment. In situations where not all of these services are
needed or available, or more control over the executive environment is required,
the system programming C facilities can provide a reduced customizable
environment for your application.

System programming facilities enable you to run applications without OS/390
Language Environment or with just the OS/390 C library functions available. You
can:
v Use a subset of the C language to develop specialized applications that do not

require OS/390 Language Environment on the machines where the application
will run.
You can write freestanding applications that:
– Do not use the dynamic run-time library.
– Use only the C-specific library functions without any OS/390 Language

Environment facilities to manage the execution environment.

For example, a system programming application could use the C-specific library
function printf() but not have the common run time initialize the environment.
The system programming facilities would handle initialization.

For more information on this type of application, see “Creating Freestanding
Applications” on page 476.

v Use OS/390 C as an assembler language alternative, such as for writing exit
routines for MVS, TSO, or JES.
For more information on this type of application, see “Creating System Exit
Routines” on page 483.

v Develop applications featuring a persistent C environment, where a OS/390 C
environment is created once and used repeatedly for C function execution.
For more information on this type of application, see “Creating and Using
Persistent C Environments” on page 486.

© Copyright IBM Corp. 1996, 1999 473

v Develop co-routines using a two-stack model, as used in client-server style
applications. In this style, the user application calls upon the applications server
to perform services independently of the user and then returns to the user.
For more information on this type of application, see “Developing Services in
the Service Routine Environment” on page 491.

Note: Using the decimal data type and its related functions (decabs(), decchk(),
and decfix()) without OS/390 Language Environment is not supported.

Using Functions in the System Programming C Environment

If you do not want to use the OS/390 Language Environment run-time library and
the OS/390 C run-time component within OS/390 Language Environment the
following functions are available in the SP C environment:
v The following built-in functions provided by the OS/390 C compiler:

Mathematical
abs(), fabs()

Memory manipulation
memchr(), memcmp(), memcpy(), memset(), cds(), cs()

String operations
strcat(), strchr(), strcmp(), strcpy(), strlen(), strrchr()

The built-in versions of these functions are available only if the appropriate
header file (string.h, math.h, or stdlib.h) is included in the source file. The use
of these functions is described in the OS/390 C/C++ Run-Time Library Reference.

v The memory management functions, including complete support for:
– The malloc() function
– The calloc() function
– The realloc() function
– The free() function
– The HEAP run-time option

v The exit() function
v The sprintf() function.

Additional memory management functions are available in the system
programming C environment, as follows:

__4kmalc()
to allocate page-aligned storage

__24malc()
to allocate storage below the 16MB (where MB is 1048576 bytes) line in
ESA systems even when HEAP(ANYWHERE) is specified.

Storage allocated by these functions is not part of the heap, so freeing it is your
responsibility. You can use the free() function to free the storage before the
environment is terminated. Storage allocated using these functions is not
automatically freed when the environment is terminated.

In this environment, low-level memory management functions and contents
supervision (loading and deleting executable code) are supported by low-level

474 OS/390 V2R8.0 C/C++ Programming Guide

routines that you can replace to support non-standard environments. This is
described in “Tailoring the System Programming C Environment” on page 509.

System Programming C Facility Considerations and Restrictions

When using any system programming C environment, consider the following:
v The fetch() function is not supported when you are running in a system

programming C environment. You can use the EDCXLOAD routine, as described in
“EDCXLOAD” on page 513, to simulate some of the functionality of the fetch()
function.

v The IMS parameter list established by the #pragma runopts(PLIST(IMS)) directive
is not supported in any of the system programming environments. However,
this does not preclude the use of IMS within these environments, because the
registers upon entry are available using the __xregs() function and ctdli() is
bound statically. For more information on __xregs(), refer to “__xregs() — Get
Registers on Entry” on page 522.

v Interlanguage calls to COBOL and PL/I are not supported. However, an SP C
program can use the system() function to call modules written in other
languages.

v SP C is not supported under CICS or MTF.
v Library functions for use with HFS I/O are not supported under SP C. Calling

them causes unpredictable results.
v All run-time options are ignored except for:

– STACK

– HEAP

– TRAP.
v Redirection of standard streams is not supported.
v The default initial stack size is the minimum size required to start the C

program. (This default is different from the non-systems programming C
environments.) If a size is specified, that actual value is used, provided it is large
enough. If the value specified is smaller than the requirements for the program,
the required value is used.

v The default value for the HEAP run-time option is HEAP(12K,4K,ANY,FREE).
v When you are running a service routine, you should with #pragma

runopts(TRAP(OFF)).

v Exception handling is not supported in a persistent environment.
v Invoking the system() function from an atexit() function results in undefined

behavior.
v When using the atexit() function from a persistent environment, the atexit list

w ill not be run until the persistent environment has been terminated by the
__xhott() library function. For more information about this function, see
“__xhott() — Terminate a Persistent C Environment” on page 520.

v Calls to math library functions can be made in a system programming C
environment using the dynamic library. For the most efficient use of calls to
math library functions, you should enclose the function name in parentheses ().
For example, if you make a call to sin(), use:

z = (sin)(x);

v You cannot call ctrace(), csnap(), cdump(), or ctest() because they rely on
OS/390 Language Environment callable services.

Chapter 34. Using the System Programming C Facilities 475

|
|

v System programming C environments are disjointed from each other; that is,
memory files cannot be passed and file control is not maintained across
environments. Thus, memory files cannot be passed between a C program and a
callee that is written as an assembler exit.
An exception is between environments where the target environment is built
with EDCXSTRL or EDCXSTRX but does not represent a server. For example, if a C
program invokes a freestanding SP C application that is not a server by using
system(), a memory file can be passed successfully between the programs.

v When developing an application with an interface with assembler, you can use
the DSECT Conversion Utility to build structures mapping to the data types of
your DSECTs.

v The POSIX locale features and coded character set conversion routines are
supported only for system programming applications that use OS/390 Language
Environment. They are not available for freestanding applications.

Creating Freestanding Applications

Freestanding applications are C modules that run either:
v Without OS/390 Language Environment and the OS/390 C library (using

EDCXSTRT)
v Without OS/390 Language Environment but with the OS/390 C library functions

(using EDCXSTRL)

Three initialization routines are provided by SP C for building freestanding
applications:

EDCXSTRT
For building completely freestanding applications. The applications can use
no OS/390 C run-time library functions and can have no OS/390 Language
Environment attachment.

EDCXSTRL
For building applications that use OS/390 C run-time library functions but
have no OS/390 Language Environment attachment.

EDCXSTRX
This routine accepts a parameter to choose whether your application
should behave as if it was initialized with either EDCXSTRT or
EDCXSTRL. This parameter is described further in “Setting up a C
Environment with Preallocated Stack and Heap” on page 478.

Certain restrictions apply to freestanding applications initialized by the routines
EDCXSTRT, EDCXSTRL, and EDCXSTRX. These restrictions are as follows:
v They cannot perform interlanguage calls, except with assembler language

routines that preserve register 12 and use the IBM-supplied macros for entry and
exit.

v The parameters received by the main() function (normally argc and argv) are
undefined. __xregs() (described in “__xregs() — Get Registers on Entry” on
page 522) can be used to examine the parameters passed by the calling
environment.

v They cannot do arithmetic using long double variables on pre-XA machines (that
is, on machines that do not support the DXR instruction).

476 OS/390 V2R8.0 C/C++ Programming Guide

Creating Modules without CEESTART

In many of the environments described in this chapter, the initialization normally
performed by OS/390 Language Environment is replaced by special-purpose
routines that are tailored to the specific requirements of the type of application.
This requires replacing the initialization routine (CEESTART) normally used by
OS/390 C.

When you do not use the System Programming C Facilities, the compiler generates
a CEESTART CSECT (control section) whenever a main() or fetchable function is
encountered in the source file. With the NOSTART compiler option, described in the
OS/390 C/C++ User’s Guide, you can suppress the generation of CEESTART for
source files that contain a main() function where this is required. In a system
programming C environment, you must compile using the NOSTART option. The
object modules created will then be suitable for inclusion in applications that use
the alternative initialization routines described in this chapter.

Including an Alternative Initialization Routine under OS/390

When NOSTART is used to suppress the generation of CEESTART, an alternative
initialization routine must be explicitly included in the executable by the user at
Link Edit. Use the Linkage Editor INCLUDE and ENTRY control statements. To include
the alternative initialization routines described in this chapter, allocate CEE.SCEESPC
to the SYSLIB DD. For example, you can use the following linkage editor statements
to specify EDCXSTRT as an alternative initialization routine:

Another example of specifying alternative initialization under OS/390 is shown in
Figure 141 on page 480.

Initializing a Freestanding Application without Language
Environment.

EDCXSTRT

This routine is for C applications that do not use any OS/390 Language
Environment facilities or OS/390 C facilities or library functions. It must be
explicitly included in the program and specified as the program entry point if it is
to be used.

Under this environment, only the following library routines are supported:
v Built-in compiler functions. For a list of these functions, refer to the table on

page on page 474.
v Memory management routines, including malloc(), calloc(), realloc(), and

free().
v The exit() and sprintf() functions.
v The __4kmalc() and __24malc() functions.

//SYSLIN DD *
INCLUDE SYSLIB(EDCXSTRT)
ENTRY EDCXSTRT
INCLUDE OBJECT(main-function)

/*

Figure 139. Specifying Alternative Initialization at Link Edit

Chapter 34. Using the System Programming C Facilities 477

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Initializing a Freestanding Application Using C Functions

EDCXSTRL

This routine is the analog of CEESTART for C applications that use the OS/390 C
library functions only. EDCXSTRL supports the full library of C functions except for
functions such as cdump(), csnap(), ctest(), or ctrace(). EDCXSTRL must be
explicitly included in the program and specified as the program entry point if it is
to be used.

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Service routines (described in “Developing Services in the Service Routine
Environment” on page 491) require this routine (or EDCXSTRT if they do not require
OS/390 Language Environment) for their initialization.

Applications initialized with this routine will run in any environment supported
by OS/390 Language Environment.

Setting u p a C Environment with Preallocated Stack and Heap

EDCXSTRX

This routine is the analog of CEESTART for an application where you want to have
more control over contents supervision and storage management. Unlike EDCXSTRT,
EDCXSTRL, and CEESTART, this routine cannot be entered directly from the operating
system (that is, from JCL, REXX EXECs, CLISTs, or the TSO command line). It
requires a structured parameter list (OS linkage) containing:

Parameters

1. The parameter list to be passed to main(). __xregs() can be used to examine
the parameters passed by the calling environment. This list cannot be accessed
by argc or argv.

2. The address of the initial storage area. This area must be doubleword aligned
with its first word containing its total length. It must be large enough to
accommodate the entire stack requirements of the application.

3. The address of the complete heap allocation (or NULL if no malloc() family
storage is required by the called routines). This area must be doubleword
aligned with its first word containing its total length. This area must include
sufficient space for the control structures required to manage the heap
(currently a minimum of 40 bytes). Applications that use the OS/390 C library
functions will always require heap space; the amount required depends on the
structure of the application and may vary from run to run if external
characteristics (file block sizes, for example) change.
Any heap increments that occur because the size of the initial heap is not large
enough will not be freed at termination by the system programming
environment. If no initial heap allocation is specified, and a heap is required
(because the OS/390 C library functions are required, for example), it will not
be freed by the System Programming C Environment. If this behavior is

478 OS/390 V2R8.0 C/C++ Programming Guide

detected, the program will run to completion, but will abend during EDCXSTRX
termination with abend code 2108 and reason code 7207.
Heap increments will be freed if you explicitly free the memory (using the
free() function) and the run-time option HEAP(FREE) has been specified. You
should specify a heap value of at least 4K if you are running with the OS/390
C library functions.

4. The address of the OS/390 C run-time library or NULL. Use CEEEV003 (or EDCZV,
if you want to maintain compatibility with previous releases of OS/390
Language Environment).

The parameters (argc and argv) passed to the main() function are undefined. There
is no argument parsing (argc and argv) or redirection of standard streams.

If the OS/390 C library functions are required, the routine EDCXABRT must be
explicitly included during the link edit. This routine enables exception handling for
EDCXSTRX. If it is not explicitly included, abend code 2107 with reason code 7206
will terminate the program.

The RENT compiler option is supported in this environment only if the OS/390 C
library functions are used.

Determining ISA requirements

EDCXISA

This entry point is available to the caller of EDCXSTRX to determine the stack space
overhead for the environment being created. Add stack space required by the
application to the value returned by this routine to determine the size of the area
to be passed as the second parameter to EDCXSTRX. If the routine is called from
assembler, the value should be expected in Register 15. The routine should be
declared as:
#pragma linkage(__xisa,OS)

int __xisa(void);

Building Freestanding Applications to Run under OS/390

When you are building freestanding applications under OS/390, CEE.SCEESPC must
be included in the binder SYSLIB concatenation before CEE.SCEELKED.

The routines to support this function (EDCXSTRT, EDCXSTRL, and EDCXSTRX) are
CEESTART replacements (described in “Creating Modules without CEESTART” on
page 477) in your module. Therefore, the appropriate EDCXSTRn routine must be
explicitly included ahead of the module at link edit.

A simple freestanding routine that requires the library is shown in Figure 140 on
page 480.

Chapter 34. Using the System Programming C Facilities 479

CBC3GSP1

This routine is compiled normally and link edited using control statements shown
in Figure 141. The CEE.SCEERUN load library must be available at run time because
it contains the C library function puts().

Figure 142 shows how to compile and link a freestanding program using the
cataloged procedure EDCCL.

Special Considerations for Reentrant Modules

A simple freestanding routine that does not require the library is shown in
Figure 143 on page 481. To develop a reentrant module, this routine must be
compiled with both the RENT (because the module contains writable static at «2¬)
and NOSTART (because this is a system programming environment) compiler
options. This routine uses the exit() function, which is normally part of the
OS/390 Language Environment library. Like sprintf(), it is available to
freestanding routines without requiring the dynamic library.

/* this is an example of a freestanding OS/390 routine */

#include <stdio.h>

int main(void) {
puts("Hello, World");
return 3999;

}

Figure 140. Sample Freestanding OS/390 Routine

INCLUDE SYSLIB(EDCXSTRL)
INCLUDE OBJECT
ENTRY EDCXSTRL

Figure 141. Link Edit Control Statements Used to Build a Freestanding OS/390 Routine

//JOBC JOBCARD STATEMENTS
//*---
//***
//*** COMPILE AND LINK FOR STRL ENTRY POINT
//***
//C106001 EXEC EDCCL,
// INFILE='USERID.SPC.SOURCE(C106000)',
// OUTFILE='USERID.SPC.LOAD(C106000),DISP=SHR',
// CPARM='OPT,NOSEQ,NOMAR,NOSTART',
// LPARM='RMODE=ANY,AMODE=31'
//COMPILE.USERLIB DD DSN=userid.HDR.FILES,DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEESPC,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSIN DD *
INCLUDE SYSLIB(EDCXSTRL)
ENTRY EDCXSTRL

/*

Figure 142. Compile and Link Using EDCCL

480 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GSP2

JCL Required

The JCL required to build and execute this routine is shown in Figure 144.

«1¬ The OS/390 Language Environment prelinker must be used for modules
compiled with the RENT compiler option.

«2¬ This is the object module created by compiling the sample module with
the RENT and NOSTART compiler options.

«3¬ The alternative initialization routine (EDCXSTRT in this example) must be
included explicitly in the module. If this is not the first CSECT in the
module, it must be explicitly named as the module entry point.

«4¬ EDCXEXIT must be explicitly included if the exit() function is used in the
application.

/* this is an example of a reentrant freestanding OS/390 routine */
#include <stdlib.h> «1¬
int main() {

static int i[5]={0,1,2,3,4}; «2¬
exit(320+i[1]);

}

Figure 143. Sample Reentrant Freestanding OS/390 Routine

//PLKEDEXECPGM=EDCPRLK,PARM='MAP,NCAL' «1¬
//STEPLIBDDDSN=CEE.SCEERUN,DISP=SHR
//SYSMSGSDDDSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIBDDDUMMY
//SYSMODDDDSNAME=&&PLKSET,SPACE=(32000,(30,30)),UNIT=SYSDA,
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
//DISP=(MOD,PASS)
//SYSIN;DDDSNAME=userid.TEST.OBJECT(PROG1),DISP=SHR «2¬
//SYSOUTDDSYSOUT=*
//SYSPRINTDDSYSOUT=*
//*
//*
//LKEDEXECPGM=HEWL,PARM='MAP,XREF,LIST' «3¬
//SYSLIBDDDSNAME=CEE.SCEESPC,DISP=SHR
//DDDSNAME=CEE.SCEELKED,DISP=SHR
//SYSPRINTDDSYSOUT=*
//SYSLMODDDDSNAME=&&GOSET(GO),SPACE=(512,(50,20,1)),
//DISP=(NEW,PASS),UNIT=SYSDA
//SYSUT1DDSPACE=(32000,(30,30)),UNIT=SYSDA
//PRELINK DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)
//SYSLINDD*
INCLUDE SYSLIB(EDCXSTRT) «4¬
INCLUDE PRELINK «5¬
INCLUDE SYSLIB(EDCXEXIT) «6¬
INCLUDE SYSLIB(EDCRCINT) «7¬

/*
//*
//*--
//* Go Step
//*--
//GOEXECPGM=*.LKED.SYSLMOD
//SYSPRINTDDSYSOUT=*

Figure 144. Building and Running a Reentrant Freestanding OS/390 Routine

Chapter 34. Using the System Programming C Facilities 481

«5¬ The routine EDCRCINT must be explicitly included in the module if the RENT
compiler option is used. No error will be detected at load time if this
routine is not explicitly included. At execution time, abend 2106, reason
code 7205, will result if EDCRCINT is required but not included.

Parts Used for Freestanding Applications

Table 58 lists the parts used for freestanding applications and their function and
location. The SYSLIB specified is CEE.SCEESPC.

Table 58. Parts Used for Freestanding Applications

Part Name Function

Inclusion in Program

LocationNotes

EDCXSTRT This module is the mainline for
applications that do not require
the OS/390 Language
Environment or OS/390 C
run-time library.

1 This CSECT must be
the module entry
point.

Member of SCEESPC

EDCXSTRL This module is the mainline for
applications that require only the
C-specific library functions.

1 This CSECT must be
the module entry
point.

Member of SCEESPC

EDCXSTRX This module is the mainline for
applications that receive a
structured parameter list that
includes preallocated storage
management areas.

2 Member of SCEESPC

EDCXISA Get ISA requirements for
EDCXSTRX.

2 Member of SCEESPC

EDCXSPRT System programming version of
sprintf().

3 Member of SCEESPC

EDCXEXIT System programming version of
exit().

3 Member of SCEESPC

EDCXMEM System programming version of
malloc(), calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of SCEESPC

EDCRCINT This must be included if the
compiler option RENT is to be
used.

3 Member of SCEESPC

EDCXABRT System programming version of
exception handling.

3 Member of SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming version of the function.

482 OS/390 V2R8.0 C/C++ Programming Guide

Creating System Exit Routines

OS/390 C allows the creation of routines that have no environmental requirements
on entry except:
v Register 13 must point to a 72-byte save area
v Register 14 must contain the return address
v Register 15 must contain the entry address

There is no requirement on the name of the entry point (that is, it does not have to
be main()), so several different entry points, with names specified by the calling
environment, can be combined in the same program.

Routines that do not require the OS/390 C environment should specify one of
these two pragma forms:
v #pragma environment(function-name), if the library is required, or
v #pragma environment(function-name,nolib), if no library is required.

This pragma causes the compiler to generate a different prolog for the specified
function. The prolog contains the instructions at the beginning of the routine that
perform the housekeeping necessary for the function to run, including allocation of
the function’s automatic storage. This prolog will set up a C environment sufficient
for both the function in which it is specified and any function that may be called.
Called functions should not specify this pragma, unless they are called elsewhere
without a C environment present. This new prolog will load and initialize the
module containing the C library functions if this choice is specified.

For more information on the #pragma environment, see the OS/390 C/C++ Run-Time
Library Reference.

The RENT compiler option is not supported in this environment; if you require
reentrant system exit routines, the routine must be naturally reentrant. See the
OS/390 Language Environment Programming Guide for more information about
reentrancy.

System exit routines can be linked with their callers or dynamically loaded and
invoked.

Building System Exit Routines under OS/390

The CEE.SCEESPC object library must be available at link-edit time. If the C library
is required by the exit routines, CEE.SCEELKED must also be made available after
CEE.SCEESPC. You should explicitly name the entry point with an ENTRY statement.

An Example of a System Exit

Table 59 on page 486 lists the parts used by exit The following C program is a
system exit that gains control from the system when an unknown CLIST subroutine
is encountered. It checks if the name is recognized as a user-specific subroutine
before returning control to the system. For more information on this system exit,
see the OS/390 TSO/E Customization.

Chapter 34. Using the System Programming C Facilities 483

CBC3GSP3

/* this is an example of a system exit */
#pragma environment(IKJCT44B,nolib) «1¬
/* */
/* IKJCT44B CLIST EXIT */
/* */
#include <stdio.h>
#include <stdlib.h>
#include <spc.h>

struct parmentry { int key;
int len;
char *pt; };

typedef struct parmentry P_ENT;

#define REVERSE 0
#define FLIPCHR 1
/* Valid commands */
static char *cmds[] =
{

"SYSXTREV", "SYSXTFLIP" «2¬
};
void revstring(P_ENT *p11, P_ENT *p12);
void flipstring(P_ENT *p11, P_ENT *p12);
int IKJCT44B() {

int **parme;
struct parmentry *e7, *e10, *e11, *e12, *e13;

/* Get registers on entry */
parme = (void *)__xregs(1);
/* Get the parameter entry values for those relevant for CLISTs */
e7 = (struct parmentry *)parme[6]; /* exit return */
e10 = (struct parmentry *)parme[9];
e11 = (struct parmentry *)parme[10];
e12 = (struct parmentry *)parme[11];
e13 = (struct parmentry *)parme[12];

Figure 145. System Exit Example (Part 1 of 2)

484 OS/390 V2R8.0 C/C++ Programming Guide

«1¬ The #pragma environment directive sets up an entry point IKJCT44B other
than main().

«2¬ This is the list of user-specific subroutines that are available in this system
exit.

/* Is the command supported? */
switch(cmdchk(e10)) { case REVERSE: /* Reverse string */

revstring(e11, e12);
break;

case FLIPCHR: /* Exchange the first and last chars only */
flipstring(e11, e12);
break;

default: /* Unknown command type. Return with an error. */
e12->pt[0] = 0x00;
e12->len = 0;
/* Set the return code */
e7->key = 0x01;
e7->len = 0x04;
*(int *)(&e7->pt) = 0x06;
return 12;

}

/* Return to caller - CLIST is supported. */
e7->key = 0x01;
e7->len = 0x04;
*(int *)(&e7->pt) = 0x00;
return 0;

}

/* cmdchk(P_ENT *pt) */
/* - is the command in the list of user-specific cmds? */
int cmdchk(P_ENT *pt) {

int i;
for(i=0; i<(sizeof(cmds)/sizeof(char *)); i++) {

if(memcmp(pt->pt, cmds[i], pt->len) == 0)
return i;

}
/* Not found */
return -1;

}
/* revstring().... */
/* - reverse the string */
void revstring(P_ENT *p11, P_ENT *p12) {

int i;

for(i=0; i<p11->len; i++)
p12->pt[i] = p11->pt[p11->len-i-1];

p12->len = p11->len;
}

/* flipstring() ... */
/* - flip the first and last characters in the string */
void flipstring(P_ENT *p11, P_ENT *p12) {

char t;
t = p11->pt[p11->len-1];
memcpy(p12->pt, p11->pt, p11->len);
p12->pt[p11->len-1] = p12->pt[0];
p12->pt[0] = t;
p12->len = p11->len;

}

Figure 145. System Exit Example (Part 2 of 2)

Chapter 34. Using the System Programming C Facilities 485

«3¬ The function __xregs() is used to retrieve the parameters available to the
system exit in R1 from the operating system.

«4¬ The parameters are parameter entries passed from TSO to this system exit
and are used for the following reasons:

e7 Exit reason code

e10 Name of subroutine

e11 Arguments

e12 Result

«5¬ The list of user-specific subroutines is checked and if the unknown CLIST
subroutine is recognized, the subroutine is called. Otherwise, the function
returns in error.

Table 59 lists the parts used by the routines, and their function and location in
MVS. The SYSLIB specified is CEE.SCEESPC.

Table 59. Parts Used by Exit Routines

Part Name Function

Inclusion in Program

LocationNotes

EDCXENV Extended prolog code for
exits that do not require
the library.

2 Member of
SCEESPC

EDCXENVL Extended prolog code for
exits that require the
library.

2 Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

EDCXABRT System programming
version of exception
handling.

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the
binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the
system programming version of the function.

Creating and Using Persistent C Environments

Four routines are available to create and use a persistent C environment. These
routines are used by an assembler language application that needs a C
environment available to support the C functions (not including main()) that it
calls.

486 OS/390 V2R8.0 C/C++ Programming Guide

An initialization routine, EDCXHOTC or EDCXHOTL (depending upon whether the
called C subroutines will need the OS/390 C library functions), is called to create a
C environment. This call returns a handle that can be used (through EDCXHOTU) to
call C subroutines. The environment persists until it is explicitly terminated by
calling EDCXHOTT.

The four routines are:

EDCXHOTC
Sets up a persistent C environment (no library)

EDCXHOTL
Sets up a persistent C environment (with library)

EDCXHOTU
Runs a function in a persistent C environment

EDCXHOTT
Terminates a persistent C environment

The functions that act as entry points for these routines are __xhotc(), __xhotl(),
__xhotu(), and __xhott(), respectively. For more information on these four
functions, refer to “Chapter 35. Library Functions for System Programming C” on
page 519.

The RENT compiler option is not supported in the persistent environment described
in this chapter.

Exception handling is not supported in persistent C environments.

As an alternative to the persistent environments, you can also create and retain a C
environment using the preinitialized programming interface. This interface
supports the RENT compiler option, but is less versatile in other respects. OS/390
Language Environment provides a callable service for preinitialization called
CEEPIPI. This is described in the OS/390 Language Environment Programming Guide.
You may also find information in “Retaining the C Environment Using
Preinitialization” on page 248 helpful.

Building Applications That Use Persistent C Environments

There are no special restrictions for building applications that use persistent C
environments. The automatic call facility will cause the correct routines from the
SYSLIB to be included.

If any C library function is required by any routine called in this environment, the
stub routines library CEE.SCEELKED should be made available at link time after
CEE.SCEESPC.

An Example of Persistent C Environments

The assembler routine shown in Figure 147 on page 489 illustrates the use of this
feature to call a C function shown in Figure 146 on page 488.

Chapter 34. Using the System Programming C Facilities 487

CBC3GSP4

This C function accepts two parameters: an integer and a printf()-style formatting
string. The formatting string has a maximum length of 300 bytes; it is terminated
by an @ if shorter. This routine must use OS linkage («1¬ The routine scans the
formatting string for the terminator, copies it to a local work area, adds a trailing
newline and NULL character, and prints the integer according to the formatting
string.

The structure of the assembler caller is shown in Figure 147 on page 489.

/* this example uses a persistent C environment */
/* part 1 of 2-other file is CBC3GSP5 */

#pragma linkage(crtn,OS) «1¬
#include <string.h>
#include <stdio.h>
#define INSIZE 300/* the maximum length we'll tolerate */

void crtn(int p1,char *p2) {
charhold[2+INSIZE];
char*endptr;
inti;

endptr=memchr(p2,'@',INSIZE);
if (NULL==endptr)
i=INSIZE;/* no ender? use max */
else
i=endptr-p2;/* length of stuff before it */

memcpy(hold,p2,i);/* copy formatting string */
hold[i++]='\n';/* add a new-line.. */
hold[i]='\0';/* ..and a null terminator */

printf(hold,p1);/* print it out */

return;/* and return */
}

Figure 146. Example of Function Used in a Persistent C Environment

488 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GSP5

* this example demonstrates a persistent C environment
* part 2 of 2-other file is CBC3GSP4
ENVACSECT
ENVAAMODEANY
ENVARMODEANY
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGENVA,R3
GETMAINR,LV=DSALEN
STR13,4(,R1)
LRR13,R1
USINGDSA,R13
LAR4,HANDLE «2¬
LAR5,STKSIZE
LAR6,STKLOC
STMR4,R6,PARMLIST
OIPARMLIST+8,X'80'
LAR1,PARMLIST
LR15,=V(EDCXHOTL)
BALRR14,R15
LAR8,10 «3¬
LOOPDS0H
STR8,LOOPCTR «4¬
LAR4,HANDLE
LAR5,USEFN
LAR6,LOOPCTR
LAR7,FMTSTR1
STMR4,R7,PARMLIST
OIPARMLIST+12,X'80'
LAR1,PARMLIST
LR15,=V(EDCXHOTU)
BALRR14,R15
LAR7,FMTSTR2 «5¬
STMR4,R7,PARMLIST
OIPARMLIST+12,X'80'
LR15,=V(EDCXHOTU)
BALRR14,R15
BCTR8,LOOP

Figure 147. Using a Persistent C Environment (Part 1 of 2)

Chapter 34. Using the System Programming C Facilities 489

«1¬ This routine is entered with standard linkage conventions. It saves the
registers in the save area pointed to by register 13, acquires a dynamic
storage area for its own use, and chains the save areas together.

«2¬ A C environment that includes support for the OS/390 C library is created
by calling EDCXHOTL. The parameter list for this call is the address of the
handle (for the persistent C environment created), the address of a word
containing the initial stack size, and the address of a word containing the
initial stack location (0 for below the 16MB line and 1 for above). This
parameter list uses the normal OS linkage format.

«3¬ The routine loops 10 times calling the C function crtn twice each time
through the loop.

«4¬ The parameter list for the first call is the address of the handle, the address
of a word pointing to the function, and the parameters to be received by
the function. EDCXHOTU is called. This causes the specified C function,
crtn() to be given control with register 1 pointing to the remaining
parameters, LOOPCTR and FMTSTR1.

«5¬ The C function is called again, this time with FMTSTR2 as the second
parameter.

STR4,PARMLIST «6¬
OI0(R1),X'80'
LAR1,PARMLIST
LR15,=V(EDCXHOTT)
BALRR14,R15
LRR1,R13 «7¬
LR13,4(0,R13)
FREEMAIN R,A=(1),LV=DSALEN
LMR14,R12,12(R13)
SRR15,R15
BRR14
USEFNDCV(CRTN)
STKSIZEDCA(4096)
STKLOCDCA(1)
FMTSTR1DCC'1st value of loopctr is %i@'
FMTSTR2DCC'value on 2nd call is %i@'
LTORG
DSADSECT,The dynamic storage area
SAVEAREADS18AThe save area
PARMLISTDS4A
HANDLEDCA(0)
LOOPCTRDCA(1)
DSALENEQU*-DSA
R0EQU0
R1EQU1
R2EQU2
R3EQU3
R4EQU4
R5EQU5
R6EQU6
R7EQU7
R8EQU8
R12EQU12
R13EQU13
R14EQU14
R15EQU15
ENDENVA

Figure 147. Using a Persistent C Environment (Part 2 of 2)

490 OS/390 V2R8.0 C/C++ Programming Guide

«6¬ When the loop ends, EDCXHOTT is called to terminate the environment
created at «2¬

«7¬ The routine terminates by freeing its dynamic storage area and returning to
its caller.

Table 60 lists the parts used by persistent environments and their function and
location. The SYSLIB is CEE.SCEESPC.

Table 60. Parts Used by Persistent Environments

Part Name Function

Inclusion in Program

LocationNotes

EDCXHOTC This module is called to
set up a C environment
without OS/390
Language Environment.

2 Member of
SCEESPC

EDCXHOTL This module is called to
set up a C environment
with the OS/390 C
library functions
available.

2 Member of
SCEESPC

EDCXHOTT This module is called to
terminate a C
environment set up by
EDCXHOTC or
EDCXHOTL.

2 Member of
SCEESPC

EDCXHOTU This module is called to
use a C environment set
up by EDCXHOTC or
EDCXHOTL.

2 Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the
binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the
system programming version of the function.

Developing Services in the Service Routine Environment

The purpose of an application service routine environment is to allow the
development, using OS/390 C, of services that can be developed, tested, and
packaged independently of their intended users. You can:
v Isolate the service code from its user

Chapter 34. Using the System Programming C Facilities 491

v Specify and enforce a clearly defined Application Programming Interface (API)
between the user (another application program) and the service routine

v Share server code among more than one (perhaps different) user applications
simultaneously

v Enhance or maintain the service routine code with no disruption to its various
user applications

In this environment, a service application is developed as a C main() function
together with any functions it may call, and packaged as a complete program. This
program, if it is reentrant, can be freely installed in the ELPA and shared by all of
its users.

To provide the service to a user application, the developer of the service must offer
small assembler language stub routines that are link-edited with the user code.
These stub routines use services provided by the System Programming Facilities to
load or locate the server code and pass messages to it for execution. Examples of
these stub routines are shown in “Constructing User-Server Stub Routines” on
page 508.

Using Application Service Routine Control Flow

In this section examples are based on a service routine that manages a storage
queue. This server might be used by languages that do not support dynamic
memory allocation, or by applications that do not want to concern themselves with
the management of such data structures. The operations supported by this service
routine are:
v Initialize
v Terminate
v Add an element to the head of the queue (last in, first out)
v Add an element to the tail of the queue (first in, first out)
v Get the element at the head of the queue

Service Routine User Perspective

A conversation is initiated when a user routine calls a startup routine supplied by
the author of the service to establish a connection between the user and the server.
This routine returns a handle to the user that represents the server environment.
User routines may establish connections with many different services or many
times with the same server as long as the needed resources, principally memory,
are available in the system. Each connection has a different handle, and it is the
user routine’s responsibility to keep track of them.

Note: Memory files cannot be shared between the user routines and the server.

Once the user has initialized the server, it uses other server-supplied stub routines
to send requests (messages) to the server for action. One of the parameters to this
routine will be the handle returned by the initialize call. These request stubs would
typically return a feedback code to indicate success or failure as well as any other
information requested. The server defines the parameter list to be passed and the
feedback codes to be given to the user.

When the user is finished with the server, it calls yet another stub routine to
terminate the server.

492 OS/390 V2R8.0 C/C++ Programming Guide

This structure is illustrated in a sample user routine shown in Figure 148 :

CBC3GSP6:

«1¬ The user routine sets up a variable that will be used to hold the handle
returned by the server. The form taken by this handle is up to the supplier
of the service, but a fullword (4 bytes) should be regarded as typical.

«2¬ The user routine calls the initialize routine to set up the connection
between the user routine and the server.

«3¬ The user routine adds three strings to the queue. In this example, the first
character of the string indicates the order in which the user expects to
retrieve the strings.

«4¬ The user enters a loop in which the strings are retrieved from the queue.

«5¬ The user routine prints out the strings passed back by the call to the server.
If there is no string remaining in the queue a null string (zero length) is
returned.

«6¬ Before ending, the user routine closes down the server.

This routine is linked normally with the server-supplied stub routines (described in
“Constructing User-Server Stub Routines” on page 508).

PROGRAM MAIN

C Example User-Service Routine application

C Define the variable that will hold the 'handle' for the server
INTEGER*4 HANDLE «1¬

C Define the variable that will hold feedback codes
INTEGER*4 FEEDBACK

C Define the variable that we'll use to get the strings back
CHARACTER*100 CH
INTEGER*4 CHLEN

C initialize the server
CALL QMGINIT(HANDLE) «2¬

C Feed some strings to the server «3¬
CALL QMGLIFO(HANDLE,FEEDBACK,17,'2 Sample string 1')
CALL QMGLIFO(HANDLE,FEEDBACK,23,'1 Another sample string')
CALL QMGFIFO(HANDLE,FEEDBACK,20,'3 Yet another string')

C Get the strings back, print out length and value
DO 1 I=1,3 «4¬
CALL QMGGET(HANDLE,FEEDBACK,CHLEN,CH)
PRINT *,CHLEN,CH(1:CHLEN) «5¬

1 CONTINUE

C Terminate the server

CALL QMGTERM(HANDLE) «6¬

C Go home
STOP
END

Figure 148. Example of User Routine

Chapter 34. Using the System Programming C Facilities 493

Service Routine Perspective

A service routine is a complete, stand alone module that runs in its own C
environment. Its environment is created on demand by user application routines
that call it using stub routines supplied by the server. When this happens, the
server code enters at its main() entry point and, typically, goes into a loop that
contains a function call to get the next to-do. One possible to-do is terminate; when
this command is received the server should exit() or return from its main()
function. The environment created when the server was started terminates and all
resources held by the server are freed (except storage acquired by __24malc() or
__4kmalc(), as described in “__24malc() — Allocate Storage below 16MB Line” on
page 523 and “__4kmalc() — Allocate Page-Aligned Storage” on page 524.

This structure is illustrated in a sample user routine shown in Figure 149:

CBC3GSP7:

/* this is an example of an application service routine */

#include <spc.h> «1¬
#include <stdlib.h>
#include <string.h>

#define LIFO 1 «2¬
#define FIFO 2
#define GET 3
#define TERM -1

int main(void) { «3¬

int retcode=0;

/* data structures to manage the queue */
struct queue_entry { «4¬

struct queue_entry *next;
int length;
char val[1];

};

struct queue_entry *head;
struct queue_entry *tail;

Figure 149. Example of application service routine (Part 1 of 3)

494 OS/390 V2R8.0 C/C++ Programming Guide

struct { «5¬
int code;
union info *plist;

} *req;

union info { «6¬
struct {

int *length;
char *string;

} lifo;
struct {

int *length;
char *string;

} fifo;
struct {

int *length;
char *string;

} get;
};
/* initialize the queue pointers */
head = NULL; «7¬
tail = NULL;

/* the main processing loop goes on until a termination signal
is sent */

for(;;) { «8¬
union info *info;
int length;
char *string;
struct queue_entry *ent;

/* get a message from the user routine */
req=__xsrvc(retcode); «9¬ «18¬ .
info = req->plist; «10¬

switch(req->code) { «11¬

case LIFO: { «12¬
length=*(*info).lifo.length;
string= (*info).lifo.string;
ent = malloc(sizeof *ent - 1 + length); «13¬
memcpy((*ent).val,string,length);
__xsacc(0); «14¬
(*ent).length=length;
(*ent).next=head;
head=ent;
if (NULL==tail) tail=ent;
break;

}

Figure 149. Example of application service routine (Part 2 of 3)

Chapter 34. Using the System Programming C Facilities 495

«1¬ The server routine should include the appropriate header files. spc.h
contains the function prototypes for the routines that are used to maintain
the conversation between the server routine and the user routine. string.h
is required if string or memory functions are used in the code and OS/390
Language Environment will not be available at run time; this header file
contains the directives necessary to use these built-in functions.

«2¬ These are the command codes of the requests that can be sent to this server.

«3¬ The server begins with a main() function. This function gets control when
the user calls QMGINIT.

«4¬ This server manages an in-storage queue of unstructured elements. It does
this by maintaining a linked list of elements. The structure queue_entry
contains an individual entry; head and tail point to the first and last
entries in the queue.

«5¬ Requests come to the server in the form of a pointer to a structure
containing a command code (in this case, one of LIFO, FIFO, GET, or TERM)
and a pointer to a parameter list associated with the command code. The
parameter list is what follows HANDLE and FEEDBACK in the calls to QMGLIFO,

case FIFO: { «15¬
length=*(*info).fifo.length;
string= (*info).fifo.string;
ent = malloc(sizeof *ent - 1 + length);
memcpy((*ent).val,string,length);
__xsacc(0);
(*ent).length=length;
(*ent).next=NULL;
if (NULL==head) head=ent;
else (*tail).next=ent;
tail=ent;
break;

}

case GET: { «15¬
if (NULL==head) {

*(*info).get.length=0;
break;

}
length = (*head).length;
string = (*info).get.string;
memcpy(string,(*head).val,length);
*(*info).get.length=length;
__xsacc(0);
ent=head;
head=(*ent).next;
free(ent);
if (NULL==head) tail=NULL;
break;

}
case TERM: «16¬

return 0;
default:

__xsacc(666); «17¬

}
}
return(0);

}

Figure 149. Example of application service routine (Part 3 of 3)

496 OS/390 V2R8.0 C/C++ Programming Guide

QMGFIFO, and QMGGET. Like the command codes, the structure of this
parameter list is established in concert with the stub routines.

«6¬ In this example, all the commands have exactly the same format. This may
not generally be the case, so a union of the various parameter list formats
is appropriate. Then the interface can be expanded without disrupting
existing code.

«7¬ Before accepting commands, required initialization is performed.

«8¬ This server is structured as an endless loop. This loop terminates when a
terminate message sends control to a return statement at «17¬.

«9¬ At this point, the server is ready for work. The call to __xsrvc() causes the
user routine to resume execution at the place it left off when it last called
the server. The value passed as the parameter is made available to the stub
routines for use as a feedback code. This function will not return until the
user application sends a request (using one of the stub routines, in this
example QMGLIFO, QMGFIFO, QMGGET, or QMGTERM).

«10¬ Extract the parameters from the structure pointed to by the call to
__xsrvc().

«11¬ Examine the request code sent by the user application.

«12¬ The LIFO request code is handled here.

«13¬ These library functions (and many others, the complete list is given in
“Using Functions in the System Programming C Environment” on
page 474) are normally available in this environment even though OS/390
Language Environment is not available at run time.

The amount of storage allocated is the size of the queue entry (defined at
«4¬) minus 1 (because the definition of the entry allowed for 1 character of
value) plus the length actually required for the value.

«14¬ This function should be used to indicate that the server has completed its
use of any data structures (parameters and data areas pointed to by the
parameters) belonging to the user application. The value passed to this
function or the value passed by the next call to __xsrvc()(which ever is
greater in magnitude) will be passed to the stub routine for use as a
feedback code.

«15¬ The handling of FIFO and GET is similar.

«16¬ When a terminate request is received, the server returns. This terminates
the loop (at «8¬) and the environment set up when the server was first
called.

«17¬ If the command code is not recognized the server acknowledges the
request and sets a return code that can be analyzed by the stub routine or
the user application.

«18¬ The server returns to the request for another to-do. The value passed as a
parameter here or the last value passed to __xsacc(), whichever has the
greater magnitude, is passed to the stub routine for use as a feedback code.

The server is built as a freestanding C application as described in “Creating
Freestanding Applications” on page 476.

You must specify EDCXSTRT, QMGSERV, EDCXMEM and EDCXEXIT when you
link edit.

Chapter 34. Using the System Programming C Facilities 497

Understanding the Stub Perspective

The stub routines provide the link between the user application and the
application service module. They are responsible for:
v Locating or loading the server code
v Providing the Application Programming Interface (API) seen by the user.

Many choices are available in the design of the API and how single calls in the
user are mapped. For example, the initialize call could accept parameters
governing the behavior of the session being established and pass them to the
server as commands once the server has been initialized. In the example the
interactions are straight forward, the initialize only starts up the server, and the
message calls send single messages, untouched and unexamined, to the server.

There are two kinds of stubs: the initialization stub and the message stubs.
Termination is a special case of a message stub. These stubs are most appropriately
written in assembler so that they can run in any language environment with
minimal performance cost.

The initialization stub is responsible for loading and calling the server. It can use
the low-level storage management and contents supervision routines supplied in
SCEESPC. These routines are described in “Tailoring the System Programming C
Environment” on page 509. The structure of an initialization stub is shown in
Figure 150 on page 499:

498 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GSP8

«1¬ Stub routines are presumed to have a save area available at the location
pointed to by register 13.

«2¬ The parameter list passed to stub routines is OS linkage; that is, register 1
points to a list of addresses. In this example, the initialization stub receives
only one parameter, the handle, that gets the address of a control block
representing the environment.

«3¬ For efficiency, this routine gets a work area that will be used by all the stub
routines. The low level storage management routine EDCXGET, (described in
“EDCXGET” on page 510) is available for this purpose. This area will be
the DSA for this and all other stub routines. It begins with an 18-word save
area for use by routines called by this stub. It will be freed by the
“terminate” stub.

«4¬ When a save area is available, EDCXLOAD (described in “EDCXLOAD” on
page 513) is called to load the server.

* this is an example of a server initialization stub
QMGINITTITLE'SERVERsupplied stub to initialize'
QMGINITCSECT,
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGQMGINIT,R3
USINGINPARMS,R1 «2¬
LR6,HANDLE@
DROPR1
LAR0,WALENlength of work area, below the line «3¬
LR15,=V(EDCXGET)GETMAIN some storage
BALRR14,R15
USINGWA,R1
STR13,SA+4
LRR13,R1
USINGWA,R13This is now our DSA
LAR1,NAME «4¬
LR15,=V(EDCXLOAD)
BALRR14,R15Load the server
STR1,PLIST «5¬
MVCPLIST+4(12),PLISTINI
LR15,=V(EDCXSRVI)
LAR1,PLIST
BALRR14,R15
MVC0(4,R15),=CL4'QMqm'eye-catcher «6¬
STR13,4(,R15) «7¬
STR15,0(,R6)Save handle in users parameter «8¬
LR13,4(,R13) «9¬
LMR14,R12,12(R13)
SRR15,R15
BRR14
PLISTINIDS0D
DCA(0),V(EDCXGET,EDCXFREE)
NAMEDCCL8'QMGSERV'
INPARMSDSECT
HANDLE@DSF
WADSECT
SADS18F
PLISTDS4F
WALENEQU*-WA
YREGS
END

Figure 150. Example of Server Initialization Stub

Chapter 34. Using the System Programming C Facilities 499

«5¬ EDCXSRVI is called to initialize the server. When control is returned from
this call, the server has built a complete environment and has asked for
something to do.

«6¬ The value returned by EDCXSRVI is the address of a control block that is
used to manage the interface between the user application and the service
application module. The first 3 words (12 bytes) of this control block are
reserved for the exclusive use of the stub routines. The fields following the
first 3 words may not be used by either the stub routines or the user, nor
may their values be altered. In this example, an eye-catcher (often useful for
debugging) is moved into the first word.

«7¬ The address of the work area acquired for dynamic storage requirements is
moved into the second word. The address of this control block is stored in
the user’s handle.

«8¬ The address of the control block from EDCXSRVI is placed in the user
routine’s handle. The user routine has no knowledge of the contents or
format of this field; it is simply a token that is passed to other stub routines
to manage the conversation between the user and the service routine.

«9¬ Having initialized the server, the stub returns to the user at «2¬ in
Figure 148 on page 493.

Message stubs are responsible for passing requests from the user application to the
service application. Like the initialization stub, they are free to use the low-level
storage management and contents supervision routines supplied with the system
programming facilities. Example message stubs are shown in Figure 151 on
page 501, Figure 152 on page 502, Figure 153 on page 504, and Figure 154 on
page 506.

500 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GSP9

«1¬ Like the initialize stub, the QMGLIFO message stub expects a standard
save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

«2¬ The handle contains the value that was placed there by the initialization
stub at «8¬ in Figure 150 on page 499. This is the address of the control
block that is used to manage the interface between the user application
and the server.

«3¬ Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at The
save area back chain field is set according to usual conventions.

«4¬ A parameter list consisting of the handle (as returned by EDCXSRVI at «5¬ in
Figure 150 on page 499 in the initialization stub), code for LIFO, and the
address of the remaining parameters.

* this is an example of a server message stub
QMGLIFOTITLE'SERVERsupplied stub for feeding strings LIFO'
QMGLIFOCSECT
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGQMGLIFO,R3
LRR5,R1
USINGINPARMS,R5
LR6,HANDLE@
LR6,0(,R6)Point to the handle «2¬
LR1,4(,R6)Point to work area got by QMGINIT «3¬
USINGWA,R1
STR13,SA+4Keep savearea passed into us
LRR13,R1WA is new savearea
USINGWA,R13
LAR7,LIFO «4¬
LAR8,INPARMS+8User parms start at 3rd
STMR6,R8,PLISThandle, LIFO, Other parms
LAR1,PLIST
LR15,=V(EDCXSRVN) «5¬
BALRR14,R15
LR1,FEEDBK@ «6¬
STR15,0(,R1)
LR13,4(,R13) «7¬
LR14,12(R13)
LMR0,R12,20(R13)
BRR14
INPARMSDSECT
HANDLE@DSF
FEEDBK@DSF
LENGTH@DSF
STRING@DSF
WADSECT
SADS18F
PLISTDS4F
WALENEQU*-WA
LIFOEQU1
FIFOEQU2
GETEQU3
TERMEQU-1
YREGS
END

Figure 151. Example of Server Message Stub-LIFO

Chapter 34. Using the System Programming C Facilities 501

«5¬ Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at «9¬ in Figure 149 on page 494 in the server. The server has
control until it asks for the next to-do, in this example at «9¬.

«6¬ The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something inherent in
the user-server relationship.

«7¬ Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

CBC3GSPD

«1¬ Like the initialize stub, the QMGFIFO message stub expects a standard

* this is an example of a server message stub
QMGFIFOTITLE'SERVERsupplied stub for feeding strings FIFO'
QMGFIFOCSECT
QMGFIFOAMODEANY
QMGFIFORMODEANY
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGQMGFIF0,R3
LRR5,R1
USINGINPARMS,R5
LR6,HANDLE@
LR6,0(,R6)Point to the handle «2¬
LR1,4(,R6)Point to work area got by QMGINIT «3¬
USINGWA,R1
STR13,SA+4Keep savearea passed into us
LRR13,R1WA is new savearea
USINGWA,R13
LAR7,FIFO «4¬
LAR8,INPARMS+8User parms start at 3rd
STMR6,R8,PLISThandle, FIFO, Other parms
LAR1,PLIST
LR15,=V(EDCXSRVN) «5¬
BALRR14,R15
LR1,FEEDBK@ «6¬
STR15,0(,R1)
LR13,4(,R13) «7¬
LR14,12(R13)
LMR0,R12,20(R13)
BRR14
INPARMSDSECT
HANDLE@DSF
FEEDBK@DSF
LENGTH@DSF
STRING@DSF
WADSECT
SADS18F
PLISTDS4F
WALENEQU*-WA
LIFOEQU1
FIFOEQU2
GETEQU3
TERMEQU-1
YREGS
END

Figure 152. Example of Server Message Stub-FIFO

502 OS/390 V2R8.0 C/C++ Programming Guide

save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

«2¬ The handle contains the value that was placed there by the initialization
stub at «8¬ in Figure 150 on page 499. This is the address of the control
block that is used to manage the interface between the user application
and the server.

«3¬ Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at «7¬ in
Figure 150 on page 499. The save area back chain field is set according to
usual conventions.

«4¬ A parameter list consisting of the handle (as returned by EDCXSRVI at «5¬ in
Figure 150 on page 499), code for FIFO, and the address of the remaining
parameters.

«5¬ Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at «9¬ Figure 149 on page 494 in the server. The server has control
until it asks for the next to-do, in this example at «9¬ in Figure 149 on
page 494, again.

«6¬ The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something inherent in
the user-server relationship.

«7¬ Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

Chapter 34. Using the System Programming C Facilities 503

CBC3GSPE

«1¬ Like the initialize stub, the QMGGET message stub expects a standard save
area pointed to by register 13. The parameters are passed with standard OS
linkage (register 1 pointing to a list of addresses).

«2¬ The handle contains the value that was placed there by the initialization
stub at «8¬ Figure 150 on page 499. This is the address of the control block
that is used to manage the interface between the user application and the
server.

«3¬ Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at «7¬
Figure 150 on page 499. The save area back chain field is set according to
usual conventions.

* this is an example of a server message stub
QMGGETTITLE'SERVERsupplied stub for feeding strings GET '
QMGGETCSECT
QMGGETAMODEANY
QMGGETRMODEANY
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGQMGGET,R3
LRR5,R1
USINGINPARMS,R5
LR6,HANDLE@
LR6,0(,R6)Point to the handle «2¬
LR1,4(,R6)Point to work area got by QMGINIT «3¬
USINGWA,R1
STR13,SA+4Keep savearea passed into us
LRR13,R1WA is new savearea
USINGWA,R13
LAR7,GET «4¬
LAR8,INPARMS+8User parms start at 3rd
STMR6,R8,PLISThandle, GET, Other parms
LAR1,PLIST
LR15,=V(EDCXSRVN) «5¬
BALRR14,R15
LR1,FEEDBK@ «6¬
STR15,0(,R1)
LR13,4(,R13) «7¬
LR14,12(R13)
LMR0,R12,20(R13)
BRR14
INPARMSDSECT
HANDLE@DSF
FEEDBK@DSF
LENGTH@DSF
STRING@DSF
WADSECT
SADS18F
PLISTDS4F
WALENEQU*-WA
LIFOEQU1
FIFOEQU2
GETEQU3
TERMEQU-1
YREGS
END

Figure 153. Example of Server Message Stub-GET

504 OS/390 V2R8.0 C/C++ Programming Guide

«4¬ A parameter list consisting of the handle (as returned by EDCXSRVI at «5¬
Figure 150 on page 499. in the initialization stub), code for GET, and the
address of the remaining parameters.

«5¬ Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at «9¬ in Figure 149 on page 494 in the server. The server has
control until it asks for the next to-do, in this example at «9¬ in Figure 149
on page 494, again.

«6¬ The value passed to __xsrvc() appears as the return code from EDCXSRVN.
This value is passed back to the user application in the second parameter.
This is part of the API defined by this particular server, not something inherent in
the user-server relationship.

«7¬ Control is returned to the user in the usual way.

This routine uses functions supplied in SCEESPC to load or locate the server code
and initialize its environment.

Chapter 34. Using the System Programming C Facilities 505

CBC3GSPF

«1¬ Like the initialize stub, the QMGTERM message stub expects a standard
save area pointed to by register 13. The parameters are passed with
standard OS linkage (register 1 pointing to a list of addresses).

«2¬ The handle contains the value that was placed there by the initialization
stub at «8¬ in Figure 150 on page 499. This is the address of the control
block that is used to manage the interface between the user application
and the server.

«3¬ Recover the address of the stub work area for use as a Dynamic Storage
Area (DSA). This value was saved here by the initialization stub at «7¬ in
Figure 150 on page 499. The save area back chain field is set according to
usual conventions.

«4¬ A parameter list consisting of the handle (as returned by EDCXSRVI at «5¬ in
Figure 150 on page 499), code for TERM, and the address of the remaining
parameters.

* this is an example of a server message stub
QMGTERMTITLE'SERVERsupplied stub for feeding strings TERM'
QMGTERMCSECT
QMGTERMAMODEANY
QMGTERMRMODEANY
STMR14,R12,12(R13) «1¬
LRR3,R15
USINGQMGTERM,R3
LRR5,R1
USINGINPARMS,R5
LR6,HANDLE@
LR6,0(,R6)Point to the handle «2¬
LR1,4(,R6)Point to work area got by QMGINIT «3¬
USINGWA,R1
STR13,SA+4Keep savearea passed into us
LRR13,R1WA is new savearea
USINGWA,R13
STR6,PLISTStore handle as first parameter
MVCPLIST+4,=A(TERM)Code for termination
LAR1,PLIST
LR15,=V(EDCXSRVN) «5¬
BALRR14,R15
LR13,4(,R13) «6¬
LR14,12(R13)
LMR0,R12,20(R13)
BRR14
INPARMSDSECT
HANDLE@DSF
FEEDBK@DSF
LENGTH@DSF
STRING@DSF
WADSECT
SADS18F
PLISTDS4F
WALENEQU*-WA
LIFOEQU1
FIFOEQU2
GETEQU3
TERMEQU-1
YREGS
END

Figure 154. Example of Server Message Stub-TERM

506 OS/390 V2R8.0 C/C++ Programming Guide

«5¬ Call EDCXSRVN to re-awaken the server. This causes the server to resume
control at «9¬ in Figure 149 on page 494 in the server. The server has
control until it asks for the next to-do, in this example at «9¬ in Figure 149
on page 494, again.

«6¬ Control is returned to the user in the usual way.

The routines in the following section are used to create and use a persistent C
environment for a server co-routine, written using OS/390 C and EDCXSTRT, or
EDCXSTRL and callable by a user application written in any language.

An initialization routine, EDCXSRVI, is called to start up a server. Control returns
from the initialization call with the server code started and waiting for work.

As with the persistent C environment, the initialization call returns a handle that is
used by EDCXSRVN for further communication with the created environment.
EDCXSRVN suspends the execution of the calling routine and sends a message to the
waiting server. When the server completes the function called for by the message
its execution is suspended and the caller of EDCXSRVN resumes.

The server environment is terminated when a Terminate message is sent to the
server.

Establishing a Server Environment

EDCXSRVI

This routine creates a OS/390 C environment for the server part of user-server
application. It is intended that this routine be called by a stub routine supplied by
the server and statically bound with the user application. The stub routine is
responsible for loading the server application code.

Parameters

1. The address of the entry point of the server code. This must be the address of
the EDCXSTRT or EDCXSTRL entry point.

2. The value to be in R1 when the server entry point is called. This can be used
for communication between the initialization stub and the server mainline; its
value can be retrieved in the server code. __xregs(1) will return a pointer to
this list of parameters.

3. The address of a low-level get-storage routine (meeting the same interface as
EDCXGET, but not necessarily EDCXGET).

4. The address of a low-level free-storage routine (meeting the same interface as
EDCXFREE, but not necessarily EDCXFREE).

Return

When this routine returns the server environment is fully established and waiting
for a message from the user. R15 points to a handle that is used in subsequent calls
to EDCXSRVN to send messages to the server.

Chapter 34. Using the System Programming C Facilities 507

Initiating a Server Request

EDCXSRVN

This routine is used by the stub routines that are linked with user application
routines to send a message to an active server in a user-server application.

Parameters

1. The address of the handle returned by EDCXSRVI.
2. The function code for the function to be performed. The value -1 is used to

indicate that the server should terminate. This value should not be used for any
other purpose.

3. Other parameters, which are passed to the server code.

Return

R15 will contain the return code supplied by the server (as the parameter to
EDCXSACC) for this service.

Accepting a Request for Service

EDCXSACC

This routine operates in the server part of a user-server application. It is used to
indicate acceptance or rejection of the last-requested service.

Parameters

1. The return code of the last-requested service 0 indicating that the request was
accepted and will be processed.

For more information on EDCXSACC, see “__xsacc() — Accept Request for Service”
on page 522.

Returning Control from Service

EDCXSRVC

This routine operates in the server part of a user-server application. It is used to
indicate completion of the last-requested service and to get information required
for the next service to be performed.

Parameters

1. The return code for the last-requested service.

For more information on EDCXSRVC, see “__xsrvc() — Return Control from Service”
on page 523.

Constructing User-Server Stub Routines

Part of building a server for use in a user-server environment is the construction of
stub routines that load and initialize the server, pass messages to the server, and
terminate the server. These stub routines are typically written in assembler
language to allow them to be freely called from other environments without regard
to the characteristics of the calling environment.

508 OS/390 V2R8.0 C/C++ Programming Guide

Building User-Server Environments

To build your server application, follow the rules for building a freestanding
application as described in “Building Freestanding Applications to Run under
OS/390” on page 479.

There are no special considerations for building user applications. The automatic
call facility will cause the correct routines from CEE.SCEESPC to be included.

Table 61. Parts used by or with Application Server Routines

Part Name Function

Inclusion in Program

LocationNotes

EDCXSRVI This module is used by a
server-supplied stub
routine to start up a
server.

2 in the user
module

Member of
SCEESPC

EDCXSRVN This module is used by a
server-supplied stub
routine to send a
service-request message
to a server.

2 in the user
module

Member of
SCEESPC

EDCXSRVC This module is used by a
server to wait for the
next message to process.

2 in the user
module

Member of
SCEESPC

EDCXSACC This module is used by a
server to accept the last
message received.

2 in the user
module

Member of
SCEESPC

EDCXSPRT System programming
version of sprintf().

3 Member of
SCEESPC

EDCXEXIT System programming
version of exit().

3 Member of
SCEESPC

EDCXMEM System programming
version of malloc(),
calloc(), realloc(),
free(), __4kmalc() and
__24malc().

3 Member of
SCEESPC

Notes:

1. This module must be explicitly included in the program using the
binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the
system programming version of the function.

Tailoring the System Programming C Environment

Depending on the environment under which you want to run your OS/390 C
routines, you might want to replace some of the following routines for
system-specific routines. To work correctly, your routines should match the
interface as documented in this section.

The routines as supplied by IBM with OS/390 C meet the interface as documented.

Chapter 34. Using the System Programming C Facilities 509

Generating Abends

EDCXABND

This routine is called to generate an abend if there is an internal error during
initialization or termination of a system programming C environment.

Parameter

R1 The address of the abend code and reason code

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

This module must have the entry point name of @@XABND.

CBC3GSPA:

Getting Storage

EDCXGET

This routine is called to get storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit is zero or if the request
was made in 24-bit addressing mode, the storage will be allocated below
the 16M line. If the high-order bit is on and the request is made in 31-bit

* this is an example of a routine to generate an abend
@@XABENDTITLE'Generate an Abend'
EDCXABNDCSECT
EDCXABNDAMODEANY
EDCXABNDRMODEANY
@@XABNDDS0H
ENTRY @@XABND
BALR R2,0
USING *,R2
SPACE 1
*
USINGPARMS,R1
LR4,REAS_RCget reason code
LR2,ERROR_RCget error code
DROPR1,R2
ABENDABEND(R2),REASON=(R4)
*
LTORG
EJECT
PARMSDSECT
ERROR_RCDS F
REAS_RCDS F
*
R1EQU 1
R2EQU 2
R3EQU 3
R4EQU 4
END

Figure 155. Example of Routine to Generate Abend

510 OS/390 V2R8.0 C/C++ Programming Guide

addressing mode, storage will be allocated anywhere with a preference for
storage above the 16M line if available.

Return

R0 The length of the storage block acquired, in bytes.

R1 The address of the acquired area or NULL.

R15 A system dependent return code, which must be zero on success and
non-zero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

The entry point name for this routine must be @@XGET.

If you provide your own EDCXGET routine, it will be used when C library functions
explicitly get storage. Whenever the library functions invoke operating system
services, there may be implicit requests for storage that cannot be tailored.

CBC3GSPB

* this is an example of a routine to get storage
@@XGET TITLE 'Obtain memory as specified in R0'
EDCXGET CSECT
EDCXGET AMODE ANY
EDCXGET RMODE ANY
@@XGET DS 0H

ENTRY @@XGET
SPACE 1
BALR R2,R0
USING *,R2
LTR R0,R0 Memory above or below?
BNL BELOW
SLL R0,1 Want memory anywhere
SRL R0,1
LTR R2,R2 are we running above the line?
BNL BELOW no, so ignore above request
GETMAIN RC,SP=0,LV=(R0),LOC=ANY
LTR R15,R15 Was it successful?
BZR R14 Yes...
SR R1,R1 No, indicate failure
BR R14

Figure 156. Example of routine to get storage (Part 1 of 2)

Chapter 34. Using the System Programming C Facilities 511

Getting Page-Aligned Storage

EDCX4KGT

This routine is called to get page-aligned storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit of this register is zero
or if the request was made in 24-bit addressing mode, the storage is
allocated below the 16M line. If the high-order bit is on and the request is
made in 31-bit addressing mode, storage is allocated above the 16M line. If
this space is not available, storage is allocated elsewhere.

Return

R0 The length of the storage block acquired, in bytes. This length may be
greater than the size requested.

R1 The address of the acquired area or NULL.

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

Its entry point must be @@X4KGET.

Freeing Storage

EDCXFREE

This routine is called to return storage to the operating system.

Parameters

R0 The length of storage to be freed, in bytes

R1 The address of the area to be freed

BELOW DS 0H Get memory below the line
GETMAIN RC,SP=0,LV=(R0),LOC=BELOW
LTR R15,R15 Was it successful?
BZR R14 Yes...
SR R1,R1 no, indicate failure in R1
BR R14

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R4 EQU 4
R13 EQU 13
R14 EQU 14
R15 EQU 15

Figure 156. Example of routine to get storage (Part 2 of 2)

512 OS/390 V2R8.0 C/C++ Programming Guide

Return

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is not provided with a save area. In addition to the linkage registers,
this routine may freely alter registers 2 and 4.

Its entry point must be @@XFREE.

If you provide your own EDCXFREE routine, it will be used when C library functions
explicitly free storage. Whenever the library functions invoke operating-system
services, there may be implicit requests to free storage that cannot be tailored.

CBC3GSPC

Loading a Module

EDCXLOAD

This routine is called to load a named module into storage.

Parameter

R1 Points to the name of the routine to be loaded

Return

R1 the address and amode of the routine or 0

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must
save and restore all registers used.

Its entry point must be @@XLOAD.

* this is an example of a routine to free storage
EDCXFREECSECT
EDCXFREEAMODEANY
EDCXFREERMODEANY
@@XFREEDS0H
ENTRY@@XFREE
BALRR2,0
USING*,R2
*
FREEMAIN RC,SP=0,LV=(0),A=(1)
BRR14return
*
R2EQU2
R14EQU14
END

Figure 157. Example of Routine to Free Storage

Chapter 34. Using the System Programming C Facilities 513

Deleting a Module

EDCXUNLD

This routine is called to delete a named module from storage.

Parameter

R1 Points to the name of the routine to be deleted

Return

R15 A system-dependent return code, which must be zero on success and
nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must
save and restore all registers used.

Its entry point must be @@XUNLD.

Including a Run-Time Message File

When you are running a freestanding environment and run-time messages are
required, you must explicitly include a message file at link-edit time. One of the
three following modules can be included to produce these messages:

EDCXLANE
Creates run-time error messages in uppercase and lowercase English

EDCXLANU
Creates run-time error messages in uppercase English

EDCXLANK
Creates run-time error messages in Kanji

If one of these message routines is not included and an exception occurs, the
program could terminate without displaying a message. These error messages are
directed to stderr. Refer to the OS/390 Language Environment Debugging Guide and
Run-Time Messages for more information.

The following tables contain the abend codes and reason codes specific to the
system programming facilities.

Table 62. Abend Codes Specific to System Programming Environments

Abend Code Description

2100 No storage abend code

2101 Error freeing storage

2102 Error finding stack seg home

2103 Error loading library

2104 Error with heap allocation

2105 Error with system level command

2106 Error initializing statics

2107 Error establishing error handler for EDCXSTRX

2108 Error cleaning up heap for EDCXSTRX

514 OS/390 V2R8.0 C/C++ Programming Guide

Table 62. Abend Codes Specific to System Programming Environments (continued)

Abend Code Description

4000 Error when handling abend

Table 63. Reason Codes Specific to System Programming Environments

Reason Code Description

7201 Error in initialization.

7202 Error in termination.

7203 Error when extending stack.

7204 Error during longjmp/setjmp.

7205 Can not locate static init. The routine EDCRCINT must
be included in your module if you use the RENT
compiler option.

7206 Module EDCXABRT was not explicitly included at link
edit time.

7207 No initial heap allocation is specified and a heap is
required.

Additional Library Routines

The following routines provide additional support that is unique to applications
running in a system programming C environment. These routines are packaged as
part of the link library.

__xregs()
Get registers on entry

__xusr()
Get address of User Word

__xusr2()
Get address of User Word

__4kmalc()
Allocate page-aligned storage

__24malc()
Allocate storage below 16mb line

For more information on these routines refer to “Chapter 35. Library Functions for
System Programming C” on page 519.

Chapter 34. Using the System Programming C Facilities 515

Summary of Application Types

Table 64 shows the summary of application types, how they are called, and the
module entry points.

Table 64. Summary of Types

Type of
Application

How It Is
Called

Module
Entry Point

Data Sets
Required at
Execution Time

Run-Time Options (1) and
Other Considerations

A mainline
function that
requires no
dynamic
library
facilities

From the
command
line, JCL,
or an EXEC
or CLIST.

EDCXSTRT,
which must
be
explicitly
included at
bind time

None. Run-Time options are
specified by #pragma
runopts in compilation unit
for the main() function.
The heap and stack options
are honored. The stack
defaults to be above the
line.

A mainline
function that
requires the
OS/390 C
library
functions

From the
command
line, JCL,
or an EXEC
or CLIST.

EDCXSTRL,
which must
be
explicitly
included at
bind time

CEE.SCEERUN is
required

Run-Time options are
specified by #pragma
runopts in the compile unit
for the entry point. The
heap and stack options are
honored, except that the
stack will default to be
above the line. The SPIE
option is honored if a
library is called for.

A C
subroutine
called from
assembler
language
using a
pre-established
persistent
environment

A handle,
the address
of the
subroutine
and a
parameter
list are
passed to
EDCXHOTU.

CEE.SCEERUN is
optional,
depending upon
the way the handle
was set up.

Run-Time options are
specified by #pragma
runopts in any compile
unit. The heap and stack
options are honored, except
that the stack will default
to be above the line. The
SPIE option is honored if a
library is called for. The
runopts in the first object
module in the link edit that
contains runopts will
prevail, even if this
compilation unit is part of
the calling application.

The environment is
established by calling
EDCXHOTC (or
EDCXHOTL if library
facilities are required).
These functions return a
value (the handle) which is
used to call functions that
use the environment.

516 OS/390 V2R8.0 C/C++ Programming Guide

Table 64. Summary of Types (continued)

Type of
Application

How It Is
Called

Module
Entry Point

Data Sets
Required at
Execution Time

Run-Time Options (1) and
Other Considerations

A Server User code
includes a
stub
routine that
calls
EDCXSRVI.
This causes
the server
to be
loaded and
control to
be passed
to its entry
point.

EDCXSTRT,
or
EDCXSTRL,
depending
upon
whether
the server
needs the
C run-time
library or
not

CEE.SCEERUN if
required by the
server code.

Run-Time options are the
same as for EDCXSTRL or
EDCXSTRT.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize
and communicate with the
server. These are bound
with the user application.

A User of an
Application
Server

The server and
CEE.SCEERUN if
required by the
server.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize
and communicate with the
server.

Chapter 34. Using the System Programming C Facilities 517

518 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 35. Library Functions for System Programming C

This chapter describes the library functions specific to the System Programming C
environment:
v __xhotc()

v __xhotl()

v __xhott()

v __xhotu()

v __xregs()

v __xsacc()

v __xsrvc()

v __xusr()

v __xusr2()

v __24malc()

v __4kmalc()

__xhotc() — Set Up a Persistent C Environment (No Library)

Format
#include <spc.h>

void *__xhotc(void *handle, int stack, int location);

Description

The function creates a persistent C environment that does not require the dynamic
library facilities of OS/390 Language Environment at run time. The parameters are
fullwords (four bytes).
1. handle is the field for the token (or handle) which is returned.
2. stack is the initial stack allocation required for the environment.
3. location is the location of the stack:

0 Below the line

1 Above the line

__xhotc() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTC.

Returned Value

__xhotc() returns a token (or handle) which is used in subsequent calls to
__xhotu() and __xhott() to use or terminate a persistent C environment. This
handle is found in both the first parameter passed and R15.

The RENT compiler option is not supported for routines called using this
environment.

© Copyright IBM Corp. 1996, 1999 519

Example

For an extensive example of the use of __xhotc() see “Creating and Using
Persistent C Environments” on page 486.

__xhotl() — Set Up a Persistent C Environment (With Library)

Format
#include <spc.h>

void *__xhotl(void *handle, int stack, int location);

Description

The function creates a persistent C environment that will use the dynamic OS/390
C/C++ library functions. All library facilities are available in this environment
except:
v The RENT compiler option is not supported in the persistent environment

described in this chapter.
v Exception handling is not supported in persistent C environments.

The following parameters are fullwords (four bytes):
1. handle is the field for the token (or handle) which is returned.
2. stack is the initial stack allocation required for the environment.
3. location is the location of the stack:

0 Below the line

1 Anywhere

__xhotl() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTL.

Returned Value

This routine returns a token (or handle) which is used in subsequent calls to
__xhotu() and __xhott() to use or terminate a persistent C environment. This
handle is found in both the first parameter passed and R15.

Example

For an extensive example of the use of __xhotl() see “Creating and Using
Persistent C Environments” on page 486.

__xhott() — Terminate a Persistent C Environment

Format
#include <spc.h>

void __xhott(void *handle);

520 OS/390 V2R8.0 C/C++ Programming Guide

Description

This function terminates a persistent C environment created by __xhotc() or
__xhotl().

The parameter of __xhott() is a handle returned by __xhotc() or __xhotl().

__xhott() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTT.

Example

For an extensive example of the use of __xhott() see “Creating and Using
Persistent C Environments” on page 486.

__xhotu() — Run a Function in a Persistent C Environment

Format
#include <spc.h>

void *__xhotu(void *handle, void *function, ...);

Description

This function is used to run a function in a persistent C environment. The
parameters are fullwords (four bytes):
1. handle is a handle—returned by __xhotc() or __xhotl()

2. function is a function pointer, which points to the desired C function
3. First parameter to pass to the function
4. Second parameter to pass to the function

...

This routine, and the C function being called, must use OS linkage. As a result, you
cannot make direct use of OS/390 C/C++ Library functions with this function. C
functions being invoked using __xhotu() must be compiled with #pragma
linkage(func_name,OS).

__xhotu() is specific to SP C. It is part of the group serving the persistent C
environment.

The function is also available under the name EDCXHOTU.

Returned Value

The returned value from __xhotu() is the returned value from the function run in
the persistent C environment.

Example

For an extensive example of the use of __xhotu() see “Creating and Using
Persistent C Environments” on page 486.

Chapter 35. Library Functions for System Programming C 521

__xregs() — Get Registers on Entry

Format
#include <spc.h>

int __xregs(int register);

Description

This routine finds the value a specified register had on entry to EDCXSTRT,
EDCXSTRL, EDCXSTRX, or the main routine of an exit routine compiled with
#pragma environment(...).

__xregs() is available in these environments only. For more information about
EDCXSTRT, EDXSTRL, or EDCXSTRX, see “Creating Freestanding Applications” on
page 476.

__xregs() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXREGS.

Returned Value

__xregs() returnd the value found.

__xsacc() — Accept Request for Service

Format
#include <spc.h>

void __xsacc(int message);

Description

This routine operates in the server part of a user-server application. It is used to
indicate acceptance or rejection of the last-requested service.

Calls to __xsacc are optional but, if made, should be when the request is validated
and all server references to user-owned storage are complete. __xsacc does not
cause a return of control to the user; its sole purpose is to indicate that user-owned
storage is no longer required by the application server.

In the case of a request that cannot be processed, possibly because the user’s
command is not recognized by the server or the parameter format is invalid, the
call to __xsacc should be omitted.

__xsacc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSACC.

Returned Value

The return code for the last-requested service, zero indicating that the request was
accepted and will be processed.

522 OS/390 V2R8.0 C/C++ Programming Guide

__xsrvc() — Return Control from Service

Format
#include <spc.h>

void *__xsrvc(int message);

Description

This routine operates in the server part of a user-server application. It is used to
indicate completion of the last-requested service and to get the information
required for the next service to be performed.

message is the return code for the last-requested service.

__xsrvc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSRVC.

__xusr() - __xusr2() — Get Address of User Word

Format
#include <spc.h>

void *__xusr(void);
void *__xusr2(void);

Description

Two words in an internal control block are available for customer use. These words
have an initial value of zero (that is, all bits are 0), but are otherwise ignored by
compiled code, and by the OS/390 C/C++-specific Library. The values in these
words may be freely queried or set by application code using the pointers returned
by these functions.

__xusr() and __xusr2() are specific to SP C.

The __xusr() and __xusr2() functions are also available under the names EDCXUSR
and EDCXUSR2, respectively.

Returned Value

__xusr() and __xusr2() return the addresses of these user words. The words, and
indeed __xusr() and __xusr2() themselves, are available in any environment, not
only the system programming environments.

__24malc() — Allocate Storage below 16MB Line

Format
#include <spc.h>

void *_24malc(size_t size);

Compiler Option: LANGLVL(EXTENDED)

Chapter 35. Library Functions for System Programming C 523

Description

This function performs in the same manner as malloc except that it allocates
storage below the 16MB line in XA or ESA systems even when the run-time option
HEAP(ANYWHERE) is specified.

Storage allocated by this function is not part of the heap, so you must free this
storage explicitly using the free() function before this environment is terminated.
Storage allocated using __24malc() is not automatically freed when the
environment is terminated.

The function is available under the System Programming Environment.

__4kmalc() — Allocate Page-Aligned Storage

Format
#include <spc.h>

void *_4kmalc(size_t size);

Compiler Option: LANGLVL(EXTENDED)

Description

This function performs in the same manner as malloc() except that it allocates
page-aligned storage.

Storage allocated by this function is not part of the heap, so you must free this
storage explicitly using the free() function before this environment is terminated.
Storage allocated using __4kmalc() is not automatically freed when the
environment is terminated.

The function is available under the System Programming Environment.

524 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 36. Using Run-Time User Exits

This chapter shows how to use run-time user exits with the OS/390 Language
Environment run-time library. This is general-use programming interface
information and associated guidance information for using the library.

This section is provided here for your convenience. For further information on
using run-time user exits in the OS/390 Language Environment environment, refer
to the OS/390 Language Environment Programming Guide.

Using Run-Time User Exits in OS/390 Language Environment

OS/390 Language Environment provides user exits that you can use for functions
at your installation. You can use the assembler user exit (CEEBXITA) or the HLL user
exit (CEEBINT). This section provides information about using these run-time user
exits.

Understanding the Basics

User exits are invoked under OS/390 Language Environment to perform enclave
initialization functions and both normal and abnormal termination functions. User
exits offer you a chance to perform certain functions at a point where you would
not otherwise have a chance to do so. In an assembler initialization user exit, for
example, you can specify a list of run-time options that establish characteristics of
the environment. This is done before the actual execution of any of your
application code. Another example is using an assembler termination user exit to
request a dump after your application has terminated with an abend.

In most cases, you do not need to modify any user exit to run your application.
Instead, you can accept the IBM-supplied default versions of the exits, or the
defaults as defined by your installation. To do so, run your application normally
and the default versions of the exits are invoked. You may also want to read the
sections “User Exits Supported under OS/390 Language Environment.” on
page 526 and “Order of Processing of User Exits” on page 526, which provide an
overview of the user exits and describe when they are invoked.

If you plan to modify either of the user exits to perform some specific function,
you must link the modified exit to your application before running, as described in
“Using Installation-Wide or Application-Specific User Exits” on page 527. In
addition, the sections “Using the Assembler User Exit” on page 528 and “High
Level Language User Exit Interface” on page 539 describe the respective user exit
interfaces to which you must adhere to change an assembler or HLL user exit.

PL/I and C/370 Compatibility

For more information on compatibility support for the IBMBXITA and IBMFXITA
assembler user exits, see “PL/I and C/370 Compatibility” on page 539.Refer to the
IBM C/370 Library Version 2 Release 2 Programming Guide or to the IBM PL/I for MVS
& VM Migration Guide for information about the IBMBINT HLL user exit. IBMBINT is
not available under C++.

© Copyright IBM Corp. 1996, 1999 525

User Exits Supported under OS/390 Language Environment.

OS/390 Language Environment provides two user exit routines, one written in
assembler and the other in an OS/390 Language Environment-conforming HLL.
You can find sample jobs containing these user exits in the SCEESAMP sample
library.

The user exits supported by OS/390 Language Environment are shown in Table 65.

Table 65. User Exits Supported under OS/390 Language Environment

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization
Enclave termination
Process termination

CEEBINT HLL user exit. CEEBINT can be written in
OS/390 C, PL/I, OS/390 Language
Environment-conforming assembler, or in
C++ (see restrictions in “Order of
Processing of User Exits”).

Enclave initialization

Order of Processing of User Exits

The location and order in which user exits are driven for your application are
summarized in Figure 158.

In Figure 158, run-time user exits are invoked in the following sequence:
1. Assembler user exit is invoked for enclave initialization.

The assembler user exit (CEEBXITA) is invoked very early during the
initialization process, before the enclave initialization is complete. Early
invocation of the assembler exit allows the enclave initialization code to benefit

User Application Code

(Main routine plus subroutines)

INITIALIZATION

PROCESSING

TERMINATION

PROCESSING

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBINT)

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBXITA)

(invoked for
enclave initialization)

(invoked for
enclave termination)

(invoked for
enclave termination)

Figure 158. Location of User Exits

526 OS/390 V2R8.0 C/C++ Programming Guide

from any changes that might be contained in the exit. If run-time options are
provided in the assembler exit, the enclave initialization code is aware of the
new options.

2. Environment is established.
3. HLL user exit is invoked.

The HLL initialization exit (CEEBINT) is invoked just before the invocation of the
application code. In OS/390 Language Environment, this exit can be written in
OS/390 C, PL/I, OS/390 Language Environment-conforming assembler, or
OS/390 C++. However, you can only write CEEBINT in OS/390 C++ if the
following conditions are met:
v CEEBINT must be declared with C linkage, i.e., it must be declared with

extern "C". If you are using C, you must compile your application code with
the RENT compile-time option.

v You must bind your application code with the OS/390 binder.
v CEEBINT must be used as an application-specific user exit, rather than as an

installation-wide user exit (refer to “Using Installation-Wide or
Application-Specific User Exits” for more information).

The HLL initialization exit cannot be written in COBOL, although COBOL
applications can use this HLL user exit. At the time when CEEBINT is invoked,
the run-time environment is fully operational and all OS/390 Language
Environment-conforming HLLs are supported.

4. Main routine is invoked.
5. Main routine returns control to caller.
6. Environment is terminated.
7. Assembler user exit is invoked for termination of the enclave.

CEEBXITA is invoked for enclave termination processing after all application
code in the enclave has completed, but before any enclave termination activity.

8. Assembler user exit is invoked for termination of the process.
CEEBXITA is invoked again when the OS/390 Language Environment process
terminates.

Although both the assembler and HLL exits are invoked for initialization, they do
not perform exactly the same functions. See “CEEBXITA Behavior during Enclave
Initialization” on page 528 and “High Level Language User Exit Interface” on
page 539 for a detailed description of each exit.

OS/390 Language Environment provides the CEEBXITA assembler user exit for
termination but does not provide a corresponding HLL termination user exit.

Using Installation-Wide or Application-Specific User Exits

IBM offers default versions of CEEBXITA and CEEBINT. You can use the
IBM-supplied default version of either exit, or you can customize CEEBXITA or
CEEBINT for use on an installation-wide basis. When CEEBXITA or CEEBINT is linked
with the OS/390 Language Environment initialization/termination library routines
during installation, it functions as an installation-wide user exit.

Finally, you can customize CEEBXITA or CEEBINT yourself for use on your
application. When CEEBXITA or CEEBINT is linked in your program, it functions as
an application-specific user exit. The application-specific exit is used only when
you run that application. The installation-wide assembler user exit is not executed.

Chapter 36. Using Run-Time User Exits 527

To obtain an application-specific user exit, you must explicitly include it at bind
time in the application using a binder INCLUDE control statement. Any time that
the application-specific exit is modified, it must be relinked with the application.

The assembler user exit interface is described in “Assembler User Exit Interface” on
page 530. The HLL user exit interface is described in “High Level Language User
Exit Interface” on page 539.

Using the Assembler User Exit

The assembler user exit CEEBXITA tailors the characteristics of the enclave before it
is established. CEEBXITA must be written in assembler language because an HLL
environment may not yet be established when the exit is invoked. CEEBXITA is
driven for enclave initialization and enclave termination regardless of whether the
enclave is the first enclave in the process or a nested enclave. CEEBXITA can
differentiate easily between first and nested enclaves. For more information about
nested enclaves, see the OS/390 Language Environment Programming Guide.

CEEBXITA behaves differently depending on when it is invoked, as described in the
following sections.

Using Sample Assembler User Exits

Sample assembler user exit programs are distributed with OS/390 Language
Environment. You can use them and modify the code for the requirements of your
own application. Choose a sample program appropriate for your application. The
following assembler exit user programs are delivered with OS/390 Language
Environment.

Table 66. Sample Assembler User Exits for OS/390 Language Environment

Example User Exit Operating System Language (if Language Specific)

CEEBXITA MVS (default)

CEEBXITC TSO

CEECXITA CICS (default)

CEEBX05A MVS COBOL

Note:

1. CEEBXITA and CEECXITA are the defaults on your system for MVS and CICS, if OS/390
Language Environment is installed at your site without modification.

2. The source code for CEEBXITA, CEEBXITC, CEEDXITA, and CEEBX05A can be found on MVS
in the sample library SCEESAMP.

3. CEEBX05A is an example user exit program for COBOL applications on OS/390.

CEEBXITA Behavior during Enclave Initialization

The CEEBXITA assembler user exit is invoked before enclave initialization is
performed. You can use it to help guide the establishment of the environment in
which your application runs. For example, you can allocate data sets in the
assembler user exit. The user exit can interrogate program parameters supplied in
the JCL and change them if desired. In addition, you can specify run-time options
in the user exit using the CEEAUE_OPTION field of the assembler interface (see
“Assembler User Exit Interface” on page 530 for information about how to do this).

528 OS/390 V2R8.0 C/C++ Programming Guide

CEEBXITA performs no special tasks other than to return control to OS/390
Language Environment initialization.

CEEBXITA Behavior during Enclave Termination

The CEEBXITA assembler exit is invoked after the user code for the enclave has
completed, but before the occurrence of any enclave termination activity. For
example, CEEBXITA is invoked before the storage report is produced (if one was
requested), before data sets are closed, and before HLLs are invoked for enclave
termination. In other words, the assembler user exit for termination is invoked
when the environment is still active.

The assembler user exits allow you to request an abend. Under OS/390 (as well as
TSO and CICS), you can also request a dump to assist in problem diagnosis. Note
that termination activities have not yet begun when the user exit is invoked. Thus,
the majority of storage has not been modified when the dump is produced.

It is possible to request an abend and dump in the enclave termination user exit
for all enclave-terminating events.

Example code that shows how to request an abend and dump when there is an
unhandled condition of severity 2 or greater can be found in the member CEEBX05A
in the sample library.

CEEBXITA Behavior during Process Termination

The CEEBXITA assembler exit is invoked after:
v All enclaves have terminated.
v The enclave resources have been relinquished.
v Any OS/390 Language Environment-managed files have been closed.
v Debug Tool has terminated.

This allows you to free files at this time, and it presents another opportunity to
request an abend.

During termination, CEEBXITA can interrogate the OS/390 Language Environment
reason and return codes and, if necessary, request an abend with or without a
dump. This can be done at either enclave or process termination.

The IBM-supplied CEEBXITA performs no special tasks other than to return control
to OS/390 Language Environment termination.

Specifying Abend Codes to Be Percolated by OS/390 Language
Environment

The assembler user exit, when invoked for initialization, can return a list of abend
codes that are to be percolated by OS/390 Language Environment. On non-CICS
systems, this list is contained in the CEEAUE_CODES field of the assembler user exit
interface. (See “Assembler User Exit Interface” on page 530.) Both system abends
and user abends can be specified in this list.

When TRAP(ON) is in effect, and the abend code is in the CEEAUE_CODES list, OS/390
Language Environment percolates the abend. Normal OS/390 Language
Environment condition handling is never invoked to handle these abends. This

Chapter 36. Using Run-Time User Exits 529

feature is useful when you do not want OS/390 Language Environment condition
handling to intervene for some abends, for example, when IMS issues abend code
777.

When TRAP(OFF) is specified, the condition handler is not invoked for any abends
or program interrupts. The use of TRAP(OFF) is not recommended; refer to the
OS/390 Language Environment Programming Reference for more information.

Actions Taken for Errors that Occur within the Assembler User
Exit

If any errors occur during the enclave initialization user exit, the standard system
action occurs because OS/390 Language Environment condition handling has not
yet been established.

Any errors occurring during the enclave termination user exit lead to abnormal
termination (through an abend) of the OS/390 Language Environment
environment.

If a program check occurs during the enclave termination user exit and TRAP(ON) is
in effect, the application ends abnormally with ABEND code 4044 and reason code
2. If a program check occurs during the enclave termination exit and ″TRAP(OFF)″
has been specified, the application ends abnormally without additional error
checking support. OS/390 Language Environment provides no condition handling;
error handling is performed by the operating system. The use of TRAP(OFF) is not
recommended; refer to the OS/390 Language Environment Programming Guide for
more information.

OS/390 Language Environment takes the same actions as described above for
program checks during the process termination user exit.

Assembler User Exit Interface

You can modify CEEBXITA to perform any function desired, although the exit must
have the following attributes after you modify it:
v The user-supplied exit must be named CEEBXITA.
v The exit must be reentrant.
v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).
v The exit must be relinked with the application after modification (if you want an

application-specific user exit), or relinked with OS/390 Language Environment
initialization/termination routines after modification (if you want an
installation-wide user exit).

If a user exit is modified, you are responsible for conforming to the interface
shown in Figure 159 on page 531. This user exit must be written in assembler.

530 OS/390 V2R8.0 C/C++ Programming Guide

When the user exit is called, register 1 (R1) points to a word that contains the
address of the CXIT control block. The high order bit is on.

The CXIT control block contains the following fullwords:

CEEAUE_LEN (input parameter)
A fullword integer that specifies the total length of this control block. For
OS/390 Language Environment, the length is 48 bytes.

CEEAUE_FUNC (input parameter)
A fullword integer that specifies the function code. In OS/390 Language
Environment, the following function codes are supported:

1 - initialization of the first enclave within a process
2 - termination of the first enclave within a process
3 - nested enclave initialization
4 - nested enclave termination
5 - process termination

The user exit should ignore function codes other than those numbered from 1
through 5.

CEEAUE_RETURN (input/output parameter)
A fullword integer that specifies the return or abend code. CEEAUE_RETURN has
different meanings depending on the flag CEEAUE_ABND:
v As an input parameter, this fullword is the enclave return code.

1 XITPIR

CEEAUE_LEN

CEEAUE_FUNC

CEEAUE_RETURN

CEEAUE_REASON

CEEAUE_FLAGS

CEEAUE_PARM

CEEAUE_WORK

CEEAUE_OPTION

CEEAUE_USER

CEEAUE_CODES

CEEAUE_FBCODE

CEEAUE_PAGE

R1

0(0)

4(4)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

40(28)

44(2C)

8(8)

CXIT

Figure 159. Interface for Assembler User Exits

Chapter 36. Using Run-Time User Exits 531

v As an output parameter, if the flag CEEAUE_ABND is on, this fullword is
interpreted as an abend code that is used when an abend is issued. (This
could be either an EXEC CICS ABEND or an SVC 13.)

v If the flag CEEAUE_ABND is off, this fullword is interpreted as the enclave
return code that might have been modified by the exit.

See the OS/390 Language Environment Programming Guide for more information
about how OS/390 Language Environment computes return and reason codes.

CEEAUE_REASON (input/output parameter)
A fullword integer that specifies the reason code for CEEAUE_RETURN.
v As an input parameter, this fullword is the OS/390 Language Environment

return code modifier.
v As an output parameter, if the flag CEEAUE_ABND is on, CEEAUE_RETURN is

interpreted as an abend reason code that is used when an abend is issued.
(This field is ignored when an EXEC CICS ABEND is issued.)

v If the flag CEEAUE_ABND is off, this fullword is the OS/390 Language
Environment return code modifier that might have been modified by the
exit.

See the OS/390 Language Environment Programming Guide for more information
about how OS/390 Language Environment computes return and reason codes.

CEEAUE_FLAGS (input/output parameter)
Contains four flag bytes. CEEBXITA uses only the first byte but reserves the
remaining bytes. All unspecified bits and bytes must be zero. The layout of
these flags is shown in Figure 160.

Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)
When OFF, the enclave terminates normally (severity 0 or 1 condition).

00 - Reseved for future use

00 - Reseved for future use

00 - Reseved for future use

Byte 0

Byte 3

Byte 2

Byte 1

x... - CEEAUE_ABTERM

0... - Normal termination

1... - Abnormal termination

.x.. - CEEAUE_ABND

.0.. - Terminate with CEEAUE_RETURN

.1.. - Abend with CEEAUE_RETURN and CEEAUE_REASON given

..x. - CEEAUE_DUMP

..0. - If CEEAUE_ABND=0, abend with no dump

..1. - If CEEAUE_ABND=1, abend with a dump

...x - CEEAUE_STEPS

...0 - Abend the task

...1 - Abend the step

.... 0000 - Reserved for bits (must be zero)

Figure 160. CEEAUE_FLAGS Format

532 OS/390 V2R8.0 C/C++ Programming Guide

When ON, the enclave terminates with an OS/390 Language
Environment return code modifier of 2 or greater. This could, for
example, indicate that a condition of severity 2 or greater was raised
that was unhandled.

CEEAUE_ABND (output parameter)
When OFF, the enclave terminates without an abend. CEEAUE_RETURN
and CEEAUE_REASON are placed in register 15 and register 0 and returned
to the enclave creator.

When ON, the enclave terminates with an abend. Thus, CEEAUE_RETURN
and CEEAUE_REASON are used by OS/390 Language Environment in the
invocation of the abend. While executing in CICS, an EXEC CICS
ABEND command is issued.

CEEAUE_REASON is ignored under CICS. The TRAP option does not affect
the setting of CEEAUE_ABND.

CEEAUE_DUMP (output parameter)
When OFF and you request an abend, an abend is issued without
requesting a system dump.

When ON and you request an abend, an abend is issued requesting a
system dump.

CEEAUE_STEPS (output parameter)
When OFF and you request an abend, one is issued to abend the entire
task.

When ON and you request an abend, one is issued to abend the step.

Note: This fullword is ignored under CICS.

CEEAUE_PARM (input/output parameter)
A fullword pointer to the parameter address list of the application program.

As an input parameter, this fullword contains the register 1 value passed to the
main routine. The exit can modify this value, and the value is then passed to
the main routine. If run-time options are present in the invocation command
string, they are stripped off before the exit is called.

If the parameter inbound to the main routine is a character string, CEEAUE_PARM
contains the address of a fullword address that points to a halfword prefixed
string. If this string is altered by the user exit, the string must not be extended
in place.

CEEAUE_WORK (input parameter)
Contains a fullword pointer to a 256-byte work area that the exit can use. On
entry, it contains binary zeros and is doubleword-aligned.

This area does not persist across exits.

CEEAUE_OPTION (output parameter)
On return, this field contains a fullword pointer to the address of a halfword
length prefixed character string that contains run-time options. These options
are only processed for enclave initialization. When invoked for enclave
termination, this field is ignored.

These run-time options override all other sources of run-time options except
those that are specified as non-overrideable in the installation default run-time
options.

Chapter 36. Using Run-Time User Exits 533

Under CICS, the STACK run-time option cannot be modified using the
assembler user exit.

CEEAUE_USER (input/output parameter)
Contains a fullword whose value is maintained without alteration and passed
to every user exit. On entry to the enclave initialization user exit, it is zero.
Thereafter, the value of the user word is not altered by OS/390 Language
Environment or any member libraries. The user exit can change the value of
this field and OS/390 Language Environment maintains this value. This allows
a user exit to initialize the fullword and pass it to subsequent user exits.

CEEAUE_CODES (output parameter)
During the initialization exit, this field contains the fullword address of a table
of abend codes that the OS/390 Language Environment condition handler
percolates while in the (E)STAE exit. Therefore, the application is not given the
opportunity to field the abend. The table consists of:
v A fullword count of the number of abend codes that are to be percolated
v A fullword for each of the particular abend codes that are to be percolated

The abend codes can be user abend codes or system abend codes. User abend
codes are specified by F'uuu'. For example, if you wanted user abend 777 to be
percolated, an F'777' would be coded. System abend codes are specified by
X'00sss000'. Avoid specifying the values 0C0 through 0CF as 'sss'. Language
Environment ignores values between OCO and OCF. No abend is percolated,
and OS/390 Language Environment condition handling semantics are in effect.

This function is not enabled under CICS.

CEEAUE_FBCODE (input parameter)
Contains the fullword address of the condition token with which the enclave
terminated. If the enclave terminates normally (that is, not because of a
condition), the condition token is zero.

CEEAUE_PAGE (input/output parameter)
Usage of this field is related to PL/I BASED variables that are allocated storage
outside of AREAs. You can indicate whether storage should be allocated on a
4K-page boundary. You can specify the minimum number of bytes of storage
that you want allocated. Your allocation request must be an exact multiple of
4K. The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than
4K-page boundaries.

CEEAUE_PAGE is honored only during enclave initialization (that is, when
CEEAUE_FUNC is 1 or 3).

The offset of CEEAUE_PAGE under OS/390 Language Environment is different
from the offset of IBMBXITA under OS PL/I Version 2 Release 3.

Parameter Values in the Assembler User Exit

The parameters described in the following sections contain different values
depending on how the user exit is used. Possible values are shown for the
parameters based on how the assembler user exit is invoked.

First Enclave within Process Initialization—Entry
CEEAUE_LEN 48

534 OS/390 V2R8.0 C/C++ Programming Guide

CEEAUE_FUNC 1 (first enclave within process initialization
function code).

CEEAUE_RETURN 0

CEEAUE_REASON 0

CEEAUE_FLAGS 0

CEEAUE_PARM The register 1 value from the operating system.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER 0

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated
for PL/I BASED variables (default = 32768).

First Enclave within Process Initialization—Return
CEEAUE_RETURN 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON 0, or if CEEAUE_ABND = 1, the reason code for
CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_PARM Register 1, used as the new parameter list.

CEEAUE_OPTION Pointer to the address of a halfword prefixed
character string containing run-time options, or 0.

CEEAUE_USER Value of CEEAUE_USER for all subsequent exits.

CEEAUE_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of
storage bytes to be allocated for PL/I BASED
variables (default = 32768).

First Enclave within Process Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 2 (first enclave within process termination function
code).

CEEAUE_RETURN Return code issued by the application that is
terminating.

CEEAUE_REASON Reason code that accompanies CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating
with a OS/390 Language Environment return code
modifier of 2 or greater, or 0 otherwise.

CEEAUE_ABND = 0

CEEAUE_DUMP = 0

Chapter 36. Using Run-Time User Exits 535

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER Return value from the previous exit.

CEEAUE_FBCODE Feedback code causing termination.

First Enclave within Process Termination—Return
CEEAUE_RETURN If CEEAUE_ABND = 0, the return code placed in

register 15 when the enclave terminates.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the enclave reason code.

If CEEAUE_ABND = 1, the abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

Nested Enclave Initialization—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 3 (nested enclave initialization function).

CEEAUE_RETURN 0

CEEAUE_REASON 0

CEEAUE_FLAGS 0

CEEAUE_PARM The register 1 value discovered in a nested enclave
creation.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER The return value from previous exit.

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated
for PL/I BASED variables (default = 32768).

Nested Enclave Initialization—Return
CEEAUE_RETURN 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON 0, or if CEEAUE_ABND = 1, the reason code for
CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

536 OS/390 V2R8.0 C/C++ Programming Guide

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_PARM Register 1 used as the new parameter list.

CEEAUE_OPTION Pointer to a fullword address that points to a
halfword prefixed string containing run-time
options, or 0.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

CEEAUE_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of
storage bytes to be allocated for PL/I BASED
variables (default = 32768).

Nested Enclave Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 4 (termination function).

CEEAUE_RETURN Return code issued by the enclave that is
terminating.

CEEAUE_REASON Reason code that accompanies CEEAUE_RETURN.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating
with an OS/390 Language Environment return
code modifier of 2 or greater, or 0 otherwise.

CEEAUE_ABND = 0

CEEAUE_DUMP = 0

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER Return value from previous exit.

CEEAUE_FBCODE Feedback code causing termination.

Nested Enclave Termination—Return
CEEAUE_RETURN If CEEAUE_ABND = 0, the return code from the

enclave.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the enclave reason code.

If CEEAUE_ABND = 1, the enclave reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USER Value of CEEAUE_USER for all subsequent exits.

Chapter 36. Using Run-Time User Exits 537

Process Termination—Entry
CEEAUE_LEN 48

CEEAUE_FUNC 5 (process termination function).

CEEAUE_RETURN Return code presented to the invoking system in
register 15 that reflects the value returned from the
first enclave within process termination.

CEEAUE_REASON Reason code accompanying CEEAUE_RETURN that is
presented to the invoking system in register 0 and
reflects the value returned from the first enclave
within process termination.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the last enclave is terminating
abnormally (that is, an OS/390 Language
Environment return code modifier is 2 or greater).
This reflects the value returned from the first
enclave within process termination (function code
2).

CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing first enclave within process termination
(function code 2).

CEEAUE_DUMP = 0

CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USER The return value from previous exit.

CEEAUE_FBCODE The feedback code causing termination.

Process Termination—Return
CEEAUE_RETURN If CEEAUE_ABND = 0, the return code from the

process.

If CEEAUE_ABND = 1, the abend code.

CEEAUE_REASON If CEEAUE_ABND = 0, the reason code for
CEEAUE_RETURN from the process.

If CEEAUE_ABND = 1, reason code for the
CEEAUE_RETURN abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if
the enclave should continue with termination
processing.

CEEAUE_DUMP = 1 if the abend should request a
dump.

CEEAUE_STEPS = 1 if the abend should abend the
step, or 0 if the abend should abend the task.

CEEAUE_USER The value of CEEAUE_USER for all subsequent exits.

538 OS/390 V2R8.0 C/C++ Programming Guide

PL/I and C/370 Compatibility

The following OS PL/I Version 2 Release 3 assembler user exits are supported for
compatibility under OS/390 Language Environment:

IBMBXITA (MVS Batch version)
IBMFXITA (CICS version)

For more information about IBMBXITA see IBM PL/I for MVS & VM Migration Guide.
These user exits are available only under C, not C++.

Default versions of the above exits are not supplied under OS/390 Language
Environment; instead, OS/390 Language Environment supplies a default version of
CEEBXITA. Table 67 describes the order of precedence if the IBMBXITA and IBMFXITA
user exits are found in the same root program with CEEBXITA.

Table 67. Interaction of Assembler User Exits

CEEBXITA
Present

IBMBXITA Present under MVS Batch,
IBMFXITA Present under CICS

Exit Driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA under MVS Batch;
IBMFXITA under CICS

Yes Yes CEEBXITA

CXIT_FUNC in IBMBXITA will map to CEEBXITA as follows:
v CXIT_FUNC = 1 when IBMBXITA is invoked for initial enclave initialization or

nested enclave initialization
v CXIT_FUNC = 2 when IBMBXITA is invoked for initial enclave termination or

nested enclave termination

CXIT_USERWD in IBMBXITA will persist across enclaves (for example, in system()
calls).

High Level Language User Exit Interface

OS/390 Language Environment provides CEEBINT, an HLL user exit, for enclave
initialization. You can code CEEBINT in OS/390 C, PL/I, or OS/390 C++ (subject to
the restrictions in “Order of Processing of User Exits” on page 526), or OS/390
Language Environment-conforming assembler. The HLL user exit cannot be written
in COBOL. COBOL programmers can use an HLL exit written in OS/390 C, PL/I,
OS/390 Language Environment-conforming assembler, OS/390 C++ (again, subject
to the restrictions in “Order of Processing of User Exits” on page 526), or default to
the IBM-supplied default HLL user exit.

The HLL enclave initialization exit is invoked after the enclave has been
established, after the Debug Tool initial command string has been processed, and
prior to the invocation of compiled code. When invoked, it is passed a parameter
list that conforms to the OS/390 Language Environment definition. The parameters
are all fullwords and are defined as follows:

Number of arguments in parameter list (input)
A fullword binary integer.
v On entry: Contains 7.
v On exit: Not applicable.

Chapter 36. Using Run-Time User Exits 539

Return code (output)
A fullword binary integer.
v On entry: 0.
v On exit: Able to be set by the exit, but not interrogated by OS/390 Language

Environment.

Reason code (output)
A fullword binary integer.
v On entry: 0
v On exit: Able to be set by the exit, but not interrogated by OS/390 Language

Environment.

Function code (input)
A fullword binary integer.
v On entry: 1, indicating the exit is being driven for initialization.
v On exit: Not applicable.

Address of the main program entry point (input)
A fullword binary address.
v On entry: The address of the routine that gains control first.
v On exit: Not applicable.

User word (input/output)
A fullword binary integer.
v On entry: Value of the user word (CEEAUE_USER) as set by the assembler user

exit.
v On exit: The value set by the user exit, maintained by OS/390 Language

Environment and passed to subsequent user exits.

Exit List Address (output)
A fullword binary integer reserved for future use.

This allows the establishment of one or more user exits when the enclave user
exit sets this field to a list of user exits. Currently, only one user exit is
supported in OS/390 Language Environment.

A_Exits
The address of the exit list control block, Exit_list.
v On entry: 0.
v On exit: 0, unless you establish a hook exit, in which case you would set this

pointer and fill in relevant control blocks. The control blocks for Exit_list
and Hook_exit are shown in the following figure.

As supplied, CEEBINT has only one exit defined that you can establish: the hook
exit described by the Hook_exit control block. This exit gains control when hooks
generated by the PL/I compile-time TEST option are executed. You can establish
this exit by setting appropriate pointers (A_Exits to Exit_list to Hook_exit).
Figure 161 on page 541 illustrates the Exit_list and Hook_exit control blocks.

540 OS/390 V2R8.0 C/C++ Programming Guide

The control block Exit_list exit contains the following fields:

Exit_list_len
The length of the control block. It must be 1.

Exit_list_hooks
The address of the Hook_exit control block.

The control block for the hook exit must contain the following fields:

Hook_exit_len
The length of the control block.

Hook_exit_rtn
The address of a routine you want invoked for the exit. When the routine is
invoked, it is passed the address of this control block. Because this routine is
invoked only if the address you specify is nonzero, you can turn the exit on
and off.

Hook_exit_fnccode
The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode
The return code set by the exit. You must ensure it conforms to the following
specifications:

0 Requests that Debug Tool be invoked next

4 Requests that the program resume immediately

0(0)

0(0)

4(4)

4(4)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

Exit_list

Hook_exit

Exit_list_len

Exit_list_hooks

Hook_exit_len

Hook_exit_rtn

Hook_exit_fnccode

Hook_exit_retcode

Hook_exit_rsncode

Hook_exit_userwd

Hook_exit_ptr

Hook_exit_reserved

Hook_exit_dsa

Hook_exit_addr

8(8)

Figure 161. Exit_list and Hook_exit Control Blocks

Chapter 36. Using Run-Time User Exits 541

16 Requests that the program be terminated

Hook_exit_rsncode
The reason code set by the exit. This is always zero.

Hook_exit_userwd
The user word passed to the user exits.

Hook_exit_ptr
An exit-specific user word.

Hook_exit_reserved
Reserved.

Hook_exit_dsa
The contents of register 13 when the hook was executed.

Hook_exit_addr
The address of the hook instruction executed.

Usage Requirements
1. The user exit must not be a main-designated routine. For example, it cannot be

a OS/390 C or a OS/390 C++ main() function.
2. The HLL exit routines must be linked with compiled code. If you do not

provide an initialization user exit, an IBM-supplied default, which returns
control to your application, is linked with the compiled code.

3. The exit cannot be written in COBOL/370.
4. The exit should be coded so that it returns for all unknown function codes.
5. OS/390 C constructs such as the exit(), abort(), raise(SIGTERM), and

raise(SIGABRT) functions terminate the enclave.
6. A PL/I EXIT or STOP statement terminates the enclave.
7. Use the callable service IBMHKS to turn hooks on and off. For more information

about IBMHKS, see IBM PL/I for MVS & VM Programming Guide.

542 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 37. Using The OS/390 C MultiTasking Facility

This chapter describes how to use the MultiTasking Facility (MTF) with OS/390 C.
It explains how to organize, code, compile, link, and run a program using MTF. It
also lists restrictions while using MTF.

MTF is a facility available under OS/390 that can be used by application programs
to improve turnaround time on System/370 multiprocessor and attached-processor
configurations (for example, the 3090*-400 or 3090-600). When a program uses
MTF on such a system, the elapsed time required to run the program can be
reduced. You can run tasks, which can run independently of each other,
simultaneously.

MTF is easy to use and requires very little knowledge of the multitasking
capabilities upon which it depends. From the programmer’s perspective,
multitasking facilities are available through the library functions of OS/390 C.
Because of this simplicity, it is easy to introduce MTF to existing applications and
code new MTF applications to gain the benefits of multitasking.

Note: Except for a few differences, the MTF support for OS/390 C is the same as
for the equivalent FORTRAN multitasking facilities. MTF is not supported
under CICS, IMS, DB2, C++, or OS/390 UNIX. In addition, IPA is not
supported in an MTF environment.

Organizing a Program with MTF

MTF takes advantage of the multitasking capabilities of the operating system to
enable a single OS/390 C application program to use more than one processor of a
multiprocessing configuration simultaneously. The OS/390 operating system
organizes all work into units called tasks. These tasks are used by the operating
system to assign work to the processors of the multiprocessor configuration.

MTF’s facilities allow a single OS/390 C application to be organized so it can be
run in a main task and in one or more subtasks. As a result of this organization, the
system can schedule these individual tasks to run simultaneously. This can
significantly reduce the elapsed time needed to run the program.

When a program is organized in this manner, the main task runs the part of the
program that controls the overall processing. This part is referred to as the main
task program throughout this manual.

The subtasks run the portions of the program that can run independently of the
main task program and of each other. These portions of the program are referred
to as parallel functions. The library functions provided by MTF allow the main task
program to schedule parallel functions and allow them to run independently.
Parallel functions are queued for execution on the next available subtask.
Scheduling a parallel function does not require that there be a free subtask at the
time of the scheduling. MTF allows the main task program to schedule more
parallel functions than there are actual MVS subtasks.

© Copyright IBM Corp. 1996, 1999 543

The parallel functions are coded the same way as normal C functions, with the
exception of a few rules discussed in “Designing and Coding Applications for
MTF” on page 551. In particular, parallel functions cannot issue MTF calls.

MTF applications are link-edited as two separate load modules: a main task load
module (containing the main task program) and a parallel load module (containing
all parallel functions).

OS/390 C provides the following MTF functions:
v tinit() to initialize the MTF environment
v tsched() to schedule parallel functions to run
v tsyncro() to synchronize the completion of parallel functions
v tterm() to terminate all executing parallel functions.

For details on the library functions, refer to the OS/390 C/C++ Run-Time Library
Reference.

OS/390 C also provides the header file mtf.h, which must be included in your
main task program if you are going to use the MTF facilities. The mtf.h header file
contains the macros MTF_ANY and MTF_ALL, as well as the error-return codes and
prototypes for library functions.

Ensuring Computational Independence

To use multitasking successfully, the parallel functions must have computational
independence. This means that no data modified by either the main task program or
a parallel function is examined or modified by a parallel function that might be
running simultaneously.

In the following figure, you see a graphic example of hypothetical data in an array
subscripted by I, J, and K. Each of the three divisions of the box represents a
section of the array that can be operated on independently of the other sections.
The same parallel function could be scheduled three times, with each instance of
the function processing one of the three sections of the array.

Your application may not have computational independence along the same
subscript axis of K, as in this picture. The divisions might have been along one of

J

I

K

Figure 162. Computational Independence

544 OS/390 V2R8.0 C/C++ Programming Guide

the other subscript axes, I or J. Also, the computational independence in your
application may not fall into neat, box-like divisions.

It is also possible to have computational independence that is not based on
sections of the same array, but rather on separate arrays (perhaps with completely
different types of data), the values of which do not depend on each other. In this
case, separate parallel functions could be scheduled, with each function processing
its own unique data.

Computational independence also applies to input/output files. One parallel
function should not use a file while another is updating it. However, different
functions can successfully read the same file. No single file pointer should be used
concurrently by multiple parallel functions, because the behavior is undefined in
such a case.

Runnin g a C Program without MTF

The following diagrams illustrate the way a OS/390 C program runs without
multitasking. The program and its functions must run in a strictly sequential
manner, function following function, using one processor at a time. Consequently,
your program takes more elapsed time to complete than it would if it could use
several processors at the same time.

In the following example, without multitasking, the OS/390 C program and all its
functions can only use one processor.

Processor 1 Processor 2

Your OS/390 C
program

Function suba()

Function subb()

. . .

Function subn()

Chapter 37. Using The OS/390 C MultiTasking Facility 545

While running, your program may be switched back and forth between the
processors, but it can only run on one processor at a time.

Runnin g a C Program with MTF

To illustrate the concept of multitasking, this section shows three examples of
running a OS/390 C program with MTF. These examples show programs using:
v One parallel function
v Two different functions
v Two or more instances of the same function

Each example provides an illustration of how the processors are used and how the
program is organized to accomplish the particular use of the processors.

Runnin g a C Program with One Parallel Function

If your C program uses MTF, the main task program and a computationally-
independent parallel function can run concurrently.

Processor 1 Processor 2

Your OS/390 C
program

Function suba()

Function subb()

. . .

Function subn()

546 OS/390 V2R8.0 C/C++ Programming Guide

Processor Use

In the previous illustration, only the function suba has computations that can be
done independently of the main task program, which includes the C main program
plus its functions.

With the appropriate MTF request, the parallel function, suba, is scheduled to run
in a subtask.

The arrows to Processor 1 and Processor 2 are for illustration only. The main task
program could have run on Processor 2 and the parallel function, suba, on
Processor 1; in fact, while they run, they may be switched between the processors.

Processor 1 Processor 2

OS/390 C main
task program

Function subb()

. . .

Function subn()

Function suba()

Main Task Program

Parallel Function

Chapter 37. Using The OS/390 C MultiTasking Facility 547

Sample Program

What the MTF functions do:

«1¬ tinit() names the parallel load module plmod and specifies one subtask.

«2¬ tsched() schedules the parallel function suba to run. suba is
computationally-independent of the main task.

«3¬ At this point, tsyncro() makes the main task program wait until suba is
finished before the main task program continues.

Runnin g a C Program with Two Different Parallel Functions

If your C program uses MTF, the main task program and several different
computationally-independent parallel functions can run concurrently.

#include <mtf.h>
. . .
tinit("plmod",1);
. . .
tsched(MTF_ANY, "suba", arglist);
. . .
subb();
. . .
subn();
tsyncro(MTF_ALL);
. . .

Function subb()

. . .

Function subn()

Main Task Program

Function suba()

1

2

3

548 OS/390 V2R8.0 C/C++ Programming Guide

Processor Use

In the previous illustration, functions suba and subc are independent of each other
and of the main task program.

The arrows to Processors 1, 2, and 3 are for illustration only. The main task
program and the parallel functions could run on any of the processors.

Sample Program

What the MTF functions do:

The logic is similar to that for only one parallel function and can be extended to as
many parallel functions as necessary to complete the logic of the program.

«1¬ tinit() names the parallel load module plmod and specifies two subtasks.

«2¬ Each call to tsched() schedules one of the parallel functions, passing

Processor 1 Processor 2 Processor 3

OS/390 C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function subc()Function suba()

Function subc()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "subc", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

Chapter 37. Using The OS/390 C MultiTasking Facility 549

different data to each for processing. suba and subc are
computationally-independent parallel functions.

«3¬ At this point, tsyncro() makes the main task program wait until both suba
and subc are finished before the main task program continues its
processing.

OS/390 C with Multiple Instances of the Same Parallel
Function

If your C program uses MTF, the main task program and multiple instances of the
same parallel function can run concurrently.

Processor Use

In this illustration, parallel function suba has data you can divide, so two instances
of suba run independently of the main task program and of each other.

Processor 1 Processor 2 Processor 3

OS/390 C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function suba()Function suba()

550 OS/390 V2R8.0 C/C++ Programming Guide

Sample Program

What the MTF functions do:

«1¬ tinit() names the parallel load module plmod and specifies two subtasks.

«2¬ Each call to tsched() schedules one instance of the parallel function to run
and supplies separate data to be processed by that instance of suba. The
data to be processed by each instance of the parallel function could be two
different sections of the same array. Both instances of suba are
computationally-independent of the main task program and each other,
because each instance of suba processes different data.

«3¬ At this point, tsyncro() makes the main task program wait until all
instances of suba finish before the main task program continues.

Designing and Coding Applications for MTF

You can use the following steps when preparing a OS/390 C application to work
with MTF:
1. Identify computationally-independent code
2. Create parallel functions
3. Insert calls to parallel functions in main task program

New programs can be designed to use MTF, and existing programs can be
reconstructed.

Step 1: Identifying Computationally-Independent Code

The first step in adapting an application program for MTF is to identify groups of
computations that can be performed in parallel. To produce correct results, the
computations that are done in parallel must be computationally-independent. This
is further explained under “Ensuring Computational Independence” on page 544.

Function suba()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "suba", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

Chapter 37. Using The OS/390 C MultiTasking Facility 551

Step 2: Creating Parallel Functions

After the segments of code that are computationally-independent are identified,
they are separated from the main task program and placed in parallel functions. A
parallel function is coded as a normal C function that follows several rules
required for correct operation with MTF. Besides to data independence, there are
rules for:
v Parallel functions
v Calling other functions
v Separate storage for separate modules
v Passing data
v Input and output
v Exception/signal handling
v Function termination

Parallel Functions
v A parallel function must be written only in C.
v The return value of a parallel function must be void. If a parallel function

attempts to return a value, the behavior will be undefined.
v External parallel function names must be 8 characters or shorter in length and

will be uppercased.

Calling Other Functions
v A parallel function may actually be coded as a series of functions that call one

another. All of these functions operate in the parallel function’s subtask
environment and must follow the rules of a parallel function except that they
can be written in assembler as well as C, and they can have return values.

v A parallel function cannot call the MTF library functions tinit(), tsched(),
tsyncro(), or tterm(). Such calls can only be used in the main task.

Separate Storage for Separate Modules
v Every MTF application consists of two modules: the main task module which

runs on the main task, and the parallel module that runs on the subtask(s). Each
task (main or sub) has its own unique run-time storage structure consisting of
ISA, heap, and residual storage. Each task has:
– Separate writable static (whether reentrant or not)
– Separate library-internal storage (for example, file and storage management

control blocks)
– Separate exception and signal-handling environment (for example, errno,

__amrc)
v Usually, functions must abide by the restrictions inherent in this arrangement.

The remaining rules in this section mostly arise from this arrangement.

552 OS/390 V2R8.0 C/C++ Programming Guide

Passing Data
v A parallel function is always invoked in its last-used state. If, for example, a

parallel function has defined a static variable with an initializer, then the
variable has that value the first time the parallel function executes on a given
task. Should the value be modified, the modification is available the next time
that parallel function is run only if the function is scheduled to the same task. If
you don’t schedule the parallel function to the same task, you cannot depend
upon residual values from previous invocations of the function.

User_main()

user_funcA()

user_funcB()

user_funcC()

Main Task 00

Main Task Module

Data Storage

ISA

Heap

Residual

OS/390 C MTF
Library

tinit, tsched

tsyncro, tterm

...

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask 01

Parallel Module

Data Storage

ISA

Heap

Residual

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask nn

Parallel Module

Data Storage

ISA

Heap

Residual

Single User Application/Single Address Space

Notes:

1. Each task has private and separate storage structure that leads to most of the parallel
function idiosyncrasies:

v All file operations from same task.

v Storage must be malloc() or free()d from same task.

v Independent signal handling environments.

2. MTF library functions are only operational in the main task.

3. call/return used for invocation within a task.

4. MTF only supports parallel load modules in a PDS. Parallel load modules in a PDSE are
NOT supported.

Figure 163. Basic MTF Layout

Chapter 37. Using The OS/390 C MultiTasking Facility 553

v Data can be passed between the main task program and parallel functions, and
between parallel functions by passing a pointer to the storage area as a
parameter. Care must be taken to ensure that the data remains valid and
available until completion of the particular parallel function instance being
scheduled.

v If heap storage is obtained on a given task, it must be freed on that task and no
other. Other tasks may be given access to that storage by passing pointers but no
other task can use that pointer to free the storage.

Input/Output
v File pointers must not be shared across subtasks. A given file pointer must only

be used (for file access and closing) on the same task on that it was created
{(using fopen())}. File pointers must be utilized as a serial resource. OS/390 C
does not protect against misuse, and a program will have unpredictable
behavior if this rule is not enforced.

v Each parallel function updates (writes or changes) a file as if it had complete
control over the file; therefore, there should be no simultaneous read or update
of a given file while any function on any task is updating that file (even if
separate file pointers are used).

v Memory files cannot be shared across subtasks.

Exception/Signal Handling
v The parallel functions on the subtasks run with TRAP(ON) run-time option, and

each has a signal handling environment entirely independent from that of each
other task. All signals are initialized to default handling on each task, and can be
modified for a given task only through a signal statement from a parallel
function on that task.

v All signal interrupts are eligible to be raised from the operating system or by the
raise() function during execution of parallel functions. All signals, however,
require special handling in the case of parallel functions because of the
requirement that parallel functions always return normally. Signals must either
be ignored or a handler must be established that does not terminate the
program. If these signals are left to default handling or a handler is established
that terminates the program, MTF will treat this as an abnormal termination of
the parallel function.

Function Termination
v Parallel functions run as called functions (from EDCMTFS, the OS/390 C library

supplied main function for parallel modules) and must terminate by simple
return (to EDCMTFS). For more information on EDCMTFS, see “Creating the Parallel
Functions Load Module” on page 561.

v Termination with exit() and abort() calls is invalid because these functions
interfere with EDCMTFS operation and they are treated by MTF as abnormal
terminations.

v On the first valid call to MTF (tsched(), tsyncro(), tterm()) from the main task
program after a parallel function has abnormally terminated (via exit()/abort()
or otherwise) MTF will:
– Abort all parallel functions scheduled or in progress
– Remove the MTF environment
– Return ETASKABND on that MTF call

A subsequent tterm() call is unnecessary and will simply return EINACTIVE. A
tinit() can be reissued, but depending on the severity of the condition that
caused the ETASKABND, the tinit() may or may not be successful.

554 OS/390 V2R8.0 C/C++ Programming Guide

Step 3: Inserting Calls to Parallel Functions

In the main task, insert a call to tinit() to initialize the MTF environment before
to any other MTF function call, or after tterm() is invoked. Replace each segment
of code that was identified for parallel computation with a call to tsched() which
schedules the corresponding parallel function. If more parallel function instances
are scheduled than tasks are currently available, the additional instances are
queued for subsequent execution in the order in which they were scheduled. They
are queued for any task or to a particular task according to the task_id parameter
supplied on the tsched() call. If parallel operation is to be achieved by scheduling
the same function multiple times with different data, the function call may be
placed within a loop.

The arguments passed to the parallel function may be:
v A variable
v An array element
v An array name
v A constant
v A structure

The following items must not be used as the arguments supplied to the parallel
function using tsched():
v Function pointers
v A pointer to data or storage that will be modified or released before a tsyncro().

After inserting calls to the parallel functions, insert a call to tsyncro() wherever
the program requires that any subtask, one particular subtask, or all of the
subtasks have finished executing the parallel functions previously scheduled to
them. As the last MTF call, insert a call to tterm() before to exit/return from the
main task program to remove the MTF environment.

To properly use MTF from the main task program it is necessary to include the
mtf.h header file before to the first MTF call in your program. MTF calls
themselves can be issued from non-main as well as main functions within the main
task program, subject only to the restrictions already described above. MTF calls,
however, can only be issued from C functions and not from functions written in
any other language.

The next sections show examples of how to change existing C programs to use
MTF following the steps just outlined.

Changing an Application to Use MTF

The following examples show how to change an application to use MTF by
creating parallel functions and inserting calls to these functions.

Example 1

Figure 164 on page 556 shows a computation of the dot product on two long
one-dimensional arrays of data. The processing within the loop structure may be
separated so that the dot product is not a result of serial calculations but a result of
parallel calculations. This is because the first part of the array is not dependent on
the results computed in any other section of the array. Thus the calculations are

Chapter 37. Using The OS/390 C MultiTasking Facility 555

therefore computationally independent of each other, and can be performed at the
same time.

Create Parallel Functions

The segments of the program that have been identified to run as parallel functions
are then recoded as new OS/390 C functions. In this case, there will be one parallel
function, multiple instances of which will be scheduled. The parallel function
corresponding to the code in Figure 164 now looks like Figure 165.

The variables to and from are used to determine on which part of the array the
parallel function is to perform.

Insert Calls to Parallel Functions

The segments of the program that have been removed to form parallel functions
are replaced by calls to these new parallel functions. For the sample code in
Figure 164 on page 556sub:exph. is scheduled for each subtask that will be used at
run time. In order to do this, the computations controlled by the k index must be
divided so that each instance of the function sub operates on a different part of the
original range of the k variable. See Figure 166 for an example of how two
instances of a parallel function can be scheduled.

double dotprod(double *a, double *b, int len)
{

int i;
double res = 0;

for (i=0; i < len; ++i)
res += *a++ * *b++;

return(res);
}

Figure 164. Identifying Computationally-Independent Code

void pdotprod(double *a, double *b, int len, int m, int n, double *pres)

/* m = the section of the array */
/* n = the number of subtasks. n must be a factor of len */

{
int i, from, to;

*pres = 0;

/* Determine which section of the array to operate on */
from = (m-1) * len / n;
to = (m * len) / n;

/* Calculate the partial result on part of the array */
for (a+= from, b+=from, i=from; i < to; ++i)

*pres += *a++ * *b++;
}

Figure 165. The Sample Code as a Parallel Function

556 OS/390 V2R8.0 C/C++ Programming Guide

Also, within the main task program, the subtasks must be initialized and
eventually terminated as shown in Figure 167.

Example 2

Not all application programs contain parallelism within the iterations of a loop
structure. The following example illustrates parallel computations that appear as

#include <mtf.h>;

double dotprod(double *a, double *b, int len)
{

...

int i;
double res = 0;
double pres[MAXTASK];

/* Schedule the parallel functions according to */
/* how many subtasks exist */
for (i=1; i < n; ++i)

tsched(MTF_ANY,"pdotprod",a,b,len,i,n,&pres[i-1]);

/* Perform the calculations on the last part of the array */
pdotprod(a,b,len,n,n,&pres[n-1]);

/* Wait until all of the partial results are determined */
tsyncro(MTF_ALL);

/*Add all the partial results to determine the final dot product*/
for (i=0;i < n; ++i)

res += pres[i];

return(res);
}

Figure 166. Scheduling Instances of a Parallel Function

#include <mtf.h>

int main(void)
{

...

/* other code */
/* Attach and initialize a subtask */

tinit(load_sub_name, n);

...

result = dotprod(vector1,vector2,len);

...

/* Terminate subtasks */
tterm();

/* more code */
}

Figure 167. Main Task Program to Call Dot Product Function

Chapter 37. Using The OS/390 C MultiTasking Facility 557

different segments of code in the original program. Also illustrated is the use of
pointer arguments for passing data, and I/O operations to files in parallel
functions.

Figure 168 shows two calls to the same function that performs the dot product on
the values in two files of data. The values are read from each file and the function
performs the dot product upon these values. The loop ends when the end of either
file is reached. The two computations are independent of each other and thus can
be performed simultaneously in two different parallel functions.

CBC3GMT1:

Create Parallel Functions

The fdotprod routine is identified as a parallel function so it is recoded as a new C
function in a separate file. Data is passed from the main function to the parallel
functions by means of pointer arguments. The parallel functions are shown in
Figure 170 on page 560. The main task program is shown in Figure 169 on page 559.

/* MTF example 2 */

#include <stdio.h>

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while (1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf\n", result);
}

int main(void)
{

fdotprod("a.input", "b.input");
fdotprod("c.input", "d.input");

return(0);
}

Figure 168. Sample Code to Be Changed to Use MTF

558 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GMT2:

/* MTF example 2 */
/* part 2 of 2-other file is CBC3GMT1 */

#include <stdio.h>
#include <mtf.h>

int main(void)
{

tinit("plmod", 2);
tsched(MTF_ANY, "fdotprod", "a.input", "b.input");
tsched(MTF_ANY, "fdotprod", "c.input", "d.input");
tsyncro(MTF_ALL);
tterm();

return(0);
}

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while(1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf\n", result);
}

Figure 169. The Sample Code

Chapter 37. Using The OS/390 C MultiTasking Facility 559

CBC3GMT3:

Compiling and Linking Programs That Use MTF

Programs that use MTF run using two MVS load modules: a load module that
contains the main task program, and a load module that contains the parallel
functions. You compile and link-edit the main task program in the same procedure
as non-MTF C programs. The parallel function is compiled in the same procedure
as non-MTF C programs and is linked with EDCMTFS.

Creating the Main Task Program Load Module

The main task program load module is the load module that first receives control
when MVS starts running your program. It is the load module named in the PGM
keyword of the EXEC statement. This load module contains your application’s C
main() function plus all other functions that are to run as part of the main task.
The MTF functions can be invoked from any of the C functions contained in the
main task load module and do not necessarily have to be invoked from the C
function called main().

The procedures that you usually use to compile and link-edit a OS/390 C program
can be used to create the main task program load module. For example, the
following JCL sequence (see Figure 171 on page 561) uses the standard OS/390 C
cataloged procedure EDCCL to compile and link-edit the C source for the main task
program (stored in data set USERPGM.C(MTASKPGM)) and create a main task program
load module named MTASKPGM in data set USERPGM.LOAD.

/* MTF example 2 */
/* part 2 of 2-other file is CBC3GMT2 */
#include <stdio.h>

void fdotprod(char *fn1, char *fn2)
{

int i, res1;
double result=0, val1, val2;
FILE *file1, *file2;

file1 = fopen(fn1, "r");
file2 = fopen(fn2, "r");

while(1)
{

res1 = fscanf(file1, "%lf", &val1);
res1 += fscanf(file2, "%lf", &val2);
if (res1 != 2)

break;
result += val1 * val2;

}
if (res1 == 1)

printf("Error: Files of unequal length\n");
else

printf("Result: %lf-n", result);
}

Figure 170. The Sample Code

560 OS/390 V2R8.0 C/C++ Programming Guide

Creating the Parallel Functions Load Module

The parallel functions load module is the load module named in the call to the
MTF library function tinit(). This single load module contains all of your main
task program’s parallel functions. It must not contain any user’s C main()
programs. OS/390 C itself provides the EDCMTFS module to act as the C main()
function in the parallel module. EDCMTFS controls processing of the parallel
functions as they are scheduled (by way of tsched() calls) to the subtasks. The
source code for the EDCMTFS module is included in Figure 173 on page 562.

Note: The executable module for parallel function program must be a load module
(in a PDS dataset), created using the linkage editor (and prelinker if required
due to the presence of C++ code or C code compiled with the RENT
option). The MTF library functions used to access the parallel functions are
not compatible with a program object executable module (in a PDSE
dataset).

The procedures that you usually use to compile and link-edit a OS/390 C program
must be modified such that the library module CEESTART will be the entry point of
the parallel functions load module.

When you link-edit this load module, include the following linkage editor control
statements:
INCLUDE SYSLIB(EDCMTFS)
ENTRY CEESTART

For example, the following JCL sequence uses the standard OS/390 C cataloged
procedure EDCCL to compile and link-edit the C source for the parallel functions
:{(stored in data set USERPGM.C(SUBTASK)):} and create a parallel functions load
module named PLMOD in data set USERPGM.LOAD. This load module contains the
module EDCMTFS, and has EDCMTFS as the load module’s entry point.

Note: First we have a step that compiles and link-edits the main task program.

The addressing mode is subject to normal consideration as described in the OS/390
Language Environment Programming Guide.

//MTASKPGM EXEC EDCCL,
// INFILE='USERPGM.C(MTASKPGM)',
// OUTFILE='USERPGM.LOAD(MTASKPGM),DISP=OLD'

Figure 171. Sample JCL to Compile and Link Main Task Program

//MTASKPGM EXEC EDCCL,
// INFILE='CBC.SCBCSAM(CBC3GMT2)',
// OUTFILE='USERPGM.LOAD(CBC3GMT2),DISP=SHR'
//*
//PFUNC EXEC EDCCL,
// INFILE='CBC.SCBCSAM(CBC3GMT3)',
// OUTFILE='USERPGM.LOAD(PLMOD),DISP=SHR'
//LKED.SYSLIN DD
INCLUDE SYSLIB(EDCMTFS)
ENTRY CEESTART

/*

Figure 172. Sample JCL to Compile and Link Parallel Functions

Chapter 37. Using The OS/390 C MultiTasking Facility 561

Specifying the Linkage-Editor Option

Do not specify the NE linkage-editor option when link-editing the parallel functions
load module. MTF cannot schedule parallel functions that are contained in a load
module link-edited with the NE option.

Modifying Run-Time Options

You can alter the #pragma runopts options STACK and HEAP within the EDCMTFS
module for each subtask, but you must recompile the module under the same
name. The source code for EDCMTFS is shown in Figure 173.

You can also add a #pragma runopts statement with the RTLS, LIBRARY, and
VERSION options to EDCMTFS, if required.

Running Programs That Use MTF

To run your program, use the usual MVS JCL for OS/390 C programs, plus a few
additional JCL statements that are required to run MTF.

STEPLIB DD Statement

You must ensure that the library containing the load modules is specified on the
STEPLIB DD statement in your JCL, as well as the other libraries usually specified,
as follows:
//STEPLIB DD DSN=user.dsn,DISP=SHR

where:

user.dsn
is the name of the load module library that contains the parallel functions load
module.

The parallel functions load module (parallel_loadmod_name), specified on the call
to tinit(), must be in this data set.

/***/
/* Modify the isa/isainc/heap subparameters in the following line */
/* as required to meet your needs. Ensure that your version (compiled*/
/* and linked) is then accessed in your link-edit of the parallel */
/* module in place of the prebuilt EDCMTFS found in SCEELKED. */
/***/
#pragma runopts(STACK(8K,4K,ANY,FREE),HEAP(4K,4K,ANY,FREE))
/***/
/* The following lines must remain unmodified to ensure proper */
/* operation of MTF. */
/***/
#pragma runopts(TRAP(ON),RPTSTG(OFF),\

(STAE,SPIE,NOREPORT,NOTEST,\
ARGPARSE,REDIR,NOEXECOPS)

int main(int argc, char **argv) { return tsetsubt(argc,argv); }

Figure 173. Source Code for EDCMTFS

562 OS/390 V2R8.0 C/C++ Programming Guide

When running your program under TSO, because of restrictions regarding the
STEPLIB DD statement, you must allocate the ddname EDCMTF to the user.dsn
data set as well as adding user.dsn to the STEPLIB concatenation list.

DD Statements for Standard Streams

For standard streams, MTF assigns a unique run-time output file to each parallel
function. These output files contain diagnostic messages that the library can issue
while the parallel functions are running. They also contain output directed to the
standard streams (stderr and stdout) by parallel functions and input from the
standard stream stdin.

Because these files are automatically allocated while the program is running, you
need not supply DD statements for them unless you wish to override the default
device type or other file characteristics. The default device type is a terminal in
TSO or SYSOUT=* in batch.

If you do supply DD statements, use the following ddnames:
v stdinstn for files containing input for operations such as getc()

v stderrstn for files containing diagnostic messages
v stdoutstn for files containing output from operations such as printf()

Where stn is the 2-digit subtask number; that is, 01, 02, 03, and so on. Thus, for
example, if you had four subtasks and the first two used printf() functions, you
would use the ddnames stdout01, stdout02, stderr01, stderr02, stderr03, and
stderr04.

Example of JCL

An example of the run-time JCL to run a program that uses MTF is shown in
Figure 174 on page 563. This figure shows the JCL that is unique to running MTF,
as well as the other JCL the program would typically require. (Some programs
might require additional DD statements.)

MTASKPGM is the name of the main task program load module, and is the load
module that gets control when MVS first starts running the program. In this
example, this load module is contained in data set USERPGM.LOAD, which is referred
to by the STEPLIB DD statement. USERPGM.LOAD also contains the parallel functions.

The STDIN01 DD statement specifies the data set that contains the program’s input
data for the first task. The STDOUT02 DD statement specifies that printed output
aside from run-time error messages from the second subtask is to be written to
SYSOUT class S and that the record format is to be fixed-length. These DD statements
are necessary only if you do not want to accept the defaults.

//GO EXEC PGM=MTASKPGM
//STEPLIB DD DSN=USERPGM.LOAD,DISP=SHR
//STDIN01 DD DSN=USERPGM.INPUT,DISP=SHR
//STDOUT02 DD SYSOUT=S,DCB=(RECFM=F)

Figure 174. Example Run-Time JCL

Chapter 37. Using The OS/390 C MultiTasking Facility 563

Debugging Programs That Use MTF

Debug Tool can be used to interactively debug your main task program. It cannot,
however, be used to debug your parallel functions.

Avoiding Undesirable Results when Using MTF

To prevent undesirable results, be aware of the following concerns and restrictions:
v MTF only supports parallel load modules in a PDS. Parallel load modules in a

PDSE are NOT supported.
v Do not update a file with one task if the other tasks read the same file. Files can

be destroyed if this is attempted.
v The following products should not be used from the main task or any subtasks

while MTF is active:
– Information Management System (IMS)
– The CICS command level interface

v The following products should not be used from subtasks while MTF is active
but can be used from the main task:
– Data Window Services (DWS)
– Interactive System Productivity Facility (ISPF)
– Graphical Data Display Manager (GDDM)

v All library functions can be issued from the main task program.
v The following library functions should not be issued from parallel functions (see

“Function Termination” on page 554):
– exit()

– abort()

– atexit()

v The following library functions can be used with some restrictions from parallel
functions:
– setjmp()/longjmp() can be used from within any task/subtask but must not

be used across tasks. That is, the stack environment saved via setjmp() on a
given task may be restored by a longjmp() from that task but from no other
task.

– setlocale()/localeconv() are only effective within a task. Each task has its
own distinct locale information. Thus setlocale()/localeconv() issued from
one task have no effect on such functions issued from other tasks.

– tmpnam() may produce identical file names across tasks and should be
restricted to being invoked from a single task (subtask or main task).

– rand()/srand() produce entirely independent series of pseudorandom
integers on each task

– All file manipulation functions (such as fopen()/fread()/...) - were identified
earlier under the rules for parallel functions in “Designing and Coding
Applications for MTF” on page 551. These functions can only be used on the
same task.

Note: When opening files under MTF, you incur additional overhead when
fopen() and freopen() are called. This overhead would normally be
performed at the first read or write to the stream and will not affect the
performance of a program that does indeed perform at least one read
or write to the stream.

564 OS/390 V2R8.0 C/C++ Programming Guide

– fetch()/release() must only be issued from the same task.
– free() must be issued on the same task as the malloc()/calloc()/realloc()

functions were issued. Note also that a realloc() must be issued in the same
task as the malloc().

– signal()/raise() also identified earlier under the rules for parallel functions
in “Designing and Coding Applications for MTF” on page 551. Basically, each
task has its own distinct interrupt environment. Thus signal()/raise()
issued from one task have no effect on the operation of any other task.

– PL/I and COBOL interlanguage calls must not be made from parallel
functions.

– Busy waits (loops that iterate until a flag is changed by a cooperating task)
violate the requirement for computational independence. In particular, they
can result in deadlock because of the scheduling algorithm used by MVS.
They must be avoided.

Chapter 37. Using The OS/390 C MultiTasking Facility 565

566 OS/390 V2R8.0 C/C++ Programming Guide

Part 6. Programming with Other Products

This part contains the following programming product information:
v “Chapter 38. Using the Customer Information Control System (CICS)” on

page 569
v “Chapter 39. Using Cross System Product (CSP)” on page 595
v “Chapter 40. Using Data Window Services (DWS)” on page 609
v “Chapter 41. Using DATABASE 2 (DB2)” on page 613
v “Chapter 42. Using Graphical Data Display Manager (GDDM)” on page 617
v “Chapter 43. Using the Information Management System (IMS)” on page 623
v “Chapter 44. Using the Interactive System Productivity Facility (ISPF)” on

page 633
v “Chapter 45. Using the Query Management Facility (QMF)” on page 641

© Copyright IBM Corp. 1996, 1999 567

568 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 38. Using the Customer Information Control System
(CICS)

This chapter describes how to develop C and C++ programs for the Customer
Information Control System (CICS). The OS/390 Language Environment library
provides support for OS/390 C++ programs that run under CICS/ESA Version 4
Release 1 or later, and OS/390 C programs that run under CICS/ESA Version 3
Release 3 or later. You can find more information about the general features of
OS/390 Language Environment and CICS in the OS/390 Language Environment
Programming Guide.

For information on using CSP/AD or CSP/AE under CICS, see “Chapter 39. Using
Cross System Product (CSP)” on page 595.

Note: As of this publication, the CICS translator does not recognize the C
compiler’s support for alternative locales and coded character sets.
Therefore, you should write all your CICS C code in coded character set
IBM-1047 (APL 293).

Developing C and C++ Programs for the CICS Environment

When developing a program to run under CICS you must:
1. Prepare CICS for use with OS/390 Language Environment.
2. Design and code the CICS program.
3. Translate and compile the translated source for reentrancy.
4. Prelink and link all object modules with the CICS stub.
5. Define the program to CICS.

Preparing CICS for Use with OS/390 Language Environment

This section gives general instructions on enabling OS/390 Language Environment
to use a new CICS environment or to add OS/390 Language Environment to an
existing CICS environment. For more detailed information on CICS, refer to the
manuals listed in “CICS/ESA Version 4 Release 1” on page 900.

After CICS has been installed on your system, you must perform the following
tasks:
v Create a CICS environment if one does not already exist. This involves creating a

CICS System Definition (CSD), journals, and a Global Catalog Set (GCD).
v Copy CEECCICS from SCEERUN to an Authorized Program Facility (APF) data set.

The data set should be concatenated in the STEPLIB when CICS is cold started.
v Create the CESO and CESE Transient Data Queues. Sample Destination Control

Table (DCT) definitions are supplied in SCEESAMP(CEECDCT).
v Add required definitions to the CSD. Sample CSD definitions are provided in

SCEESAMP(CEECCSD). These sample definitions create a group called CEE, which
must be added to the installation LIST.

v Add SCEERUN and SCEECICS to the DFHRPL concatenation.

© Copyright IBM Corp. 1996, 1999 569

The C run-time event handler module CEEEV003 is required for CICS support (in
addition to the OS/390 Language Environment interface modules). CEEEV003 must
be link-edited as AMODE=31, RMODE=ANY, and loaded above the 16M line.

If you will be using the IOSTREAM, Complex Mathematics, Collection, or
Application Support Class DLLs provided with the OS/390 C++ compiler, you
must define these DLLs in the CSD. Sample CICS CSD definitions can be found in
CBC.SCLBSAM(CLB3YCSD).

Designing and Coding for CICS

This section describes what you must do differently when designing and coding a
OS/390 C/C++ program for CICS, such as using EXEC CICS commands in your
code, using input and output, using OS/390 C/C++ functions, managing storage,
using interlanguage calls, and exception handling.

Using the CICS Command-Level Interface

CICS/ESA provides a set of commands to access CICS. The format of a CICS
command is:
EXEC CICS function [option[(arg)]]...;

In the following CICS command, the function is SEND TEXT. This function has 4
options: FROM, LENGTH, RESP and RESP2. In this case, each of the options takes one
argument.
EXEC CICS SEND TEXT FROM(mymsg)

LENGTH(mymsglen)
RESP(myresp)
RESP2(myresp2);

For further information on the EXEC CICS interface and a list of available CICS
functions, refer to the CICS/ESA Application Programming Guide and CICS/ESA
Application Programming Reference.

When you are designing and coding your CICS application, remember the
following:
v The EXEC CICS command and options should be in uppercase. The arguments

follow general C or C++ conventions.
v Before any EXEC CICS command is issued, the EXEC Interface Block (EIB) must be

addressed by the EXEC CICS ADDRESS EIB command.
v OS/390 C/C++ does not support the use of EXEC CICS commands in macros.

The examples in Figure 175 on page 571 show the use of several EXEC CICS
commands.

570 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCI1

/* program : GETSTAT */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define FILE_LEN 40

void check_4_down_status(char *status_record) ;
void sendmsg(char* status_record) ;
void unexpected_prob(char* desc, int rc) ;

struct com_struct {
unsigned int quiet ;

} *commarea ;

DFHEIBLK *dfheiptr ;

main ()
{
long int vsamrrn;
signed short int vsamlen;
unsigned char status_record[41];
signed long int myresp;
signed long int myresp2;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr); «1¬

/* access common area sent from caller */
EXEC CICS ADDRESS COMMAREA(commarea); «2¬

/* call the CATCHIT prog. if it abends */
EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); «3¬

vsamrrn = 1;
vsamlen = FILE_LEN;

/* read the status record from the file*/
EXEC CICS READ FILE("STATFILE") «4¬

UPDATE
INTO(status_record)
RIDFLD(vsamrrn)
RRN
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

Figure 175. Example Illustrating How to Use EXEC CICS Commands (Part 1 of 4)

Chapter 38. Using the Customer Information Control System (CICS) 571

/* check cics response */
/* -- non 0 implies a problem */

if (myresp != DFHRESP(NORMAL))
unexpected_prob("Unable to read from file",61);

printf("The status_record from READ in GETSTAT = %s\n", status_record);

if (memcmp(status_record,"DOWNTME ",8) == 0)
check_4_down_status(status_record);

if (commarea->quiet != 1)
sendmsg(status_record);

exit(11);
}
void check_4_down_status(char *status_record)

{
unsigned char uptime[9];
unsigned char update[9];
char curabs[8];
unsigned char curtime[9];
unsigned char curdate[9];

long int vsmrrn;
signed short int vsmlen;
signed long int dnresp;
signed long int dnresp2;

strncpy((status_record+8),update,8);
strncpy((status_record+16),uptime,8);
update[8] ='\0';
uptime[8] ='\0';

/* get the current time/date */
EXEC CICS ASKTIME ABSTIME(curabs) «5¬

RESP(dnresp)
RESP2(dnresp2);

if (dnresp != DFHRESP(NORMAL))
unexpected_prob("Unexpected prob with ASKTIME",dnresp);

/* format current date to YYMMDD */
/* format current time to HHMMSS */

EXEC CICS FORMATTIME ABSTIME(curabs) «6¬
YYMMDD(curdate)
TIME(curtime)
TIMESEP
DATESEP;

Figure 175. Example Illustrating How to Use EXEC CICS Commands (Part 2 of 4)

572 OS/390 V2R8.0 C/C++ Programming Guide

if (dnresp != DFHRESP(NORMAL))
unexpected_prob("Unexpected prob with FORMATTIME",dnresp);

curdate[8] ='\0';
curtime[8] ='\0';

if ((atoi(curdate) > atoi(update)) ||
(atoi(curdate) == atoi(update) && atoi(curtime) >= atoi(uptime)))

{
strcpy(status_record,"OK ");

vsmrrn = 1;
vsmlen = FILE_LEN;

/* update the first record to OK */
EXEC CICS REWRITE FILE("STATFILE") «7¬

FROM(status_record)
LENGTH(vsmlen)
RESP(dnresp)
RESP2(dnresp2);

if (dnresp != DFHRESP(NORMAL)) {
printf("The dnresp from REWRITE = %d\n", dnresp) ;
printf("The dnresp2 from REWRITE = %d\n", dnresp2) ;
unexpected_prob("Unexpected prob with WRITE",dnresp);

}

printf("%s %s Changed status from DOWNTME to OK\n",curdate,
curtime);

}

}

void sendmsg(char* status_record)
{
long int msgresp, msgresp2;
char outmsgÝ80};
int outlen;

if (memcmp(status_record,"OK ",3)==0)
strcpy(outmsg,"The system is available.");

else if (memcmp(status_record,"DOWNTME ",8)==0)
strcpy(outmsg,"The system is down for regular backups.");

else
strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

printf("%s\n",outmsg);
outlen=strlen(outmsg);

Figure 175. Example Illustrating How to Use EXEC CICS Commands (Part 3 of 4)

Chapter 38. Using the Customer Information Control System (CICS) 573

Both of these examples use EXEC CICS commands to:

«1¬ Initialize the CICS interface

«2¬ Access the storage passed from the caller

«3¬ Handle unexpected abends

«4¬ and «7¬ I/O to RRDS files

«5¬ and «6¬ Requesting and formatting time

Using Input and Output

This section describes how to use OS/390 C/C++ I/O with CICS. It describes the
file and device support and the type of I/O used with CICS.

Note: You can set up a SIGIOERR handler to catch read or write system errors. See
“Chapter 18. Debugging I/O Programs” on page 227 for more information.

Standard Stream Support

Under CICS, if you are using the OS/390 C++ standard streams documented in the
OS/390 C/C++ IBM Open Class Library Reference and the OS/390 C/C++ IBM Open
Class Library User’s Guide, note the following:
v cin is not supported under CICS.
v cout maps to the C standard stream stdout.
v cerr and clog both map to the C standard stream stderr.

EXEC CICS SEND TEXT FROM(outmsg)
LENGTH(outlen)
RESP(msgresp)
RESP2(msgresp2);

if (msgresp != DFHRESP(NORMAL))
unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)
{
long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2);

fprintf(stderr,"%s\n",desc);

if (msgresp != DFHRESP(NORMAL))
exit(99);

else
exit(rc);

}

Figure 175. Example Illustrating How to Use EXEC CICS Commands (Part 4 of 4)

574 OS/390 V2R8.0 C/C++ Programming Guide

stdout and stderr are assigned to transient data destinations (queues). The type of
queue, intrapartition or extrapartition, is determined during CICS initialization.
Intrapartition queues are used for queueing messages and data within a CICS
region. Extrapartition queues are used to send data outside the CICS region or to
receive data from outside the CICS region.

The transient data queues associated with stdout and stderr are CESO and CESE
respectively. OS/390 C/C++ supports VA and VBA queues with an lrecl of at least
137 bytes.

Records sent to the transient data queues associated with stdout and stderr take
the form of a message. The entire message record can be preceded by an ASA
Standard control character.

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

Figure 176 illustrates the recommended message format.

In Figure 176:

ASA is the carriage-control character.

terminal id is a 4-character terminal identifier.

transaction id is a 4-character transaction identifier.

sp is a space.

Time Stamp is the date and time displayed in the format
YYYYMMDDHHMMSS.

data is the data outputted to the standard streams stdout and stderr.

The following are sample messages of data written to a CICS data queue:
SAMATST1 19940401080523 Hello World - from transaction TST1!
BOBATST3 19940401112348 Hello World - from transaction TST3!
TEDATST2 19940401112348 Hello World - from transaction TST2!

Standard streams can only be redirected to or from memory files.

Because only one transient data queue can be associated with each of stdout and
stderr, these queues can contain output written in chronological order from many
C and C++ programs. This output must be sorted as necessary into the desired
sequence.

Full Memory File Support

The full set of C I/O library functions is supported under CICS for memory files.
Memory files are created with the parameter type set to memory on the fopen() call.
If you are using C++, you can also use the I/O Stream class library to create and
access memory files. Hiperspace memory files are not supported.

Figure 176. Format of Data Written to a CICS Data Queue

Chapter 38. Using the Customer Information Control System (CICS) 575

Support for Disk Files and Other Devices

There is no support by the C I/O library or the I/O Stream class library for using
disk files and other devices with CICS. I/O to access methods supported by CICS
must use the CICS Application Programming Interface.

Using OS/390 C/C++ Library Support

This section discusses restrictions and support for the OS/390 C/C++ library with
CICS.

Arguments to C or C++ main()

When a OS/390 C/C++ program is running under CICS, you cannot pass
command line arguments to it. The values for argc and argv have the following
settings:

argc 1

argv[0] 4-character CICS transaction ID

Run-Time Options

Command line run-time options cannot be passed in CICS. To specify run-time
options in C/C++, you must include the #pragma runopts directive in the code.
Figure 175 on page 571 shows how to do this. See the OS/390 Language Environment
Programming Guide for information on other ways to supply run-time options when
you are running under CICS.

Using Packed Decimal with CICS

The packed decimal data type is supported under CICS. However, the CICS
translator does not support packed decimal. CICS expects packed decimal streams
to be passed to it as arrays of characters. If you want to manipulate these arrays as
a packed decimal number, you should define the array of characters in union with
the appropriate packed decimal definition. Refer to the CICSPlex SM Application
Programming Guide for information on how to define the data fields for the EXEC
CICS commands you are using.

Note: The OS/390 C++ compiler does not support packed decimal data. Any
program using the C or C++ character data type to handle packed decimal
data must have its own functions for the manipulation of this data.

Locales

All locale functions are supported for locales that have been defined in the CSD.
CSD definitions for the IBM-supplied locales are provided in SCEESAMP(CEECCSD).
setlocale() returns NULL if the locales are not defined.

Code Set Conversion Tables

The code set conversion tables that are used by the iconv() functions must be
defined in the CSD.

POSIX

There is no support for POSIX functions that are not already defined as part of
ANSI/ISO. OS/390 UNIX is not supported under CICS.

576 OS/390 V2R8.0 C/C++ Programming Guide

Multitasking Facility

MTF functions are not supported under CICS.

System Programming C Facilities

There is no support for the System Programming C facilities (SP C) under CICS.

SVC99 and Dynamic Allocation Functions

svc99() and the dynamic allocation functions dynalloc(), dynfree(), and
dyninit() are not supported under CICS. The svc99() function returns 0 if the
input is NULL, otherwise the return value is undefined.

IMS

There is no support for the ctdli() function under CICS. If you call ctdli() under
CICS, the return value is -1. Refer to the CICSPlex SM Application Programming
Guide for information on the CICS method to access IMS.

Dump Functions

The dump functions csnap(), cdump(), and ctrace() are supported under CICS.
The output is sent to the CESE transient data queue. The dump can not be written
if the queue does not have a sufficient LRECL. An LRECL of at least 161 is
recommended.

Dynamic Linked Libraries (DLL)

All DLLs must be defined in the CSD.

fetch()

The fetch() function is supported under CICS. Modules to be fetched must be
defined to the CSD and installed in the PPT.

release()

The release() function is supported under CICS.

system()

The system() function is not supported under CICS. However, there are two EXEC
CICS commands that give you similar functionality:

EXEC CICS LINK
This command enables you to transfer control to another program and
return to the calling program later. See Figure 177 on page 582.

EXEC CICS XCTL
This command enables you to transfer control to another program. Control
does not return to the caller after completion of the called program.

Time Functions

All time functions are supported except the clock() function, which returns the
value (time_t)(-1) if it is used under CICS.

Chapter 38. Using the Customer Information Control System (CICS) 577

iscics()

The iscics() function is an extension to the C library. It returns a non-zero value
if your program is currently running under CICS. If your program is not running
under CICS, iscics() returns the value 0. The following example shows how to
use iscics() in your C or C++ program to specify non-CICS or CICS specific
behavior.

if (iscics() == 0)
< non-CICS behavior>

else
< CICS-specific behavior>

Floating Point Arithmetic

The simulation of extended precision floating point is not supported in CICS.

Program Termination

A C or C++ program running under CICS will terminate when:
v An exit() function call or a return statement is issued in the C or C++

program. The atexit list of functions is run when the C or C++ program
terminates.

Note: On return from a C or C++ application, the return statement or values
passed by C or C++ through the exit() function are saved in the
EIBRESP2 field of the EIB.

v An abend occurs and is not handled.
v An EXEC CICS RETURN is issued in your C or C++ program. The atexit list of

functions runs after these calls.
v The abort() function is started.

Storage Management

A OS/390 C/C++ program can acquire storage from and release storage to
CICS/ESA implicitly or explicitly.

Storage is acquired and released implicitly by the run-time environment. This
storage is used for automatic, external, and static variables. External variables are
valid until program completion.

Storage is acquired and released explicitly by the user with the C library functions
malloc(), calloc(), realloc(), or free(), with OS/390 Language Environment
Callable Services (refer to the OS/390 Language Environment Programming Guide),
with the C++ new and delete operators, or with the EXEC CICS commands EXEC
CICS GETMAIN, or EXEC CICS FREEMAIN.
v If you request the storage by using the C functions malloc(), realloc(), or

calloc() you must deallocate it by using C functions as well.
v If you request the storage by using OS/390 Language Environment Callable

Services, you must deallocate it by using OS/390 Language Environment
Callable Services.

v If you request the storage by using EXEC CICS GETMAIN, you must deallocate it by
using EXEC CICS FREEMAIN.

v If you request storage using the C++ new operator, you must deallocate it by
using the C++ delete operator.

578 OS/390 V2R8.0 C/C++ Programming Guide

All other combinations of methods of requesting and deallocating storage are
unsupported and lead to unpredictable behavior.

Partial deallocations are not supported. All storage allocated at a given time must
be deallocated at the same time.

Under the OS/390 Language Environment library, OS/390 C/C++ uses the OS/390
Language Environment Callable Services to allocate and free storage. Refer to the
OS/390 Language Environment Programming Guide for specific information on
memory and storage manipulation in CICS.

The OS/390 C/C++ library functions acquire all storage from the Extended
Dynamic Storage Area (EDSA) unless you specify otherwise using the ANYHEAP,
BELOWHEAP, HEAP, STACK, or LIBSTACK run-time options.

Storage that is acquired with the EXEC CICS GETMAIN command exists for the
duration of the CICS task.

If your application is multi-threaded or often uses malloc(), realloc(), calloc(),
and free(), you should consider using the HEAPPOOLS run-time option.
Although storage requirements may increase, you can expect better performance.

Using Interlanguage Support

The OS/390 Language Environment library supports a variety of different types of
interlanguage calls (ILC) with CICS. For information on supported configurations,
please refer to the OS/390 Language Environment Writing Interlanguage Applications.

Exception Handling

You can use three different different kinds of exception handlers when running C
programs in a CICS environment: CICS exception handlers, OS/390 Language
Environment abend handlers, and C exception handlers. If you are using C++, you
can use any of these three, or the C++ exception handling approach using try,
throw, and catch. When a CICS condition is not handled under C++, the behavior
of constructors and destructors for objects is undefined.

If the CICS command EXEC CICS HANDLE ABEND PROGRAM(name) was specified in the
application, it will be called for any program exception that occurs (such as an
operation exception or a protection exception) as well as for any EXEC CICS ABEND
ABCODE(...) command that is run.

OS/390 Language Environment provides facilities to set up a user handler. These
facilities are discussed in detail in the OS/390 Language Environment Programming
Guide.

In CICS, the C error handling facilities have almost the same behavior as discussed
in “Chapter 27. Handling Exceptions, Error Conditions, and Signals” on page 363.
A signal raised with the raise() function is handled by its corresponding signal
handler or the default actions if no handler is installed. If a program exception
such as a protection exception occurs, it is handled by the appropriate C handler if
no CICS or OS/390 Language Environment handler is present.

When a C or C++ application is invoked by an EXEC CICS LINK PROGRAM(...), the
invoked program inherits any handlers registered by EXEC CICS HANDLE ABEND

Chapter 38. Using the Customer Information Control System (CICS) 579

PROGRAM(...) in the parent program. Any handlers registered in the child override
the inherited handlers. C signal handlers are not inherited.

The following chart shows the process for handling abends in CICS.

580 OS/390 V2R8.0 C/C++ Programming Guide

MAP 0050: Error Handling in CICS

001

Is this the result of a call to raise()?
Yes No

002

Has EXEC CICS HANDLE ABEND been issued?
Yes No

003

Continue at Step 005.

004

Call OS/390 C/C++-CICS interface for termination of program. CICS turns
off signal and runs program in handler.

005

Is SIG_IGN set for the signal?
Yes No

006

Is a OS/390 Language Environment handler registered?
Yes No

007

Is a C or C++ handler established?
Yes No

008

Default handling the program check and percolate to next stack
frame.

009

Run C or C++ handler.

010

Run OS/390 Language Environment user handler. See the OS/390 Language
Environment Programming Guide for more details.

011

Resume at the next instruction.

Chapter 38. Using the Customer Information Control System (CICS) 581

Example of Error Handling in CICS

The examples in Figure 177 show how to handle errors when using OS/390 C/C++
with CICS.

CBC3GCI2

/* program : CHKSTAT */
/* transaction : called stand alone from transaction CHST */
/* is also used by other transactions to determine */
/* system status */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>

#define FILE_LEN 40

void status_not_ok(int sig);
void unexpected_prob(char* desc, int rc);
volatile unsigned char status_record [41];

struct com_struct {
int quiet;

} com_reg;

main (int argc, char *argv [])
{
long int vsamrrn;
signed short int vsamlen;

signed long int myresp;
signed long int myresp2;
unsigned char status_downtme [41];

if (strcmp(argv[0],"CHST") !=0) {
printf("argv[0] = %s\n", argv[0]) ;
com_reg.quiet = 1;

}
else

com_reg.quiet = 0;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr);

EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); «1¬
signal(SIGUSR1,status_not_ok); «2¬

EXEC CICS LINK PROGRAM("GETSTAT ") «3¬
RESP(myresp)
RESP2(myresp2)
COMMAREA(&com_reg)
LENGTH(4);

Figure 177. Example Illustrating Error Handling under CICS (Part 1 of 3)

582 OS/390 V2R8.0 C/C++ Programming Guide

/* check for failure in linked-to program */
if (myresp != DFHRESP(NORMAL)) {

printf("The RESP of LINK = %d\n", myresp) ;
printf("The RESP2 of LINK = %d\n", myresp2) ;
unexpected_prob("CICS failure on EXEC CICS LINK\n",51);

}

if (myresp2 != 11)
unexpected_prob("Unexpected rc from GETSTAT\n",myresp2);

vsamrrn = 1;
vsamlen = FILE_LEN;

/* following READ for UPDATE is for test purpose only. */
EXEC CICS READ FILE("STATFILE")

UPDATE
INTO(status_record)
RIDFLD(vsamrrn)
RRN
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

/* check for cics response - non-0 implies problem */
if (myresp != DFHRESP(NORMAL))

unexpected_prob("Unable to read from file",52);

/* write DOWNTME back to file - for test purpose only */
strcpy(status_downtme,"DOWNTME ");
EXEC CICS REWRITE FILE("STATFILE")

FROM(status_downtme)
LENGTH(vsamlen)
RESP(myresp)
RESP2(myresp2);

if (myresp != DFHRESP(NORMAL)) {
printf("The dnresp from REWRITE = %d\n", myresp) ;
printf("The dnresp2 from REWRITE = %d\n", myresp2) ;
unexpected_prob("Unexpected prob with WRITE",myresp);

}

if (memcmp(status_record,"OK ",3) != 0)
raise(SIGUSR1);

exit(11);
}

void unexpected_prob(char* desc, int rc)
{
long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

Figure 177. Example Illustrating Error Handling under CICS (Part 2 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 583

The numbers in the following list correspond to the numbers in the example code.

«1¬ The program CATCHIT has been installed as the CICS abend handler.
Because this CICS abend handler is installed, C exception handlers will
only catch signals raised with the raise() function.

«2¬ Install a C signal handler to catch the user defined signal SIGUSR1. This
handler will only be called if raise(SIGUSR1)is run.

«3¬ This command causes the flow of control to shift to a child program called
GETSTAT. GETSTAT will inherit CHKSTAT’s CICS abend handler.

«4¬ The C signal handler status_not_OK that was will be invoked if this line is
run. The raise() function will not trigger the CICS abend handler.

ABEND Codes and Error Messages under OS/390 C/C++

For information on ABEND Codes and error messages used by the OS/390
Language Environment library, refer to the OS/390 Language Environment
Programming Guide and the OS/390 Language Environment Debugging Guide and
Run-Time Messages.

Coding Hints and Tips
v Do not use EXEC CICS commands in macros.
v Do not use EXEC CICS commands in header files. This makes the translation

process much simpler.
v Do not set atexit() routines before an EXEC CICS XCTL. You will get

unpredictable results.
v If you call fclose() or freopen() for a standard stream, you cannot redirect or

reopen the link to the transient data queue. OS/390 C/C++ does not provide a
method of opening or reopening the transient data queues.

v The actual transient data queue is not closed when you call fclose() or
freopen() for a standard stream; however, the transaction will lose access to the
stream.

v You should not use the stdin stream unless you are redirecting it from a
memory file.

EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2);

fprintf(stderr,"%s\n",desc);

if (msgresp != DFHRESP(NORMAL))
exit(99);

else
exit(rc);

}

void status_not_ok(int sig) «4¬
{
if (memcmp(status_record,"DOWNSTR ",8) != 0)

exit(22);
else

exit(33);
}

Figure 177. Example Illustrating Error Handling under CICS (Part 3 of 3)

584 OS/390 V2R8.0 C/C++ Programming Guide

v Closing the cout, cerr, or clog standard streams in a C++ application has the
same effect as closing stdout or stderr.

v When CICS handlers (using EXEC CICS HANDLE ABEND PROG) are activated along
with C or C++ signal handlers, the CICS handler is invoked when an abend
occurs. The C or C++ signal handler that corresponds to that class of abends is
ignored.

Note: The handler mentioned here is not a catch clause. It is a C signal handler
exception registered by a C++ routine.

v If you do an EXEC CICS RETURN out of an atexit() routine, the resulting return
code (RESP2) is undefined.

Translating and Compiling for Reentrancy

This section discusses and provides examples of using the CICS language
translator and compiling for CICS. It also discusses reentrancy issues with respect
to CICS.

Translating

CICS/ESA provides a utility program called the CICS language translator. This
program translates the EXEC CICS statements into C or C++ code.

Note:

If you are using C++, you must use the CPP translator option to indicate to
the compiler that you are using the C++ language, rather than the C
language. The use of the CPP parameter specifies that the translator is to
translate OS/390 C++ programs.

Code translated without the CPP option or with a translator released before
version 4.1 of CICS is not supported by the OS/390 C++ compiler and will
not compile.

The translator supplies a control block (DFHEIBLK) for passing information between
CICS/ESA and the application program. C or C++ function references for the EXEC
CICS commands are generated. The translation step is not required if you do not
use EXEC CICS statements.

The CICS translator does not evaluate preprocessor statements such as #include or
#define. You should ensure that all EXEC CICS statements are translated.

Translating Example

Figure 178 on page 586 shows pieces of C and C++ code before they are translated
with the CICS language translator. Figure 179 on page 587 shows the corresponding
programs after translation.

Chapter 38. Using the Customer Information Control System (CICS) 585

CBC3GCI3

In Figure 178 observe the following:

«1¬ and «2¬
These programs each contain two EXEC CICS commands to be translated
by the CICS translator. A single instance of the EXEC CICS ADDRESS EIB
command is required before any other call to the EXEC CICS interface. In
this case, the main program (see Figure 175 on page 571) issues the
ADDRESS EIB command. Since the two pieces of code make up one
program there is no need to ADDRESS the EIB again.

The programs once translated appear as follows:

/* program : CATCHIT */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

struct com_struct {
unsigned int quiet ;

} *commarea ;

main () {

signed long int myresp;
signed long int myresp2;

/* get addressability to the EIB first */
EXEC CICS ADDRESS EIB(dfheiptr); «1¬

/* access common area sent from caller */
EXEC CICS ADDRESS COMMAREA(commarea); «2¬

printf("The program is now inside CATCHIT.\n");

/* statements required to handle the abend
EXEC CICS ..
EXEC CICS .. */

EXEC CICS RETURN;

}

Figure 178. Example Illustrating How to Use EXEC CICS Commands

586 OS/390 V2R8.0 C/C++ Programming Guide

#ifndef __dfheitab
#define __dfheitab 1

char *dfhldver = "LD TABLE DFHEITAB 320." ;
unsigned short int dfheib0 = 0 ;

char *dfheid0 = "\x00\x00\x00\x0c" ;
char *dfheicb = " " ;

typedef struct { «3¬
unsigned char eibtime [4] ;
unsigned char eibdate [4] ;
unsigned char eibtrnid [4] ;
unsigned char eibtaskn [4] ;
unsigned char eibtrmid [4] ;
signed short int eibfil01 ;
signed short int eibcposn ;
signed short int eibcalen ;
unsigned char eibaid ;
unsigned char eibfn [2] ;
unsigned char eibrcode [6] ;
unsigned char eibds [8] ;
unsigned char eibreqid [8] ;
unsigned char eibrsrce [8] ;
unsigned char eibsync ;
unsigned char eibfree ;
unsigned char eibrecv ;
unsigned char eibfil02 ;
unsigned char eibatt ;
unsigned char eibeoc ;
unsigned char eibfmh ;
unsigned char eibcompl ;
unsigned char eibsig ;
unsigned char eibconf ;
unsigned char eiberr ;
unsigned char eiberrcd [4] ;
unsigned char eibsynrb ;
unsigned char eibnodat ;
signed long int eibresp ;
signed long int eibresp2 ;
unsigned char eibrldbk ;

} DFHEIBLK;
DFHEIBLK *dfheiptr;

#endif

Figure 179. Child C program after Translation (Part 1 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 587

#ifndef __dfhtemps
#pragma linkage(dfhexec,OS) /* force OS linkage */
void dfhexec(); /* Function to call CICS */
#define __dfhtemps 1

signed short int dfhb0020, *dfhbp020 = &dfhb0020 ;
signed short int dfhb0021, *dfhbp021 = &dfhb0021 ;
signed short int dfhb0022, *dfhbp022 = &dfhb0022 ;
signed short int dfhb0023, *dfhbp023 = &dfhb0023 ;
signed short int dfhb0024, *dfhbp024 = &dfhb0024 ;
signed short int dfhb0025, *dfhbp025 = &dfhb0025 ;
unsigned char dfhc0010, *dfhcp010 = &dfhc0010 ;
unsigned char dfhc0011, *dfhcp011 = &dfhc0011 ;
signed short int dfhdummy;

#endif
/* this is an example of a CICS program for C */
/* program : GETSTAT (part 2 - infrequent use routines) */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void unexpected_prob(char* desc, int rc);

void sendmsg(char* status_record)
{
long int msgresp, msgresp2;
char outmsg[80];
int outlen;

if (memcmp(status_record,"OK ",3)==0)
strcpy(outmsg,"The system is available.");

else if (memcmp(status_record,"DOWNTME ",8)==0)
strcpy(outmsg,"The system is down for regular backups.");

else
strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

outlen=strlen(outmsg);

Figure 179. Child C program after Translation (Part 2 of 3)

588 OS/390 V2R8.0 C/C++ Programming Guide

In Figure 179 on page 587 observe the following:

«3¬ This structure, DFHEIBLK, is used for passing information between CICS and
the application program.

«4¬ This is the CICS command that was interpreted by the translator. The
translator comments out the EXEC CICS commands.

«5¬ The translator inserts this call to the function dfhexec and comments out
the EXEC CICS commands for further processing by the OS/390 C/C++
compiler. The values msgresp and msgresp2 are set from the values in the
DFHEIBLK structure.

«6¬ This EXEC CICS command is similar in format to the one discussed in «4¬.
However, you should note that the generated call to dfhexec is different.
For this reason it is important that EXEC CICS commands are not
imbedded in macros.

/* EXEC CICS SEND TEXT FROM(outmsg) «4¬
LENGTH(outlen)
RESP(msgresp)
RESP2(msgresp2) */

{
dfhb0020 = outlen;
dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF2\xF2\xF0\xF0",dfhdummy,outmsg,dfhbp020); «5¬
msgresp = dfheiptr->eibresp;
msgresp2 = dfheiptr->eibresp2;
}

if (msgresp != 0)
unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)
{
long int msgresp, msgresp2;
int msglen;

msglen = strlen(desc);

/* EXEC CICS SEND TEXT FROM(desc)
LENGTH(msglen)
RESP(msgresp)
RESP2(msgresp2) */

{
dfhb0020 = msglen;
dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF4\xF1\xF0\xF0",dfhdummy,desc,dfhbp020); «6¬
msgresp = dfheiptr->eibresp;
msgresp2 = dfheiptr->eibresp2;
}

fprintf(stderr,"%s\n",desc);

if (msgresp != 0)
exit(99);

else
exit(rc);

}

Figure 179. Child C program after Translation (Part 3 of 3)

Chapter 38. Using the Customer Information Control System (CICS) 589

Compiling

CICS requires that programs be reentrant at CICS entry points. If you are using C,
this means:
v If your program is not naturally reentrant, you must compile with the RENT

compiler option.
v If you are compiling code that was translated by the CICS translator, you must

compile with the RENT compiler option. The CICS translator puts external
writable static in the program.

For both C and C++, this means that if your program is naturally reentrant and
has not been translated, you can compile and link it just as you would a non-CICS
program.

Sample JCL to Translate and Compile

The sample JCL in Figure 180 and Figure 181 on page 591 shows you how to
translate and compile C and C++ modules.

//*--
//* Translate a C-CICS program
//*--
//*--
//* Translate a C program for CICS
//*--
//TRANSTEP EXEC PGM=DFHEDP1$,
// REGION=2048K,
// PARM='MAR(1,80,0),OM(1,80,0),NOS'
//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,
// DCB=BLKSIZE=400,SPACE=(400,(400,100))
//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR
//*--
//* Compile the translated C source.
//*--
//C0010308 EXEC EDCC,
// INFILE='MYID.CHKSTAT.C',
// OUTFILE='MYID.OBJECT(CHKSTAT),DISP=SHR',
// CPARM='OPT(0) NOSEQ NOMAR RENT ',
// SYSOUT6='*'
//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)
//USERLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

Figure 180. JCL to Translate and Compile a C Program

590 OS/390 V2R8.0 C/C++ Programming Guide

Prelinking and Linking All Object Modules

If you are using C++, or if you have compiled your C source with the RENT
compile-time option, you must prelink all of the object modules together. The
prelinker accepts one or more object modules, combines them, and generates a
single output object module which can then be linked. For further information on
the prelinker, see the OS/390 C/C++ User’s Guide.

When you are prelinking for CICS, you should expect some unresolved external
references and a return code of 4. These unresolved references should be resolved
at link time.

CICS provides a stub called DFHELII, which must be link-edited with the load
module. For your convenience, the linkage editor commands required for CICS are
provided with CICS in the DFHEILID member of the SDFHC370 data set. The
DFHEILID member must be reblocked before it is passed to the linkage editor. A
name card should also be passed to the linkage editor. All applications must run
AMODE=31. It is recommended that the object module is linked with AMODE(31) and
RMODE(ANY). CICS does not require any other linkage editor options.

If you are using C, and your program will reside in one of the DFHRPL libraries,
you do not need to link-edit the module with the RENT option. However, if the
program is to be installed in one of the link pack areas, STEPLIBs, or data sets in
the system link list, you should link-edit the module with the RENT option.

The example in Figure 182 on page 592 shows you how to prelink and link C and
C++ modules.

//*--
//* Translate a C++-CICS program
//*--
//*--
//* Translate C++ program for CICS
//*--
//TRANSTEP EXEC PGM=DFHEDP1$,
// REGION=2048K,
// PARM='MAR(1,80,0),OM(1,80,0),NOS,CPP'
//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,
// DCB=BLKSIZE=400,SPACE=(400,(400,100))
//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR
//*--
//* Compile the translated C++ source.
//*--
//C0010308 EXEC CBCC,
// OUTFILE='MYID.OBJECT(CHKSTAT),DISP=SHR',
// CPARM='NOSEQ NOMAR RENT ',
// SYSOUT6='*'
//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)

Figure 181. JCL to Translate and Compile a C++ Program

Chapter 38. Using the Customer Information Control System (CICS) 591

Defining and Running the CICS Program

This section discusses the implications of program processing, link considerations
for C programs, and CSD considerations. Sample JCL to install OS/390 C/C++
application programs is provided.

Program Processing

In a CICS environment, a single copy of a program is used by several transactions
concurrently. One section of a program can process a transaction and then be
suspended (usually as a result of an EXEC CICS command); another transaction can
then start or resume processing the same or any other section of the same
application program. This behavior requires that the program be reentrant.

Link Considerations for C Programs

If your C program will reside in one of the DFHRPL libraries, following the translate,
compile, and link steps detailed earlier in this chapter is sufficient; there is no
requirement to link-edit the module with the RENT linkage editor option.

//*--
//* Reblock CICS support link module
//*--
//COPYLINK EXEC PGM=IEBGENER
//SYSUT1 DD DSN=CICS.V4R1M0.SDFHC370(DFHEILID),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// UNIT=VIO,SPACE=(400,(20,20))
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*---
//* Prelink and link MYMAIN with MYCICSTF and MYOTHSTF
//*---
//P0010598 EXEC EDCPL,
// INFILE='MYID.OBJECT(MYMAIN)',
// OUTFILE='MYID.CICS.LOAD(MYMAIN),DISP=SHR',
// PPARM=' NCAL',
// LPARM='AMODE(31),RMODE(ANY) ',
// SYSOUT4='*'
//PLKED.SYSIN DD DATA,DLM='/>'

INCLUDE OBJECT(MYMAIN)
INCLUDE OBJECT(MYCICSTF)
INCLUDE OBJECT(MYOTHSTF)

/>
//PLKED.SYSMOD DD DSN=&&PLNK,DISP=(,PASS),UNIT=VIO,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// SPACE=(32000,(30,30))
//PLKED.OBJECT DD DSN=MYID.OBJECT,DISP=SHR
//LKED.SYSLIB DD DSN=CICS.V4R1M0.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSLIN DD DSN=&©LINK,DISP=(SHR,DELETE)
// DD DSN=*.PLKED.SYSMOD,DISP=(SHR,DELETE)
// DD DDNAME=SYSIN
//LKED.SYSLMOD DD DSN=MYID.CICS.LOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME MYMAIN(R)

/>

Figure 182. Prelinking and Linking

592 OS/390 V2R8.0 C/C++ Programming Guide

However, if the program is to be installed in one of the link pack areas, STEPLIBs,
or data sets in the system link list, the module should be link-edited with the RENT
option.

CSD Considerations

Before you can run a program, you must define it in the CICS CSD. When defining
a program to CICS, you should use LANGUAGE(LE). However, if the program is in C
and does not use ILC support, you can use LANGUAGE(C).

If you use a copy of a reentrant C or C++ application program that has been
installed in the link pack area, you must specify USELPACOPY(YES) in the resource
definition when you define the program in the CSD. You can use the
CICS-supplied procedure DFYEITDL to translate, compile, prelink, and link-edit C or
C++ programs. For C programs, you may have to change the compile step of this
procedure. You will have to change the compile step to use it with the C++
compiler.

Sample JCL to Install OS/390 C/C++ Application Programs

This is the sample JCL to install an OS/390 C/C++ application program.

Your application is anyname. x can resolve to I or X.

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHExTEL

//TRN.SYSIN DD *
#pragma XOPTS(Translator options . . .)

...

OS/390 C/C++ source statements

...

/*
//LKED.SYSIN DD *

NAME anyname(R)
/*
//

Figure 183. JCL to Install OS/390 C/C++ Application Programs

Chapter 38. Using the Customer Information Control System (CICS) 593

594 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 39. Using Cross System Product (CSP)

This chapter briefly describes the interface between OS/390 C and applications
generated through the Cross System Product/Application Development (CSP/AD)
and the Cross System Product/Application Execution (CSP/AE) Version 3 Release
2 Modification 2 or later. CSP refers to both CSP/AD and CSP/AE.

CSP/AD is an interactive application generator that provides methods for
interactively defining, testing, and generating application programs. It can aid in
improving productivity in application development.

CSP/AE takes the generated program and executes it in a production environment.

Common Data Types

Table 68 lists the data types common to both CSP and OS/390 C.

Table 68. Common Data Types Between OS/390 C and CSP

OS/390 C CSP

signed short BIN - 2 bytes

signed int/long BIN - 4 bytes

struct RECORD

char array(size) Characters

You must use the function __csplist to receive the parameter list from a CSP
application. See the OS/390 C/C++ Run-Time Library Reference for more information
on this function.

Passing Control

You can pass control between CSP and OS/390 C as follows:

CALL Calls another application or subroutine to be run.
When execution is completed, control is returned
to the statement following the CALL statement in
the original application.

XFER|DXFR Transfers control and initiates execution of a CSP
application or non-CSP program or transaction.
The current application is terminated when the
transfer statement is executed.

Under CICS, XFER is used to transfer control to
another CICS transaction, while DXFR is used to
transfer control to an application or program. If the
target name is an application, control remains in
CSP and the application is initiated immediately. If
the target name is a program, CSP issues CICS XCTL
to the program name.

© Copyright IBM Corp. 1996, 1999 595

Note: From a OS/390 C program, you can pass control to a CSP application but
you cannot pass control to another OS/390 Language Environment-enabled
language (COBOL, PL/I) from that CSP application. Only one OS/390
Language Environment-enabled language can be in the chain of calls.

Running CSP under MVS

This section covers:
v Calling CSP applications from OS/390 C
v Calling OS/390 C from CSP

Calling CSP Applications from OS/390 C

To call a CSP application from OS/390 C, you must:
1. Define the CSP program to be called one of the following:
v DCGCALL - calling under MVS/TSO
v DCGXFER - transferring control under MVS/TSO with OS pragma linkage

2. Fetch the program dynamically.
3. Transfer control to the program. You must pass at least one parameter when

calling CSP from OS/390 C. This is the pointer to the ALF name and
application name.

Examples

The following example program CALLs a CSP application in the OS/390
environment. You must receive a structure.

596 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCP1

/* this example shows how to CALL CSP from C under TSO */

/* CALL */
/* CBC3GCP1 ====> R924A6 */
/* R924A6 is a CSP application */

#include <stdlib.h>
#include <math.h>

#pragma linkage(DCGCALL,OS)

void main(int argc , char * argv[])
{

int ctr,base, power ;

typedef void ASM_VOID();
#pragma linkage (ASM_VOID,OS)
ASM_VOID * fetch_ptr;

int rc = 0;
char module [8] = {"DCGCALL " } ;
struct tag_a6progc {
char alfx [8];
char applx [8];

} ;

Figure 184. C/370 CALLing CSP under TSO (Part 1 of 2)

Chapter 39. Using Cross System Product (CSP) 597

Note: CSP cannot pass the DXFR statement to OS/390 C under TSO.

The following example program uses an XFER command to transfer control to a
CSP application. You must pass a structure.

struct tag_a6rec {
char a6ct [4];
char a6lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a6xbc;
int a6ybc;
int a6zbc;

};
struct {
char s_parm [240];

} s_parms = {"ALF=C "};

struct tag_a6progc a6_progc = {"FZERSAM.","R924A6 "} ;

_Packed struct tag_a6rec a6_rec = {"CALL" ,
"C " ,
"0000110C",
"0000220C",
"0000330C",
12, 2, 0
};

base = atoi(argv[1]) ;
power= atoi(argv[2]) ;

a6_rec.a6xbc = base;
a6_rec.a6ybc = power;
a6_rec.a6zbc = (int) pow((double) a6_rec.a6xbc,

(double) a6_rec.a6ybc);

if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {
printf (" failed on fetch of CSP %s module \n", module);

}
else {
fetch_ptr (&a6_progc, &a6_rec);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {
printf ("CBC3GCP1: rc from release =%d\n", rc);

}
}

}

Figure 184. C/370 CALLing CSP under TSO (Part 2 of 2)

598 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCP2

/* this example shows how to transfer control to CSP from C under */
/* TSO, using XFER */

/* XFER */
/* CBC3GCP2 ====> R924A5 */
/* R924A5 is a CSP application */

#include <stdlib.h>
#include <math.h>

#pragma linkage(DCGXFER,OS)

void main(int argc , char * argv[])
{

int ctr,base, power ;
int rc = 0;
char module [8] = {"DCGXFER " } ;

typedef void ASM_VOID();
#pragma linkage (ASM_VOID,OS)
ASM_VOID * fetch_ptr;

struct tag_a5ws {
short length ;
char filler [8];
char a5ct [4];
char a5lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a5xbc;
int a5ybc;
int a5zbc;

};
struct tag_a5progx {
char alfx [8];
char applx [8];

};

struct {
char s_parm [240];

} s_parms = {"ALF=C "};

Figure 185. OS/390 Ctransferring control to CSP under TSO using the XFER/DXFR
statement (Part 1 of 2)

Chapter 39. Using Cross System Product (CSP) 599

Calling OS/390 C from CSP

To call a OS/390 C program from CSP:
v PLIST(OS) must be specified in the OS/390 C program so that input parameters

will not be processed by the run-time environment.
v When CSP passes a parameter list to a OS/390 C function, the list is in a

different format from what OS/390 C expects in a normal OS/390 environment.
To receive the parameters, use the macro __csplist, found in the csp.h header file
and described in the OS/390 C/C++ Run-Time Library Reference.

Notes:

1. PLIST(OS) must be specified in the OS/390 C program so that input parameters
will not be processed by the run-time environment.

2. When CSP passes a parameter list to a OS/390 C function, the list is in a
different format from what OS/390 C expects in a normal OS/390 environment.
To receive the parameters, use the macro __csplist, found in the csp.h header
file and described in the OS/390 C/C++ Run-Time Library Reference.

Examples

The following example program shows how parameters are received from a CSP
application that uses a CALL statement to transfer control. You must pass three
parameters:

An int
A string
A struct

struct tag_a5progx a5_progx = {"FZERSAM.","R924A5 "} ;
_Packed struct tag_a5ws a5_ws = { 54,

"CBC3GCP2",
"XFER" ,
"C " ,
"0000110C",
"0000220C",
"0000330C",
12, 2, 0
};

base = atoi(argv[1]) ;
power= atoi(argv[2]) ;

a5_ws.a5xbc = base;
a5_ws.a5ybc = power;
a5_ws.a5zbc = (int) pow((double) a5_ws.a5xbc,

(double) a5_ws.a5ybc);

if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {
printf (" failed on fetch of CSP %8s module \n", module);

}
else {
fetch_ptr (&a5_ws , &a5_progx);
rc = release((void (*) ())fetch_ptr) ;
if (rc != 0) {
printf ("CBC3GCP2: rc from release =%d\n", rc);

}
}

}

Figure 185. OS/390 Ctransferring control to CSP under TSO using the XFER/DXFR
statement (Part 2 of 2)

600 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCP3

The following example program shows how parameters are received from a CSP
application that uses an XFER/DXFR statement to transfer control. You must pass a
structure.

Notes:

1. Under TSO, CSP/AD cannot use the XFER statement to transfer control to
OS/390 C.

2. Under TSO, you cannot use the DXFR statement to transfer control to CSP.

/* this example shows how to CALL C from CSP under TSO */

#pragma runopts (plist(os))
#include <csp.h>
#include <math.h>
#include <stdlib.h>

void main()
{

struct date {
char yy[2];
char mm[2];
char dd[2];

} ;
int *parm1_ptr ;
char *parm2_ptr ;
struct date * parm3_ptr ;

parm1_ptr = (int *) __csplist[0]; /* get 1st parm */
parm2_ptr = (char *) __csplist[1]; /* get 2nd parm */
parm3_ptr = (struct date *) __csplist[2]; /* get 3rd parm */

}

Figure 186. CSP CALLing OS/390 C under TSO

Chapter 39. Using Cross System Product (CSP) 601

CBC3GCP4

/* this example shows how to transfer control from CSP to C */

/* This program will be called from CSP through */
/* "XFER" or DXFR call. */
/* Parameters are passed as a working storage record */
/* plus 10 bytes of filler information */
/* 2 bytes length */
/* 8 bytes filler */
/* n bytes working storage record. */

#pragma runopts (plist(os))
#include <stdlib.h>
#include <csp.h>
#include <math.h>
#include <string.h>

#pragma linkage(DCGXFER,OS)
#pragma linkage(DCGCALL,OS)

void xfer_rtn ();
void call_rtn ();

struct tag_a3ws {
short length ;
char filler [8];
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc;
int a3ybc;
int a3zbc;

};
struct tag_a3progx {
char alfx [8];
char applx [8];

};

Figure 187. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 1 of 3)

602 OS/390 V2R8.0 C/C++ Programming Guide

void main()
{

_Packed struct tag_a3ws *parm1 ;
_Packed struct tag_a3ws a3_ws ;

parm1 = (_Packed struct tag_a3ws *) __csplist[0];
parm1->a3zbc = (int) pow((double) parm1->a3xbc,

(double) parm1->a3ybc);

if (parm1->a3zbc > 255)
xfer_rtn(parm1); /* xfer to csp */

else
call_rtn(parm1); /* call to csp */

}
/***/
/* */
/***/
void xfer_rtn(_Packed struct tag_a3ws * parm1)
{

#pragma linkage (ASM_VOID,OS)
typedef void ASM_VOID();
ASM_VOID * fetch_ptr;

struct tag_a3progx a3_progx = {"FZERSAM.","R924A5 "} ;
int rc = 0;
char pgm_xfer [8] = {"DCGXFER " } ;

if ((fetch_ptr = (ASM_VOID *) fetch(pgm_xfer)) == NULL) {
printf (" failed on fetch of CSP %8s module \n", pgm_xfer);

}
else {
fetch_ptr (parm1, &a3_progx);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {
printf ("xfer_rtn: rc from release =%d\n", rc);

}
}

}

Figure 187. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 2 of 3)

Chapter 39. Using Cross System Product (CSP) 603

Running under CICS Control

CSP-CICS Note: Because all OS/390 C applications running under CICS must run
with AMODE=31, when passing parameters to CSP, you must either

v Pass parameters below the line, or
v Relink the CSP load library with AMODE=31

Examples

The following example program shows how parameters are received from a CSP
application that uses a CALL statement to transfer control. The OS/390 C program
is expecting to receive an int as a parameter.

/***/
/* */
/***/
void call_rtn(_Packed struct tag_a3ws * parm1)
{

typedef void ASM_VOID();
ASM_VOID * fetch_ptr;
char pgm_call [8] = {"DCGCALL " } ;
int rc = 0;

struct tag_a3progx a3_progx = {"FZERSAM.","R924A6 "} ;
struct tag_a6rec {
char a6ct [4];
char a6lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a6xbc ;
int a6ybc ;
int a6zbc ;

};
struct tag_a6rec a6_rec ;

memcpy(a6_rec.a6ct ,parm1->a3ct ,4);
memcpy(a6_rec.a6lan,parm1->a3lan,4);
memcpy(a6_rec.fil1 ,parm1->fil1 ,8);
memcpy(a6_rec.fil2 ,parm1->fil2 ,8);
memcpy(a6_rec.fil3 ,parm1->fil3 ,8);
a6_rec.a6xbc = parm1->a3xbc;
a6_rec.a6ybc = parm1->a3ybc;
a6_rec.a6zbc = parm1->a3zbc;

if ((fetch_ptr = (ASM_VOID *) fetch(pgm_call)) == NULL) {
printf (" failed on fetch of CSP %s module \n", pgm_call);

}
else {
fetch_ptr (&a3_progx, &a6_rec);
rc = release((void (*)()) fetch_ptr) ;
if (rc != 0) {
printf ("CBC3GCP4: rc from release =%d\n", rc);

}
}

}

Figure 187. CSP Transferring Control to OS/390 C under TSO Using the XFER Statement
(Part 3 of 3)

604 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCP5

The following example program shows how parameters are received from a CSP
application that uses an XFER statement to transfer control.

CBC3GCP6

/* this example shows how to call C from CSP under CICS, and how */
/* parameters are passed */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

main()
{

struct tag_commarea { /* commarea passed to OS/390 C from R924A1 */
int *ptr1 ;
int *ptr2 ;
int *ptr3 ;

} * ca_ptr ; /* commarea ptr */

int *parm1_ptr ;
int *parm2_ptr ;
int *parm3_ptr ;

/* addressability to EIB control block */
/* and COMMUNICATION AREA */

EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;
parm1_ptr = ca_ptr->ptr1 ;
parm2_ptr = ca_ptr->ptr2 ;
parm3_ptr = ca_ptr->ptr3 ;

*parm3_ptr = (int) pow((double) *parm1_ptr,
(double) *parm2_ptr);

EXEC CICS RETURN;
}

Figure 188. CSP CALLing OS/390 C under CICS

/* this example shows how to XFER control to C from CSP under CICS */

/* XFER CALL */
/* R924A3 ====> CBC3GCP6 ====> R924A6 */
/* R924A3 and R924A6 are CSP applications */

#include <math.h>
#include <string.h>

/* structure passed to R924A6*/

Figure 189. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 1 of 3)

Chapter 39. Using Cross System Product (CSP) 605

void main()
{
struct {

char *appl_ptr;
_Packed struct tag_a3rec *rec3_ptr ;

} parm_ptr ;
/* Structure received R924A3*/

struct tag_a3rec {
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc; /* int field 1 for OS/390 C/C++ */
int a3ybc; /* int field 2 for OS/390 C/C++ */
int a3zbc; /* int field 3 for OS/390 C/C++ */

};
_Packed struct tag_a3rec a3rec ;
char lk_appl[16] = "USR5ALF.R924A6 " ;

struct tag_a3progx {
char alfx [8];
char applx [8];

};
_Packed struct tag_a3progx a3progx = {"USR5ALF.","R924A6 "};
short length_a3rec = sizeof(a3rec) ;
char * pa3rec ;
short i ;

/*----- start of CSP XFER-ing to C under CICS ------------------*/

EXEC CICS ADDRESS EIB(dfheiptr);
/* retrieve data from CSP */

EXEC CICS RETRIEVE INTO(&a3rec) LENGTH(length_a3rec) ;

a3rec.a3zbc = (int) pow((double) a3rec.a3xbc,
(double) a3rec.a3ybc);

/*----- end of CSP XFER-ing to C under CICS --------------------*/

Figure 189. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 2 of 3)

606 OS/390 V2R8.0 C/C++ Programming Guide

The following example program shows how parameters are received from a CSP
application that uses a DXFR statement to transfer control. You must receive a
structure.

CBC3GCP7

/* call CSP to display results*/
parm_ptr.appl_ptr = lk_appl ; /* alf.application */
parm_ptr.rec3_ptr = &a3rec ;

/* LINK to CSP application */
EXEC CICS LINK PROGRAM("DCBINIT ")

COMMAREA(parm_ptr)
LENGTH(8) ;

if (dfheiptr->eibresp2 != 0) {
printf("CBC3GCP6: EXEC CICS LINK returned non zero \n");
printf(" return code. eibresp2 =%d\n",

dfheiptr->eibresp2);
}

/*----- end of C calling CSP under CICS ------------------------*/
EXEC CICS RETURN ;

}

Figure 189. CSP transferring control to OS/390 C under CICS using the XFER statement
(Part 3 of 3)

/* this example shows how to transfer control to C from CSP under */
/* CICS, using the DXFR statement */

/* DXFR XCTL(equivalent to dxfr) */
/* R924A3 ====> CBC3GCP7 ====> DCBINIT (appl R924A5) */
/* R924A3 is a CSP application */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

main ()
{

struct tag_a3rec {
char a3ct [4];
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc ;
int a3ybc ;
int a3zbc ;

};

Figure 190. CSP Transferring Control to OS/390 C under CICS Using the DXFR Statement
(Part 1 of 2)

Chapter 39. Using Cross System Product (CSP) 607

608 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 40. Using Data Window Services (DWS)

Data Window Services (DWS) is part of the CSL (Callable Services Library). DWS
gives your C or C++ program the ability to manipulate data objects (temporary
data objects known as TEMPSPACE, and VSAM linear data sets).

/* commarea passed to C/370 from R924A3 */
struct tag_commarea {
char a3ct [4] ;
char a3lan [4];
char fil1 [8]; /* packed fields for PLI */
char fil2 [8]; /* packed fields for PLI */
char fil3 [8]; /* packed fields for PLI */
int a3xbc ;
int a3ybc ;
int a3zbc ;

} * ca_ptr ; /* commarea ptr */

struct tag_a5progc {
char alfc [8] ;
char applc [8] ;
struct tag_a3rec a3rec;

} a5progc = {"USR5ALF.","R924A5 "};

short length_a3rec = sizeof(struct tag_a3rec) ;
short length_a5progc = sizeof(struct tag_a5progc) ;

/* addreasability to EIB control block */
/* and COMMUNICATION AREA */

EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

if (dfheiptr->eibcalen == length_a3rec) {
memcpy(&a5progc.a3rec, ca_ptr , length_a3rec);

/* calculate the pow(x,y) */
a5progc.a3rec.a3zbc = (int) pow((double) a5progc.a3rec.a3xbc,

(double) a5progc.a3rec.a3ybc);

EXEC CICS XCTL
PROGRAM("DCBINIT ")
COMMAREA(a5progc)
length(length_a5progc) ;

if (dfheiptr->eibresp2 != DFHRESP(NORMAL)) {
printf ("CBC3GCP7: failed on xctl call to DCBINIT\n");
printf (" \n");

}
}
else {
printf ("CBC3GCP7:length of COMMAREA is different from expected\n");
printf (" expected %d, actual %d\n",

length_a3rec, dfheiptr->eibcalen);
printf (" \n");
EXEC CICS RETURN;

}

EXEC CICS RETURN;
}

Figure 190. CSP Transferring Control to OS/390 C under CICS Using the DXFR Statement
(Part 2 of 2)

© Copyright IBM Corp. 1996, 1999 609

To use DWS functions with C code, you do not have to specify a linkage pragma
or add any specialized code. Code the DWS function call directly inside your
OS/390 C program just as you would a call to an OS/390 C/C++ library function
and then link-edit the DWS module containing the function you want (such as
CSRIDAC, CSRVIEW, CSRSCOT, CSRSAVE or CSRREFR) with your C or C++ program.

To use DWS functions with C++ code, you must specify C linkage for any DWS
function that you use. For example, if you wished to use CSRIDAC, you would use a
code fragment like this one:

CBC3GDW2

At link-edit time, you should link-edit the DWS module containing the function
you want, just as you would for a C program.

In the DWS publication, you will see that the data types of the parameters are
specified differently from OS/390 C/C++ data types. When invoking DWS
functions from your C or C++ program, you must specify:
v A long int data type for DWS parameters of integer (I*4) type.
v Character strings (of the required length) for DWS parameters of character type.

For example, if the DWS function requires a 9-character object name (in this
example we will set the object name to TEMPSPACE) you can declare the
parameter in your C or C++ function as follows:
char object_type[9] = "TEMPSPACE";

/* this example shows how DWS may be used with C++ */
#include <stdlib.h>

extern "C" {
void csridac(char*, char*, char*, char*, char*,

char*, long int*, char*, long int*,
long int*, long int*);

}

int main(void)
{
/* Set up the parameters that will be used by CSRIDAC. */

char op_type[6] = "BEGIN";
char object_type[10] = "TEMPSPACE";
char object_name[45] = "DWS.FILE ";
char scroll_area[4] = "YES";
char object_state[4] = "NEW";
char access_mode[7] = "UPDATE";
long int object_size = 8;
char object_id[9];
long int high_offset, return_code, reason_code;

/* Access a DWS TEMPSPACE data object. */

csridac(op_type, object_type, object_name, scroll_area, object_state,
access_mode,OBJECT_size,object_id,&high_offset,
&return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */
}

Figure 191. Example Using GDDM and C++

610 OS/390 V2R8.0 C/C++ Programming Guide

Example

The following is an excerpt from a C program that shows parameter declarations
for the DWS CSRIDAC function and the function call.

CBC3GDW1

/* this example shows how DWS may be used with C */

int main(void)
{
/* Set up the parameters that will be used by CSRIDAC. */

char op_type[5] = "BEGIN";
char object_type[9] = "TEMPSPACE";
char object_name[45] = "DWS.FILE ";
char scroll_area[3] = "YES";
char object_state[3] = "NEW";
char access_mode[6] = "UPDATE";
long int object_size = 8;
char object_id[8];
long int high_offset, return_code, reason_code;

/* Access a DWS TEMPSPACE data object. */

csridac(op_type, object_type, object_name, scroll_area, object_state,
access_mode,OBJECT_size,OBJECT_id,&high_offset,
&return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */

return(0);
}

Figure 192. OS/390 C/C++ Using Data Window Services

Chapter 40. Using Data Window Services (DWS) 611

612 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 41. Using DATABASE 2 (DB2)

Both OS/390 Language Environment and OS/390 C/C++ provide an interface to
the IBM DATABASE 2 Licensed Program (DB2). Refer to “DB2 Version 3 Release 1”
on page 901 for a list of books describing DB2.

An application program requests DB2 services using SQL statements imbedded in
the program. The SQL preprocessor translates imbedded SQL statements into host
language statements that perform assignments and call a database language
interface module.

The DB2 SQL preprocessor supports C and C++. DB2 also can be accessed through
C code that is statically or dynamically called by C++.

DB2 processes a request and then returns to the application. Any errors occurring
during database processing are handled by the database product.

If a program is terminated, DB2 takes appropriate action depending on the nature
of termination.

The DB2 preprocessor does not recognize the OS/390 C/C++ compiler’s support
for alternative locales and codepages; therefore, all DB2 OS/390 C/C++ code
should be written in codepage IBM-1047 (APL293).

C++ Example

Examples CBC3GDB1 and CBC3GDB2, demonstrate how to use DB2 with C++. To
use the examples, precompile example CBC3GDB2 (Figure 194 on page 614) with
the DB2 precompiler (compiled in C) and then prelink the resulting code with
CBC3GDB1.Bind the C++ extended object modules to produce the executable
program object.

CBC3GDB1

/* this example shows how to use DB2 with C++ */
/* part 1 of 2-other file is CBC3GDB2 */

/* this file is to be compiled with C++, */
/* and then prelinked with CBC3GDB2 */

#include <stdlib.h>
#include <iostream.h>

Figure 193. Using DB2 with C++ (Part 1 of 2)

© Copyright IBM Corp. 1996, 1999 613

|
|
|
|
|

CBC3GDB2

extern "C" {
int CreaTab(void);
int DropTab(void);

}

int main(void)
{

if (CreaTab() == -1)
{

cout << "Test Failed in table-creation." << endl;
exit(-1);

}

if (DropTab() == -1)
{

cout << "Test Failed in table-dropping." << endl;
exit(-1);

}
cout << "Test Successful." << endl;
exit(0);

}

Figure 193. Using DB2 with C++ (Part 2 of 2)

/* this example demonstrates how to use DB2 with C++ */
/* part 2 of 2-other file is CBC3GDB1 */

/* this file is to be precompiled with the DB2 precompiler, */
/* compiled in C, and then prelinked with CBC3GDB1 */

#include <string.h>
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

/*
* This routine creates the table CTAB1 and inserts some values
* into it

*/

Figure 194. Using DB2 with C++ (Part 1 of 2)

614 OS/390 V2R8.0 C/C++ Programming Guide

C Example

In Figure 195 on page 616, a C program creates a table called CTAB1, inserts values
into the table and then drops the table. To use this example, run the program
through the DB2 SQL preprocessor, and compile the generated code. Bind the C
extended object modules to produce the executable program object.

int CreaTab(void)
{

EXEC SQL CREATE TABLE CTAB1
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NULL,
PHONENO CHAR(7),
EDUCLVL SMALLINT,
SALARY FLOAT(21)) IN DATABASE DSNUCOMP;

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"creation of CTAB1, received %d\n",sqlca.sqlcode);

return(-1);
}

/* Now insert some values into the table */

EXEC SQL INSERT INTO CTAB1 VALUES
('097892','John','Adams','003','8883945',3,29500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('000002','Joe','Smith','004','8883791',NULL,25500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('043929','Ralph','Holland','001','8888734',1,NULL);

EXEC SQL INSERT INTO CTAB1 VALUES
('000010','Holly','Waters','001','8884590',3,29550.00);

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"insert into tables, received %d\n",sqlca.sqlcode);

return(-1);
}
return(0);

}

/*
* This routine will drop the table.

*/
int DropTab(void)
{

EXEC SQL DROP TABLE CTAB1;
if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"drop of CTAB1 received %d??\n",sqlca.sqlcode);

return(-1);
}
EXEC SQL COMMIT WORK;
return(0);

}

Figure 194. Using DB2 with C++ (Part 2 of 2)

Chapter 41. Using DATABASE 2 (DB2) 615

|
|
|
|

CBC3GDB4

/* this example demonstrates how to use SQL with C */

#include <string.h>
#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

int main(void)
{

if (CreaTab() == −1)
{

printf("Test Failed in table-creation.\n");
exit(−1);

}

if (DropTab() == −1)
{

printf("Test Failed in table-dropping.\n");
exit(−1);

}
printf("Test Successful.\n");
return(0);

}

/*
* This routine creates the table CTAB1 and inserts some values
* into it

*/

int CreaTab(void)
{

EXEC SQL CREATE TABLE CTAB1
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) NOT NULL,
PHONENO CHAR(7),
EDUCLVL SMALLINT,
SALARY FLOAT(21));

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"creation of CTAB1, received %d\n",sqlca.sqlcode);

return(−1);
}

Figure 195. Using DB2 with C (Part 1 of 2)

616 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 42. Using Graphical Data Display Manager (GDDM)

The Graphical Data Display Manager (GDDM*) provides programmers with a
comprehensive set of functions for displaying or printing information in the most
effective manner.

The major functions provided are:
v A windowing system that the user can tailor to display selected information
v Support for presentation and interaction through the keyboard
v Comprehensive graphics support
v Fonts, including support for double-byte character sets (DBCS)
v Business image support
v Saving and restoring graphics pictures
v Support for many types of display terminals, printers, and plotters.

Because GDDM uses OS-style linkage, calls from C to GDDM require the #pragma
linkage pragma, as in the following example:
#pragma linkage(identifier, OS)

/* Now insert some values into the table */

EXEC SQL INSERT INTO CTAB1 VALUES
('097892','John','Adams','003','8883945',3,29500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('000002','Joe','Smith','004','8883791',NULL,25500.00);

EXEC SQL INSERT INTO CTAB1 VALUES
('043929','Ralph','Holland','001','8888734',1,NULL);

EXEC SQL INSERT INTO CTAB1 VALUES
('000010','Holly','Waters','001','8884590',3,29550.00);

if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"insert into tables, received %d\n",sqlca.sqlcode);

return(−1);
}
return(0);

}

/*
* This routine will drop the table.

*/

int DropTab(void)
{

EXEC SQL DROP TABLE CTAB1;
if (sqlca.sqlcode != 0)
{

printf("ERROR - SQL code returned non-zero for "
"drop of CTAB1 received %d??\n",sqlca.sqlcode);

return(−1);
}
EXEC SQL COMMIT WORK;
return(0);

}

Figure 195. Using DB2 with C (Part 2 of 2)

© Copyright IBM Corp. 1996, 1999 617

In C++ code, calls to and from GDDM require that any GDDM functions you use
be prototyped as extern "OS", as in the following example:
extern "OS" {
ASREAD(int *type, int *num, int *count);
CHAATT(int num, int *attrib);
CHHATT(int num, int *attrib);

}

Because C++ does not support #pragma linkage, any existing C code that you are
moving to C++ should use the extern "OS" specification instead.

When linking a GDDM application, you must add the GDDM library to your
SYSLIB concatenation.

Example

The following example demonstrates the interface between C and GDDM by
drawing a polar chart to compare the characteristics of two cars.

618 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GGD1

/* this example demonstrates the use of C and GDDM */
#include <string.h>
#pragma linkage(asread,OS)
#pragma linkage(chaatt,OS)
#pragma linkage(chhatt,OS)
#pragma linkage(chhead,OS)
#pragma linkage(chkatt,OS)
#pragma linkage(chkey,OS)
#pragma linkage(chnatt,OS)
#pragma linkage(chnoff,OS)
#pragma linkage(chnote,OS)
#pragma linkage(chpolr,OS)
#pragma linkage(chset,OS)
#pragma linkage(chxlab,OS)
#pragma linkage(chxlat,OS)
#pragma linkage(chxtic,OS)
#pragma linkage(chyrng,OS)
#pragma linkage(chyset,OS)
#pragma linkage(fsinit,OS)
#pragma linkage(fsterm,OS)

/* Arrays are expected for int * and float * */
/* char * can be an array or a string */
extern int asread (int *type, int *num, int *count);
extern int chaatt (int num, int *attrib);
extern int chhatt (int num, int *attrib);
extern int chkatt (int num, int *attrib);
extern int chkey (int, int, char *);
extern int chnatt (int num, int *attrib);
extern int chnoff (double, double);
extern int chnote (char *string, int num, char *title);
extern int chpolr (int, int, float *xdata, float *ydata);
extern int chset (char *charactr);
extern int chxlab (int num, int, char *);
extern int chxlat (int num, int *attrib);
extern int chxtic (double x, double y);
extern int chyrng (double from, double to);
extern int chyset (char *charactr);
extern int fsinit (void);
extern int fsterm (void);

/**
** Attribute arrays used for the chart. **
**/
int i ;
int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */
int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */
int a_attrs[2] = { 7, 1 }; /* X-axis color and line */
int xl_attrs[1] = { 5 }; /* X-label color */
int k_attrs[1] = { 5 }; /* Key text color */
int type, num, count ;

float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
float y_data[16] = {

14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,
12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

float maxvals[16] = {
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 196. Example Using GDDM and C (Part 1 of 2)

Chapter 42. Using Graphical Data Display Manager (GDDM) 619

This is a similar example, in C++:

int main(void)
{

fsinit();
chhatt(4, h_attrs);
chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");
chaatt(2,a_attrs);
chxtic(1.0, 0.0);
chxlat(1, xl_attrs);
chxlab(7, 31,
"PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "
"$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "
" 100 BHP/TON; POWER/WT RATIO 6; SEATS"
" BAGGAGE SPACE; 20 CU FT");
chyrng (0.5,1.0);
chyset("NOAXIS");
chyset("NOLABEL");
chyset("PLAIN");
chset("KBOX");
chkatt(1,k_attrs);
chkey(2, 5, "CAR ACAR B");
for(i=0; i<16; ++i)
y_data[i] = y_data[i] / maxvals[i];

chpolr(2, 8, x_data, y_data);
chnatt(4, n_attrs);
chnoff(0.0, 0.53);
chnote("Z2", 1, "+");
chset("BNOTE");
n_attrs[3] = 75;
chnatt(4,n_attrs);
chnoff(0.0, 0.60);
chnote("Z2", 12, "CENTER VALUE");
chnoff(0.0, 0.55);
chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

/***
** Issue a screen read. When any interrupt is generated **
** by the terminal operator, the program terminates. **
***/

asread(&type, &num, &count);
fsterm();
exit(0);

}

Figure 196. Example Using GDDM and C (Part 2 of 2)

620 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GGD2

/* this example demonstrates the use of C++ and GDDM */
#include <stdlib.h>
#include <string.h>

/* Arrays are expected for int * and float * */
/* char * can be an array or a string */

extern "OS" {
int asread (int *type, int *num, int *count);
int chaatt (int num, int *attrib);
int chhatt (int num, int *attrib);
int chkatt (int num, int *attrib);
int chkey (int, int, char *);
int chhead(int, char *);
int chnatt (int num, int *attrib);
int chnoff (double, double);
int chnote (char *string, int num, char *title);
int chpolr (int, int, float *xdata, float *ydata);
int chset (char *charactr);
int chxlab (int num, int, char *);
int chxlat (int num, int *attrib);
int chxtic (double x, double y);
int chyrng (double from, double to);
int chyset (char *charactr);
int fsinit (void);
int fsterm (void);

}
/**
** Attribute arrays used for the chart. **
**/
int i ;
int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */
int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */
int a_attrs[2] = { 7, 1 }; /* X-axis color and line */
int xl_attrs[1] = { 5 }; /* X-label color */
int k_attrs[1] = { 5 }; /* Key text color */
int type, num, count ;

float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };
float y_data[16] = {

14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,
12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

float maxvals[16] = {
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,
15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 197. Example Using GDDM and C++ (Part 1 of 2)

Chapter 42. Using Graphical Data Display Manager (GDDM) 621

622 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 43. Using the Information Management System (IMS)

This chapter explains how the Information Management System (IMS) and OS/390
C/C++ coordinate error handling, and describes the limitations to using IMS with
OS/390 C/C++.

OS/390 C/C++ provides the ctdli() C library function to invoke IMS facilities
(see the OS/390 C/C++ Run-Time Library Reference for more information).

You can also invoke IMS facilities with the callable service CEETDLI which is
provided by the OS/390 Language Environment. The CEETDLI interface performs
essentially the same functions as ctdli(), but it offers some advantages,
particularly if you plan to run an ILC application in IMS. If you use the CEETDLI
interface instead of ctdli(), condition handling is improved because of the

int main(void)
{

fsinit();
chhatt(4, h_attrs);
chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");
chaatt(2,a_attrs);
chxtic(1.0, 0.0);
chxlat(1, xl_attrs);
chxlab(7, 31,
"PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "
"$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "
" 100 BHP/TON; POWER/WT RATIO 6; SEATS"
" BAGGAGE SPACE; 20 CU FT");
chyrng (0.5,1.0);
chyset("NOAXIS");
chyset("NOLABEL");
chyset("PLAIN");
chset("KBOX");
chkatt(1,k_attrs);
chkey(2, 5, "CAR ACAR B");
for(i=0; i<16; ++i)
y_data[i] = y_data[i] / maxvals[i];

chpolr(2, 8, x_data, y_data);
chnatt(4, n_attrs);
chnoff(0.0, 0.53);
chnote("Z2", 1, "+");
chset("BNOTE");
n_attrs[3] = 75;
chnatt(4,n_attrs);
chnoff(0.0, 0.60);
chnote("Z2", 12, "CENTER VALUE");
chnoff(0.0, 0.55);
chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

/***
** Issue a screen read. When any interrupt is generated **
** by the terminal operator, the program terminates. **
***/

asread(&type, &num, &count);
fsterm();
exit(0);

}

Figure 197. Example Using GDDM and C++ (Part 2 of 2)

© Copyright IBM Corp. 1996, 1999 623

coordination between OS/390 Language Environment and IMS condition handling
facilities. For complete information on the CEETDLI interface, see the OS/390
Language Environment Programming Guide.

For a description of writing IMS batch and online programs in C or C++, see the
appropriate book listed in “IMS/ESA Version 4 Release 1” on page 901.

To use IMS from OS/390 C/C++, you must keep the following in mind:
v The file <ims.h> must be included in the program.
v PLIST(OS) and TARGET(IMS) must be used to compile IMS OS/390 C and C++

application programs. PLIST(OS) establishes the correct parameter list format
when invoked under IMS and TARGET(IMS) establishes the correct operating
environment. These compile-time options can alternatively be specified using
#pragma runopts. The PLIST(OS) compile-time option is equivalent to
#pragma runopts(ENV(IMS)). The descriptions that follow use the compile-time
options, but the #pragma runopts equivalents can be used instead.

v TARGET(IMS) is mandatory, as it establishes the correct operating environment.
PLIST(OS) must also be used if the program is the initial main() program called
under IMS. Programs in nested enclaves do not need to be compiled with
PLIST(OS).

v When you specify PLIST(OS) the argument count (argc) will be set to one (1),
and the first element in the argument vector (argv[0]) will contain a NULL string.

v IMS provides a language interface module (DFSLI000) that gives a common
interface to IMS and DL/I. This module must be link-edited with the application
program.

The rest of this chapter is based on the assumption that you are using the ctdli()
interface.

Handling Errors

The IMS environments are sensitive to errors and error-handling issues. A failing
IMS transaction or program can potentially corrupt an IMS database. IMS must
know about the failure of a transaction or program that has been updating a
database so that it can back out any updates made by that failing program.

OS/390 C/C++ provides extensive error-handling facilities for the programmer, but
special steps are required to coordinate IMS and C or C++ error handling so that
IMS can do its database rollbacks when a program fails.

When you are using IMS from C or C++:
v Run your C or C++ program with the TRAP(ON) option, and use IMS interfaces

by calling the ctdli() library function. If your application programs also use
SQL facilities provided by DB2, you must modify the user exit CEEBXITA to add
the user abend codes 777 and 778 to prevent the error handler from trapping
these abends. This will allow deadlocks to be successfully resolved by IMS. See
the OS/390 Language Environment Programming Guide for more information on
CEEBXITA.

v The ctdli() library function will keep track of calls to and returns from IMS. If
an abend or program check occurs and the C or C++ error handler gets control,
it can determine if the problem arose on the IMS side of the interface or on the
C or C++ side.

624 OS/390 V2R8.0 C/C++ Programming Guide

v If a program check or abend occurs in IMS, when the C or C++ exception
handler gets control, it immediately issues an ABEND. The IMS Region Controller
gets control next and ensures that the integrity of the database is preserved.

v If a program check occurs in the C or C++ program rather than in IMS, all the
facilities of C or C++ error handling apply, provided that you meet certain
conditions when you code your program. For any error condition that arises,
you must do one of the following:
1. Resolve the error completely so that the application can continue.
2. Have IMS back out the program’s updates by issuing a rollback call to IMS,

and then terminate the program.
3. Make sure that the program terminates abnormally and provide an

installation-modified run-time user exit that turns all abnormal terminations
into operating system ABENDs to effect IMS rollbacks. See the OS/390 Language
Environment Programming Guide for more information.

The errors you most likely can fix in your program are arithmetic exception
(SIGFPE) conditions. It is unlikely that you can resolve other types of program
checks or system abends in your program.

Any program that invokes IMS by way of some other IMS interface should be
executed with TRAP(OFF). You should be sure that the program contains code to
issue a rollback call to IMS before terminating after an error. Refer to the OS/390
Language Environment Programming Reference for more information about the
limitations of using TRAP(OFF).

Other Considerations

A program communication block (PCB) is a control block used by IMS to describe
results of a DL/I call (DB PCB) or the results of a message retrieval or insertion
(I/O PCB) made by your program. A valid PCB is one that has been correctly
initialized by IMS and passed to you through your C or C++ program. For details
on PCBs, refer to the “IMS/ESA Version 4 Release 1” on page 901. See also the
sample C-IMS and C++-IMS programs in the OS/390 C/C++ Run-Time Library
Reference.

If you are running an IMS C/MVS program under TSO or IMS, you should be
aware of the effects of specifying PLIST(OS), ENV(IMS), and their combinations with
the #pragma runopts preprocessor directive. The following chart shows the
combinations of PLIST(OS) and ENV(IMS) and the resulting PCB generated under
each of the environments:

Table 69. PCB Generated under TSO and IMS

Combination Running under TSO Running under IMS

ENV(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

ENV(IMS) and PLIST(OS) Invalid PCB Valid PCB

For more information on the run-time options ENV and PLIST, see the OS/390
Language Environment Programming Reference.

If you are running an IMS C or OS/390 C++ program under TSO or IMS, you
should be aware of the effects of specifying compiler options PLIST(OS),
TARGET(IMS), and their combinations. The following chart shows the combinations

Chapter 43. Using the Information Management System (IMS) 625

of PLIST(OS) and TARGET(IMS) and the resulting PCB generated under each of the
environments:

Table 70. PCB Generated under TSO and IMS

Combination Running under TSO Running under IMS

TARGET(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

TARGET(IMS) and PLIST(OS) Invalid PCB Valid PCB

For both C and C++, specifying PLIST(OS) under either TSO or IMS results in an
argc value of 1 (one), and argv[0] = NULL.

For more information on the compiler options TARGET(IMS) and PLIST(OS), see the
OS/390 C/C++ User’s Guide.

Examples

The following C++ program CBC3GIM1 makes an IMS call and checks the return
code status of the call in IMS batch. Header file CBC3GIM3 (shown at the end of
this chapter) is included by this program.

626 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GIM1

/* this is an example of how to use IMS with C++ */

#pragma runopts(env(ims),plist(os))
#include <ims.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gim3.h"

int main(void) {
/***/
/* Declare the database pointer control blocks for each database */
/***/

PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/
/* IO areas used for DL/I calls */
/***/

auto IOA2 aio_area, a2io_area;
static IOA2 sio_area;
IOA2 *io_area;

/***/
/* SSAs for DL/I calls */
/***/

static char qual0[] = "ORDER (ORDKEY =333333)";
static char qual1[] = "ORDITEM ";
static char qual2[] = "DELIVERY ";
static int six = 6;
static int four = 4;
static char gu[5] = "GU ";
static char isrt[5] = "ISRT";

int rc;
int failed = 0; /* Indicate if any part of test case failed. */

Figure 198. C++ Program Using IMS (Part 1 of 2)

Chapter 43. Using the Information Management System (IMS) 627

The following C program CBC3GIM2 makes an IMS call and checks the return
code status of the call in IMS batch. Header file CBC3GIM3 is included by this
program.

/***/
/* Get the pointers to the databases from the parameter list */
/***/

locdb_ptr = (__pcblist[1]);
orddb_ptr = (__pcblist[2]);

/***/
/* Make some calls to the database and change its contents */
/***/

printf("IMS Test starting\n");

io_area = (IOA2 *)malloc(sizeof(IOA2));
/***/
/* Issue a DL/I call with arguments below the line (using CTDLI) */
/***/

/**/
/* The first parameter for ctdli is an int specifying the number of */
/* arguments-this parameter was optional under C but is mandatory */
/* under C++ */
/**/

rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

if ((orddb_ptr−>stat_code[0] == ' ' && orddb_ptr−>stat_code[1]==' ')
&& (rc == 0))

printf("Call to CTDLI returned successfully\n");
else
{
printf("Call to CTDLI returned status of %c%c.\n",
orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);

failed = 1;
}

if (failed == 0)
printf("Test Successful\n");

else printf("Test Failed");

return(0);
}

Figure 198. C++ Program Using IMS (Part 2 of 2)

628 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GIM2

/* This is an example of how to use IMS with C */

#pragma runopts(env(ims),plist(os))
#include <ims.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gim3.h"

int main(void) {
/***/
/* Declare the database pointer control blocks for each database */
/***/

PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/
/* IO areas used for DL/I calls */
/***/

auto IOA2 aio_area, a2io_area;
static IOA2 sio_area;
IOA2 *io_area;

/***/
/* SSAs for DL/I calls */
/***/

static char qual0[] = "ORDER (ORDKEY =333333)";
static char qual1[] = "ORDITEM ";
static char qual2[] = "DELIVERY ";
static int six = 6;
static int four = 4;
static char gu[4] = "GU ";
static char isrt[4] = "ISRT";

int rc;
int failed = 0; /* Indicate if any part of test case failed. */

Figure 199. C Program Using IMS (Part 1 of 2)

Chapter 43. Using the Information Management System (IMS) 629

The following header file is used by both the C and the C++ examples.

/***/
/* Get the pointers to the databases from the parameter list */
/***/

locdb_ptr = (__pcblist[1]);
orddb_ptr = (__pcblist[2]);

/***/
/* Make some calls to the database and change its contents */
/***/

printf("IMS Test starting\n");

io_area = malloc(sizeof(IOA2));
/***/
/* Issue a DL/I call with arguments below the line (using CTDLI) */
/***/

rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

if ((orddb_ptr−>stat_code[0] == ' ' &&; orddb_ptr−>stat_code[1]==' ')
&&; (rc == 0))

printf("Call to CTDLI returned successfully\n");
else
{
printf("Call to CTDLI returned status of %c%c.\n",
orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);

failed = 1;
}

if (failed == 0)
printf("Test Successful\n");

else printf("Test Failed");

return(0);
}

Figure 199. C Program Using IMS (Part 2 of 2)

630 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GIM3

/* this header file is used with the IMS example */

/*------------------*/
/* DB PCB */
/*------------------*/
typedef struct {

char db_name[8];
char seg_level[2];
char stat_code[2];
char proc_opt[4];
int dli;
char seg_name[8];
int len_kfb;
int no_senseg;
char key_fb[2];

} DB_PCB;
/*------------------*/
/* IO PCB */
/*------------------*/
typedef struct {

char term[8];
char ims_res[2];
char stat_code[2];
char date[4];
char time[4];
int input_seq;
char output_mess[8];
char mod_nme[8];
char user_id[8];

} IO_AREA;
/*------------------*/
/* SPA DATA */
/*------------------*/
typedef struct {

short int uosplth;
char uospres1[4];
char uosptran[8];
char uospuser;
char fill[85];

} SPA_DATA;

Figure 200. Header File for IMS Example (Part 1 of 2)

Chapter 43. Using the Information Management System (IMS) 631

632 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 44. Using the Interactive System Productivity Facility
(ISPF)

OS/390 C/C++ allows access to the Interactive System Productivity Facility (ISPF)
Dialog Management Services. Some of the services provided by ISPF include:
v Display services
v Variable services
v Message services
v Dialog control services

For C applications, two interfaces may be used with ISPF: ISPLINK. and ISPEXEC.
Because ISPF uses OS style linkage, calls from C to ISPF require the following
pragma statements for ISPLINK and ISPEXEC respectively:

#pragma linkage(ISPLINK, OS)

#pragma linkage(ISPEXEC, OS)

For C++ applications, two interfaces may be used with ISPF: ISPLINK and ISPEXEC.
Because ISPF uses OS style linkage, calls from C++ to ISPF require that ISPLINK and
ISPEXEC be prototyped as extern "OS", as follows:

/*------------------*/
/* INPUT MESSAGE */
/*------------------*/
typedef struct {

short int ll;
char zz[2];
char fill[2];
char numb[4];
char nme[6];

} IN_MSG;

/*-------------------*/
/* OUTPUT MESSAGE */
/*-------------------*/
typedef struct {

short int ll;
char z1;
char z2;
char fill[2];
char sca[2];

} OUT_MSG;

/*------------------*/
/* IO AREA */
/*------------------*/
typedef struct {

char key[20];
} IOA1;

typedef struct {
char item[40];

} IOA2;

Figure 200. Header File for IMS Example (Part 2 of 2)

© Copyright IBM Corp. 1996, 1999 633

extern "OS"{
int ISPLINK(char*,...);

}

extern "OS"{
int ISPEXEC(int, char*,...);

}

Consult the ISPF manuals listed in the OS/390 ISPF User’s Guide for specific
information about using the ISPF Dialog Management Services.

Examples

To run the following example under C:
1. Compile and link the CBC3GIS3 C source file using the EDCCL procedure.

Override the SYSLIB DD statement on the LKED step to use the ISPF load
library available on your system. Your JCL should appear similar to the
fragment below:
//CISPF EXEC EDCCL,
// INFILE='userid.C(CBC3GIS3)',
// OUTFILE='userid.LOADLIB(CBC3GIS3),DISP=SHR'
//LKED.SYSLIB DD
// DD DSN=ISP.SISPLOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME CBC3GIS3(R)

/>

2. Copy the CBC3GIS2 and CBC3GIS4 menus, and the CBC3GIS5 panel to your
own ISPPLIB data set. Copy CBC3GIS1 to your own CLIST data set.

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The data
set containing the CBC3GIS3 program, and the SCEERUN data set, should be
allocated to the STEPLIB ddname.

4. Run the CLIST. The opening menu of the example will be displayed. Choose
the first option to call the program that starts the C to ISPF interface and
displays a secondary menu. You can either exit from this menu or press the
help key for a help panel.

CBC3GIS1

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GIS2)

Figure 201. CBC3GIS1 CLIST

634 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GIS2

CBC3GIS3

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL --------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GIS3)'
*,'?')

)END

Figure 202. CBC3GIS2 Menu

/* this program shows how to use ISPF with C */

#include <stdio.h>
#include <stdlib.h>

#pragma linkage(ISPLINK,OS)

extern ISPLINK() ;

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPLINK("SELECT", buflen, buffer);

}

Figure 203. C Program CBC3GIS3

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 635

CBC3GIS4

CBC3GIS5

To run the following example under C++:
1. Compile and bind the C++ source file using the CBCCB procedure. You can use

either the ISPLINK version of the code (CBC3GIS8) or the ISPEXEC version of
the code (CBC3GISB). Override the SYSLIB DD statement for the BIND step to
use the ISPF load library. Your JCL should appear similar to the JCL below:
//CXXISPF EXEC CBCCB,
// INFILE='userid.C(CBC3GIS8)',
// OUTFILE='userid.LOADLIB(CBC3GIS8),DISP=SHR'
//LKED.SYSLIB DD
// DD
// DD
// DD DSN=ISP.SISPLOAD,DISP=SHR
//LKED.SYSIN DD DATA,DLM='/>'
NAME CBC3GIS8(R)

/>

2. Copy the CBC3GIS7 menu (if you are using ISPLINK) or the CBC3GISA menu
(if you are using ISPEXEC) to your own ISPPLIB data set. Copy the CBC3GIS4
menu and CBC3GIS5 panel to your ISPPLIB data set as well. Copy the
CBC3GIS6 CLIST (if you are using ISPLINK) or the CBC3GIS9 CLIST (if you
are using ISPEXEC) to your own CLIST data set.

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only*/
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

)BODY
%------------------------ A SAMPLE ISPF MENU ------------------------
%OPTION ===>_ZCMD
+
+ %1+ SELECTION 1 NOT IMPLEMENTED.

%2+ SELECTION 2 EXIT

+ %END+ TO EXIT.
+
)INIT
.HELP = cbc3gis5

)PROC
&ZSEL=TRANS(TRUNC(&ZCMD,'.')

2,'EXIT'
*,'?')

)END

Figure 204. CBC3GIS4 Menu-ISPEXEC or ISPLINK Example

)ATTR DEFAULT(%+_)
/* this panel is used by the ISPF example */
)BODY
%--------------------- Sample Ispf Help Panel --------------------------------
+

This is a HELP panel. Enter %END +to exit.

)PROC
)END

Figure 205. CBC3GIS5 Help Panel-ISPEXEC or ISPLINK Example

636 OS/390 V2R8.0 C/C++ Programming Guide

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The data
set containing the CBC3GIS8 or CBC3GISB program, and the SCEERUN data
set, should be allocated to the STEPLIB ddname.

4. Run the CLIST. The opening menu of the example will be displayed. Choose
the first option to call the program that starts the C++ to ISPF interface and
displays a secondary menu. You can either exit from this menu or press the
help key for a help panel.

CBC3GIS6

CBC3GIS7

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GIS7)

Figure 206. CBC3GIS6 CLIST-ISPLINK Example

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GIS8)'
*,'?')

)END

Figure 207. CBC3GIS7 Menu-ISPLINK Example

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 637

CBC3GIS8

CBC3GIS9

CBC3GISA

/* this program shows how to use ISPF with C++, using ISPLINK */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

extern "OS" {
int ISPLINK(char*,...);

}

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPLINK("SELECT",buflen, buffer);

}

Figure 208. C++ Program CBC3GIS8-ISPLINK Example

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CBC3GISA)

Figure 209. CBC3GIS9 CLIST-ISPEXEC Example

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */

)BODY
%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------
%OPTION ===>_ZCMD +
+
+ %1+ SELECTION 1 CALL C PROGRAM.

%2+ FUTURE NOT IMPLEMENTED.
%3+ FUTURE NOT IMPLEMENTED.

+
+ENTER %END+COMMAND TO TERMINATE.
)PROC

&ZSEL=TRANS(TRUNC(&ZCMD,'.')
1,'PGM(CBC3GISB)'
*,'?')

)END

Figure 210. CBC3GISA Menu-ISPEXEC Example

638 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GISB

CBC3GIS4

/* this program shows how to use ISPF with C++, using ISPEXEC */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

extern "OS" {
int ISPEXEC(int, char*);

}

int rc,buflen;
char buffer[20];

int main(void)
{
/* Retrieve the panel definition CBC3GIS4 and display it. */

strcpy(buffer,"SELECT PANEL(CBC3GIS4)");
buflen = strlen(buffer);
rc = ISPEXEC(buflen, buffer);

}

Figure 211. C++ Program CBC3GISB-ISPEXEC Example

)ATTR DEFAULT(%+_)
/* this menu is used by the ISPF example */

/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only*/
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

)BODY
%------------------------ A SAMPLE ISPF MENU ------------------------
%OPTION ===>_ZCMD
+
+ %1+ SELECTION 1 NOT IMPLEMENTED.

%2+ SELECTION 2 EXIT

+ %END+ TO EXIT.
+
)INIT
.HELP = cbc3gis5

)PROC
&ZSEL=TRANS(TRUNC(&ZCMD,'.')

2,'EXIT'
*,'?')

)END

Figure 212. CBC3GIS4 Menu-ISPEXEC or ISPLINK Example

Chapter 44. Using the Interactive System Productivity Facility (ISPF) 639

CBC3GIS5

)ATTR DEFAULT(%+_)
/* this panel is used by the ISPF example */
)BODY
%--------------------- Sample Ispf Help Panel --------------------------------
+

This is a HELP panel. Enter %END +to exit.

)PROC
)END

Figure 213. CBC3GIS5 Help Panel-ISPEXEC or ISPLINK Example

640 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 45. Using the Query Management Facility (QMF)

The OS/390 C/C++ compiler’s support of the Query Management Facility (QMF)
interface, a query and report writing facility, enables you to write applications
through the SAA callable interface. You can create applications to perform a variety
of tasks such as data entry, query building, administration aids, and report
analysis.

The OS/390 C++ compiler itself does not support QMF. However, QMF can be
accessed through C code that is statically or dynamically called from C++.

You must include the header file DSQCOMMC.H (provided with the QMF application),
which contains the function and structure definitions necessary to use the QMF
interface.

For information on how to write your OS/390 C/C++ applications with the QMF
interface, see the appropriate manual listed in “QMF Version 3 Release 2” on
page 902.

Example

The following example demonstrates the interface between the QMF facility and
the OS/390 C/C++ compiler.

CBC3GQM1

/* this example shows how to use the interface between QMF and C */

#include <string.h>
#include <stdlib.h>
#include <DSQCOMMC.H> /* QMF header file */

int main(void)
{

struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/
/* Query interface command length and commands */
/**/

signed long command_length;
static char start_query_interface [] = "START";
static char set_global_variables [] = "SET GLOBAL";
static char run_query [] = "RUN QUERY Q1";
static char print_report [] = "PRINT REPORT (FORM=F1)";
static char end_query_interface [] = "EXIT";

Figure 214. QMF Interface Example (Part 1 of 3)

© Copyright IBM Corp. 1996, 1999 641

/**/
/* Query command extension, number of parameters and lengths */
/**/

signed long number_of_parameters;
signed long keyword_lengths[10];
signed long data_lengths[10];

/**/
/* Variable data type constants */
/**/

static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/
/* Keyword parameter and value for START command */
/**/

static char start_keywords[] = "DSQSCMD";
static char start_keyword_values[] = "USERCMD1";

/**/
/* Keyword parameter and value for SET command */
/**/

#define SIZE_VAL 8
char set_keywords[3][SIZE_VAL];
signed long set_values[3];

/**/
/* Start a Query Interface Session */
/**/

number_of_parameters = 1;
command_length = sizeof(start_query_interface);
keyword_lengths[0] = sizeof (start_keywords);
data_lengths[0] = sizeof(start_keyword_values);
dsqcice(&communication_area,

&command_length,
START_query_interface[0],
&number_of_parameters,
&keyword_lengths[0],
START_keywords[0],
&data_lengths[0],
START_keyword_values[0],
char_data_type[0]);

Figure 214. QMF Interface Example (Part 2 of 3)

642 OS/390 V2R8.0 C/C++ Programming Guide

The following example demonstrates how a C++ program may call a C program
that accesses QMF.

/**/
/* Set numeric values into query using SET command */
/**/

number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0],"MYVAR01");
strcpy(set_keywords[1],"SHORT");
strcpy(set_keywords[2],"MYVAR03");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] = SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths[1] = sizeof(long);
data_lengths[2] = sizeof(long);
set_values[0] = 20;
set_values[1] = 40;
set_values[2] = 84;
dsqcice(&communication_area,

&command_length,
&set_global_variables[0],
&number_of_parameters,
&keyword_lengths[0],
&set_keywords[0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

/**/
/* Run a Query */
/**/

command_length = sizeof(run_query);
dsqcic(&communication_area, &command_length,

&run_query[0]);

/**/
/* Print the results of the query */
/**/

command_length = sizeof(print_report);
dsqcic(&communication_area, &command_length,

&print_report[0]);

/**/
/* End the query interface session */
/**/

command_length = sizeof(end_query_interface);
dsqcic(&communication_area, &command_length,

&end_query_interface[0]);

exit(0);
}

Figure 214. QMF Interface Example (Part 3 of 3)

Chapter 45. Using the Query Management Facility (QMF) 643

CBC3GQM2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

extern "C" {
int Gen_Report(void);

}

int main(int argc, char *argv[])
{
int cmd;

if (argc < 2)
{

printf("ERROR - program takes at least one parm");
}
else
{

cmd=argv[1][0];
cmd=toupper(cmd);
switch (cmd)
{
case 'R':

{
Gen_Report();
break;

}
default:

printf("%d is an invalid option.\n");
}

}

}

Figure 215. C++ Calling a C Program That Accesses QMF

644 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GQM3

/* this example shows how C++ can access QMF by way of a C program */
/* part 2 of 2-this file is called from C */
/* other file is CBC3GQM2 */

#include <string.h>
#include <stdlib.h>
#include <DSQCOMMC.H> /* QMF header file */

int Gen_Report(void)
{

struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/
/* Query interface command length and commands */
/**/

signed long command_length;
static char start_query_interface [] = "START";
static char set_global_variables [] = "SET GLOBAL";
static char run_query [] = "RUN QUERY Q1";
static char print_report [] = "PRINT REPORT (FORM=F1)";
static char end_query_interface [] = "EXIT";

/**/
/* Query command extension, number of parameters and lengths */
/**/

signed long number_of_parameters;
signed long keyword_lengths[10];
signed long data_lengths[10];

/**/
/* Variable data type constants */
/**/

static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/
/* Keyword parameter and value for START command */
/**/

static char start_keywords[] = "DSQSCMD";
static char start_keyword_values[] = "USERCMD1";

/**/
/* Keyword parameter and value for SET command */
/**/

#define SIZE_VAL 8
char set_keywords[3][SIZE_VAL];
signed long set_values[3];

Figure 216. C Program That Accesses QMF (Part 1 of 3)

Chapter 45. Using the Query Management Facility (QMF) 645

/**/
/* Start a Query Interface Session */
/**/

number_of_parameters = 1;
command_length = sizeof(start_query_interface);
keyword_lengths[0] = sizeof (start_keywords);
data_lengths[0] = sizeof(start_keyword_values);
dsqcice(&communication_area,

&command_length,
&start_query_interface[0],
&number_of_parameters,
&keyword_lengths[0],
&start_keywords[0],
&data_lengths[0],
&start_keyword_values[0],
&char_data_type[0]);

/**/
/* Set numeric values into query using SET command */
/**/

number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0],"MYVAR01");
strcpy(set_keywords[1],"SHORT");
strcpy(set_keywords[2],"MYVAR03");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] = SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths[1] = sizeof(long);
data_lengths[2] = sizeof(long);
set_values[0] = 20;
set_values[1] = 40;
set_values[2] = 84;
dsqcice(&communication_area,

&command_length,
&set_global_variables[0],
&number_of_parameters,
&keyword_lengths[0],
&set_keywords[0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

Figure 216. C Program That Accesses QMF (Part 2 of 3)

646 OS/390 V2R8.0 C/C++ Programming Guide

Part 7. SOM support Under OS/390 C/C++

This part contains the following IBM System Object Model (SOM) topics:
v “Chapter 46. The IBM System Object Model” on page 649
v “Chapter 47. Macros, Built-in Functions, and Pragmas for SOM” on page 675
v “Chapter 48. Examples and Tips” on page 695

/**/
/* Run a Query */
/**/

command_length = sizeof(run_query);
dsqcic(&communication_area, &command_length,

&run_query[0]);

/**/
/* Print the results of the query */
/**/

command_length = sizeof(print_report);
dsqcic(&communication_area, &command_length,

&print_report[0]);

/**/
/* End the query interface session */
/**/

command_length = sizeof(end_query_interface);
dsqcic(&communication_area, &command_length,

&end_query_interface[0]);

exit(0);
}

Figure 216. C Program That Accesses QMF (Part 3 of 3)

© Copyright IBM Corp. 1996, 1999 647

648 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 46. The IBM System Object Model

The IBM System Object Model (SOM) provides a common programming interface
with which you can build and use objects. The SOM improves your C++
programming productivity in two ways:
v If you maintain libraries of C++ classes and methods, you can release new

versions of a library without requiring users to recompile their applications.
v Programs written in other languages can access your C++ classes and objects.

Also, you can write C++ programs that use classes and objects created using
other SOM-supported languages.

You can make classes and methods in existing C++ programs SOM-accessible
without having to rewrite class and method definitions. Although SOM imposes
some restrictions on C++ coding conventions, you can convert most C++ programs
for SOM support with minimal effort. The OS/390 C++ compiler can convert C++
classes to SOM classes. This method of creating SOM classes is the Direct-to-SOM
(DTS) method. The compiler converts a DTS class to SOM. Compilers like OS/390
C/C++ that support DTS can only use a DTS class.

The OS/390 C/C++ compiler no longer supports IDL generation through the
compile time option IDL for mixed language or distributed object application. For
information about how to write cross-language applications in IDL, see SomObject
V2.4 Programming Guide. All cross-language information in this book is for
reference only.

For information on how you can have the compiler convert classes to SOM, see
“Converting C++ Programs to SOM Using SOMAsDefault” on page 673 and
“Creating SOM-Compliant Programs by Inheriting from SOMObject” on page 673.

What is SOM?

The SOM defines an interface between programs, or between libraries and
programs. It separates an object’s interface from its implementation. With SOM,
you can define classes of objects in one programming language and use them in
another. You can also update libraries of such classes without recompiling client
code.

A SOM library contains a set of classes, methods, static functions, and data
members. Programs that use a SOM library can do the following:
v Create objects of the types defined in the library
v Use the methods defined for an object type
v Derive subclasses from SOM classes, even if the language of the program

accessing the SOM library does not support class typing

You do not have to write a SOM library and the programs that use objects and
methods of that library are in the same programming language. SOM also
minimizes the impact of revisions to libraries. If a SOM library changes, or new
classes or methods are added, you can run a program that uses the library without
recompiling. Some C++ libraries, require recompilation of all programs that use
them whenever there are changes to the libraries.

© Copyright IBM Corp. 1996, 1999 649

The SOM provides an API with which programs can access information about a
SOM class or SOM object. A SOM class inherits a set of virtual methods you can
use. For example, it is used to find the class name of an object, or to determine
whether a particular method is available for an object. The OS/390 SOMobjects
Programmer’s Guide manual describes these API functions.

You can make your C++ classes and methods SOM-accessible in one of two ways:
v Using pragmas to direct the compiler to generate a SOM interface for your code
v Explicitly deriving your classes from SOMObject

These techniques appear later in this chapter.

After you have a SOM-compliant version of your library, you can add methods,
types, and subtypes to the library. You can also change the implementation of
methods, without recompiling programs that use your library. These programs
only need to be recompiled if they are modified. For example you would have to
recompile to make use of newly defined types or methods.

SOM and the CORBA Standard

The SOM complies with the Common Object Request Broker Architecture (CORBA)
standard defined by the Object Management Group. The CORBA standard is an
industry-wide standard for the management of objects across heterogeneous,
distributed systems.

The Cost of Using SOM

SOM is a powerful tool, but the flexibility that it gives you comes at a price. A
program that is SOM-enabled may run more slowly than an equivalent one in
native C++. You should weigh the many benefits of SOM against the negative
effect it may have on the performance of your program.

What is DTS?

Direct-to-SOM (DTS) is a new, flexible way of using the SOM in a C++ program.
DTS class definitions resemble regular C++ classes, and you can either write them
directly or use the SOM compiler to generate header files (.hh) from existing IDL.
Use C++ class definitions only with C++ compilers that support DTS, like OS/390
C/C++.

DTS provides the same access to SOM functionality that the C++ bindings do but,
in addition, DTS supports more of the C++ language. DTS supports member
operators, conversion functions, user-defined new and delete() operators, function
overloading, stack local SOM objects, and first-class source debugging support for
SOM classes. You can write and subclass your DTS classes directly. You may never
need to write a line of IDL except to make your classes accessible via another
language.

OS/390 C/C++ supports DTS C++, and is used with C and C++ bindings. SOM
DLLs and programs can interoperate freely whether constructed using C bindings,
C++ bindings, or DTS C++.

Note: Within one single C++ compilation, it is not possible to use both C++
bindings and DTS. If you include any .xh header files in your compilation,
you must not also include any .hh files, or use the SOMAsDefault pragma.

650 OS/390 V2R8.0 C/C++ Programming Guide

Interface Definition Language

The Interface Definition Language (IDL) is a language-independent notation for
specifying the interfaces of SOM objects. IDL requires making your C++ SOM
classes accessible from other languages. If you need IDL, you need to generate it
manually.

SOM and Upward Binary Compatibility of Libraries

This section is for programmers who are developing or maintaining libraries
containing C++ class and object definitions. This section does not describe how to
write programs that use a SOM-compliant library.

After you change a SOM library that contains C++ class and method definitions,
programs that use your library might have to be recompiled to run with the new
version of the library. Changes to your library that may not require recompilation of
client programs include the following:
v Adding new classes, including base classes
v Adding new methods or data members to existing classes
v Changing or removing private methods or data members from classes
v Changing the internal implementation of public or protected methods
v Moving member functions from a derived class to a base class

If you change your library as described above, and follow the rules described in
“Release Order of SOM Objects” on page 652, your users will receive the new
library in binary form. They can run their programs with the new library without
needing to be recompiled or even relinked (if the library is a dynamically linked
library).

Changes to your library that do require recompilation of client programs include
the following:
v Removing classes
v Removing public data members, methods, or static member functions from

existing classes

Renaming an item from a library is the same as removing the item and adding a
new item with the same characteristics. Using the SOMMethodName or
SOMClassName pragmas to provide a SOM name for a C++ method or class, has
the same effect as renaming the C++ method or class name.

Adding the SOMMethodName or SOMNoMangling pragmas for a method also
changes the SOM name from that supplied by the compiler to that specified by the
pragma. If there is any likelihood of non-C++ programs using your SOM classes,
use these pragmas for your initial implementation.

The remainder of this section describes how SOM provides upward binary
compatibility of libraries. This information will help you understand when and
why certain SOM pragmas are used (specifically, SOMReleaseOrder and
SOMClassVersion).

Chapter 46. The IBM System Object Model 651

Release Order of SOM Objects

The release order of a class’s data members, methods, and static member functions
enables SOM client programs to work with new versions of SOM libraries without
recompiling. The SOM achieves binary compatibility by arranging all the
components of a class into ordered lists and finding them by their position in a list.
It also enforces rules to ensure that the ordering of the lists never changes. The
following three lists are maintained for each class:
1. Public instance data. The ordering in this list is the declaration order of the

public instance data in the class. The corresponding rule that preserves this
order and ensures binary upward compatibility is that the declaration order
must not change. Also, new public data members must be added after all
preexisting public members.

2. Protected and private instance data. This list is ordered and the order preserved
in exactly the same way as for the public instance data list.
Adding new public or protected data members only forces you to recompile
clients that need to use the new data.
Deleting or reordering public data members breaks binary compatibility, and
requires recompilation of all clients and derived classes. Deleting or reordering
protected data members requires recompilation of derived classes, but not of
clients because they did not have access to the protected data.

3. Member functions introduced by the class (both static and nonstatic) and static
data members in the class.
Virtual functions that override virtual functions in base classes are in the list
belonging to the base class that introduced them. As a special instance of this
rule, a class’s default constructor, copy constructor, destructor, and default
assignment operator are all treated as overrides of virtual functions introduced
by SOMObject. They are not in the list of the derived class.
This third list, called the ″release order″, is determined in one of two ways.
a. The declaration order of the member functions and static data members,

and the resulting compatibility rule is that new members must be added
after all others in the class declaration. Attributes created using the
SOMAttribute pragma behave as though declarations of the _get and _set
methods appeared instead of the data declaration. See “The SOMAttribute
Pragma” on page 678 and “set and get Methods for Attribute Class
Members” on page 659 for more information.
This third list contains all member functions and static data members,
whether their access is public, protected, or private. This may make the
compatibility rule overly constraining to a class designer. They may prefer
to group the member function declarations logically or by access, or even to
omit private methods from the class declaration provided to clients of the
class.

b. Use a pragma to explicitly specify the release order for a class. If the
SOMReleaseOrder pragma is used for a class, the declaration order of
member functions is no longer significant. The compatibility rule is changed
to require that new members be added at the end of the pragma.

652 OS/390 V2R8.0 C/C++ Programming Guide

In the following revised version, new methods and static data members are
specified after the existing methods, within the SOMReleaseOrder pragma.
Whether you place the declarations for the new methods and static data
members before or after existing ones is not important. However, you must
use SOMReleaseOrder to maintain the positions of existing functions in the
release order.

If you do not use SOMReleaseOrder, the compiler orders the methods and
static data members in the order of their appearance within the class
definition (see “Default Release Order Rules” on page 654 for details).
Compiler-generated get and set methods for attributes are added to the
release order after user routines. If you introduce a new method in your
class definition other than at the end, and do not specify a release order,
programs that use the class must be recompiled. Because recompilation of
client programs defeats the purpose of SOM, always use the
SOMReleaseOrder pragma for SOM classes.

In the example above, you do not have to specify the argument type (int)
for sellBicycle(). If sellBicycle() were overloaded with multiple

// Original Class Definition:
#pragma SOMAsDefault(on) // define ensuing classes as SOM
class Bicycle {
public:

int Model;
static int Count;
Bicycle(); // defined elsewhere
void showBicycle(); // defined elsewhere

#pragma SOMAttribute(Model,publicdata)
#pragma SOMReleaseOrder(\

Model, \
Count,\
showBicycle())

};
#pragma SOMAsDefault(pop) // resume prior setting of SOMAsDefault

Figure 217. Original Class Definition

// Revision:
#pragma SOMAsDefault(on)
class Bicycle {
public:

int Model;
static int Count;
static int NumberSold;
Bicycle();
void showBicycle();
int sellBicycle(int); // defined elsewhere

#pragma SOMAttribute(Model,publicdata)
#pragma SOMReleaseOrder(\

Model, \
Count, \
showBicycle(), \
NumberSold, \
sellBicycle(int))

};
#pragma SOMAsDefault(pop)

Figure 218. Revised Version

Chapter 46. The IBM System Object Model 653

argument types (for example, sellBicycle(int) and
sellBicycle(int,char*)), you would specify both overloads of the function
in SOMReleaseOrder.

You can use the SOMRO option to have the compiler generate a #pragma
SOMReleaseOrder for a class. For further details see “The
SOMReleaseOrder Pragma” on page 689.

Default Release Order Rules

If you do not specify a release order for a class, the compiler orders methods
(including the get and set methods of SOM attributes) in the order of their
appearance within the class definition.

If do not remove any public or protected methods or data members, and do not
reorder previously released methods or static data members, you can provide new
releases of your library. The programs that use that library will not need to be
recompiled. You are providing the library to C++ programs only and do not
require SOM’s cross-language sharing of class and method definitions. This
freedom from recompilation gives you more room to make minor adjustments or
major enhancements to your library. It also decreases the resistance that those
using the library might otherwise have to installing new versions of the library.

Version Control for SOM Libraries and Programs

You can recompile a library after client programs are compiled and linked to an
earlier version of the library. However, problems can occur if a program is
compiled to one version of the library; then a lower or back-level version of the
library is substituted. The SOM implements a form of version control that can
detect this situation.

The following scenario illustrates how version control works with SOM:
1. A SOM library containing a new version of the Bicycle class is compiled. The

“version” of the class is major version 1, minor version 5 (or, for simplicity,
version 1.5). This version is assigned within the class definition, using the
SOMClassVersion pragma.

2. A program that uses the SOM library’s definition of class Bicycle is then
compiled. The compiler determines that the version of Bicycle in the program
is version 1.5. The program runs successfully with this version of the library.

3. A new version of the SOM library becomes available, and class Bicycle is now
at version 1.6. The program that was compiled to version 1.5 still works,
because SOM libraries are upwardly compatible.

4. The program that uses the Bicycle class is copied to a different system, and
class Bicycle in the SOM library on that system is at version 1.3.

5. When the program using Bicycle is loaded, the SOM run time determines that
a backlevel version of a Bicycle is being constructed. It issues a warning
message and ends the program. (If class version control is not used, the results
of the program would be unpredictable.)

SOM verifies that the major version is the same for a client and the objects it tries to
create. When a SOM class increases its major version number, SOM assumes that an
incompatible change has occurred.

654 OS/390 V2R8.0 C/C++ Programming Guide

Use version control to ensure that programs do not produce unpredictable results
because of the use of back-level definitions of classes.

Note: The SOM run time tests only for a compatible version of a class the first
time an object of that class is instantiated. This can lead to unpredictable
results in programs consisting of multiple compilation units, in which the
use of an object in one compilation unit requires a different version from the
use of that object in another compilation unit. If you update the version of a
SOM class and recompile one of its clients, recompile all the clients of its
class to avoid the following scenario:

1. A program requests an instance of a SOM class MyClass at version 1 release 3.
The SOM run time determines that the current version of MyClass is version 1
release 4, so the object is created successfully.

2. Another compilation unit within the program requests an instance of MyClass at
version 1 release 5 (because that compilation unit was compiled later than the
first compilation unit). The SOM runtime does not check for version
compatibility, because it already did so when it created the first MyClass. As a
result, a program requiring at least version 1 release 5 of a class is given an
object of an earlier (possibly incompatible) version of the class.

Recompiling Requirements for SOM Programs

When you change a SOM class, the type of change determines the parts of your
program and its client code that have to be recompiled. Table 71 and Table 72 on
page 656 show the major types of changes you can make to a SOM class. The code
must be recompiled after you make any such change.

Notes:

1. Changing the signature or name of a method, or the name of a data member, or
changing the access from private to protected/public, is equivalent to deleting
one method or data member and adding another.

2. Table 71 and Table 72 on page 656 list the access levels in the first column and
the compilation units that you must recompile for adding, changing, and
deleting elements in the second, third, and fourth columns, respectively. For
example, for a private method, the entry under Adding is “Class, added
method”. You must recompile the compilation unit where the class is defined.
If it is a different compilation unit, you must recompile the compilation unit
where the new method is defined.

3. Classes that have all member functions declared inline are declarations
according to the rules of C++. These declarations can appear in several different
compilation units. If you change a member of such a class, the "class" entry in
these tables means that you must recompile the compilation unit where the
SOMBuildClass structures are created. See “The SOMDefine Pragma” on
page 683 for more details.

4. Friends are assumed to have intimate knowledge of the implementation of a
class. Because this knowledge includes knowledge of private data, friends are
assumed to be created using the same language and compiler as the classes
with which they are friends. They require recompilation whenever the class
requires recompilation.

Table 71. Recompilation Required for Method Changes

Access Adding Changing the
Implementation

Deleting

private Class, added method Class, changed method Class

Chapter 46. The IBM System Object Model 655

Table 71. Recompilation Required for Method Changes (continued)

Access Adding Changing the
Implementation

Deleting

protected Class, added method Class, changed method Class, friends, subclasses

public Class, added method Class, changed method Class, friends,
subclasses, all clients
that referenced method

Table 72. Recompilation Required for Data Member Changes

Access Adding Changing the Type Deleting

private Class, methods using
new data, friends

Class, methods using
changed data, friends

Class, methods that
used data, friends

protected Class, methods using
new data, friends

Class, methods using
changed data, all
subclasses and friends

Class, methods that
used data, all subclasses
and friends

public Class, methods using
new data, friends

Class, methods using
changed data, all
subclasses and friends

Class, friends,
subclasses, all clients
that referenced the data

SOM and Interlanguage Sharing of Objects and Methods

You can share C++ classes with other programming languages one of two ways:
v By using the SOMAsDefault pragma for those classes
v By deriving the classes from SOMObject

With both methods, you cannot use certain C++ coding practices.“Differences
between SOM and C++” on page 663 documents these restrictions. See the OS/390
SOMobjects Programmer’s Guide for information on accessing SOM classes and
methods from different programming languages. For more information on each
SOM-related pragma, see the descriptions in “Pragmas for Using SOM” on
page 675.

Providing a Default Constructor with No Arguments

For interlanguage sharing of SOM objects, all classes must have a default
constructor that takes no arguments. In C++ you can declare a class with no
default constructor as follows:
class X {
public:
int Xdata;
X(int a) {Xdata=a;};

};

When you compile a C++ client program that calls a nonexistent default
constructor, OS/390 C/C++ issues a compile-time error, though the SOM class the
client is using is compiled separately. If you declare an X with the statement X b;,
given the above class definition (regardless of whether or not it is a SOM class),
the compiler issues an error. If the class is a SOM class, the compiler must
anticipate that potential calls to a nonexistent default constructor by SOM clients
other than those compiled by the OS/390 C++ compiler. Rather than generate an
arbitrary default constructor (one whose behavior may or may not be the desired
behavior for the class), the compiler generates one that results in a run time error
whenever it is called.

656 OS/390 V2R8.0 C/C++ Programming Guide

In the following example, the defined class does not have a no-argument
constructor. It has a constructor that has all default arguments:
class X {
public:
int Xdata;
X(int a=3) {Xdata=a;};

};

The OS/390 C++ compiler generates two constructors for X if class X is a SOM
class: a constructor that takes an integer argument whose value is assigned to
Xdata, and a constructor that takes no argument and assigns the value 3 to Xdata.

You can write client code written in another language to construct an object of a
class that does not have a default constructor, if the client code calls SOMNewNoInit
or SOMRenewNoInit for the object, and then invokes the constructor.

Accessing Special Member Functions from Other Languages

In C++ you can define an operator== for a class, and then use the == operator to
determine whether two objects of the class are equal. Not all languages support
this method of operator overloading. So that programs not written in C++ can
access special member functions such as overloaded operators, you must provide
names with which these functions can be called from non-C++ programs. These are
the names that should be specified by the user when writing the IDL definition of
the class interface. You can rename class operators using the SOMMethodName
pragma, described on page 684. The following class definition provides SOM
names through which non-C++ programs can access the operators of the class:
#include <som.hh>
class Bicycle: public SOMObject {
public:

int model;
Bicycle();
int operator==(Bicycle&; const b) const;
int operator <(Bicycle&; const b) const;
int operator >(Bicycle&; const b) const;
Bicycle&; operator =(Bicycle&; const b);

#pragma SOMMethodName(operator==(),"BicycleEquality")
#pragma SOMMethodName(operator <(),"BicycleLessThan")
#pragma SOMMethodName(operator >(),"BicycleGreaterThan")
#pragma SOMMethodName(operator=(),"BicycleAssign")
};

Non-C++ programs can then call these special member functions by referring to
their SOM names (BicycleEquality and so on).

Assignment Methods

The compiler provides four SOM assignment methods for a SOM class by default,
one of which is called when the compiler encounters an assignment operator. If
you define an operator= for a class, the compiler does not generate assignment
methods. In this situation calls using the SOM method names will call the
appropriate user-defined assignment operator.

The SOM assignment methods have the following SOM names and prototypes:
v SOMObject *somDefaultAssign(somAssignCtrl *, SOMObject *) for the nonconst,

nonvolatile version

Chapter 46. The IBM System Object Model 657

v SOMObject *somDefaultConstAssign(somAssignCtrl *, SOMObject *) for the
const, nonvolatile version

v SOMObject *somDefaultVAssign(somAssignCtrl *, SOMObject *) for the
nonconst, volatile version

v SOMObject *somDefaultConstVAssign(somAssignCtrl *, SOMObject *) for the
const, volatile version

The somAssignCtrl parameter allows SOM to handle base class assignment to
ensure that each base is only assigned once when a base class appears multiple
times in an inheritance hierarchy. A user-defined operator= method does not give
you this capability. To code your own assignment method in a class that has
several parents (not including SOMObject), you should:
1. Use the SOM assignment methods rather than operator= to ensure correct

results. The compiler generates SOM assignment methods for any that are not
user-defined, except when an operator= method is defined,

2. Place any user-defined assignment methods (operator=) in the release order for
the class.

You do not need to put compiler-defined assignment methods into the release
order unless you want to take their address. Omit the SOM assignment methods
from the release order, because they are introduced in SOMObject.

If you want to define a class that can be used by a client either as a C++ class or as
a SOM class using the SOM assignment methods, define both the operator=
functions and the SOM assignment methods, using conditional compilation to
determine which are included in the class definition.

All operators you provide for a class, except for the default assignment operator,
must be given SOM names using the SOMMethodName pragma, if you want them
to be easily callable from non-C++ programs. Otherwise, their names will be
"mangled" by the compiler. This includes the new and delete() operators, if you
define them at the class level. You need to specify a SOM name for non-default
constructors, because they are overloaded versions of the default constructor. You
cannot use SOMMethodName to specify a SOM name for the default constructor
or the destructor. The compiler automatically gives these functions the names
somDefaultInit and somDestruct.

Invoking Constructors from Other Languages

Suppose you have a default constructor of the following form:
ClassName();

The OS/390 C++ compiler generates a function with the following prototype for
use by non-C++ programs:
void somDefaultInit(SOMObject* this, SomInitCtrl* InitVector);

The non-C++ program must ensure that the vector pointer is correctly set or is
NULL. (You should always use a NULL value; the compiler may use a non-NULL
value in some cases, but user code that passes a non-NULL value will behave
unpredictably.) The bindings generated by the SOM compiler normally ensure that
the pointers are correctly set or are NULL.

Copy constructors have one of the following names generated for them:
somDefaultCopyInit for the nonconst, nonvolatile version
somDefaultConstCopyInit for the const, nonvolatile version

658 OS/390 V2R8.0 C/C++ Programming Guide

somDefaultVCopyInit for the nonconst, volatile version
somDefaultConstVCopyInit for the const, volatile version

To prevent nondefault constructors from being assigned a mangled name, supply a
SOM name using the SOMMethodName pragma.

When invoking a nondefault constructor from outside of C++, create the object
using SOMNewNoInit or SOMRenewNoInit, and then invoke the constructor. If
you use SOMNew or SOMRenew and then invoke the constructor, you will
initialize the same object twice.

set and get Methods for Attribute Class Members

SOM supports two types of data members: attributes and instance variables.
Depending on the pragma setting, the compiler generates default get and set
methods for these attributes if you do not supply your own. If you specify #pragma
SOMAttribute(readonly) for an attribute, no set method is generated or definable.
An attribute is a nonstatic data member for which you have specified #pragma
SOMAttribute. SOM predefines methods to set and get the value of attributes.
Attributes have the following properties:
v You must declare an attribute. Otherwise if you attempt to directly access

instance data in a remote object, you receive a runtime error from SOM.
v Attributes allow the class implementor to add instrumentation or other side

effects to data access by explicitly defining the _get and _set methods with the
desired function.

v You do not need to define methods to set or get the value of an attribute. This is
done automatically by the compiler. You can override these methods where the
automatically defined method does not provide the required functionality.

v The names of the set and get methods are consistent and predictable: for an
attribute j, the methods are _set_j() and _get_j(). (For C++ programs using
the attributes, you can get or set the attributes using the attribute names rather
than the get and set methods.)

v You can identify whether the compiler should automatically generate get or set
methods for an attribute, or whether to use a user-defined get or set method.

Get and set methods have the following signatures for scalars, arrays, and
structs/unions/classes:
// when 'indirect' attribute is not used with SOMAttribute pragma:
T _get_var() const; // scalar var of type T - get
void _set_var(T); // scalar var of type T - set

T&; _get_var() const; // scalar var of type T - get, when
// SOMAttribute(...,indirect) is
// specified

void _set_var(const T&);; // scalar var of type T - set, when
// SOMAttribute(...,indirect) is
// specified

T* _get_var() const; // arrays of var of type T - get
void _set_var(const T*);

// arrays of var of type T - set

T _get_var() const; // structs/unions/classes of type T
// - get

void _set_var(const T&);; // structs/unions/classes of type T
// - set

Chapter 46. The IBM System Object Model 659

Note that pointers are used rather than references, for arrays of T. This is done
because the interface treats the type as a pointer to the first array element rather
than as a pointer to the entire array.

You do not need to declare the get and set methods for an attribute in your class
declaration, if you choose to have the compiler automatically generate them for
you. The compiler treats the get and set methods for an attribute as being declared
whether it encounters a declaration or not. The SOMAttribute pragma determines
whether the get and set methods are defined by the compiler, provided by the
programmer, or, for the set method, not provided at all. If you do not use the
SOMAttribute, attributes are not created.

See “The SOMAttribute Pragma” on page 678 for further information on attributes.

Understanding the Interface Definition Language

The Interface Definition Language (IDL) is a facility for defining the interface of
SOM classes. The IDL provides a CORBA-compliant description of a SOM class. If
you are writing code and you want to create objects of classes in another language,
you use a .IDL file to generate a header file for your program so that the SOM
classes you use are visible to the compiler in question. The sc translator uses the
.IDL file to generate the necessary bindings for the other language.

If you are creating SOM classes and you anticipate that all users of your classes
will be coding only in C++, you do not need to consider the effect of IDL on how
you code and on the pragmas you use. However, if non-C++ programs may be
using your SOM classes, you need to understand the connections between IDL and
the OS/390 C++ compiler. The remainder of this section explains the connections.

IDL Types and C++ Types

IDL names for the following built-in C++ types are the same as to the types’ C++
names:
v short, long, unsigned short, unsigned long
v float, double
v char

The following C++ types are mapped to the IDL types indicated:
v signed char is mapped to octet
v unsigned char is mapped to char
v int is mapped to long
v long double is mapped to double
v unsigned int is mapped to unsigned long
v wchar_t maps to unsigned short
v char* maps to string when it is a parameter, otherwise it maps to char*
v Enumerated types are mapped to integer constants.

IDL Names and C++ SOM Pragmas

If you do not use any of the SOM pragmas SOMMethodName, SOMClassName, or
SOMNoMangling, the names of SOM class methods and class templates are
mangled by the OS/390 C++ compiler. These mangled names are usually long and
difficult to understand. Although you can access SOM classes and their methods

660 OS/390 V2R8.0 C/C++ Programming Guide

using the mangled names, this practice is error-prone and unnecessarily
complicated. You can use the above pragmas to make the SOM names for your
classes more understandable.

IDL requires that class and method names be distinct and case-insensitive. The
OS/390 C++ compiler usually ensures this by mangling class and method names.
Mangling encodes case differences, and also reflects argument types of overloaded
methods in their SOM names.

If you use the SOMClassName pragma to attach a SOM name to a class, make sure
that the name you select is unique without regard to case. If you use the
SOMNoMangling pragma for a class or a range of classes, method names in those
classes are not mangled, which creates conflicts between any names that differ only
in case, and between different overloads of functions. You can use the
SOMMethodName pragma to correct this situation, by associating SOM names
with individual methods.
v IDL matches methods by their names only. It does not support method

overloading. This means that you must differentiate overloaded methods of a
class by using the SOMMethodName pragma on overloaded methods.

v IDL is case-insensitive. If you define a C++ method print to print an object, and
a C++ method of the same class called prInt to print an integer data member of
that object, their IDL names will be the same if you use the SOMNoMangling
pragma, unless you rename one of the methods using the SOMMethodName
pragma.

v If you use the SOMNoMangling pragma for a class or a range of classes, method
names in those classes are not mangled. This can result in multiple overloaded
functions mapping to the same name. The compiler detects such conflicts and
issues an error message. You can use SOMMethodName to resolve these
conflicts.

v Changing the IDL name of a method can break binary compatibility because IDL
matches methods by name only.

IDL and OIDL Callstyles

The Common Object Request Broker Architecture (CORBA) defines an implied
second parameter of type Environment* for SOM methods and static member
functions. This parameter can be used to pass extra information between SOM
methods and clients, such as exception information indicating that a SOM method
could not be called. In initial releases, SOM did not support this second parameter.
This can result in compatibility problems because new code may have the extra
parameter while old code, including such classes as SOMObject and SOMClass,
may not. The presence or absence of this second parameter in a class method or
static member function is referred to as the method or function’s callstyle. The new
callstyle with the Environment* parameter is referred to as the IDL callstyle, while
the old callstyle without that parameter is referred to as the OIDL callstyle (for
“Old IDL”).

To preserve binary compatibility with old SOM application code, SOM now
supports both callstyles. This leads to a model where some methods in a program
may expect environment pointers, while others may not.

The callstyle is determined on a class-by-class basis. For a given class, either all
methods introduced by that class will expect an environment parameter, or none will.

Chapter 46. The IBM System Object Model 661

Note: The callstyle of an inherited method is the callstyle of the class in which the
method is defined, not the callstyle of the inheriting class.

You can specify the callstyle for a class using the SOMCallStyle pragma. By
default, all classes will have the IDL callstyle.

Callstyles and Pointer-to-Member

You cannot assign the address of an IDL-callstyle method to a pointer to an
OIDL-callstyle method, or vice versa. Whether a pointer to member is an IDL- or
OIDL-callstyle pointer depends on the class the pointer to member is declared in.
If the declaring class uses IDL callstyle, the pointer to member can only point to
IDL-callstyle methods; otherwise it can only point to OIDL-callstyle methods. Note
that conflicts between callstyles are unlikely to occur, because IDL is the default
callstyle.

The Environment Pointer

Methods with callstyle IDL receive an extra parameter called the Environment
pointer. This parameter is defined by CORBA, and is intended to communicate
exceptional return codes from the method to its caller. Since most SOM users don’t
make use of the Environment parameter, Direct-to-SOM implements it in a way
that allows you to ignore it, but also permits you to get access to it and manipulate
it when you need to.

Every call to an IDL callstyle method is modified by the compiler to add an extra
parameter called ″__SOMEnv″. This name is looked up using the usual scoping
rules, so if you write:

void myfunc(Obj *p)
{

Environment *__SOMEnv = SOM_CreateLocalEnvironment();

p->DoSomething();

SOM_DestroyLocalEnvironment(__SOMEnv);
}

and DoSomething is an IDL callstyle method, it will be passed the __SOMEnv
defined in the local scope.

DTS also adds __SOMEnv to the formal parameter list of defined IDL callstyle
methods, so the Environment parameter passed from the caller is available within
the method. This also implies that, if you don’t define your own __SOMEnv inside
the method, DTS will by default pass on the received Environment to any IDL
style methods called.

DTS also defines a global __SOMEnv, which will be passed to any methods called
from within procedures or OIDL style methods, unless it is hidden by one you
define yourself.

C++ Limitations to Interface Definition Language

IDL supports only declarations, not definitions. For example, static data member
definitions cannot be recorded in the IDL. You should define static data members
in the class implementation instead.

662 OS/390 V2R8.0 C/C++ Programming Guide

Differences between SOM and C++

SOM imposes a slightly different view of object orientation on its classes than does
C++. This section describes differences between the object-oriented features of C++
and those supported by SOM.

Initializer Lists and Constructors

You cannot use an initializer list to initialize an object of a SOM class, because all
SOM classes have constructors, and C++ language rules do not allow classes with
constructors to be initialized in this way.

Function Overloading

C++ lets you define multiple methods within a class that have the same name, but
different combinations of arguments. These arguments are collectively known as a
method’s signature, and a class that defines multiple instances of a method with
different signatures is said to overload that method. A class can overload static
member functions as well as methods.

SOM does not support the C++ concept of function overloading, either for
methods or for static member functions. By default the OS/390 C++ compiler
generates mangled names for all overloaded functions so that different overloads
can be distinguished. If both your SOM classes and the programs that use them are
coded in C++, you can easily overload functions because the compiler uses this
consistent name-mangling scheme to resolve overloaded calls. However, if you
plan to make your SOM classes accessible to programs written in languages other
than C++, you should not rely on C++ name mangling, because the mangled
names are often difficult to understand. Instead, you should provide SOM with a
function name to call for each signature of an overloaded function. You do this
using the SOMMethodName pragma. The following example shows three
declarations of method add() for a class, and three SOMMethodName pragmas
that make all three methods clearly accessible to SOM programs written in other
languages:
class Bicycle : public SOMObject {
public:

// ...
void add(Bicycle&; const);
void add(int);
void add();

#pragma SOMMethodName(add(Bicycle&; const),"AddBike")
#pragma SOMMethodName(add(int),"AddInt")
#pragma SOMMethodName(add(),"AddVoid")
};

You could avoid the above SOMMethodName pragmas by relying on the C++
mangling scheme, but this would make client code more difficult to write or
maintain. For example, the following function in C++:
x::operator=(const volatile x);

is mangled to the following:
dts____as__frxzvx

For classes in which the SOMNoMangling pragma is in effect, you must use the
SOMMethodName pragma for all but one of the overloaded versions of a given

Chapter 46. The IBM System Object Model 663

method or static function. For the sake of code clarity you should use the
SOMMethodName pragma to rename all signatures of a function that is
overloaded.

Calling Methods through a NULL Pointer

Some implementations of C++ allow you to call nonvirtual functions through a
NULL pointer. You cannot do this in SOM-enabled C++ programs. If you call a
nonvirtual function through a NULL pointer in a SOM-enabled C++ program, the
program may compile successfully but it will not run correctly. For example, the
call to the virtual function vf() below causes an exception in both native C++ and
SOM-enabled C++, while the call to the nonvirtual function nvf() causes an
exception only in SOM-enabled C++:

class A {
public:

void nvf();
virtual void vf();

} *a = NULL;

void hoo(){
a->nvf(); // OK in C++, exception in DTS C++
a->vf(); // Exception for both because virtual.

}

Data Member Offsets

With C++ you can determine the offset of data members into an object. An
expression such as the following can be used in C++ to determine how far into an
instance Instance the member Member is located:

int ((char*)&Instance.Member - (char*)&Instance);

This syntax is also supported in SOM. However, the result of the expression may
not be the same for subclasses. In the following, the equality MyOffset(B,i) ==
MyOffset(D,i) may or may not hold, depending on how SOM determines the data
reordering scheme for each class.
class Base : public SOMObject { public: int i; } B;
class Derived : public Base { /* ... */ } D;
#define MyOffset(Obj,Member) int((char*)&Obj.Member - (char*)&Obj)

The offsets of data members into an object are contiguous within each
access-specifier (public, protected or private), and are assigned to each block in
the order of declaration.

Casting to Pointer-to-SOM Object

The structure of SOM objects requires that the memory layout of the instance begin
with a pointer to an appropriate method table. This differs from normal C++
objects in which no such pointer is allocated unless the class has virtual functions.
The result of this difference is that it is not generally possible to treat arbitrary
storage as a SOM object. In particular, do not cast 0 to a pointer to a SOM object.
You can get unexpected results when a SOM pointer is cast to a non-SOM pointer.
See “Determining which new and delete Operators Are Used” on page 671 for an
example of such unexpected results.

664 OS/390 V2R8.0 C/C++ Programming Guide

Dereferencing a Virtual Base Pointer to a Derived Base

In native C++, a pointer to virtual base cannot be explicitly cast to a derived base.
This casting is allowed in SOM-enabled C++. The following example illustrates this
difference between native and SOM-enabled C++:

#include <som.hh>

struct vbstruct : public virtual SOMObject {
#pragma SOMDefine(*)
};

void main() {
SOMObject *p = new vbstruct; // always legal
vbstruct *q;
q = (vbstruct *) p; // legal for SOM, not for non-SOM
q = p; // always illegal (need a cast)

}

Multiple Inheritance of a Base Class

SOM does not implement multiple occurrences of the same nonvirtual base. For
example:
#ifdef __SOM_ENABLED__
class A : public SOMObject { /* ... */ };
#else
class A { /* ... */ };
#endif
class B : public A { /* ... */ };
class C : public A { /* ... */ };
class MyClass : public B, C { /* ... */ };

The compiler issues an error for the definition of class MyClass if class A is a SOM
class. If class A is not a SOM class, the program compiles without an error.

The compiler does not produce messages about multiple inheritance errors in SOM
programs when different classes in an inheritance graph are separately changed
and recompiled. In the following example, assume that each struct is declared in a
separate file and compiled on its own:
struct s {};
struct a:s {}; // based on s
struct b {};
struct d:a,b {}; // based on a, b, and s

If the file containing struct b is changed to the following and recompiled
individually, the compiler will not warn you of the error, and programs using
struct d may behave unpredictably:
struct b:s {}; // based on s

Local Classes

Local, non-file-scope classes may not be SOM classes. However, a local,
non-file-scope class may have a nested class that is a SOM class. In the following
example, the declaration of class CantBeFromSOM produces a compiler error because
it only has the scope of main:

Chapter 46. The IBM System Object Model 665

class IsFromSOM: SOMObject { /* ... */ };
void main() {

class IsntFromSOM { /* ... */ };
class CantBeFromSOM: SOMObject { /* ... */ };
}

Abstract Classes

An abstract class is a class with one or more pure virtual functions. Abstract
C++/SOM classes are supported. If the abstract class does not define a default
constructor, OS/390 C++ prevents calls to the constructor from other C++
programs.

As usual with C++, you can provide your own method bodies for pure virtual
member functions. If you do this, you must provide the method bodies in the same
file as the definition of the first member that is not inline, or in the same file as a
SOMDefine directive.

Classes as Objects

In native C++, a class is a syntactic entity that exists only at compile time: it has no
representation outside the source code that defines it. A C++ class cannot be an
object, and a C++ object cannot be a class. The strict distinction between classes
and objects does not hold for SOM. A SOM class always exists at run time and is a
SOM object.

Because SOM classes are runtime objects, they can provide a number of services to
client objects. For example, a SOM class can respond to specific inquiries regarding
the interface of its instances; each SOM class includes a method named
somSupportsMethod, which when invoked with any string returns a Boolean value
indicating whether the string represents a method supported by instances of the
class. SOM class objects can also provide information to clients such as its name,
the names of its base classes, the size of its instances, the number of methods it
supports, and whether a provided SOM object is an instance of the class.

The OS/390 SOMobjects Programmer’s Guide describes a method for extracting the
class object of a class, where an object of that class already exists. For example, you
can call obj->somGetClass(), to extract the class object for object obj.

Where you need to name the class object but you do not have an instance of it,
you can code the class name, preceded by an underscore. For example:

SOMObject* anotherObj;
anotherObj->somIsInstanceOf(_Foo);

This syntax is not supported with DTS classes, because it imposes on the user’s
identifier space as defined by ANSI. Instead, the OS/390 C++ compiler introduces
a static member to each class it converts to a SOM class:
SOMClass * const __ClassObject

This static member cannot be added to the release order for the class. You can use
the following syntax in place of the syntax shown above, for DTS classes:

anotherObj->somIsInstanceOf(Foo::__ClassObject);

666 OS/390 V2R8.0 C/C++ Programming Guide

Although you can refer to this member as className::__ClassObject from within
a C++ program, it is not a “real” data member in that it does not exist in memory.
The compiler resolves references to this member to a pointer to the class object for
className.

Metaclasses

A SOM class is also an instance of a class, because all SOM classes are objects. A
class whose instances are other classes is a metaclass. A metaclass definition
specifies the interface of a class, in the same way as a class definition specifies the
interface of an object. The SOM metaclass has no conceptual equivalent in C++.
The SOM metaclass exists at runtime, is can provide specific services to client code,
and may be used as a parent of other metaclasses. For more details on the concept
of metaclasses, see the OS/390 SOMobjects Programmer’s Guide.

When you create a class in SOM, the appropriate metaclass is created if you do not
specify one. You can also explicitly create your own metaclasses. You can create a
metaclass by deriving from SOMClass, so that your metaclass can perform
functions such as tracking the SOM classes that are constructed in a program. (A
SOMClass object is constructed for each SOM class used by a program the first
time an object of that class is constructed.) To create a metaclass, do the following:
1. Derive a new class from SOMClass, which is declared in <som.hh>.
2. Associate the new class with the instance class by way of the SOMMetaClass

pragma.

The following is an example of metaclass:
#include <<som.hh>>

class MyMeta : public SOMClass { /* ... */ };
class MyClass : public SOMObject {

// ...
#pragma SOMMetaClass(*,MyMeta)

};

Note: The compiler does not distinguish between metaclasses and other classes.
For SOM to function correctly, derive all metaclasses from SOMClass.

offsetof macro

The offsetof macro does not work as well with SOM classes as it does with
regular C++ classes. Its value is determined at runtime, as the relative positioning
of the data “blocks” introduced by each base are not known until then. The
offsetof is not a reliable way to determine the position of a member within a
subclass. The value of the offsetof macro for a member of a base cannot be
assumed to be correct for subclasses of the base class.

sizeof operator

The sizeof operator works differently for SOM objects than for non-SOM objects.
The sizeof operator indicates the size in bytes of the object to which it is applied.
For non-SOM objects, this size is determined at compile time, and can therefore be
used in expressions evaluated at compile time. For SOM objects, sizeof returns a
value that is determined at runtime. This means that you cannot apply the sizeof
operator to SOM objects in situations where the value must be determinable at
compile time, such as array bounds (for static initializers), case expressions, bit

Chapter 46. The IBM System Object Model 667

field lengths, and enumerator initializers. For example, if you use the following
uses of sizeof, compilation errors will occur:
class MyClass {

public:
int i:sizeof(Buffer);

};
enum { E = sizeof(MyClass) } x;
try Buffer myBuffer[sizeof(Buffer)]; // Buffer is a SOM class
switch(/* ... */) {

case sizeof(Buffer): break;
}

Instance Data

SOM supports both static data members and arrays. An array of SOM objects is
represented as a pointer to an array of SOM object instances.

Templates

You instantiate a template class as with native C++. If you want to avoid compiler
mangling of template names, you should also supply a SOM name for any
instantiation of a template class as is done in the following example:
typedef Stack<int> IntStack;
#pragma SOMClassName(Stack<int>, "IntStack")
IntStack MyIntStack;

This declares an object MyIntStack of type Stack<int>. This could also be coded as:
Stack<int> MyIntStack;
#pragma SOMClassName(Stack<int>, "IntStack")

You can achieve the same effect by coding:
#pragma define(Stack<int>) // instantiates class Stack<int> from template
#pragma SOMClassName(Stack<int>, "IntStack")

Note that the first argument of the SOMClassName pragma (the class to be
renamed) must be the template class with its type argument, rather than the
typedef.

If you plan to make a template class accessible to non-C++ programs, do the
following:
1. Define an implementation of the template class for each type that will be

requested by those programs. You can do this either with the SOMDefine
pragma, or by instantiating the template within the C++ program. For example:
typedef Stack<int> IntStack; // assume Stack is a SOM class
typedef Stack<double> DoubleStack; // template
typedef Stack<char> CharStack;
typedef Stack<float> FloatStack;
// ...
IntStack i; // makes IntStack available

// to non-C++ programs
#pragma SOMDefine(Stack<double>) // makes DoubleStack available
#pragma SOMDefine(CharStack) // makes CharStack available

// FloatStack is not available

2. Use the SOMClassName pragma to provide SOM names to the template
instantiations, so that the compiler does not generate mangled names for those
instantiations.

668 OS/390 V2R8.0 C/C++ Programming Guide

3. Exclude information dependent upon the instantiation type within the class
description when using templates to implement SOM classes. For example, the
following code produces a runtime error because the SOMAttribute pragma is
processed for both implementations, and each one is incorrect for the other
implementation:
#include <som.hh>

template <class T, int S = 5> // default arg value
class D : public SOMObject {

public:
T Velocity;

#pragma SOMAttribute(D<int>::Velocity, readonly)
#pragma SOMAttribute(D<int, 9>::Velocity, readonly)

};

#pragma define(D<int>)
#pragma define(D<int, 9>)

Instead, use a single SOMAttribute pragma for each attribute within a template
class. For the above example, the pragma would appear as:

#pragma SOMAttribute(Velocity, readonly)

In cases within the class description where a class name is expected, such as
the SOMNoMangling or SOMNoDataDirect pragmas, you should use an
asterisk (*) for the class name.

Renaming Methods of Template Classes

You can rename methods of a template using the SOMMethodName pragma. You
do not need to rename template methods, but if you plan to make your SOM
classes available to non-C++ programs, you can make the interface to your classes
simpler by renaming methods. If you do not rename template methods, the
compiler mangles their names, and the mangled names are difficult to remember
and are likely to lead to typographical errors.

You should use the SOMMethodName pragma to rename the methods of a
template class for each type you plan to instantiate the template with from a
non-C++ program. For example, if you define a template class:
template <class T> class MyTemplate {

public:
T dataMember;
void Push(T item);

};

and you anticipate your template being used with types int and double, you
should add pragmas such as the following to the C++ program:
#pragma SOMMethodName(MyTemplate<int>::Push(int),"PushInt")
#pragma SOMMethodName(MyTemplate<double>::Push(double),"PushDouble")

Allocating Memory

This section describes how memory is allocated to SOM objects, and tells you how
to use the new and delete() operators for memory allocation.

Heap and Stack Memory Allocation

C++ programs can store objects in two different areas of memory: the stack and the
heap. The stack and the heap are implemented by software. Objects stored on the

Chapter 46. The IBM System Object Model 669

stack are deleted when the function or block within which they were created
passes out of scope. You must explicitly delete objects stored on the heap.

Objects allocated with the new operator are placed on the heap, including SOM
objects. Automatic objects are usually allocated in the current stack frame. SOM
objects that are declared as having automatic duration, rather than as pointers to
objects, are usually allocated on the current stack frame. As with normal C++, the
new operator is not called for automatic duration operators.

Overloading the new and delete Operators

You can overload the new and delete() operators either on a class-specific basis or
globally. Because most programs contain a mixture of SOM and non-SOM objects,
the compiler provides two different paths for memory allocation and deallocation
using new and delete(), one for SOM objects and one for non-SOM objects.

You can have multiple, distinguished versions of operator new within a class. The
operator delete() is restricted to one version per class.

SOM accepts an additional parameter to an operator new for a SOM class, which
points to the class’s class object. An operator new for a SOM class has one of the
following forms:

void *operator new (size_t InstanceSize);
void *operator new (SOMClass* ObjClass, size_t InstanceSize);

The SOM version of the global operator new has the form:
void *operator ::new (SOMClass* ObjClass, size_t InstanceSize);

You can use the SOMClass* parameter in class and global definitions of operator
new, to have a pointer to the object’s class object passed to the operator. For a SOM
class, the compiler passes this parameter whether you specify it in the operator’s
declaration or not. You do not specify this argument when invoking new, so there is
no way for a call to new to specify its own value for the SOMClass* argument.

You cannot have both types of operator new within a class. You can have both
types of global operator new. If you use placement arguments in an operator new,
the SOMClass argument is always the first argument.

The SOMClass* argument appears first so that the compiler can differentiate
between a SOM operator new and a non-SOM operator new that takes a SOMClass*
as an argument. You can use the SOMClass* argument, for example, to print the
class name, by calling thisClass->somGetName() where thisClass is a pointer to a
SOM class.

The delete() operator for SOM classes has the same form as for other C++ classes.
For a given class, you can have at most one of the following forms of operator
delete():

void operator delete(void*);
void operator delete(void*, size_t);
void operator delete(SOMObject*, size_t);

For the sake of easily maintained code, you should always include the size_t
argument, whether you use it or not, because it allows you to later change to an
implementation that does use the argument, without requiring client programs to
be recompiled.

670 OS/390 V2R8.0 C/C++ Programming Guide

The first argument is a pointer to the object instance being deleted. Because of the
way that SOM uninitializes an instance, the first word of the object still points to
the object’s method table, which in turn points to the class object. This gives you
access to information about the specific class being deleted.

You can also code a SOM version of the global delete() operator, of the form:
void operator ::delete(SOMObject*, size_t);

The type of the first argument is SOMObject to distinguish the function signature
from the non-SOM global delete() operator. Note that the compiler recognizes
such a replacement based on the exact signature. You must include both arguments
in the declaration.

By default, this function calls SOMFree to deallocate the SOM object’s storage.

The following example shows how you can define new and delete() operators for
a SOM class. In the example, the new operator increments a counter each time it is
called, and then calls the global new operator to allocate storage for the object. The
delete() operator decrements the same counter, and then calls the global delete()
operator to deallocate the storage. The counter is a static class member that can be
accessed to determine how many objects of the class currently have storage
allocated to them by new.

#include <som.hh>
class A : public SOMObject {
public: void* operator new(SOMClass*, size_t);

void operator delete(SOMObject*);

static int howMany; // # of dynamically alloc instances
};

int A::howMany;

void* A::operator new(SOMClass *cls, size_t sz)
{

howMany++;
return ::operator new(cls, sz);

}

void A::operator delete(SOMObject* obj)
{

howMany--;
::operator delete(obj);

}

Using new.h in C++ SOM Programs

If you normally include new.h in a program to specify that previously allocated
storage is to be used when new is invoked, you should include somnew.h instead if
the classes that make use of new are SOM classes.

Determining which new and delete Operators Are Used

If a SOM class has an operator new or an operator delete(), these operators are
used for all invocations of new or delete() regardless of their signatures. If a SOM
class does not have an operator new or an operator delete(), the SOM version of
the global operator is used.

Note: Memory allocated by SOMMalloc can only be freed by SOMFree, and
memory allocated by malloc() can only be freed by free(). If you use the

Chapter 46. The IBM System Object Model 671

SOM function for allocating storage for an object, and the non-SOM version
for deallocating it (or vice versa), a runtime exception may occur.

For example, the following will cause a runtime exception:
class A : public SOMObject {

public:
operator delete(void* o, size_t s) { ::delete o;)

};

because class A’s delete() operator will be invoked when an object of class A is
deleted. The first parameter will point to the object to be deleted. Note that
because the first parameter is declared to be of type void*, this invocation
implicitly involves converting a SOM pointer (an A*) into a non-SOM pointer (a
void*). The subsequent ::delete o therefore uses the global non-SOM delete()
operator, which calls free(), instead of the global SOM delete() operator that
calls SOMFree.

Volatile Objects

The SOM class member functions are not defined to operate on volatile SOM
objects. If you want to use the volatile qualifier with SOM objects, you must
supply volatile versions of the SOM class member functions. In particular, you
must supply volatile versions of the four compiler-supplied operator= functions
(described in “Accessing Special Member Functions from Other Languages” on
page 657). Note that if you supply a const volatile version of a function, you
should also supply a const version of the function for the sake of runtime
efficiency.

Data Members Implemented as Attributes

You cannot take the address of a data member that is implemented as an attribute.

If an attribute is made virtual by the SOMAttribute pragma, it is not behave like a
normal C++ data member. Because attributes are accessed using get and set
methods, making an attribute virtual makes the get and set methods for the
attribute virtual. You can override such virtual methods in a derived class to
change the type or other characteristics of the data. This differs from usual C++
behavior in which a derived class cannot override definitions for data members
defined in a base class.

Addresses of Embedded SOM objects

C++ requires that data members within a struct or class be allocated so that
members declared later have higher addresses than those declared earlier, unless
the declarations are separated by an access specifier.

DTS C++ does not respect this requirement for data members that are SOM objects.
This is true whether or not the struct or class is SOM. Because the size of SOM
objects is not known at compile time, they are represented in the struct by a
hidden pointer to the real object, which may be allocated on the heap, or on the
stack using alloca. The address of the embedded SOM object also need not be
contained in the apparent extent of its containing object.

struct ThingStruct {
int i1;
class SOMthing x;

672 OS/390 V2R8.0 C/C++ Programming Guide

int i2;
} thing;

(void*)&thing.i1 < (void*)&thing.i2 //true
(void*)&thing.i1 < (void*)&thing.x //not specified
(void*)&thing.x < (void*)&thing.i2 //not specified

(void*)&thing < (void*)&thing.x //not specified
(char*)&thing + sizeof(thing) > (void*)&thing.x //not specified

Converting C++ Programs to SOM Using SOMAsDefault

To convert existing classes to SOM classes:
1. Use the SOMAsDefault pragma or the SOM compiler option to specify the

SOM classes to the compiler. Both the pragma and the option include the
required SOM header file <som.hh>, and implicitly convert all classes to SOM
classes until implicit mode is turned off by a subsequent SOMAsDefault
pragma.
OS/390 C/C++ converts all structs and C++ classes to SOM classes unless the
data sets in which they are defined have qualifiers excluded from conversion to
SOM by the XSOMINC compiler option. See the OS/390 C/C++ User’s Guide for
further details.
The OS/390 C++ compiler does not convert structs or classes to SOM classes if
they have both of the following characteristics:
v They have no user-declared member functions
v They have no explicit bases.

2. Add the SOM header file data set to the list of data sets to be searched for
include files. You can specify the list with the SYSPATH compiler option.

3. Compile and run your programs without further change if your programs do
not use any of the C++ features that are not supported by SOM (such as
multiple virtual inheritance).
See “Differences between SOM and C++” on page 663 for information on C++
features that are not supported or are implemented differently for SOM
programs.

Unions cannot be SOM classes.

Non-virtual multiple inheritance is not allowed. Suppose that a class A has the
class B in at least two separate places in its class hierarchy. If class B is not a virtual
base class, class A cannot be a SOM class.

Note: Member functions of implicit SOM classes are given C linkage. This means
that pointers that are supposed to point at such classes must be explicitly
declared C.

Creating SOM-Compliant Programs by Inheriting from SOMObject

To make your programs SOM-enabled using by inheriting from SOMobjects, do the
following:
1. Include the following header file in your program, before the first occurrence of

a SOM class:
#include <<som.hh>>

Chapter 46. The IBM System Object Model 673

2. If you want to define a class that is SOM-enabled, inherit it from SOMObject,
or from a class that was inherited from SOMObject. All classes in a class
hierarchy must be SOM classes, if one is a SOM class.
#include <<som.hh>>
class MyClass : SOMObject { /* ... */ }; // both these classes
class SubClass : MyClass { /* ... */ }; // are SOM-enabled

class EnclosingClass { SubClass a; }; // NOT SOM-enabled

The SOMObject has the special property of always being virtual.

Creating DLLs with SOM

When you create a DLL that contains SOM-enabled classes, you must export the
following three symbols for each SOM-enabled class, to use that class:
v SOMClassNameClassData
v SOMClassNameCClassData
v SOMClassNameNewCLass

Use #pragma export or the _Export keyword to export the symbols listed above.

For example, if you use the _Export keyword on the following SOM-enabled class,
three symbols will be exported for the class: SOMEXClassData, SOMEXCCLassData,
andSOMEXNewClass
class _Export SOMEX : public SOMObject{
public:
void func();

};

If you use #pragma export, each of the three symbols needs a #pragma export
directive. For a DLL defining a single class whose SOM name is SOMEX, the symbols
would be exported as follows:
#pragma export(SOMEXClassData)
#pragma export(SOMEXCClassData)
#pragma export(SOMEXNewClass)

DLLs that are to be dynamically loaded using methods supported by the SOM
Class Manager, such as SOMClassMgr::somFindClsInFile(), should also export an
entry point called SOMInitModule that calls the compiler-defined NewClass
function for each class defined in the DLL. For a DLL defining a single class whose
SOM name is SOMX, this entry point could be written:
extern "C" void SOMInitModule(long, long, char*)
{
SOMXNewClass(SOMX_MajorVersion, SOMX_MinorVersion);

}
#pragma export(SOMInitModule)

674 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM

This chapter lists macros, built-in functions and SOM pragmas.

Macros Defined for SOM

The OS/390 C++ compiler predefines the __SOM_ENABLED__ macro with a
positive integer value, to indicate the level of SOM support provided. Currently
the value for __SOM_ENABLED__ is 250, which indicates the level of SOM
support described in this chapter. If __SOM_ENABLED__ is not defined or has a
zero value, SOM is not supported by that version of the compiler.

Built-in Functions for SOM

The OS/390 C++ compiler provides the __isDTSClass built-in function, which
indicates whether or not a class or struct is Direct-to-SOM. This function provides
information for macros and templates that need to behave differently for DTS
classes and structs. The format is:

ÊÊ __isDTSClass(expression
type-id

) ÊÍ

__isDTSClass takes a single type or expression as an argument. It returns an
integer value of 1 for a DTS class or struct, and 0 for a non-DTS class or struct.

If the argument is an expression, the OS/390 C++ compiler determines its type, to
decide whether it represents a DTS class or struct. The expression argument is not
evaluated.

The following example demonstrates how to use the __isDTSClass function:
template <class T>
const char* className(T* ptr)
{
if (__isDTSClass(T))

return ((SOMObject*)ptr) -> somGetClassName();
else

return "unknown";
}

The __isDTSClass function is called at compile time, and therefore does not incur
any run time cost.

Pragmas for Using SOM

This section describes the pragmas available for SOM support on the OS/390 C++
compiler. See the previous sections for background information on the reasons and
uses for the pragmas.

Note: The SOM pragmas are case-insensitive. They appear in a mixed-case format
to make them easier to read. You can use any combination of upper and

© Copyright IBM Corp. 1996, 1999 675

lowercase letters for the pragma names and for the on, off and pop
arguments. However, you must still enter C++ tokens such as class, method,
and data member names exactly as declared in your program.

Conventions Used by the SOM Pragmas

Some of the SOM pragmas use certain conventions to specify the scope to which
the pragma applies. This section explains those conventions.

Pragmas Containing on | off | pop

SOM pragmas containing an argument of on, off, or pop implement a
stack-modelled approach to setting their option. The arguments do the following:
on Pushes the prior state (on or off) of the pragma onto the pragma’s “stack”,

and turns the setting on.
off Pushes the prior state of the pragma onto the pragma’s “stack”, and turns

the setting off.
pop Restores the most recently saved state from the pragma’s “stack”.

The following example shows the effect of the SOMAsDefault pragma with
different settings:

// ... SOMAsDefault is off, or ON if program compiled with the SOM
// option

#pragma SOMAsDefault(on)
// ... SOMAsDefault now on

#pragma SOMAsDefault(pop)
// ... SOMAsDefault now off, or ON if program compiled with the
// SOM option

#pragma SOMAsDefault(off)
// ... SOMAsDefault now off

#pragma SOMAsDefault(pop)
// ... SOMAsDefault now off, or ON if program compiled with the
// SOM option

Use on or off only at the beginning of a block, and pop only at the end of the
block. This ensures the preservation of default settings around your own settings.

If you pop a pragma more times than you push it with on or off, the results are
unpredictable.

Pragmas Containing an Asterisk (*)

Certain SOM pragmas accept either a C++ class name or an asterisk (*) as one of
their arguments. You can use the asterisk to indicate that the class the pragma
applies to is the class within which the pragma occurs. For example:

#pragma SOMAsDefault(on)
class A {

//...
#pragma SOMClassVersion(*,3,1)
// Version number applies to class A
}

Class B {
// ...

#pragma SOMClassVersion(B,3,3)
// Could have specified * instead of B

676 OS/390 V2R8.0 C/C++ Programming Guide

}

#pragma SOMClassVersion(*,2,5)
// Error - not in the scope of any class!

The SOM Pragma

This pragma causes the compiler to recognize the SOMObject class as the special
base for all SOM classes.

Note: The compiler still requires a full declaration for SOMObject. Therefore, you
must include the header file containing this declaration.

This pragma is included in the <som.hh> header file, in order to turn implicit SOM
mode on. Apart from that, it should only appear in code generated by the SOM
emitter.

The syntax of the pragma is:

ÊÊ #pragma SOM ÊÍ

The SOMAsDefault Pragma

The setting of this pragma determines how the compiler should treat classes that
are not explicitly derived from SOMObject. When the pragma is in effect, all
non-local classes are implicitly derived from SOMObject. When the pragma is not in
effect, classes are to be explicitly derived from SOMObject to be supported for use
by SOM programs.

The syntax of the pragma is as follows:

ÊÊ #pragma SOMAsDefault(on
off
pop

) ÊÍ

The on argument saves the current setting, and turns SOMAsDefault on. The off
argument saves the current setting, and turns SOMAsDefault off. The pop setting
restores the most recently saved but still unrestored setting. See “Pragmas
Containing on | off | pop” on page 676 for more information on how to use these
arguments.

When this pragma is turned on for the first time in a compilation unit, it causes
the <som.hh> header file to be included if it has not already been included.

The SOM compiler option provides the same effect as setting #pragma
SOMAsDefault(on) at the start of the translation unit.

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 677

The SOMAttribute Pragma

Use this pragma to specify that a data member is an attribute. For an explanation
of these attributes, see “set and get Methods for Attribute Class Members” on
page 659. The syntax of the pragma is:

ÊÊ #pragma SOMAttribute(DataMember , »

,

indirect
nodata
noget
noset
privatedata
protectedata
publicdata
readonly
virtualaccessors

) ÊÍ

The pragma must appear within the class definition or declaration in which the
data member is defined. Each attribute in a class is defined in its own pragma. You
can only make a non-static data member into an attribute. The member cannot be a
reference to an abstract class because the _get/_set functions have to operate on
values. The keywords have the following effects:

indirect The interface (prototype) for the get and set
methods of this attribute must use one level of
indirection for both the argument to be set and the
return from the get. This means that if the type is
normally passed and returned by value, it will
have its address returned instead. For example, T
_get_X() actually returns *T, and _set_X(T)
actually accepts *T as argument. indirect is ignored
for structs and arrays.

nodata The compiler does not allocate any instance data
corresponding to this attribute, and does not
generate definitions for the get and set methods.
This means that you must define these methods
yourself and allocate any instance data these
methods require. nodata implies that there is no
way for C++ code to take the address of this
variable. The compiler issues an error message
when you attempt to do this.

You must write and declare the corresponding get
and set functions, _get_variable and _set_variable,
where variable is the attribute’s name.

noget The compiler does not generate a body for the
attribute’s get method. You must provide a body
for the get method.

noset The compiler does not generate a body for the
attribute’s set method. You must provide a body
for the set method. This qualifier is ignored if the
attribute is const.

678 OS/390 V2R8.0 C/C++ Programming Guide

privatedata The compiler defines instance data for the member
class and gives it private access. This is the default.

protectedata The instance data for the member class has
protected access.

publicdata The instance data for the member class has public
access.

readonly The attribute cannot have a set method. The
compiler does not generate one. If you provide
one, the compiler flags it as an error.

virtualaccessors The _get/_set methods will be virtual functions.
By default, _get and _set are nonvirtual functions.

The access for the _get/_set methods is the same as the access for the data
member. For example, access for the _get/_set methods of a protected data
member are protected. By default, access to the data itself is private unless you
specify otherwise with one of the protectedata or publicdata keywords. If you do
not use the SOMAttribute pragma, the data member is not an attribute. Attribute
qualifiers nodata, privatedata, protectedata and publicdata are mutually exclusive.

If you do not use the SOMNoDataDirect pragma, access to data members uses
direct access if the user code has access to the instance data.

When SOMNoDataDirect is used, the _get/_set methods are used. The access for
the _get/_set methods is the same as the access for the data member. For example,
access for a protected data member’s _get and _set methods would be protected.

The nodata attribute modifier and the SOMNoDataDirect pragma have different
effects, although their names are similar.

Normally, the compiler creates instance data in the class to implement an attribute,
and generates definitions for get and set methods that access this “backing” data.
The access class of the methods is that of the attribute, but the backing data is
private. You can override this with the publicdata or protectedata modifiers.

If you do not specify other modifiers or pragmas, then uses of the attribute are
compiled either into direct accesses of the backing data, or into calls to the get and
set methods. The compiler determines whether the code using the attribute can
“see” the backing data, according to the usual C++ access rules. Because members
and friend functions of a class do have access to its private data, they directly
access any backing data for attributes of that class. Methods in derived classes only
have access to public and protected members of a base class, so can only access
backing data that is public or protected. Private backing data in a base class is not
accessible, so uses of public or protected attributes with private backing data must
call _get and _set.

When you add the nodata modifier to an attribute, the compiler no longer
automatically creates backing data, and only declares the get and set methods. You
must supply definitions for them. Also, uses of the attribute will always be
compiled into get or set calls.

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 679

The SOMCallStyle Pragma

Use this pragma to specify the callstyle of the class within which the pragma
occurs. The syntax of this pragma is:

ÊÊ #pragma SOMCallStyle(OIDL
IDL

) ÊÍ

The OIDL option indicates that the callstyle of methods introduced by the class
does not include the Environment* argument, while the IDL option indicates that
the callstyle does include the Environment* argument. The default is the use of the
IDL callstyle.

For further details see “IDL and OIDL Callstyles” on page 661.

The SOMClassInit Pragma

Use this pragma to specify a function that the SOM runtime is to invoke during
creation of the class object for the named class. The syntax of this pragma is:

ÊÊ #pragma SOMClassInit(*
C++ClassName

, SOM linkage prototype) ÊÍ

The asterisk indicates that the pragma applies to the innermost enclosing class
within which the pragma is found.

The SOM linkage prototype is a C linkage function prototype without the return
type. For example, the function double sqrt(double) would appear as
sqrt(double) in this pragma.

A class object is created for a class when the first object of that class is created. The
function called after the class object is created must have the following form:

extern "C" void FunctionName(SOMClass*);

The name of the function is not significant. Once you have declared or defined this
function, you can associate it with the class constructor for a class using the
pragma:

#pragma SOMClassInit(FunctionName)

You do not need to use this pragma unless you want to define a function to be
called when the class object is created.

The SOMClassName Pragma

Use this pragma to specify SOM names for C++ classes and template classes. You
should keep in mind that naming in SOM is not case sensitive, so any names you
supply through SOMClassName should be distinguishable from other names
regardless of case. In addition, the Common Object Request Broker Architecture
(CORBA) requires that names begin with a letter of the alphabet.

680 OS/390 V2R8.0 C/C++ Programming Guide

If you do not use the SOMClassName pragma, the compiler mangles the class
name, which may make the class difficult to use from non-C++ programs. Mangled
names tend to be nonobvious, and accessing them from SOM programs can reduce
code readability and increase the likelihood of coding errors.

The syntax of the SOMClassName pragma is:

ÊÊ #pragma SOMClassName(*
C++ClassName

, ″ NameOfSomClass ″) ÊÍ

The asterisk indicates that the pragma applies to the innermost enclosing class
within which the pragma is found.

For example:
#pragma SOMAsDefault(on)
class MyCppClass { /* ... */ };
#pragma SOMClassName(MyCppClass, "MySOMClass")
class AnotherClass {
#pragma SOMClassName(*,"AnotherSOMClass")
//...
};

The requirements for the SOMClassName pragma are:
v The class in question must already have been declared when the compiler

encounters the pragma.
v The class must be a SOM class.
v The SOM class name cannot be the same as a name associated with a different

SOM class. This means that you cannot write code such as the following:
class x : SOMObject { int a; };
class y : SOMObject { int b; };
#pragma SOMClassName(x,"y") // error - there is already a SOM Y class.

The compiler will catch this error if the two SOM classes involved are in the
same compilation unit. If they are in separate compilation units, the compiler
will not issue an error message, and the results of the program are
unpredictable.

v The pragma must appear before the compiler needs to access the class to allocate
an instance of the class or one of its subclasses.

v If the asterisk (*) is used, the pragma must appear within the declaration for a
SOM class.

Multiple equivalent SOMClassName pragmas are ignored. The compiler issues an
error if it detects multiple SOMClassName pragmas for the same class that are not
equivalent.

The SOMClassVersion Pragma

SOM supports explicit version numbering for classes. The SOM runtime uses this
information to ensure that the classes of a SOM library are at least as recent as the
version of the library a client program was compiled to. When you use the
SOMClassVersion pragma, you prevent the compiler from providing version n of a

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 681

class when a client program was expecting version n+1. See “Version Control for
SOM Libraries and Programs” on page 654 for a more in-depth explanation of class
versioning. The syntax of the pragma is:

ÊÊ #pragma SOMClassVersion(C++ ClassName
*

, Major , Minor) ÊÍ

You can use the asterisk (*) to indicate that the pragma applies to the innermost
enclosing class within which the pragma occurs. If you use the C++ClassName form
of the pragma, the class must already have been declared at the point where the
pragma is encountered.

In the following example, class Q is given a major version of 3 and a minor
version of 2:

#pragma SOMAsDefault(on)
class Q {

public:
//...

#pragma SOMClassVersion(*,3,2)
};
#pragma SOMAsDefault(pop)

The following considerations apply to this pragma:
v Both the major and minor version numbers must be provided, and both must be

positive or zero-valued integers.
v The compiler issues an error message if you specify multiple conflicting

SOMClassVersion pragmas for a given class.
v The class must already be declared at the point where the pragma is

encountered.
v In the absence of a SOMClassVersion pragma for a class, the compiler assumes

zero for both version levels.

The SOM run time treats a zero version value for a class as indicating that versions
do not matter, and consequently does not check for version compatibility.

The SOMDataName Pragma

Use this pragma to specify SOM names for C++ class data members. You only
need to use this pragma if you want access to the class of the applicable data
member from non-C++ programs. If you do not use this pragma or the
SOMNoMangling pragma, data member names are mangled by the compiler, and
the mangled names can lead to coding errors in the non-C++ programs that
attempt to use them (because the names are obscure and typically very long). If the
member is an attribute, the member’s SOM name is used to form the get and set
method names.

The syntax of the pragma is:

ÊÊ #pragma SOMDataName(C++ DataMember , ″SOMName″) ÊÍ

The “SOMName” is the name that should be specified by the user in the IDL
definition of the class interface.

682 OS/390 V2R8.0 C/C++ Programming Guide

This pragma may only occur within the body of the corresponding class
declaration, and only after the corresponding data member has been declared.

The SOMDefine Pragma

Use this pragma in classes you define that have all member functions inline. The
pragma is not necessary for classes that have at least one non-inline member
function. This pragma (or the point at which the compiler encounters the definition
for the first out-of-line function declared within the class) causes the compiler to
emit the SOMBuildClass data structures, which are used by the SOM run time. The
SOMDefine pragma for a class with all inline functions can occur in any
compilation unit, but should only appear once across all compilation units. The
syntax of the pragma is:

ÊÊ #pragma SOMDefine(*
on
off
pop
C++ClassName

) ÊÍ

You can use the asterisk (*) to indicate that the pragma applies to the innermost
enclosing class within which the pragma occurs. This version of the pragma does
not apply to nested classes of the class where the pragma occurs.

For the C++ClassName version, the name of the specified class must be visible at
the point where the pragma is encountered.

The on, off, and pop settings are independent of the asterisk setting. Use them to
control the default over specific ranges of source. (See “Pragmas Containing on |
off | pop” on page 676 for information on how to use these arguments.)

If a SOMDefine(*) pragma occurs within the body of a class, that class will be
defined (assuming it has no out-of-line functions) regardless of the current value
set by on/off/pop.

Classes that have all member functions defined inline are considered declarations
by the C++ language rules. This means that such classes can be “declared” in
several compilation units. Normally, the compiler would have to create a class
structure and its data and method tables each time it encounters such a class.
When you use the SOMDefine pragma, you allow the compiler to create only one
copy of the class structure, which can reduce your program’s storage requirements
and improve performance.

This pragma is ignored if the class has any out-of-line member functions.

The SOMMetaClass Pragma

Use this pragma if you want to identify a particular class for SOM to use as the
metaclass of a SOM-enabled C++ class. For more information on SOM metaclasses,
see “Metaclasses” on page 667. The syntax of the pragma is:

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 683

ÊÊ #pragma SOMMetaClass(C++ ClassName
*

, *
″SOMClassName″
C++ MetaClassName

) ÊÍ

The C++ ClassName indicates what class is to have the specified metaclass as its
metaclass. This form of the pragma can occur at any scope. The names of all
specified C++ classes must be visible.

An asterisk (*) in the first position indicates that the innermost enclosing class
within which the pragma occurs is the class that will have the specified metaclass.
An asterisk in the second position indicates that the innermost enclosing class
within which the pragma occurs is the class that will be the metaclass for the
specified class. You should never use the asterisk in both positions at once; this
may cause the program to enter an infinite loop when an object of the class is
created. In the following example, class Mountain is given a metaclass of Rock, and
class Tree is given a metaclass of Plant:

class Mountain: public SOMObject { // ...
#pragma SOMMetaClass(*,Rock)

}
class Plant: public SOMObject { // ...

#pragma SOMMetaClass(Tree,*)
}
class Loop: public SOMObject { // ...

#pragma SOMMetaClass(*,*) // Error - will loop infinitely
}

In the version of the pragma that takes a SOM class name as the metaclass, the
SOM class name must be enclosed in double quotation marks. In the version that
takes a C++ class name as the metaclass, the metaclass must not be enclosed in
double quotation marks.

In the absence of a SOMMetaClass pragma, the compiler operates as if SOMClass
was specified as the metaclass.

The compiler issues an error message if you use multiple inequivalent
SOMMetaClass pragmas for a class.

The SOMMethodName Pragma

Use this pragma to specify SOM names for C++ methods and operators. You only
need to use this pragma if you want access to the class of the applicable method
from non-C++ programs. If you do not use this pragma or the SOMNoMangling
pragma, method names are mangled by the compiler, and the mangled names can
lead to coding errors in the non-C++ programs that attempt to use them (because
the names are obscure and typically very long).

The syntax of the pragma is:

ÊÊ #pragma SOMMethodName(C++ Prototype
C++ FunctionName

, ″SOMMethodName″) ÊÍ

684 OS/390 V2R8.0 C/C++ Programming Guide

The C++ Prototype is a C++ function prototype without the return type. For
example, the function double sqrt(double) would appear as sqrt(double) in this
pragma. If the prototype has a trailing const, you must include this in the
prototype.

The C++ FunctionName is an unambiguous C++ function name (one that is not
overloaded within the class). You do not include the function’s signature. If you
use this version of the pragma for a function that has more than one overloaded
version in a class, the compiler issues an error message.

If you do not need to access the class from non-C++ programs, you do not need to
use either SOMMethodName or SOMNoMangling for the class.

Note: These pragmas change the SOM name of a method. As discussed in “SOM
and Upward Binary Compatibility of Libraries” on page 651, renaming an
item is equivalent to removing it and adding a new item with the same
characteristics. If there is a possibility that you will access the class from
non-C++ programs, use the SOMMethodName or SOMNoMangling
pragmas in your initial implementation.

You can use a combination of SOMMethodName and SOMNoMangling to give
unmangled names to methods of a class that non-C++ programs will access. The
SOMNoMangling pragma (see “The SOMNoMangling Pragma” on page 687)
specifies that the C++ name of a method becomes the SOM name of that method.
As long as the method is not an overloaded method or an operator other than the
default assignment operator, SOMNoMangling makes the method accessible to
non-C++ programs by its C++ name. The following example shows a class
declaration with a combination of SOMNoMangling and SOMMethodName
pragmas:

#pragma SOMAsDefault(on)
class Address {

public:
char* Street;
int Phone;

#pragma SOMNoMangling(on)
int call(); // remains as call
void print(); // remains as print

#pragma SOMNoMangling(pop)
void update(char* street);

#pragma SOMMethodName(update(char),"updatestreet")
// becomes updatestreet

void update(int phone);
#pragma SOMMethodName(update(int),"updatephone")

// becomes updatephone
};

#pragma SOMAsDefault(pop)

The example uses SOMNoMangling to cause the C++ methods call and print to
be given SOM names identical to their C++ method names. The example then
explicitly renames the different overloads of update using SOMMethodName, so
that calls to those methods from non-C++ programs can be resolved.

You should keep in mind that naming in SOM is not case sensitive, so any names
you supply through SOMMethodName should be distinguishable from other
names regardless of case. In addition, the Common Object Request Broker
Architecture (CORBA) requires that names begin with an alphabetic character. If
you use the SOMMethodName pragma on a method, make sure that the SOM
name starts with an alphabetic character.

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 685

The requirements for the SOMMethodName pragma are:
v The pragma must occur in the compilation unit that defines the class (the

compilation unit that contains a SOMDefine pragma or the first noninline
function for the class).

v The method must already have been declared at the point where the pragma is
encountered.

v The class must be a SOM class.
v You cannot rename two method signatures in a class to the same name. The

compiler issues an error if you attempt this.
v The name of the member function within the SOMMethodName pragma must

be fully qualified if the pragma occurs outside of the class declaration. For
example, function clear() of class Buffer must be specified as Buffer::clear().

v A method can only be renamed in conjunction with the class that introduces it.
You cannot use SOMMethodName in a subclass to rename a method introduced
by a parent class. The methods that you cannot rename include the SOMObject
constructor, destructor, assignment, and copy constructor methods.

v You cannot rename a method to _get_X() or _set_X(), where X is the name of
an attribute for that class. For example, you cannot do the following:

class MyClass : SOMObject {
public:

int i;
int foo();

#pragma SOMAttribute(i)
#pragma SOMMethodName(foo(),"_get_i") // error

};

because the SOMAttribute pragma predefines a get and set method for i. If i
were a member of a base class of MyClass rather than of MyClass itself, the above
SOMMethodName pragma would work, but the compiler would resolve all calls
to _get_i() by calling the get method of the base class, rather than by calling
foo().

The compiler generates an error message if more than one version of an
overloaded SOM function is found and no SOMMethodName pragma has been
used to rename versions of the function. The error occurs whenever the compiler
detects a version of the function with a signature different from that of the first
instantiated version. The error refers to name clashes. You can avoid this error by
using SOMMethodName before any overload of a function other than the first is
used.

Note that different instantiations of templates used as SOM classes may have
different names for a method, if SOMMethodName is used on the method for a
given instantiation of the template. For example:

template class A<T> : public SOMObject {
public:

Print();
};
#pragma SOMMethodName(A<int>::Print,"PrintInt")
#pragma SOMMethodName(A<char*>::Print,"PrintString")

SOMMethodName and Inheritance

If you rename a method of a class using the SOMMethodName pragma, a method
of a derived class, with the same method signature, has the same SOM method
name as specified by the pragma.

686 OS/390 V2R8.0 C/C++ Programming Guide

The SOMNoDataDirect Pragma

Use this pragma to have the compiler use get/set methods for instance data access.
See “set and get Methods for Attribute Class Members” on page 659 for further
details.

The syntax of the pragma is:

ÊÊ #pragma SOMNoDataDirect(*
on
off
pop

) ÊÍ

When this pragma is in effect, all public data members can be accessed by get and
set methods only, except as specified below. When the pragma is not in effect,
nonprivate data members can be accessed directly, or by the get and set methods.
However, if a data member has #pragma SOMAttribute(nodata) set, the data
member can only be accessed by the get and set methods.

Direct access may be used by the following functions, regardless of the setting of
this pragma:
v Methods of the class (methods can access their own instance data directly

through the this pointer)
v Methods of subclasses, again through the this pointer.

Friend classes and methods may use direct access if the pragma is explicitly turned
on within the class declaration (using #pragma SOMNoDataDirect(*)). If the pragma
is turned on implicitly (using #pragma SOMNoDataDirect(on)), friend classes and
methods must use the get and set methods.

The asterisk (*) indicates that the pragma applies to the innermost enclosing class
within which the pragma occurs. The asterisk version of the pragma temporarily
overrides any setting obtained by using the on, off, or pop arguments for the
pragma, but only for the class in which it occurs. It has no effect on nested classes.

The on, off, and pop arguments are not allowed within the scope of a class. See
“Pragmas Containing on | off | pop” on page 676 for more information on how
these arguments are used.

The SOMGS compiler option is equivalent to specifying #pragma
SOMNoDataDirect(on) at the beginning of the compilation unit.

If this pragma is in effect when an instance of a SOM class is used by client code,
all SOM object data accesses via pointer or reference (other than those that use the
this pointer) are done indirectly. SOM object data member accesses done through
local or global SOM objects may be done directly.

The SOMNoMangling Pragma

Use this pragma to tell the compiler not to mangle the C++ names of methods,
static member functions, or instance data when creating SOM names or generating
IDL. The syntax of the pragma is:

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 687

ÊÊ #pragma SOMNoMangling(*
on
off
pop

) ÊÍ

See “Conventions Used by the SOM Pragmas” on page 676 for information on how
to use the pragma’s arguments. Note that, when the asterisk (*) is used in the
pragma, settings of the pragma via on, off, or pop are ignored, but only for the
class in which the pragma appears with the asterisk. This applies even if on, off, or
pop are used within the class itself. However, the asterisk version does not affect
nested classes.

When the pragma is in effect, the compiler does the following:
v Preserves the names of declared methods (no mangling applied). This means

that method names do not identify their arguments and class.
v Detects clashes of generated names within a class. This means that two

overloaded versions of method f, for example f(int) and f(double), result in a
compiler error message. To correct such a situation, you can use the
SOMMethodName pragma on all but one of the conflicting methods.

Notes:

1. The pragma does not apply to compiler-generated functions, which continue to
use mangled names.

2. User-written member functions that begin with an underscore (except _get and
_set members) are always mangled.

3. It is an error to remap two different C++ signatures to the same SOM name.
This can happen, for example, in a class with overloaded methods where
SOMNoMangling is in effect. In such cases, you should use a
SOMMethodName pragma to rename all but one of the overloaded methods. A
SOMMethodName pragma always takes precedence over a SOMNoMangling
pragma.

The pragma only applies to methods introduced by a class, not to inherited
methods. If SOMNoMangling is in effect when the compiler encounters a base
class, the methods of the base class will have unmangled names, as will methods
with the same signatures in any derived class, regardless of the state of
SOMNoMangling in the derived class.

In the following example, MyNewMethod receives a SOM name of MyNewMethod, rather
than the mangled version the OS/390 C++ compiler would normally generate:

#pragma SOMNoMangling(off)
// ...
class X : public SOMObject {
#pragma SOMNoMangling(*) // overrides SOMNoMangling(off)

// for entire class
// ...
void MyNewMethod(int, float);

};

The SOMNonDTS Pragma

Note: This pragma is not intended to be used by programmers. Do not use this
pragma in your programs, or the results will be unpredictable.

688 OS/390 V2R8.0 C/C++ Programming Guide

This pragma is automatically inserted in generated .hh files to inform the compiler
that the class it applies to was originally a SOM class, and not a C++ class
converted to a SOM class by the the OS/390 C++ compiler.

The SOMReleaseOrder Pragma

Use the SOMReleaseOrder pragma to make your SOM classes upward binary
compatible (so that client programs can use newer versions of your library without
having to recompile their source code each time you issue a new version of the
library). When you extend a class, you can only achieve binary compatibility for
users of the class if any added functions or data members are placed at the end of
the release order list specified in the pragma. See “Release Order of SOM Objects”
on page 652 if you want a better understanding of how release order is used to

ensure upward binary compatibility.

The syntax of the pragma is:

ÊÊ #pragma SOMReleaseOrder(Ê

Ê

»

*
StaticDataMember

,

Attribute
! C++ MemberFunctionPrototype

C++ UnambiguousFunctionName
″SOMMethodName″

) ÊÍ

The pragma must appear within the body of the class declaration. It contains a
comma-separated list of release order elements. A release order element may be
any of the following:
v An asterisk (*). The asterisk reserves a slot in the release order so that you can

later add a member function or data member at that position in the list, without
requiring client programs to be recompiled. You can also reserve slots for things
like private members that you do not want to expose to client code.

v An attribute. This uses two slots in the release order, one for the attribute’s get
method, and one for its set method. Both slots are used even for const data
members, which do not have a set method, so that you can later change the
method to non-const without breaking binary compatibility. Regardless of
whether you define get and set methods or let the compiler generate them for
you, you can place either the data member name, or the get and set method
names, in the release order. (You cannot specify both the data member name and
the set and get methods.) For new classes, you should use the data member
name, for the sake of code readability and to ensure that the get and set
methods for an attribute are always consecutive in the release order. For older
SOM classes where you did not allocate consecutive slots for the get and set
methods in the class’s release order, you must continue to specify each method
separately in the correct order.

v A static data member name. This uses one slot, for a pointer to the static data
member.

v A C++ member function prototype, excluding the return type. This uses one slot,
for a pointer to the function. See below for information on the use of the

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 689

exclamation point (!). Note that if the function is not overloaded within the class
you can use the unambiguous function name (see below).

v An unambiguous function name (one that is not overloaded by the class in
question or any of its bases).

v A SOM method name, enclosed in quotation marks. This is equivalent to
specifying the C++ member function name, except that you must specify the
simple SOM method name without specifying argument types. See below for
information on the use of the exclamation point.

Elements Preceded by !

Release order elements preceded by an exclamation point (!) let you assert that a
member function is to have a slot reserved for it even if the member function was
inherited from a base class. The “!” helps the compiler diagnose unexpected base
class evolutions. This can occur when a base class later introduces a virtual method
whose signature matches one that is currently introduced by this class. If the
method is found in the class’s release order without the “!”, the compiler issues an
error message. If you precede the method with “!”, you are asserting to the
compiler that you are aware of the method’s having moved upward in the
inheritance structure. The OS/390 C++ compiler preserves binary compatibility in
such situations, if you use the “!”.

The following examples show two versions of a class hierarchy. In the first version,
method aMethod() is a member of class Derived:

class Base : public SOMObject {
};

class Derived : public Base {
public:

void aMethod();
#pragma SOMReleaseOrder(aMethod())
};

This version compiles successfully, because aMethod() is found in the release order
of the class that introduced it. Later, a version of aMethod() is added to Base:

class Base : public SOMObject {
public:

virtual void aMethod();
};

class Derived : public Base {
public:

void aMethod();
#pragma SOMReleaseOrder(aMethod())
};

A compilation error occurs for this version, because the release order for class
Derived contains a method that is no longer introduced by the class (it is now
introduced by Base). The compiler considers this an error because the
SOMReleaseOrder pragma does not make the inheritance of aMethod() from class
Base explicit. To solve this problem, change the release order pragma to:

#pragma SOMReleaseOrder(!aMethod())

This informs the compiler that the programmer coding class Derived is aware of
the addition of aMethod() to class Base. The program then compiles successfully.

690 OS/390 V2R8.0 C/C++ Programming Guide

Multiple SOMReleaseOrder Pragmas

You can specify more than one SOMReleaseOrder pragma per class. The multiple
pragmas are concatenated together to create the release order list. This is useful in
situations where you want to use conditional compilation directives to create
different release orders. For example:
class X::

#if __FLAG__ //__FLAG__ is a macro
void Method1a();

#else
void Method1b();

#endif

void Method2();
void Method3();

#if __FLAG__
#pragma SOMReleaseOrder(Method1a())

#else
#pragma SOMReleaseOrder(Method1b())

#endif

#pragma SOMReleaseOrder(Method2(),Method3())
};

If the value of the __FLAG__ macro is nonzero, the release order for class X is:
Method1a()
Method2()
Method3().

Otherwise, the release order for class X is:
Method1b()
Method2()
Method3().

Other Requirements

This pragma may only appear within the body of the corresponding class
definition. If you do not provide a release order, the compiler will assume a release
order matching the order of declaration within the class body. Although you can
avoid having to specify a release order by always placing new methods and data
members below existing ones in the private and protected/public sections of the
class definition, use of the SOMReleaseOrder pragma is strongly recommended for
accuracy and code readability.

Items in the release order list must have been declared prior to the pragma, and
must appear only once in the list.

If a single SOMReleaseOrder pragma is provided for a class, it must list all the
methods and data members introduced by that class. If more than one
SOMReleaseOrder pragma is provided, together they must list all the methods and
data members introduced by that class. (Compiler-generated methods, such as the
four default assignment operators that the compiler provides if you do not define
any, must also be listed, if you want to take their address.) The compiler issues a
warning message when it encounters a partial list.

You can use the SOMRO option to have the compiler generate a #pragma
SOMReleaseOrder for a class. The release order includes compiler-defined

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 691

methods. By default the compiler places methods it generates at the end of the
release order. For further details see “The SOMReleaseOrder Pragma” on page 689.

Templates and Release Orders

Because the SOMReleaseOrder pragma must occur within the declaration for a
class, you cannot declare different release orders for different instantiations of a
template class. If you rename methods of a template instantiation using
SOMMethodName, you must still indicate the original C++ name of each method
in the release order within the template class. If you want to provide two different
release orders for different instantiations of a template, you must make one of the
classes a subclass of the template. You can then declare a different release order for
that class, using the “!” to indicate your awareness that member functions are
derived from a base class.

Compatibility Pragmas

The following pragmas exist for compatibility reasons only. If you use them, they
are accepted but ignored without warning by the compiler.

The SOMMethodAppend Pragma: TheSOMMethodAppend pragma is obsolete and
exists only for compatibility reasons. This pragma will have no effect on the
behavior of your code.

ÊÊ #pragma SOMMethodAppend(C++ FunctionPrototype,″string″) ÊÍ

The SOMIDLDecl Pragma: TheSOMIDLDecl pragma is obsolete and exists only
for compatibility reasons. This pragma will have no effect on the behavior of your
code.

ÊÊ #pragma SOMIDLDecl(C++ TypeName
C++ Prototype

″IDLDeclaration″) ÊÍ

The SOMIDLPass Pragma: The SOMIDLPass pragma is obsolete and exists only
for compatibility reasons. This pragma will have no effect on the behavior of your
code. The syntax of the pragma is :

ÊÊ #pragma SOMIDLPass(*
C++ ClassName

″ Label ″,″ StringToEmit ″) ÊÍ

The SOMIDLTypes Pragma: The SOMIDLTypes pragma is obsolete and exists
only for compatibility reasons. This pragma will have no effect on the behavior of
your code. The syntax of the pragma is:

ÊÊ #pragma SOMIDLTypes(*
C++ ClassName

»

,

typeName) ÊÍ

692 OS/390 V2R8.0 C/C++ Programming Guide

The asterisk indicates that the pragma applies to the innermost enclosing class
within which the pragma is found.

Chapter 47. Macros, Built-in Functions, and Pragmas for SOM 693

694 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 48. Examples and Tips

This chapter provides examples and tips for creating a SOM-enabled class library.
It also explains how to create a SOM-enabled class library that a non-C++ client
can use.

Building a C++ SOM-Enabled Class Library

There are three ways to make your C++ programs SOM-enabled:
v You can explicitly derive your classes from the SOMObject class. To do this, you

must include the som.hh header file in your program, and specify that the
classes inherit from SOMObject. SOMObject is declared in the som.hh header file.

v You can implicitly derive your classes from SOMObject by using the SOM
compiler option.

v You can implicitly derive your classes from SOMObject by using the
SOMAsDefault pragma directive.

Examples for all three methods follow.

Explicitly Deriving Classes from SOMObject

The following example shows you how to make C++ class Strclass SOM-enabled
by inheriting from SOMObject. For more information about this technique, refer to
“Creating SOM-Compliant Programs by Inheriting from SOMObject” on page 673.

© Copyright IBM Corp. 1996, 1999 695

Implicitly Deriving Classes from SOMObject Using the SOM
Option

The easiest way to convert your C++ class to a SOM-enabled class is to compile
your code with the SOM compiler option. The option implicitly includes the
som.hh header file, and implicitly converts all C++ classes to SOM classes. When
the program encounters a SOMAsDefault pragma directive, implicit mode closes.

The following code fragment demonstrates this method. The program is almost
identical to the first example, but it is not necessary to include som.hh or to
explicitly derive Strclass from SOMObject.

// mystring.hh

#include <som.hh> // provides access to the
// SOMObject class

class Strclass : public SOMObject { // causes Strclass to inherit
// from SOMObject

#pragma SOMVersionName(*,3,2) // provides a version number

private:
char *str;

public:
int set_str(char*);
char* get_str();
int compare_str(char *);
void upper(char *);
.
.
.
Strclass(char*);
Strclass();
Strclass();

#pragma SOMReleaseOrder(\ // specifies release order
/* 1 */ set_str(char*), \
/* 2 */ get_str(); \
/* 3 */ compare_str(char*), \
/* 4 */ upper(char*), \
.
.
.)

}

#define __CODE__

// string class's member functions definitions

#endif

Figure 219. Explicitly deriving classes from SOMObject

696 OS/390 V2R8.0 C/C++ Programming Guide

Implicitly Deriving Classes from SOMObject Using the
SOMAsDefault Pragma

The following example demonstrates how to make a C++ class SOM-enabled using
the SOMAsDefault pragma directive. This code fragment is very similar to the
previous one, but includes SOMAsDefault pragmas. The first SOMAsDefault
pragma turns on implicit mode, causing subsequent class definitions to inherit
from SOMObject. Therefore, class Strclass becomes SOM-enabled. The second
SOMAsDefault pragma turns off implicit mode, so that subsequent classes, in this
case the shape class, do not automatically become SOM-enabled.

// mystring.hh

class Strclass {
#pragma SOMVersionName(*,3,2) // specifies version number

private:
char *str;

public:
int set_str(char*);
char* get_str();
int compare_str(char *);
void upper(char *);
.
.
.
Strclass();
Strclass(char*);
Strclass();

#pragma SOMReleaseOrder(\ // specifies release order
/* 1 */ set_str(char*), \
/* 2 */ get_str(); \
/* 3 */ compare_str(char*), \
/* 4 */ upper(char*), \
.
.
.)

}

#define __CODE__

// string class's member functions definitions

#endif

Figure 220. Implicitly deriving classes from SOMObject using SOM option

Chapter 48. Examples and Tips 697

Sample JCL to Compile and Create a SOM-Enabled Class
Library

The following JCL fragment uses the standard CBCCB procedure to compile and
bind a SOM-enabled DLL. Explanations for the JCL statements follow.

// mystring.hh

#pragma SOMAsDefault(on) // turns on implicit SOM mode

class Strclass {
#pragma SOMVersionName(*,3,2) // specifies version number

private:
char *str;

public:
int set_str(char*);
char* get_str();
int compare_str(char *);
void upper(char *);
.
.
.
Strclass();
Strclass(char*);
Strclass();

#pragma SOMReleaseOrder(\ // specifies release order
/* 1 */ set_str(char*), \
/* 2 */ get_str(); \
/* 3 */ compare_str(char*), \
/* 4 */ upper(char*), \
.
.
.)

}

#pragma SOMAsDefault(off) // turns off implicit SOM mode

class shape { // shape Class will not be SOM-enabled
int length;
int width;

};

#define __CODE__

// string class's member functions definitions

#endif

Figure 221. Implicitly deriving classes from SOMObject using SOMAsDefault

698 OS/390 V2R8.0 C/C++ Programming Guide

«1¬ Input source file including function definitions (as __CODE__ is defined).

«2¬ SOM-enabled DLL program.

«3¬ Definition side-deck used to resolve client references to DLL functions and
variables.

Release-to-Release Binary Compatibility

If you develop or maintain libraries of C++ class and methods that are used by
other application developers, SOM allows you to release new versions of a library
without requiring users of the library to recompile their applications. This section
gives you a quick summary of what you need to consider when developing and
maintaining a release-to-release binary compatible library.
v Recompilation requirements

When you make changes to a SOM class, the type of change determines whether
or not client code requires recompiling.

v Release order maintenance
SOM achieves binary compatibility by arranging all the components of a class
into ordered lists, locating them by their position in a list. Next it enforces rules
to ensure that the ordering of the lists never changes. Ensure that the order of all
components in your classes does not change with each new release. You can also
use the SOMReleaseOrder pragma.

v Version control of your library
Use version control to ensure that programs do not experience unpredictable
behavior as a result of using backlevel definitions of classes.

Refer to “SOM and Upward Binary Compatibility of Libraries” on page 651 for
more information on these points.

Using a C++ SOM-Enabled Class Library

The following example shows how a client program can use a SOM-enabled class
library. The following source code uses the Strclass class.

//CXXSOM EXEC CBCCB
// INFILE='userid.DTS.SOURCE(mystring)', «1¬
// OUTFILE='userid.DTS.LOAD(mystring)', «2¬
// PARM='OPTFILE(DD:OPTION)'
//COMPILE.OPTION DD DATA,DLM='/<'
SEARCH('SOMMVS.SGOSHH.+','SOMMVS.SGOSH.+')
DEFINE(__CODE__)

/<
//* userid.DTS.IMPORTS contains the import statements for
//* the Strclass DLL
//PLKED.SYSDEFSD DD DSN=userid.DTS.IMPORTS(MYSTRING),DISP=SHR «3¬
//PLKED.IMPORTS DD DSN=SOMMVS.SGOSIMP,DISP=SHR
//PLKED.SYSIN2 DD *
INCLUDE IMPORTS(GOSSOMK)

/*

Figure 222. JCL to compile and create a SOM-enabled class library

Chapter 48. Examples and Tips 699

The following JCL fragment shows how to use a SOM-enabled DLL class library.
Explanations for the JCL statements follow.

«1¬ Input client source code.

«2¬ Definition side-deck containing the import symbols for the SOM-enabled
DLL.

«3¬ Definition side-deck containing the import symbols for the SOM Kernel.

«4¬ SOM runtime library.

«5¬ SOM-enabled DLL in userid.DTS.LOAD(MYSTRING).

#include "mystring.hh" // header file for class Strclass
#include <iostream.h> // standard header file

main() {
Strclass *mystr; // declaration of a pointer to the

// class Strclass mentioned above

mystr=new Strclass; // create and initialize an instance
// of class Strclass

mystr.set_str("this is mystring");
mystr.upper();
cout << mystr.get_str() << "\n" << endl ;

}

Figure 223. Using a C++ SOM-enabled class library

//*--
//* Compile, bind and, run a C++ main program. The
//* C++ client program is in userid.DTS.SOURCE
//*--
//CXXSOM EXEC CBCCBG
// INFILE='userid.DTS.SOURCE(MAIN)' «1¬
//* userid.DTS.IMPORT(MYSTRING) contains the import
//* statement for the Strclass DLL
//PLKED.IMPORTS DD DSN=SOMMVS.SGOSIMP,DISP
// DD DSN=userid.DTS.IMPORTS,DISP=SHR
//PLKED.SYSIN2 DD *

INCLUDE IMPORTS(MYSTRING) «2¬
INCLUDE IMPORTS(GOSSOMK) «3¬

/*
//GO.STEPLIB DD
// DD
// DD DSN=SOMMVS.SGOSLOAD,DISP=SHR «4¬
// DD DSN=userid.DTS.LOAD,DISP=SHR «5¬
//GO.SOMPROF DD DSN=SOMMVS.SGOSPROF(GOSPROF),DISP=SHR

Figure 224. JCL for a SOM-enabled DLL class library

700 OS/390 V2R8.0 C/C++ Programming Guide

Part 8. Internationalization: Locales and Character Sets

This part includes the following topics related to Locales and Character Sets:
v “Chapter 49. Introduction to Locale” on page 703
v “Chapter 50. Building a Locale” on page 707
v “Chapter 51. Customizing a Locale” on page 745
v “Chapter 52. Customizing a Time Zone” on page 751
v “Chapter 53. Definition of S370 C, SAA C, and POSIX C Locales” on page 753
v “Chapter 54. Code Set Conversion Utilities” on page 761
v “Chapter 55. Coded Character Set Considerations with Locale Functions” on

page 779

© Copyright IBM Corp. 1996, 1999 701

702 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 49. Introduction to Locale

Internationalization in Programming Languages

Internationalization in programming languages is a concept that comprises
externally stored cultural data, a set of programming tools to create such cultural data,
a set of programming interfaces to access this data, and a set of programming methods
that enable you to use provided interfaces to write programs that do not make any
assumptions about the cultural environments they run in. Such programs modify
their behavior according to the user’s cultural environment, specified during the
program’s execution.

Elements of Internationalization

The typical elements of cultural environment are as follows:

Native language
The text that the executing program uses to communicate with a user or
environment, that is, the natural language of the end user.

Character sets and coded character sets
Map an alphabet, the characters used in a particular language, onto the set
of hexadecimal values (code points) that uniquely identify each character.
This mapping creates the coded character set, which is uniquely identified
by the character set it encodes, the set of code point values, and the
mapping between these two.

For example IBM-273, also known as the German Code Page, and IBM-297,
also known as the French Code Page, are two coded character sets which
assign different EBCDIC encodings in the hexadecimal range 40 to FE to the
same Latin Alphabet Number 1. IBM S/390 systems in Germany and
France both use this Latin 1 alphabet, which is specified by International
Standard ISO/IEC 8859-1. However, systems in Germany are configured
for encodings of this alphabet given by IBM-273; whereas, systems in
France are configured for encodings of this alphabet given by IBM-297.

IBM-1027, Japanese Latin Code Page, is another example of a coded
character set. It assigns EBCDIC encodings in the hexadecimal range 40 to FE
to characters specified by Japanese Industrial Standard JIS X 201-1978 plus
encodings for a few more Latin characters selected by IBM. The resulting
alphabet defined by IBM-1027 consists of some characters found in Latin
Alphabet Number 1 and some Katakana characters. IBM S/390 systems in
Japan are configured for encodings of this alphabet assigned by IBM-1027.

Collating and ordering
The relative ordering of characters used for sorting.

Character classification
Determines the type of character (alphabetic, numeric, and so forth)
represented by a code point.

Character case conversion
Defines the mapping between uppercase and lowercase characters within a
single character set.

© Copyright IBM Corp. 1996, 1999 703

Date and time format
Defines the way date and time data are formatted (names of weekdays and
months; order of month, day, and year, and so forth).

Format of numeric and non-numeric numbers
Define the way numbers and monetary units are formatted with commas,
decimal points, and so forth.

OS/390 C/C++ Support for Internationalization

The OS/390 C/C++ compiler and library support of internationalization is based
on the IEEE POSIX P1003.2 and X/Open Portability Guide standards for global
locales and coded character set conversion. See “Chapter 50. Building a Locale” on
page 707 for more information about locales.

Locales and Localization

A locale is a collection of data that encodes information about the cultural
environment. Localization is an action that establishes the cultural environment for
an application by selecting the active locale. Only one locale can be active at one
time, but a program can change the active locale at any time during its execution.
The active locale affects the behavior of the locale-sensitive interfaces for the entire
program. This is called the global locale model.

Locale-Sensitive Interfaces

The OS/390 C/C++ run-time library provides many interfaces to manipulate and
access locales. You can use these interfaces to write internationalized C programs.

This list summarizes all the OS/390 C/C++ library functions which affect or are
affected by the current locale.

Selecting locale
Changing the characteristics of the user’s cultural environment by
changing the current locale: setlocale()

Querying locale
Retrieving the locale information that characterizes the user’s cultural
environment:

Monetary and numeric formatting conventions:
localeconv()

Date and time formatting conventions:
localdtconv()

User-specified information:
nl_langinfo()

Encoding of the variant part of the portable character set:
getsyntx()

Character set identifier:
csid(), wcsid()

Classification of characters:

704 OS/390 V2R8.0 C/C++ Programming Guide

Single-byte characters:
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit()

Wide characters:
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), wctype(), iswctype()

Character case mapping:

Single-byte characters:
tolower(), toupper()

Wide characters:
towlower(), towupper()

Multibyte character and multibyte string conversion:
mblen(), mbrlen(), mbtowc(), mbrtowc(), wctomb(), wcrtomb(), mbstowcs(),
mbsrtowcs(), wcstombs(), wcsrtombs(), mbsinit(), wctob()

String conversions to arithmetic:
strtod(), wcstod(), strtol(), wcstol(), strtoul(), wcstoul(), atof(),
atoi(), atol()

String collating:
strcoll(), strxfrm(), wcscoll(), wcsxfrm()

Character display width:
wcswidth(), wcwidth()

Date, time, and monetary formatting:
strftime(), strptime(), wcsftime(), mktime(), ctime(), gmtime(),
localtime() strfmon()

Formatted input/output:
printf() (and family of functions), scanf() (and family of functions),
vswprintf(), swprintf(), swscanf()

Processing regular expressions:
regcomp(), regexec()

Wide character unformatted input/output:
fgetwc(), fgetws(), fputwc(), fputws(), getwc(), getwchar(), putwc(),
putwchar(), ungetwc()

Response matching:
rpmatch()

Collating elements:
ismccollel(), strtocoll(), colltostr(), collequiv(), collrange(),
collorder(), cclass(), maxcoll(), getmccoll(), getwmccoll()

Chapter 49. Introduction to Locale 705

706 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 50. Building a Locale

Cultural information is encoded in the locale source file using the locale definition
language. One locale source file characterizes one cultural environment. See
“Appendix D. Locales Supplied with OS/390 C/C++” on page 809 for a list of the
locale source and object files supplied with the OS/390 C/C++ compiler.

The locale source file is processed by the locale compilation tool, called the
localedef tool.

To enhance portability of the locale source files, certain information related to the
character sets can be encoded using the symbolic names of characters. The
mapping between the symbolic names and the characters they represent and its
associated hexadecimal value is defined in the character set description file or
charmap file. See “Appendix E. Charmap Files Supplied with OS/390 C/C++” on
page 817 for a list of the charmap files shipped with your product.

The conceptual model of the locale build process is presented below:

locale source charmap

LOCALEDEF tool

coded
character set
definition

cultural
environment
definition

Compiled locale
compiled object
used by the
OS/390 C/C++ interfaces

Using the charmap File

The charmap file defines a mapping between the symbolic names of characters and
the hexadecimal values associated with the character in a given coded character
set. Optionally, it can provide the alternate symbolic names for characters.
Characters in the locale source file can be referred to by their symbolic names or
alternate symbolic names, thereby allowing for writing generic locale source files
independent of the encoding of the character set they represent.

Each charmap file must contain at least the definition of the portable character set
and the character symbolic names associated with each character. The characters in
the portable character set and the corresponding symbolic names, and optional
alternate symbolic names, are defined in Table 73.

Table 73. Characters in Portable Character Set and Corresponding Symbolic Names

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<NUL> 00

© Copyright IBM Corp. 1996, 1999 707

Table 73. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<tab> <SE10> 05

<vertical-tab> <SE12> 0b

<form-feed> <SE13> 0c

<carriage-return> <SE14> 0d

<newline> <SE11> 15

<backspace> <SE09> 16

<alert> <SE08> 2f

<space> <SP01> 40

<period> <SP11> . 4b

<less-than-sign> <SA03> < 4c

<left-parenthesis> <SP06> (4d

<plus-sign> <SA01> + 4e

<ampersand> <SM03> & 50

<right-parenthesis> <SP07>) 5d

<semicolon> <SP14> ; 5e

<hyphen> <SP10> - 60

<hyphen-minus> <SP10> - 60

<slash> <SP12> / 61

<solidus> <SP12> / 61

<comma> <SP08> , 6b

<percent-sign> <SM02> % 6c

<underscore> <SP09> _ 6d

<low-line> <SP09> _ 6d

<greater-than-sign> <SA05> > 6e

<question-mark> <SP15> ? 6f

<colon> <SP13> : 7a

<apostrophe> <SP05> ' 7d

<equals-sign> <SA04> = 7e

<quotation-mark> <SP04> " 7f

<a> <LA01> a 81

 <LB01> b 82

<c> <LC01> c 83

<d> <LD01> d 84

<e> <LE01> e 85

<f> <LF01> f 86

<g> <LG01> g 87

<h> <LH01> h 88

<i> <LI01> i 89

708 OS/390 V2R8.0 C/C++ Programming Guide

Table 73. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<j> <LJ01> j 91

<k> <LK01> k 92

<l> <LL01> l 93

<m> <LM01> m 94

<n> <LN01> n 95

<o> <LO01> o 96

<p> <LP01> p 97

<q> <LQ01> q 98

<r> <LR01> r 99

<s> <LS01> s a2

<t> <LT01> t a3

<u> <LU01> u a4

<v> <LU01> v a5

<w> <LW01> w a6

<x> <LX01> x a7

<y> <LY01> y a8

<z> <LZ01> z a9

<A> <LA02> A c1

 <LB02> B c2

<C> <LC02> C c3

<D> <LD02> D c4

<E> <LE02> E c5

<F> <LF02> F c6

<G> <LG02> G c7

<H> <LH02> H c8

<I> <LI02> I c9

<J> <LJ02> J d1

<K> <LK02> K d2

<L> <LL02> L d3

<M> <SM02> M d4

<N> <LN02> N d5

<O> <LO02> O d6

<P> <LP02> P d7

<Q> <LQ02> Q d8

<R> <LR02> R d9

<S> <LS02> S e2

<T> <LT02> T e3

<U> <LU02> U e4

Chapter 50. Building a Locale 709

Table 73. Characters in Portable Character Set and Corresponding Symbolic
Names (continued)

Symbolic Name Alternate Name Character
Hex Value
(EBCDIC)

<V> <LV02> V e5

<W> <LW02> W e6

<X> <LX02> X e7

<Y> <LY02> Y e8

<Z> <LZ02> Z e9

<zero> <ND10> 0 f0

<one> <ND01> 1 f1

<two> <ND02> 2 f2

<three> <ND03> 3 f3

<four> <ND04> 4 f4

<five> <ND05> 5 f5

<six> <ND06> 6 f6

<seven> <ND07> 7 f7

<eight> <ND08> 8 f8

<nine> <ND09> 9 f9

<vertical-line> <SM13> | (4f)

<exclamation-mark> <SP02> ! (5a)

<dollar-sign> <SC03> $ (5b)

<circumflex> <SD15> | (5f)

<circumflex-accent> <SD15> | (5f)

<grave-accent> <SD13> v (79)

<number-sign> <SM01> # (7b)

<commercial-at> <SM05> @ (7c)

<tilde> <SD19> ˜ (a1)

<left-square-bracket> <SM06> [(ad)

<right-square-bracket> <SM08>] (bd)

<left-brace> <SM11> { (c0)

<left-curly-bracket> <SM11> { (c0)

<right-brace> <SM14> } (d0)

<right-curly-bracket> <SM14> } (d0)

<backslash> <SM07> \ (e0)

<reverse-solidus> <SM07> \ (e0)

The portable character set is the basis for the syntactic and semantic processing of
the localedef tool, and for most of the utilities and functions that access the locale
object files. Therefore the portable character set must always be defined. It is
conceptually divided into two parts:

Invariant
Characters for which encoding must be constant among all charmap files.

710 OS/390 V2R8.0 C/C++ Programming Guide

The required encoded values are specified in Table 73 on page 707. If any of
these values change, the behavior of any utilities and functions on OS/390
C/C++ is unpredictable.

For example, if you are using charmaps such as Turkish IBM-1026 or
Japanese IBM-290, where the characters encoded vary from the encoding in
Table 73 on page 707, you may get unpredictable results with the utilities
and functions.

Variant
Characters for which encoding may vary from one charmap file to another.
Only the following characters are allowed in this group:
<backslash>
<right-brace>
<left-brace>
<right-square-bracket>
<left-square-bracket>
<circumflex>
<tilde>
<exclamation-mark>
<number-sign>
<vertical-line>
<dollar-sign>
<commercial-at>
<grave-accent>

The default EBCDIC encoding of each variant character is shown by a
hexadecimal value in parentheses. It is equivalent to the encoding in code
page 1047.

The charmap file is divided into two main sections:
1. the charmap section, or CHARMAP

2. the character set identifier section, or CHARSETID

The following definitions can precede the two sections listed above. Each consists
of the symbol shown in the following list, starting in column 1, including the
surrounding brackets, followed by one or more <blank>s, followed by the value to
be assigned to the symbol.

<code_set_name>
The string literal containing the name of the coded character set name
(IBM-1047, IBM-273, etc.)

<mb_cur_max>
the maximum number of bytes in a multibyte character which can be set to
a value of either 1 or 4. If it is 1, each character in the character set defined
in this charmap is encoded by a one-byte value. If it is 4, each character in
the character set defined in this charmap is encoded by a one-, two-, three-,
or four-byte value. If it is not specified, the default value of 1 is assumed.
If a value of other than 1 or 4 is specified, a warning message is issued
and the default value of 1 is assumed.

<mb_cur_min>
The minimum number of bytes in a multibyte character. Can be set to 1
only. If a value of other than 1 is specified, a warning message is issued
and the default value of 1 is assumed.

<escape_char>
Specifies the escape character that is used to specify hexadecimal or octal

Chapter 50. Building a Locale 711

notation for numeric values. It defaults to the hexadecimal value 0xe0,
which represents the \ character in the coded character set IBM-1047.

For portability among the EBCDIC based systems, the escape character has
been redefined to the / or <slash> character in all IBM-supplied charmap
files, with the following statement:

<escape_char> /

<comment_char>
Denotes the character chosen to indicate a comment within a charmap file.
It defaults to the hexadecimal value 0x7b, which represents the # character
in the coded character set IBM-1047.

For portability among the EBCDIC based systems, the comment character
has been redefined to the % or <percent-sign> character in all
IBM-supplied charmap files, with the following statement:

<comment_char> %

<shift_out>
Specifies the value of the shift-out control character that indicates the start
of a string of double-byte characters. If specified, it must be the value of
the EBCDIC shift-out (SO) character (hexadecimal value 0x0e). It is ignored
if the <mb_cur_max> value is 1.

<shift_in>
Specifies the value of the shift-in control character that indicates the end of
a string of double-byte characters. If specified, it must be the value of the
EBCDIC shift-in (SI) character (hexadecimal value 0x0f). It is ignored if the
<mb_cur_max> value is 1.

The CHARMAP Section

The CHARMAP section defines the values for the symbolic names representing
characters in the coded character set. Each charmap file must define at least the
portable character set. The character symbolic names or alternate symbolic names
(or both) must be used to define the portable character set. These are shown in
Table 73 on page 707.

Additional characters can be defined by the user with symbolic character names.

The CHARMAP section starts with the line containing the keyword CHARMAP, and ends
with the line containing the keywords END CHARMAP. CHARMAP and END CHARMAP must
both start in column one.

The character set mapping definitions are all the lines between the first and last
lines of the CHARMAP section.

The formats of the character set mappings for this section are as follows:
"%s %s %s\n", <symbolic-name>, <encoding>, <comments>
"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>, <encoding>, <comments>

The first format defines a single symbolic name and a corresponding encoding. A
symbolic name is one or more characters with visible glyphs, enclosed between
angle brackets.

For reasons of portability, a symbolic name should include only the characters from
the invariant part of the portable character set. If you use variant characters or

712 OS/390 V2R8.0 C/C++ Programming Guide

decimal or hexadecimal notation in a symbolic name, the symbolic name will not
be portable. A character following an escape character is interpreted as itself; for
example, the sequence <\\\>> represents the symbolic name \> enclosed within
angle brackets, where the backslash \ is the escape character. If / is the escape
character, the sequence <///>> represents the symbolic name />. In the supplied
charmap files, the escape character has been redefined to the forward slash /.

The second format defines a group of symbolic names associated with a range of
values. The two symbolic names are comprised of two parts, a prefix and suffix.
The prefix consists of zero or more non-numeric invariant visible glyph characters
and is the same for both symbolic names. The suffix consists of a positive decimal
integer. The suffix of the first symbolic name must be less than or equal to the
suffix of the second symbolic name. As an example, <j0101>...<j0104> is
interpreted as the symbolic names <j0101>,<j0102>,<j0103>,<j0104>. The common
prefix is 'j' and the suffixes are '0101' and '0104'.

The encoding part can be written in one of two forms:
<escape-char><number> (single byte value)
<escape-char><number><escape-char><number> (double byte value)

The number can be written using octal, decimal, or hexadecimal notation. Decimal
numbers are written as a 'd' followed by 2 or 3 decimal digits. Hexadecimal
numbers are written as an 'x' followed by 2 hexadecimal digits. An octal number
is written with 2 or 3 octal digits. As an example, the single byte value x1F could
be written as '\37', '\x1F', or '\d31'.

The double byte value of 0x1A1F could be written as '\32\37', '\x1A\x1F', or
'\d26\d31'.

In lines defining ranges of symbolic names, the encoded value is the value for the
first symbolic name in the range (the symbolic name preceding the ellipsis).
Subsequent names defined by the range have encoding values in increasing order.

When constants are concatenated for multibyte character values, they must be of
the same type, and are interpreted in byte order from first to last with the least
significant byte of the multibyte character specified by the last constant. Each value
is then prepended by the byte value of <shift_out> and appended with the byte
value of <shift_in>. Such a string represents one EBCDIC multibyte character. For
example:

is interpreted as:
<j0101> /d129/d254
<j0102> /d129/d255
<j0103> /d130/d0
<j0104> /d130/d1

<escape_char> /
<comment_char> %
<mb_cur_max> 4
<mb_cur_min> 1
<shift-out> /x0e
<shift-in> /x0f
CHARMAP
% many definition lines
<j0101>...<j0104> /d129/d254
%many definition lines
END CHARMAP

Chapter 50. Building a Locale 713

It produces four 4-byte long multibyte EBCDIC characters:
<j0101> x0Ex81xFEx0F
<j0102> x0Ex81xFFx0F
<j0103> x0Ex82x00x0F
<j0104> x0Ex82x01x0F

The CHARSETID Section

The character set identifier section of the charmap file maps the symbolic names
defined in the CHARMAP section to a character set identifier.

Note: The two functions csid() and wcsid() query the locales and return the
character set identifier for a given character. This information is not
currently used by any other library function.

The CHARSETID section starts with a line containing the keyword CHARSETID, and
ends with the line containing the keywords END CHARSETID. Both CHARSETID and END
CHARSETID must begin in column 1. The lines between the first and last lines of the
CHARSETID section define the character set identifier for the defined coded character
set.

The character set identifier mappings are defined as follows:
"%s %c", <symbolic-name>, <value>
"%c %c", <value>, <value>
"%s...%s %c", <symbolic-name>, <symbolic-name>, <value>
"%c...%c %c", <value>, <value>, <value>
"%s...%c %c", <symbolic-name>, <value>, <value>
"%c...%s %c", <value>, <symbolic-name>, <value>

The individual characters are specified by the symbolic name or the value. The
group of characters are specified by two symbolic names or by two numeric values
(or combination) separated by an ellipsis (...). The interpretation of ranges of values
is the same as specified in the CHARMAP section. The character set identifier is
specified by a numeric value.

For example:
<comment_char> %
<escape_char> /
<code_set_name> "IBM-930"
<mb_cur_max> 4
<mb_cur_min> 1
<shift_out> /x0e
<shift_in> /x0f

%
% CHARMAP
%

CHARMAP
...
<j0110> /x42/x5a
<j0111>...<j0112> /x43/xbe
<judc2001>...<judc2094> /x72/x8d
...
END CHARMAP

%
% CHARSETID
%

714 OS/390 V2R8.0 C/C++ Programming Guide

CHARSETID
...
<j0110> 1
<j0111>...<j0112> 1
<judc2001>...<judc2094> 3
...
END CHARSETID

Locale Source Files

Locales are defined through the specification of a locale definition file. The locale
definition contains one or more distinct locale category source definitions and not
more than one definition of any category. Each category controls specific aspects of
the cultural environment. A category source definition is either the explicit
definition of a category or the copy directive, which indicates that the category
definition should be copied from another locale definition file.

The definition file is composed of an optional definition section for the escape and
comment characters to be used, followed by the category source definitions.
Comment lines and blank lines can appear anywhere in the locale definition file. If
the escape and comment characters are not defined, default code points are used
(xE0 for the escape character and x7B for the comment character, respectively). The
definition section consists of the following optional lines:
escape_char <character>
comment_char <character>

where <character> in both cases is a single-byte character to be used, for example:
escape_char /

defines the escape character in this file to be '/' (the <slash> character).

Locale definition files passed to the localedef utility are assumed to be in coded
character set IBM-1047.

To ensure portability among EBCDIC systems, you should redefine these characters
to characters from the invariant part of the portable character set. The suggested
redefinition is:

escape_char /
comment_char %

This suggested redefinition is used in all locale definition files supplied by IBM.
For reasons of portability, you should use the suggested redefinition in all your
customized locale definition files. See “Chapter 51. Customizing a Locale” on
page 745 for information about customizing locales. These two redefinitions should
be placed in the first lines of the locale definition source file, before any of the
redefined characters are used.

Each category source definition consists of a category header, a category body, and
a category trailer, in that order.

category header
consists of the keyword naming the category. Each category name starts
with the characters LC_. The following category names are supported:
LC_CTYPE, LC_COLLATE, LC_NUMERIC, LC_MONETARY, LC_TIME, LC_MESSAGES,
LC_TOD, and LC_SYNTAX.

Chapter 50. Building a Locale 715

The LC_TOD and LC_SYNTAX categories, if present, must be the last two
categories in the locale definition file.

category body
consists of one or more lines describing the components of the category.
Each component line has the following format:

<identifier> <operand1>
<identifier> <operand1>;<operand2>;...;<operandN>

<identifier> is a keyword that identifies a locale element, or a symbolic
name that identifies a collating element. <operand> is a character, collating
element, or string literal. Escape sequences can be specified in a string
literal using the <escape_character>. If multiple operands are specified,
they must be separated by semicolons. White space can be before and after
the semicolons.

category trailer
consists of the keyword END followed by one or more <blank>s and the
category name of the corresponding category header.

Here is an example of locale source containing the header, body, and trailer:

You do not have to define each category. Where category definitions are absent
from the locale source, default definitions are used.

In each category, the keyword copy followed by a string specifies the name of an
existing locale to be used as the source for the definition of this category.

If the locale is not found, an error is reported and no locale output is created.

For MVS, the name must be the member name of a partitioned data set allocated
to the EDCLOCL DD statement.

You can continue a line in a locale definition file by placing an escape character as
the last character on the line. This continuation character is discarded from the
input. Even though there is no limitation on the length of each line, for portability
reasons it is suggested that each line be no longer than 2048 characters (bytes).
There is no limit on the accumulated length of a continued line. You cannot
continue comment lines on a subsequent line by using an escaped <newline>.

Individual characters, characters in strings, and collating elements are represented
using symbolic names, as defined below. Characters can also be represented as the
characters themselves, or as octal, hexadecimal, or decimal constants. If you use
non-symbolic notation, the resultant locale definition file may not be portable
among systems and environments. The left angle bracket (<) is a reserved symbol,
denoting the start of a symbolic name; if you use it to represent itself, you must
precede it with the escape character.

escape_char /
comment_char %
%
% Here is a simple locale definition file consisting of one
% category source definition, LC_CTYPE.
%
LC_CTYPE
upper <A>;...;<Z>
END LC_CTYPE

716 OS/390 V2R8.0 C/C++ Programming Guide

The following rules apply to the character representation:
1. A character can be represented by a symbolic name, enclosed within angle

brackets. The symbolic name, including the angle brackets, must exactly match
a symbolic name defined in the charmap file. The symbolic name is replaced by
the character value determined from the value associated with the symbolic
name in the charmap file.
The use of a symbolic name not found in the charmap file constitutes an error,
unless the name is in the category LC_CTYPE or LC_COLLATE, in which case it
constitutes a warning. Use of the escape character or right angle bracket within
a symbolic name is invalid unless the character is preceded by the escape
character. For example:

<c>;<c-cedilla>
specifies two characters whose symbolic names are "c" and
"c-cedilla"

"<M><a><y>"
specifies a 3-character string composed of letters represented by
symbolic names "M", "a", and "y"

"<a><\>>"
specifies a 2-character string composed of letters represented by
symbolic names "a" and ">" (assuming the escape character is \)

If the character represented by the symbolic name is a multibyte character
defined by 2 byte values in the charmap file, and the shift-out and shift-in
characters are defined, the value is enclosed within shift-out and shift-in
characters before the localedef utility processes it any further.

2. A character can represent itself. Within a string, the double quotation mark, the
escape character, and the left angle bracket must be escaped (preceded by the
escape character) to be interpreted as the characters themselves. For example:

c 'c' character represented by itself

"may" represents a 3-character string, each character within the string
represented by itself

"%%%"%>"
represents the three character long string "%">", where the escape
character is defined as %

3. A character can be represented as an octal constant. An octal constant is
specified as the escape character followed by two or more octal digits. Each
constant represents a byte value.
For example:
\131 "\212\129\168" \16\66\193\17

4. A character can be represented as a hexadecimal constant. A hexadecimal
constant is specified as the escape character, followed by an x, followed by two
or more hexadecimal digits. Each constant represents a byte value.
For example: \x83 "\xD4\x81\xA8"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more
decimal digits. Each constant represents a byte value.
For example: \d131 "\d212\d129\d168" \d14\d66\d193\d15

Chapter 50. Building a Locale 717

For multibyte characters, the entire encoding sequence, including the shift-out and
shift-in characters, must be present. Otherwise, the sequence of bytes not enclosed
between the shift-out and shift-in characters are interpreted as a sequence of single
byte characters.

Multibyte characters can be represented by concatenating constants specified in
byte order with the last constant specifying the least significant byte of the
character. If the sequence of octal, hexadecimal, or decimal constants is to represent
a multibyte character, it must be enclosed in shift-out and shift-in constants.

For example: \x0e\x42\xC1\x0f

LC_CTYPE Category

This category defines character classification, case conversion, and other character
attributes. In this category, you can represent a series of characters by using three
adjacent periods as an ellipsis symbol (...). An ellipsis is interpreted as including
all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value following the
ellipsis.

An ellipsis is valid within a single encoded character set.

For example, \x30;...;\x39; includes in the character class all characters with
encoded values from X'30' to X'39'.

The keywords recognized in the LC_CTYPE category are listed below. In the
descriptions, the term "automatically included" means that it is not an error either
to include or omit any of the referenced characters; they are assumed by default
even if the entire keyword is missing and accepted if present. If a keyword is
specified without any arguments, the default characters are assumed.

When a character is automatically included, it has an encoded value dependent on
the charmap file in effect. If no charmap file is specified, the encoding of the
encoded character set IBM-1047 is assumed.

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keywords
are present in this category. If the locale is not found, an error is reported
and no locale output is created. The copy keyword cannot specify a locale
that also specifies the copy keyword for the same category.

charclass
Defines one or more locale-specific character class names as strings
separated by semicolons. Each named character class can then be defined
subsequently in the LC_CTYPE definition. A character class name consists of
at least one and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric
characters from the portable filename character set. The first character of a
character class name cannot be a digit. The name cannot match any of the
LC_CTYPE keywords defined in this document.

upper Defines characters to be classified as uppercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The uppercase letters A through Z are automatically included in this class.

The isupper() and iswupper() functions test for any character and wide
character, respectively, included in this class.

718 OS/390 V2R8.0 C/C++ Programming Guide

lower Defines characters to be classified as lowercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The lowercase letters a through z are automatically included in this class.

The islower() and iswlower() functions test for any character and wide
character, respectively, included in this class.

alpha Defines characters to be classified as letters. No character defined for the
keywords cntrl, digit, punct, or space can be specified. Characters
classified as either upper or lower are automatically included in this class.

The isalpha() and iswalpha() functions test for any character or wide
character, respectively, included in this class.

digit Defines characters to be classified as numeric digits. Only the digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. can be specified. If they are, they must be in
contiguous ascending sequence by numerical value. The digits 0 through 9
are automatically included in this class.

The isdigit() and iswdigit() functions test for any character or wide
character, respectively, included in this class.

space Defines characters to be classified as whitespace characters. No character
defined for the keywords upper, lower, alpha, digit, or xdigit can be
specified for space. The characters <space>, <form-feed>, <newline>,
<carriage-return>, <horizontal-tab>, and <vertical-tab>, and any
characters defined in the class blank are automatically included in this
class.

The functions isspace() and iswspace() test for any character or wide
character, respectively, included in this class.

cntrl Defines characters to be classified as control characters. No character
defined for the keywords upper, lower, alpha, digit, punct, graph, print,
or xdigit can be specified for cntrl.

The functions iscntrl() and iswcntrl() test for any character or wide
character, respectively, included in this class.

punct Defines characters to be classified as punctuation characters. No character
defined for the keywords upper, lower, alpha, digit, cntrl, or xdigit, or
as the <space> character, can be specified.

The functions ispunct() and iswpunct() test for any character or wide
character, respectively, included in this class.

graph Defines characters to be classified as printing characters, not including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included. No character
specified in the keyword cntrl can be specified for graph.

The functions isgraph() and iswgraph() test for any character or wide
character, respectively, included in this class.

print Defines characters to be classified as printing characters, including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, and the <space> character are automatically
included. No character specified in the keyword cntrl can be specified for
print.

The functions isprint() and iswprint() test for any character or wide
character, respectively, included in this class.

xdigit Defines characters to be classified as hexadecimal digits. Only the

Chapter 50. Building a Locale 719

characters defined for the class digit can be specified, in contiguous
ascending sequence by numerical value, followed by one or more sets of
six characters representing the hexadecimal digits 10 through 15, with each
set in ascending order (for example, A, B, C, D, E, F, a, b, c, d, e, f).
The digits 0 through 9, the uppercase letters A through F, and the
lowercase letters a through f are automatically included in this class.

The functions isxdigit() and iswxdigit() test for any character or wide
character, respectively, included in this class.

blank Defines characters to be classified as blank characters. The characters
<space> and <tab> are automatically included in this class.

The functions isblank() and iswblank() test for any character or wide
character, respectively, included in this class.

toupper
Defines the mapping of lowercase letters to uppercase letters. The operand
consists of character pairs, separated by semicolons. The characters in each
character pair are separated by a comma; the pair is enclosed in
parentheses. The first character in each pair is the lowercase letter, and the
second is the corresponding uppercase letter. Only characters specified for
the keywords lower and upper can be specified for toupper. The lowercase
letters a through z, their corresponding uppercase letters A through Z, are
automatically in this mapping, but only when the toupper keyword is
omitted from the locale definition.

It affects the behavior of the toupper() and towupper() functions for
mapping characters and wide characters, respectively.

tolower
Defines the mapping of uppercase letters to lowercase letters. The operand
consists of character pairs, separated by semicolons. The characters in each
character pair are separated by a comma; the pair is enclosed by
parentheses. The first character in each pair is the uppercase letter, and the
second is its corresponding lowercase letter. Only characters specified for
the keywords lower and upper can be specified. If the tolower keyword is
omitted from the locale definition, the mapping is the reverse mapping of
the one specified for the toupper.

The tolower keyword affects the behavior of the tolower() and towlower()
functions for mapping characters and wide characters, respectively.

You may define additional character classes using your own keywords. A
maximum of 31 classes are supported in total: the 12 standard classes, and up to 29
user-defined classes.

The defined classes affect the behavior of wctype() and iswctype() functions.

Here is an example of the definition of the LC_CTYPE category:

720 OS/390 V2R8.0 C/C++ Programming Guide

LC_COLLATE Category

A collation sequence definition defines the relative order between collating
elements (characters and multicharacter collating elements) in the locale. This order
is expressed in terms of collation values. It assigns each element one or more
collation values (also known as collation weights). The collation sequence
definition is used by regular expressions, pattern matching, and sorting and
collating functions. The following capabilities are provided:
1. Multicharacter collating elements. Specification of multicharacter collating

elements (sequences of two or more characters to be collated as an entity).
2. User-defined ordering of collating elements. Each collating element is

assigned a collation value defining its order in the character (or basic) collation
sequence. This ordering is used by regular expressions and pattern matching,
and unless collation weights are explicitly specified, also as the collation weight
to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned
1 to 6 collating weights for use in sorting. The first weight is referred to as the
primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating
elements.

5. Many-to-many substitution. A string of one or more characters are mapped to
another string (or an empty string). The character or characters are ignored for
collation purposes.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%%
% upper letters are A-Z by default plus the three defined below
upper <A-acute.>;<A-grave.>;<C-acute.>

% lower case letters are a-z by default plus the three defined below
lower <a-acute>;<a_grave><c-acute>

% space characters are default 6 characters plus the one defined below
space <hyphen-minus>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;<NUL>;/
<SO>;<SI>

% default graph, print,punct, digit, xdigit, blank classes

% toupper mapping defined only for the following three pairs
toupper (<a-acute),<A-acute>);/

(<a-grave),<A-grave>);/
(<c-acute),<C-acute>);

% default upper to lower case mapping

% user defined class
myclass <e-ogonek>;<E-ogonek>

END LC_CTYPE

Chapter 50. Building a Locale 721

Note: This is an IBM extension; therefore, locales that use it may not be
portable to localedef tools developed by other vendors.

6. Equivalence class definition. Two or more collating elements have the same
collation value (primary weight).

7. Ordering by weights. When two strings are compared to determine their
relative order, the two strings are first broken up into a series of collating
elements. Each successive pair of elements is compared according to the
relative primary weights for the elements. If they are equal, and more than one
weight is assigned, then the pairs of collating elements are compared again
according to the relative subsequent weights, until either two collating elements
are not equal or the weights are exhausted.

Collating Rules

Collation rules consist of an ordered list of collating order statements, ordered from
lowest to highest. The <NULL> character is considered lower than any other
character. The ellipsis symbol ("...") is a special collation order statement. It
specifies that a sequence of characters collate according to their encoded character
values. It causes all characters with values higher than the value of the <collating
identifier> in the preceding line, and lower than the value for the <collating
identifier> on the following line, to be placed in the character collation order
between the previous and the following collation order statements in ascending
order according to their encoded character values.

The use of the ellipsis symbol ties the definition to a specific coded character set
and may preclude the definition from being portable among implementations.

The ellipsis symbol can precede or succeed the ellipsis symbol and may also have
weights on the same line.

A collating order statement describes how a collating identifier is weighted.

Each <collating-identifier> consists of a character, <collating-element>,
<collating-symbol>, or the special symbol UNDEFINED. The order in which collating
elements are specified determines the character order sequence, such that each
collating element is considered lower than the elements following it. The <NULL>
character is considered lower than any other character. Weights are expressed as
characters, <collating-symbol>s, <collating-element>s, or the special symbol
IGNORE. A single character, a <collating-symbol>, or a <collating-element>
represents the relative position in the character collating sequence of the character
or symbol, rather than the character or characters themselves. Thus rather than
assigning absolute values to weights, a particular weight is expressed using the
relative "order value" assigned to a collating element based on its order in the
character collation sequence.

A <collating-element> specifies multicharacter collating elements, and indicates
that the character sequence specified by the <collating-element> is to be collated
as a unit and in the relative order specified by its place.

A <collating-symbol> can define a position in the relative order for use in
weights.

The <collating-symbol> UNDEFINED is interpreted as including all characters not
specified explicitly. Such characters are inserted in the character collation order at
the point indicated by the symbol, and in ascending order according to their
encoded character values. If no UNDEFINED symbol is specified, and the current

722 OS/390 V2R8.0 C/C++ Programming Guide

coded character set contains characters not specified in this clause, the localedef
utility issues a warning and places such characters at the end of the character
collation order.

The syntax for a collation order statement is:
<collating-identifier> <weight1>;<weight2>;...;<weightn>

Collation of two collating identifiers is done by comparing their relative primary
weights. This process is repeated for successive weight levels until the two
identifiers are different, or the weight levels are exhausted. The operands for each
collating identifier define the primary, secondary, and subsequent relative weights
for the collating identifier. Two or more collating elements can be assigned the
same weight. If two collating identifiers have the same primary weight, they
belong to the same equivalence class.

The special symbol IGNORE as a weight indicates that when strings are compared
using the weights at the level where IGNORE is specified, the collating element
should be ignored, as if the string did not contain the collating element. In regular
expressions and pattern matching, all characters that are IGNOREd in their primary
weight form an equivalence class.

All characters specified by an ellipsis are assigned unique weights, equal to the
relative order of the characters. Characters specified by an explicit or implicit
UNDEFINED special symbol are assigned the same primary weight (they belong to
the same equivalence class).

One-to-many mapping is indicated by specifying two or more concatenated
characters or symbolic names. For example, if the character "<ezset>" is given the
string "<s><s>" as a weight, comparisons are performed as if all occurrences of the
character <ezset> are replaced by <s><s> (assuming <s> has the collating weight
<s>). If it is desirable to define <ezset> and <s><s> as an equivalence class, then a
collating element must be defined for the string "ss".

If no weight is specified, the collating identifier is interpreted as itself.

For example, the order statement
<a> <a>

is equivalent to
<a>

Collating Keywords

The following keywords are recognized in a collation sequence definition.

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
shall be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

collating-element
Defines a collating-element symbol representing a multicharacter collating
element. This keyword is optional.

Chapter 50. Building a Locale 723

In addition to the collating elements in the character set, the
collating-element keyword can be used to define multicharacter collating
elements. The syntax is:
"collating-element %s from \%s\"", <collating-element>, <string>

The <collating-element> should be a symbolic name enclosed between
angle brackets (< and >), and should not duplicate any symbolic name in
the current charmap file (if any), or any other symbolic name defined in
this collation definition. The string operand is a string of two or more
characters that collate as an entity. A <collating-element> defined with
this keyword is only recognized within the LC_COLLATE category.

For example:
collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

collating-symbol
Defines a collating symbol for use in collation order statements.

The collating-symbol keyword defines a symbolic name that can be
associated with a relative position in the character order sequence. While
such a symbolic name does not represent any collating element, it can be
used as a weight. This keyword is optional.

This construct can define symbols for use in collation sequence statements,
between the order_start and order_end keywords.

The syntax is:
"collating-symbol \%s\"", <collating-symbol>

The <collating-symbol> must be a symbolic name, enclosed between
angle brackets (< and >), and should not duplicate any symbolic name in
the current charmap file (if any), or any other symbolic name defined in
this collation definition. A <collating-symbol> defined with this keyword
is only recognized within the LC_COLLATE category.

For example:
collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

substitute
The substitute keyword defines a substring substitution in a string to be
collated. This keyword is optional. The following operands are supported
with the substitute keyword:
"substitute %s with \%s\"", <regular-expr>, <replacement>

The first operand is treated as a basic regular expression. The replacement
operand consists of zero or more characters and regular expression
back-references (for example, \1 through \9). The back-references consist of
the backslash followed by a digit from 1 to 9. If the backslash is followed
by two or three digits, it is interpreted as an octal constant.

When strings are collated according to a collation definition containing
substitute statements, the collation behaves as if occurrences of substrings
matching the basic regular expression are replaced by the replacement
string, before the strings are compared based on the specified collation
sequence. Ranges in the regular expression are interpreted according to the

724 OS/390 V2R8.0 C/C++ Programming Guide

current character collation sequence and character classes according to the
character classification specified by the LC_CTYPE environment variable at
collation time. If more than one substitute statement is present in the
collation definition, the collation process behaves as if the substitute
statements are applied to the strings in the order they occur in the source
definition. The substitution for the substitute statements are processed
before any substitutions for one-to-many mappings. The support of the
″substitute″ keyword is an IBM OS/390 C/C++ extension to the POSIX
standard.

Note: This is an IBM extension; therefore, locales that use it may not be
portable to localedef tools developed by other vendors.

order_start
Define collating rules. This statement is followed by one or more collation
order statements, assigning character collation values and collation weights
to collating elements.

The order_start keyword must precede collation order entries. It defines
the number of weights for this collation sequence definition and other
collation rules.

The syntax of the order_start keyword is:
order_start <sort-rule1>;<sort-rule1>;...;<sort-rulen>

The operands of the order_start keyword are optional. If present, the
operands define rules to be applied when strings are compared. The
number of operands define how many weights each element is assigned; if
no operands are present, one forward operand is assumed. If any is
present, the first operand defines rules to be applied when comparing
strings using the first (primary) weight; the second when comparing
strings using the second weight, and so on. Operands are separated by
semicolons (;). Each operand consists of one or more collation directives
separated by commas (,). If the number of operands exceeds the limit of 6,
the localedef utility issues a warning message.

The following directives are supported:

forward
specifies that comparison operations for the weight level proceed
from the start of the string towards its end.

backward
specifies that comparison operations for the weight level proceed
from the end of the string toward its beginning.

no-substitute
no substitution is performed, such that the comparison is based on
collation values for collating elements before any substitution
operations are performed.

Notes:

1. This is an IBM extension; therefore, locales that use it may not
be portable to localedef tools developed by other vendors.

2. When the no-substitute keyword is specified, one-to-many
mappings are ignored.

position
specifies that comparison operations for the weight level must

Chapter 50. Building a Locale 725

consider the relative position of non-IGNOREd elements in the
strings. The string containing a non-IGNOREd element after the
fewest IGNOREd collating elements from the start of the comparison
collates first. If both strings contain a non-IGNOREd character in the
same relative position, the collating values assigned to the elements
determine the order. If the strings are equal, subsequent
non-IGNOREd characters are considered in the same manner.

order_end
The collating order entries are terminated with an order_end keyword.

Here is an example of an LC_COLLATE category:

The example is interpreted as follows:
1. collating elements
v character <c> followed by <h> collate as one entity named <ch>

v character <C> followed by <h> collate as one entity named <Ch>

v character <s> followed by <z> collate as one entity named <eszet>

2. collating symbols <LOW>, <UPPER-CASE>, <LOWER-CASE> and <NONE> are defined
to be used in relative order definition

3. up to 3 string comparisons are defined:

LC_COLLATE
% ARTIFICIAL COLLATE CATEGORY

% collating elements
«1¬ collating-element <ch> from "<c><h>"

collating-element <Ch> from "<C><h>"
collating-element <eszet> from "<s><z>"

%collating symbols for relative order definition

collating-symbol <LOW>
«2¬ collating-symbol <UPPER-CASE>

collating-symbol <LOWER-CASE>
collating-symbol <NONE>

«3¬ order_start forward;backward;forward
<NONE>

«4¬ <LOW>
<UPPER-CASE>
<LOWER-CASE>

«5¬ UNDEFINED IGNORE;IGNORE;IGNORE

<space>
«6¬

<quotation-mark>
«7¬ <a> <a>;<NONE>;<LOWER-CASE>
«10¬ <a-acute> <a>;<a-acute>;<LOWER-CASE>
«11¬ <a-grave> <a>;<a-grave>;<LOWER-CASE>
«8¬ <A> <a>;<NONE>;<UPPER-CASE>
«11¬ <A-acute> <a>;<a-acute>;<UPPER-CASE>
«11¬ <A-grave> <a>;<a-grave>;<UPPER-CASE>
«11¬ <ch> <ch>;<NONE>;<LOWER-CASE>
«11¬ <Ch> <ch>;<NONE>;<UPPER-CASE>
«9¬ <s> <s>;<s>;<LOWER-CASE>
«12¬ <eszet> "<s><s>";"<eszet><s>";<LOWER-CASE>
«9¬ <z> <z>;<NONE>;<LOWER-CASE>

order_end

726 OS/390 V2R8.0 C/C++ Programming Guide

v first pass starts from the beginning of the strings
v second pass starts from the end of the strings, and
v third pass starts from the beginning of the strings

4. the collating weights are defined such that
v <LOW> collates before <UPPER-CASE>,
v <UPPER-CASE> collates before <LOWER-CASE>,
v <LOWER-CASE> collates before <NONE>;

5. all characters for which collation is not specified here are ordered after <NONE>,
and before <space> in ascending order according to their encoded values

6. all characters with an encoded value larger than the encoded value of <space>
and lower than the encoded value of <quotation-mark> in the current encoded
character set, collate in ascending order according to their values;

7. <a> has a:
v primary weight of <a>,
v secondary weight <NONE>,
v tertiary weight of <LOWER-CASE>,

8. <A> has a:
v primary weight of <a>,
v secondary weight of <NONE>,
v tertiary weight of <UPPER-CASE>,

9. the weights of <s> and <z> are determined in a similar fashion to <a> and <A>.
10. <a-acute> has a:

v primary weight of <a>,
v secondary weight of <a-acute> itself,
v tertiary weight of <LOWER-CASE>,

11. the weights of <a-grave>, <A-acute>, <A-grave>, <ch> and <Ch> are determined
in a similar fashion to <a-acute>.

12. <eszet> has a:
v primary weight determined by replacing each occurrence of <eszet> with

the sequence of two <s>’s and using the weight of <s>,
v secondary weight determined by replacing each occurrence of <eszet> with

the sequence of <eszet> and <s> and using their weights,
v tertiary weight is the relative position of <LOWER-CASE>.

Comparison of Strings

Compare the strings s1="aAch" and s2="AaCh" using the above LC_COLLATE
definition:
1. s1=> "aA<ch>", and s2=> "Aa<Ch>"

2. first pass:
a. substitute the elements of the strings with their primary weights: s1=>

"<a><a><ch>", s2=> "<a><a><ch>"

b. compare the two strings starting with the first element — they are equal.
3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>
"<NONE><NONE><NONE>", s2=>"<NONE><NONE><NONE>"

b. compare the two strings from the last element to the first — they are equal.
4. third pass:

Chapter 50. Building a Locale 727

a. substitute the elements of the strings with their third level weights:
s1=> "<LOWER-CASE><UPPER-CASE><LOWER-CASE>",
s2=> "<UPPER-CASE><LOWER-CASE><UPPER-CASE>",

b. compare the two strings starting from the beginning of the strings: s2
compares lower than s1, because <UPPER-CASE> is before <LOWER-CASE>.

Compare the strings s1="áß" and s2=>"àss":
1. s1=> "á<eszet>" and s2= "àss";
2. first pass:

a. substitute the elements of the strings with their primary weights: s1=>
"<a><s><s>", s2=> "<a><s><s>"

b. compare the two strings starting with the first element — they are equal.
3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>
"<a-acute><eszet><s>", s2=>"<a-grave><s><s>"

b. compare the two strings from the last element to the first — <s> is before
<ezset>.

LC_MONETARY Category

This category defines the rules and symbols used to format monetary quantities.
The operands are strings or integers. The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

int_curr_symbol
Specifies the international currency symbol. The operand is a four-character
string, with the first three characters containing the alphabetic international
currency symbol in accordance with those specified in ISO4217 Codes for the
Representation of Currency and Funds The fourth character is the character
used to separate the international currency symbol from the monetary
quantity.

The following value may also be specified, though it is not If not defined,
it defaults to the empty string (″″).

currency_symbol
Specifies the string used as the local currency symbol. If not defined, it
defaults to the empty string (″″).

mon_decimal_point
The string used as a decimal delimiter to format monetary quantities. If
not defined it defaults to the empty string (″″).

mon_thousands_sep
Specifies the string used as a separator for groups of digits to the left of
the decimal delimiter in formatted monetary quantities. If not defined, it
defaults to the empty string (″″).

mon_grouping
Defines the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by semicolons. Also, for
compatibility, it may be a string of integers separated by semicolons. Each

728 OS/390 V2R8.0 C/C++ Programming Guide

integer specifies the number of digits in each group, with the initial integer
defining the size of the group immediately preceding the decimal delimiter,
and the following integers defining the preceding groups. If the last integer
is not −1, then the size of the previous group (if any) is used repeatedly for
the rest of the digits. If the last integer is −1, then no further grouping is
performed. If not defined, mon_grouping defaults to −1 which indicates that
no grouping. An empty string is interpreted as −1.

positive_sign
A string used to indicate a formatted monetary quantity with a
non-negative value. If not defined, it defaults to the empty string (″″).

negative_sign
Specifies a string used to indicate a formatted monetary quantity with a
negative value. If not defined, it defaults to the empty string (″″).

int_frac_digits
Specifies an integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be displayed in a formatted monetary
quantity using int_curr_symbol. If not defined, it defaults to −1.

frac_digits
Specifies an integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be displayed in a formatted monetary
quantity using currency_symbol. If not defined, it defaults to −1.

p_cs_precedes
Specifies an integer set to 1 if the currency_symbol or int_curr_symbol
precedes the value for a non-negative formatted monetary quantity, and set
to 0 if the symbol succeeds the value. If not defined, it defaults to −1.

p_sep_by_space
Specifies an integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a non-negative formatted monetary
quantity, set to 1 if a space separates the symbol from the value, and set to
2 if a space separates the symbol and the string sign, if adjacent. If not
defined, it defaults to −1.

n_cs_precedes
An integer set to 1 if the currency_symbol or int_curr_symbol precedes the
value for a negative formatted monetary quantity, and set to 0 if the
symbol succeeds the value. If not defined, it defaults to −1.

n_sep_by_space
An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a negative formatted monetary
quantity, set to 1 if a space separates the symbol from the value, and set to
2 if a space separates the symbol and the string sign, if adjacent. If not
defined, it defaults to −1.

p_sign_posn
An integer set to a value indicating the positioning of the positive_sign for
a non-negative formatted monetary quantity. The following integer values
are recognized:

0 Parentheses surround the quantity and the currency_symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or
int_curr_symbol.

Chapter 50. Building a Locale 729

2 The sign string succeeds the quantity and the currency_symbol or
int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or
int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or
int_curr_symbol.

part of the POSIX standard.

5 Use debit-sign or credit-sign for p_sign_posn or n_sign_posn.

If not defined, it defaults to −1.

n_sign_posn
An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity. The recognized values are the
same as for p_sign_posn. If not defined, it defaults to −1.

left_parenthesis
The symbol of the locale’s equivalent of (to form a negative-valued
formatted monetary quantity together with right_parenthesis. If not
defined, it defaults to the empty string (″″).

Note: This is an IBM-specific extension.

right_parenthesis
The symbol of the locale’s equivalent of) to form a negative-valued
formatted monetary quantity together with left_parenthesis. If not
defined, it defaults to the empty string (″″);

Note: This is an IBM-specific extension.

debit_sign
The symbol of locale’s equivalent of DB to indicate a non-negative-valued
formatted monetary quantity. If not defined, it defaults to the empty string
(″″);

Note: This is an IBM-specific extension.

credit_sign
The symbol of locale’s equivalent of CR to indicate a negative-valued
formatted monetary quantity. If not defined, it defaults to the empty string
(″″);

Note: This is an IBM-specific extension.

Here is an example of the definition of the LC_MONETARY category:

730 OS/390 V2R8.0 C/C++ Programming Guide

LC_NUMERIC Category

This category defines the rules and symbols used to format non-monetary numeric
information. The operands are strings. The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category. If the locale is not found, an error is
reported and no locale output is created. The copy keyword cannot specify
a locale that also specifies the copy keyword for the same category.

decimal_point
Specifies a string used as the decimal delimiter in numeric, non-monetary
formatted quantities. This keyword cannot be omitted and cannot be set to
the empty string.

thousands_sep
Specifies a string containing the symbol that is used as a separator for
groups of digits to the left of the decimal delimiter in numeric,
non-monetary, formatted quantities.

grouping
Defines the size of each group of digits in formatted non-monetary
quantities. The operand is a sequence of integers separated by semicolons.
Also, for compatibility, it may be a string of integers separated by
semicolons. Each integer specifies the number of digits in each group, with
the initial integer defining the size of the group immediately preceding the
decimal delimiter, and the following integers defining the preceding
groups. If the last integer is not −1, then the size of the previous group (if
any) is used repeatedly for the rest of the digits. If the last integer is −1,
then no further grouping is performed. An empty string is interpreted as
−1.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%%

int_curr_symbol "<J><P><Y><space>"
currency_symbol "<yen>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign ""
negative_sign "<hyphen-minus>"
int_frac_digits 0
frac_digits 0
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 1
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"

END LC_MONETARY

Chapter 50. Building a Locale 731

Here is an example of how to specify the LC_NUMERIC category:

LC_TIME Category

The LC_TIME category defines the interpretation of the field descriptors used for
parsing, then formatting, the date and time. The descriptors identify the
replacement portion of the string, while the rest of a string is constant. The
definition of descriptors is included in the OS/390 C/C++ Run-Time Library
Reference. All these descriptors can be used in the format specifier in the time
formatting functions strftime().

The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

abday Defines the abbreviated weekday names, corresponding to the %a field
descriptor. The operand consists of seven semicolon-separated strings. The
first string is the abbreviated name corresponding to Sunday, the second
string corresponds to Monday, and so forth.

day Defines the full weekday names, corresponding to the %A field descriptor.
The operand consists of seven semicolon-separated strings. The first string
is the full name corresponding to Sunday, the second string to Monday,
and so forth.

abmon Defines the abbreviated month names, corresponding to the %b field
descriptor. The operand consists of twelve strings separated by semicolons.
The first string is an abbreviated name that corresponds to January, the
second corresponds to February, and so forth.

mon Defines the full month names, corresponding to the %B field descriptor. The
operand consists of twelve strings separated by semicolons. The first string
is an abbreviated name that corresponds to January, the second
corresponds to February, and so forth.

d_t_fmt
Defines the appropriate date and time representation, corresponding to the
%c field descriptor. The operand consists of a string, which may contain
any combination of characters and field descriptors.

d_fmt Defines the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and may contain any
combination of characters and field descriptors.

escape_char /
comment_char %

%%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%%

decimal_point "<comma>"
thousands_sep "<space>"
grouping 3

END LC_NUMERIC

732 OS/390 V2R8.0 C/C++ Programming Guide

t_fmt Defines the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, which may contain any
combination of characters and field descriptors.

am_pm Defines the appropriate representation of the ante meridian and post
meridian strings, corresponding to the %p field descriptor. The operand
consists of two strings, separated by a semicolon. The first string represents
the ante meridian designation, the last string the post meridian
designation.

t_fmt_ampm
Defines the appropriate time representation in the 12-hour clock format
with am_pm, corresponding to the %r field descriptor. The operand
consists of a string and can contain any combination of characters and field
descriptors.

era Defines how the years are counted and displayed for each era (or
emperor’s reign) in a locale.

No era is needed if the %E field descriptor modifier is not used for the
locale. See the description of the strftime() function in the OS/390 C/C++
Run-Time Library Reference for information about this field descriptor.

For each era, there must be one string in the following format:
direction:offset:start_date:end_date:name:format

where

direction
Either a + or − character. The + character indicates the time axis
should be such that the years count in the positive direction when
moving from the starting date towards the ending date. The −
character indicates the time axis should be such that the years
count in the negative direction when moving from the starting date
towards the ending date.

offset A number of the first year of the era.

start_date
A date in the form yyyy/mm/dd where yyyy, mm and dd are the
year, month and day numbers, respectively, of the start of the era.
Years prior to the year AD 0 are represented as negative numbers.
For example, an era beginning March 5th in the year 100 BC would
be represented as -100/3/5.

end_date
The ending date of the era in the same form as the start_date
above or one of the two special values −* or +*. A value of −*
indicates the ending date of the era extends to the beginning of
time while +* indicates it extends to the end of time. The ending
date may be either before or after the starting date of an era. For
example, the strings for the Christian eras AD and BC would be:
+0:0000/01/01:+*:AD:%EC %Ey
+:1:-0001/12/31:-*:BC:%EC %Ey

name A string representing the name of the era which is substituted for
the %EC field descriptor.

format A string for formatting the %EY field descriptor. This string is
usually a function of the %EC and %Ey field descriptors.

Chapter 50. Building a Locale 733

The operand consists of one string for each era. If there is more than one
era, strings are separated by semicolons.

era_year
Defines the format of the year in alternate era format, corresponding to the
%EY field descriptor.

era_d_fmt
Defines the format of the date in alternate era notation, corresponding to
the %Ex field descriptor.

era_t_fmt
Defines the locale’s appropriate alternative time format, corresponding to
the %Ex field descriptor.

era_d_t_fmt
Defines the locale’s appropriate alternative date and time format,
corresponding to the %Ec field descriptor.

alt_digits
Defines alternate symbols for digits, corresponding to the %O field
descriptor modifier. The operand consists of semicolon-separated strings.
The first string is the alternate symbol corresponding to zero, the second
string the symbol corresponding to one, and so forth. A maximum of 100
alternate strings may be specified. The %O modifier indicates that the string
corresponding to the value specified by the field descriptor is used instead
of the value.

For the definitions of the time formatting descriptors, see the description of the
strftime() function in the OS/390 C/C++ Run-Time Library Reference.

LC_MESSAGES Category

The LC_MESSAGES category defines the format and values for positive and negative
responses.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

yesexpr
The operand consists of an extended regular expression that describes the
acceptable affirmative response to a question that expects an affirmative
or negative response.

noexpr The operand consists of an extended regular expression that describes the
acceptable negative response to a question that expects an affirmative or
negative response.

yestr The operand consists of an fixed string (not a regular expression) that can
be used by an application for composition of a message that lists an
acceptable affirmative response, such as in a prompt.

nostr The operand consists of an fixed string that can be used by an application
for composition of a message that lists an acceptable negative response.

734 OS/390 V2R8.0 C/C++ Programming Guide

Here is an example that shows how to define the LC_MESSAGES category:

LC_TOD Category

The LC_TOD category defines the rules used to define the beginning, end, and
duration of daylight savings time, and the difference between local time and
Greenwich Mean time. This is an IBM extension.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword
should be present in this category.

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

Note: If you specify this keyword, no other keyword should be present in
this category.

timezone_difference
An integer specifying the time zone difference expressed in minutes. If the
local time zone is west of the Greenwich Meridian, this value must be
positive. If the local time zone is east of the Greenwich Meridian, this
value must be negative. An absolute value greater than 1440 (the number
of minutes in a day) for this keyword indicates that OS/390 Language
Environment is to get the time zone difference from the system.

timezone_name
A string specifying the time zone name such as "PST" (Pacific Standard
Time) specified within quotation marks. The default for this field is a NULL
string.

daylight_name
A string specifying the Daylight Saving Time zone name, such as "PDT"
(Pacific Daylight Time), if there is one available. The string must be
specified within quotation marks. If DST information is not available, this
is set to NULL, which is also the default. This field must be filled in if DST
information as provided by the other fields is to be taken into account by
the mktime() and localtime() functions. These functions ignore DST if this
field is NULL.

%%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%%
% yes expression is a string that starts with
% "SI", "Si" "sI" "si" "s" or "S"
yesexpr "<circumflex><left-parenthesis><left-square-bracket><s><S>/
<right-square-bracket><left-square-bracket><i><I><right-square-bracket>/
<vertical-line><left-square-bracket><s><S><right-square-bracket>/
<right-parenthesis>"

% no expression is a string that starts with
% "NO", "No" "nO" "no" "N" or "n"
noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/
<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/
<vertical-line><left-square-bracket><n><N><right-square-bracket>/
<right-parenthesis>"

END LC_MESSAGES

Chapter 50. Building a Locale 735

start_month
An integer specifying the month of the year when Daylight Saving Time
comes into effect. This value ranges from 1 through 12 inclusive, with 1
corresponding to January and 12 corresponding to December. If DST is not
applicable to a locale, start_month is set to 0, which is also the default.

end_month
An integer specifying the month of the year when Daylight Saving Time
ceases to be in effect. The specifications are similar to those for
start_month.

start_week
An integer specifying the week of the month when DST comes into effect.
Acceptable values range from -4 to +4. A value of 4 means the fourth week
of the month, while a value of -4 means fourth week of the month,
counting from the end of the month. Sunday is considered to be the start
of the week. If DST is not applicable to a locale, start_week is set to 0,
which is also the default.

end_week
An integer specifying the week of the month when DST ceases to be in
effect. The specifications are similar to those for start_week.

Note: The start_week and end_week need not be used. The start_day and
end_day fields can specify either the day of the week or the day of
the month. If day of month is specified, start_week and end_week
become redundant.

start_day
An integer specifying the day of the week or the day of the month when
DST comes into effect. The value depends on the value of start_week. If
start_week is not equal to 0, this is the day of the week when DST comes
into effect. It ranges from 0 through 6 inclusive, with 0 corresponding to
Sunday and 6 corresponding to Saturday. If start_week equals 0, start_day
is the day of the month (for the current year) when DST comes into effect.
It ranges from 1 through to the last day of the month inclusive. The last
day of the month is 31 for January, March, May, July, August, October, and
December. It is 30 for April, June, September, and November. For February,
it is 28 on non-leap years and 29 on leap years. If DST is not applicable to
a locale, start_day is set to 0, which is also the default.

end_day
An integer specifying the day of the week or the day of the month when
DST ceases to be in effect. The specifications are similar to those for
start_day.

start_time
An integer specifying the number of seconds after 12:00 midnight, local
standard time, when DST comes into effect. For example, if DST is to start
at 2:00 am, start_time is assigned the value 7200; for 12:00 am (midnight),
start_time is 0; for 1:00 am, it is 3600.

end_time
An integer specifying the number of seconds after 12 midnight, local
standard time, when DST ceases to be in effect. The specifications are
similar to those for start_time.

shift An integer specifying the DST time shift, expressed in seconds. The default
is 3600, for 1 hour.

736 OS/390 V2R8.0 C/C++ Programming Guide

uctname
A string specifying the name to be used for Coordinated Universal Time. If
this keyword is not specified, the uctname will default to "UTC".

Here is an example of how to define the LC_TOD category:

LC_SYNTAX Category

The LC_SYNTAX category defines the variant characters from the portable character
set. LC_SYNTAX is an IBM-specific extension. This category can be queried by the C
library function getsyntx() to determine the encoding of a variant character if
needed.

Attention: Customizing the LC_SYNTAX category is not recommended. You should
use the LC_SYNTAX values obtained from the charmap file when you use the
localedef utility.

The operands for the characters in the LC_SYNTAX category accept the single byte
character specification in the form of a symbolic name, the character itself, or the
decimal, octal, or hexadecimal constant. The characters must be specified in the
LC_CTYPE category as a punct character. The values for the LC_SYNTAX characters
must be unique. If symbolic names are used to define the encoding, only the
symbolic names listed for each character should be used.

The code points for the LC_SYNTAX characters are set to the code points specified.
Otherwise, they default to the code points for the respective characters from the
charmap file, if the file is present, or to the code points of the respective characters
in the IBM-1047 code page.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present.

escape_char /
comment-char %

%%%%%%%%%%%%%
LC_TOD
%%%%%%%%%%%%%
% the time zone difference is 8hrs; the name of the daylight saving
% time is PDT, and it starts on the first Sunday of April at 2&00AM
% and ends on the second Sunday of October at 2&00AM
timezone_difference +480
timezone_name "<P><S><T>"
daylight_name "<P><D><T>"
start_month 4
end_month 10
start_week 1
end_week 2
start_day 1
end_day 30
start_time 7200
end_time 3600
shift 3600
END LC_TOD

Chapter 50. Building a Locale 737

If the locale is not found, an error is reported and no locale output is
created. The copy keyword cannot specify a locale that also specifies the
copy keyword for the same category.

backslash
Specifies a string that defines the value used to represent the backslash
character. If this keyword is not specified, the value from the charmap file
for the character <backslash>, <reverse-solidus>, or <SM07> is used, if it is
present.

right_brace
Specifies a string that defines the value used to represent the right brace
character. If this keyword is not specified, the value from the charmap file
for the character <right-brace>, <right-curly-bracket>, or <SM14> is used,
if it is present.

left_brace
Specifies a string that defines the value used to represent the left brace
character. If this keyword is not specified, the value from the charmap file
for the character <left-brace>, <left-curly-bracket>, or <SM11> is used, if
it is present.

right_bracket
Specifies a string that defines the value used to represent the right bracket
character. If this keyword is not specified, the value from the charmap file
for the character <right-square-bracket>, or <SM08> is used, if it is present.

left_bracket
Specifies a string that defines the value used to represent the left bracket
character. If this keyword is not specified, the value from the charmap file
for the character <left-square-bracket>, or <SM06> is used, if it is present.

circumflex
Specifies a string that defines the value used to represent the circumflex
character. If this keyword is not specified, the value from the charmap file
for the character <circumflex>, <circumflex-accent>, or <SD15> is used, if
it is present.

tilde Specifies a string that defines the value used to represent the tilde
character. If this keyword is not specified, the value from the charmap file
for the character <tilde>, or <SD19> is used, if it is present.

exclamation_mark
Specifies a string that defines the value used to represent the exclamation
mark character. If this keyword is not specified, the value from the charmap
file for the character <exclamation-mark>, or <SP02> is used, if it is present.

number_sign
Specifies a string that defines the value used to represent the number sign
character. If this keyword is not specified, the value from the charmap file
for the character <number-sign>, or <SM01> is used, if it is present.

vertical_line
Specifies a string that defines the value used to represent the vertical line
character. If this keyword is not specified, the value from the charmap file
for the character <vertical-line>, or <SM13> is used, if it is present.

dollar_sign
Specifies a string that defines the value used to represent the dollar sign
character. If this keyword is not specified, the value from the charmap file
for the character <dollar-sign>, or <SC03> is used, if it is present.

738 OS/390 V2R8.0 C/C++ Programming Guide

commercial_at
Specifies a string that defines the value used to represent the commercial at
character. If this keyword is not specified, the value from the charmap file
for the character <commercial-at>, or <SM05> is used, if it is present.

grave_accent
Specifies a string that defines the value used to represent the grave accent
character. If this keyword is not specified, the value from the charmap file
for the character <grave-accent>, or <SD13> is used, if it is present.

Here is an example of how the LC_SYNTAX category is defined:

Using the localedef Utility

The locale objects or locales are generated using the localedef utility. The localedef
utility:
1. Reads the locale definition file

2. Resolves all the character symbolic names to the values of characters defined in
the specified character set definition file, (CHARMAP)

3. Produces a OS/390 C/C++ source file.
4. Compiles the source file using the OS/390 C/C++ compiler and link-edits the

produced text module to produce a locale object.

The locale object can be loaded by the setlocale() function and then accessed by
the OS/390 C/C++ functions that are sensitive to the cultural information, or that
can query the locales. For a list of all the library functions sensitive to locale, see
“Locale-Sensitive Interfaces” on page 704. For detailed information on how to
invoke the localedef utility, see the OS/390 C/C++ User’s Guide.

Locale Naming Conventions

The setlocale() library function that selects the active locale maps the descriptive
locale name into the name of the locale object before loading the locale and making
it accessible.

escape_char /
comment-char %

%%%%%%%%%%%%%
LC_SYNTAX
%%%%%%%%%%%%%

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC_SYNTAX

Chapter 50. Building a Locale 739

In OS/390 C/C++ programs, the locale modules are referred to by descriptive
locale names. The locale names themselves are not case sensitive. They follow
these conventions:
<Language>-<Territory>.<Codeset>

Where:

Language
is a two-letter uppercase abbreviation for the language name. The
abbreviations come from the ISO 639 standard.

Territory
is a two-letter uppercase abbreviation for the territory name. The
abbreviation comes from the ISO 3166 standard.

Codeset
is the name registered by the MIT X Consortium that identifies the
registration authority that owns the specific encoding.

A modifier may be added to the registered name but is not required. The
modifier is of the form @codeset modifier and identifies the coded
character set as defined by that registration authority.

The Codeset parts are optional. If they are not specified, Codeset defaults to
IBM-nnn, where nnn is the default code page, which is shown in Table 74 on
page 741 below as the current code page. (The modifier portion defaults to
nothing.)

For PDS resident locales, the mapping between the descriptive locale name and the
eight-character name of the locale object is performed as follows:
1. The Language-Territory part is mapped into a two-letter LT code.
2. The Codeset part is mapped into a two-letter CC code.
3. If the @codeset modifier is not specified, the object name is built from the

characters EDC$, the two-letter LT code, and the two-letter CC code.
4. If the @euro modifier is specified, the object name is built from the characters

EDC@9, the two-letter LT code and the two-letter CC code.

For HFS resident locales, no mapping is necessary. For example, locale names in
the HFS corresponding to the PDS resident locales EDC$FBHO and EDC@FBHO9

are:
/usr/locale/nls/Fr_BE.IBM-1148
/usr/locale/nls/Fr_BE.IBM-1148@euro

The mapping between Language-Territory and the two-letter LT code is defined in
the LT conversion table EDC$LCNM, built with assembler macros as follows:
EDC$LCNM TITLE 'LOCALE NAME CONVERSION TABLE'
EDC$LCNM CSECT

EDCLOCNM TYPE=ENTRY,LOCALE='DA_DK',CODESET='IBM-1047',CODE='DA'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_BE',CODESET='IBM-1047',CODE='DB'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_CH',CODESET='IBM-1047',CODE='DC'
EDCLOCNM TYPE=ENTRY,LOCALE='DE_DE',CODESET='IBM-1047',CODE='DD'
EDCLOCNM TYPE=ENTRY,LOCALE='JA_JP',CODESET='IBM-939',CODE='EJ'...

EDCLOCNM TYPE=END
END EDC$LCNM

9. The @-sign in the PDS and HFS locale names always has Latin-1/Open Systems encoding. See IBM-1047 CHARMAP.

740 OS/390 V2R8.0 C/C++ Programming Guide

|
|

|
|

|
|
|

|
|

LOCALE specifies the name of Language-Territory, while CODE specifies the
respective LT code.

You can customize this table by adding new LOCALE name mappings. OS/390
C/C++ reserves alphabetic LT codes, but you can use codes containing numeric
values for your own customized names.

The following Language-Territory names and their mappings into LT codes are
provided:

Table 74. Supported Language-Territory Names and LT Codes

Locale Name Language Country Default Codeset 2-Byte LT Code

BG_BG Bulgarian Bulgaria IBM-1025 BG

C IBM-1047 CC

CS_CZ Czech Czech Republic IBM-870 CZ

DA_DK Danish Denmark IBM-1047 DA

DE_CH German Switzerland IBM-1047 DC

DE_DE German Germany IBM-1047 DD

EL_GR Ellinika Greece IBM-875 EL

EN_GB English United Kingdom IBM-1047 EK

EN_JP English Japan IBM-1027 EJ

EN_US English United States IBM-1047 EU

ES_ES Spanish Spain IBM-1047 ES

ET_EE Estonian Estonia IBM-1122 EE

FI_FI Finnish Finland IBM-1047 FI

FR_BE French Belgium IBM-1047 FB

FR_CA French Canada IBM-1047 FC

FR_CH French Switzerland IBM-1047 FS

FR_FR French France IBM-1047 FF

HR_HR Croatian Croatia IBM-870 HR

HU_HU Hungarian Hungary IBM-870 HU

IS_IS Icelandic Iceland IBM-871 IS

IT_IT Italian Italy IBM-1047 IT

JA_JP Japanese Japan IBM-939 JA

KO_KR Korean Korea IBM-933 KR

IW_IL Hebrew Israel IBM-424 IL

LT-LT Lithuanian Lithuania IBM-1112 LT

MK_MK Macedonian Macedonia IBM-1025 MM

NL_BE Dutch Belgium IBM-1047 NB

NL_NL Dutch The Netherlands IBM-1047 NN

NO_NO Norwegian Norway IBM-1047 NO

PL_PL Polish Poland IBM-870 PL

PT_BR Portugese Brazil IBM-1047 BR

PT_PT Portugese Portugal IBM-1047 PT

RO_RO Romanian Romania IBM-870 RO

Chapter 50. Building a Locale 741

Table 74. Supported Language-Territory Names and LT Codes (continued)

Locale Name Language Country Default Codeset 2-Byte LT Code

RU_RU Russian Russia IBM-1025 RU

SH_SP Serbian (Latin) Serbia IBM-870 SL

SK_SK Slovak Slovakia IBM-870 SK

SL_SL Slovene Slovenia IBM-870 SI

SQ_AL Albanian Albania IBM-500 SA

SR_SP Serbian (Cyrillic) Serbia IBM-1025 SC

SV_SE Swedish Sweden IBM-1047 SV

TH_TH Thai Thailand IBM-838 TH

TR_TR Turkish Turkey IBM-1026 TR

ZH_CN Simplified
Chinese

China (PRC) IBM-935 ZC

ZH_TW Traditional
Chinese

Taiwan (ROC) IBM-937 ZT

The mapping between Codeset and the two-letter CC code is defined in the CC
conversion table EDCUCSNM. This table is built with assembler macros as follows:
EDCUCSNM TITLE 'CODE SET NAME CONVERSION TABLE'
EDCUCSNM CSECT

EDCCSNAM TYPE=ENTRY,CODESET='IBM-037',CODE='EA'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-273',CODE='EB'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-274',CODE='EC'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-277',CODE='ED'
EDCCSNAM TYPE=ENTRY,CODESET='IBM-278',CODE='EE'

...

EDCCSNAM TYPE=END
END EDCUCSNM

CODESET specifies the name Codeset; CODE specifies the respective CC code.

You can customize this table by adding new CODESET names. The alphabetic codes
in the first byte of each CC name are reserved by IBM for future use, but you can
use codes starting with numeric values for your own customized names.

The following Codeset names and their mappings into CC codes are provided:

Table 75. Supported Codeset Names and CC Codes

Codeset
Primary Country or
Territory 2-Byte CC code

EBCDIC Codesets

IBM-037 USA, Canada, Brazil EA

IBM-273 Germany, Austria EB

IBM-274 Belgium EC

IBM-277 Denmark, Norway EE

IBM-278 Finland, Sweden EF

IBM-280 Italy EG

IBM-282 Portugal EI

742 OS/390 V2R8.0 C/C++ Programming Guide

Table 75. Supported Codeset Names and CC Codes (continued)

Codeset
Primary Country or
Territory 2-Byte CC code

IBM-284 Spain, Latin America EJ

IBM-285 United Kingdom EK

IBM-290 Japan (Katakana) EL

IBM-297 France EM

IBM-300 Japanese DBCS EN

IBM-424 Israel FB

IBM-500 International EO

IBM-838 Thailand EP

IBM-870 Croatia, Czech Republic,
Hungary, Poland, Romania,
Serbia(Latin), Slovakia,
Slovenia

EQ

IBM-871 Iceland ER

IBM-875 Greece ES

IBM-880 Cyrillic ET

IBM-930 Japan Katakana Extended
(combined with DBCS)

EU

IBM-933 Korea GZ

IBM-935 China(PRC) GY

IBM-937 Taiwan (ROC) GW

IBM-939 Japan (latin) Extended
(combined with DBCS)

EV

IBM-1025 Bulgaria, Macedonia, Russia,
Serbia(Cyrillic)

FE

IBM-1026 Turkey EW

IBM-1027 Japan (Latin) Extended EX

IBM-1047 Latin 1/Open Systems EY

IBM-1112 Lithuania GD

IBM-1122 Estonia FD

IBM-1140 USA, Canada, Brazil HA

IBM-1141 Austria, Germany HB

IBM-1142 Denmark, Norway HE

IBM-1143 Finland, Sweden HF

IBM-1144 Italy HG

IBM-1145 Spain, Latin America HJ

IBM-1146 United Kingdom HK

IBM-1147 France HM

IBM-1148 International HO

IBM-1149 Iceland HR

IBM-1388 China(PRC) GV

Chapter 50. Building a Locale 743

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

The exceptions to the rule above are the following special locale names, which are
already recognized:
v C

v POSIX

v SAA

v S370

The special names C, POSIX, SAA, and S370 always refer to the built-in locales,
which cannot be modified.
v GERM

v FRAN

v UK

v ITAL

v SPAI

v USA

These names are for locales in the old format, created with assembler macros
rather than with the localedef utility.

You can use the following macros, defined in the locale.h header file, as
synonyms for the special locale names above.

Macro Locale Compiled locale

C C Not applicable

POSIX POSIX EDC$POSX

SAA SAA EDC$SAAC

S370 S370 EDC$SAAC

LC_C_GERMANY "GERM" EDC$GERM

LC_C_FRANCE "FRAN" EDC$FRAN

LC_C_UK "UK" EDC$UK

LC_C_ITALY "ITAL" EDC$ITAL

LC_C_SPAIN "SPAI" EDC$SPAI

LC_C_USA "USA" EDC$USA

The predefined name for the built-in locale in the old format is S370.

The rest of the special names refer to the locale objects whose names are built by
prepending the letters EDC$ to the special name, as for EDC$FRAN.

744 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 51. Customizing a Locale

This chapter describes how you can create your own locales, based on the locale
definition files supplied by IBM. The information in this chapter applies to the
format of locales based on the localedef utility.

In this example you will build a locale named TEXAN using the charmap file
representing the IBM-1047 encoded character set. The locale is derived from the
locale representing the English language and the cultural conventions of the United
States.
1. Determine the source of the locale you are going to use from the Table 81 on

page 813. In this case, it is the English language in the United States locale, the
source for which is the member EDC$EUEY of the PDS CEE.SCEELOCX.

2. Copy the member EDC$EUEY from PDS CEE.SCEELOCX to the dataset
hlq.LOCALE.SOURCE which has been pre-allocated with the same attributes as
CEE.SCEELOCX.

3. In your new file, change the locale variables to the desired values. For example,
change
d_t_fmt "%a %b %e %H:%M:%S %Z %Y

to
d_t_fmt "Howdy Pardner %a %b %e %H:%M:%S %Z %Y"

4. Generate a new locale load library member using the localedef utility, then
place the resultant member in the PDS hlq.LOCALE.LOADLIB.

//GENLOC EXEC PROC=EDCLDEF,
// INFILE='hlq.LOCALE.SOURCE(TEXAN)',
// OUTFILE='hlq.LOCALE.LOADLIB(EDC$1TEY),DISP=SHR',
// LOPT='CHARMAP(IBM-1047)'

See the OS/390 C/C++ User’s Guide for detailed information about the syntax of
the localedef utility.

The member name in the LOADLIB has the predefined prefix EDC$. The next two
characters, <LT>, must consist of a number (alphabetics are reserved for IBM
use) followed by an alphanumeric character. For this example, the letters 1T
define the TEXAN locale. You can determine the last two characters <CC>, which
identify the CodesetRegistry-CodesetEncoding, from Table 75 on page 742. In
this case they should be the value of the <CC> code for the coded character set
IBM-1047, which is EY. If you are using your own charmap file you must define
its two-letter <CC> code (starting with a numeric value) in the table EDCUCSNM.
This is done in a similar way to defining EDC$LCNM, as described in the next
step.

The localedef utility creates a member in the hlq.LOCALE.LOADLIB PDS. The
member name should consist of the locale name, which is made up of the EDC$
prefix, the 1T code (defined in the next step), and the EY code for the IBM-1047
coded character set.

5. Copy the member EDC$LCNM from PDS CEE.SCEESAMP to the dataset
hlq.LOCALE.TABLE which has been pre-allocated with the same attributes as
CEE.SCEESAMP. The OS/390 C/C++ Library uses this table to map locale code
registry prefixes into two-character codes. For this example, insert a new line
into the assembler table before the last EDCLOCNM TYPE=END entry:

© Copyright IBM Corp. 1996, 1999 745

EDCLOCNM TYPE=ENTRY,LOCALE='TEXAN',CODESET='IBM-1047',CODE='1T'

6. Assemble the EDC$LCNM member and link-edit it into the hlq.LOCALE.LOADLIB
load library with the member name EDC$LCNM. For our example, this is done as
follows:

//HLASM EXEC PGM=ASMA90
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=CEE.SCEEMAC,DISP=SHR
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR
//SYSIN DD DSN=<hlq>.LOCALE.TABLE(EDC$LCNM),DISP=SHR
//*
//LKED EXEC EDCL,
// OUTFILE='<hlq>.LOCALE.LOADLIB(EDC$LCNM),DISP=SHR'
//LKED.SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR

Using the Customized Locale

The customized locale is now ready to be used in these ways:
v Explicitly referenced by name in OS/390 C/C++ application code that uses

setlocale() calls referring to the locale descriptive name (recommended) such
as:
setlocale(LC_ALL, "TEXAN.IBM-1047");

or by a short internal name (not recommended) such as:
setlocale(LC_ALL, "1TEY");

v Explicitly referenced in the OS/390 C/C++ initialization exit, using customized
setup code in CEEBINT.

v Implicitly specified in each user environment with environment variables.

Note: You cannot customize the built-in locales, C, POSIX, SAA, or S370. The locale
source files EDC$POSX and EDC$SAAC are provided for reference only.

Referring Explicitly to a Customized Locale

Here is a program with an explicit reference to the TEXAN locale.

746 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCL1

Compile the above program. Before you execute it, ensure the load library
containing the TEXAN locale and updated table is available.

The output should be similar to:
Default locale is S370
Local C datetime is Fri Aug 20 14:58:12 1993
New locale is TEXAN
Texan datetime is Howdy Pardner Fri Aug 20 14:58:12 1993

Note that if the second operand to setlocale() had been NULL, rather than ″″, the
default locale name returned would have been C.
setlocale(LC_ALL,"") returns "S370"
setlocale(LC_ALL,NULL) returns "C"

Note: For setlocale(LC_ALL,""), "S370" is returned unless the locale-related
environment variables are set. See “Chapter 53. Definition of S370 C, SAA C,
and POSIX C Locales” on page 753 for more information about the definition
of the S370 locale.

Referring Implicitly to a Customized Locale

An installation may require that a global mechanism should be used for all C
programs. The exit CEEBINT may be used for this purpose. Users can insert a
setlocale() call inside the routines referencing the locale required. Here is an
example:

/* this example shows how to get the local time formatted by the */
/* current locale */

#include <stdio.h>
#include <time.h>
#include <locale.h>

int main(void){
char dest[80];
int ch;
time_t temp;
struct tm *timeptr;
temp = time(NULL);
timeptr = localtime(&temp);
/* Fetch default locale name */
printf("Default empty_str locale is %s\n",setlocale(LC_ALL,""));
ch = strftime(dest,sizeof(dest)-1,
"Local C datetime is %c", timeptr);

printf("%s\n", dest);

/* Set new Texan locale name */
printf("New locale is %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));
ch = strftime(dest,sizeof(dest)-1,
"Texan datetime is %c ", timeptr);

printf("%s\n", dest);

return(0);
}

Figure 225. Referring Explicitly to a Customized Locale

Chapter 51. Customizing a Locale 747

CBC3GCL2

If the above example is compiled and executed with the TEXAN locale, the results
are as follows:

CEEBINT entry. number = 7
Locale = TEXAN.IBM-1047
Default NULL locale = TEXAN.IBM-1047
Default "" locale = S370

The exit CEEBINT may provide a uniform way of restricting the use of customized
locales across an installation. To do this, a system programmer can compile
CEEBINT separately, and link it with the application program that will use it. The
disadvantage to this approach is that CEEBINT must be link-edited into each user
module explicitly. See “Chapter 36. Using Run-Time User Exits” on page 525 for
more information about user exits.

/* this example refers implicitly to a customized locale */

#ifdef __cplusplus
extern "C"{

#else
#pragma linkage(CEEBINT,OS)

#endif

void CEEBINT(int, int, int, int, void**, int, void**);
#pragma map(CEEBINT,"CEEBINT")

#ifdef __cplusplus
}

#endif

#include <locale.h>
#include <stdio.h>

int main(void){
printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));
printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

}

void CEEBINT(int number, int retcode, int rsncode, int fnccode,
void **a_main, int userwd, void **a_exits)

{ /* user code goes here */
printf("CEEBINT entry. number = %i\n", number);
printf("Locale = %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));
}

Figure 226. Referring Implicitly to a Customized Locale

748 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GCL3

If you run this program above as is without calling setenv(), you can expect the
following result:
Default NULL locale = C
Default "" locale = S370

On the other hand, if you issue the above setenv() call after main() but before the
first printf() statement, the LC_ALL variable will be set to "TEXAN.IBM-1047" and
you can expect this result instead:
Default NULL locale = C
Default "" locale = TEXAN.IBM-1047

In the example above, the default NULL locale returns C because the value of
LC_ALL does not affect the current locale until the next setlocale(LC_ALL, "") is
done. When this call is made, the LC_ALL environment variable will be used and
the locale will be set to TEXAN.IBM-1047.

For more information about setting environment variables, see “Chapter 33. Using
Environment Variables” on page 457.

The names of the environment variables match the names of the locale categories:
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MONETARY
v LC_NUMERIC
v LC_TIME
v LC_TOD
v LC_SYNTAX

See the OS/390 C/C++ Run-Time Library Reference for information about
setlocale().

Customizing Your Installation: When OS/390 C/C++ initializes its environment,
it uses the C locale as its default locale. The only values that may be customized
when OS/390 Language Environment is installed are those associated with the
LC_TOD category. Details on this customization are provided in the OS/390 Language
Environment Customization.

/* this example can be used with setenv() to specify the name of a */
/* locale */

#include <locale.h>
#include <stdio.h>

int main(void){
printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));
printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

return(0);
}

Figure 227. Using Environment Variables to Select a Locale

Chapter 51. Customizing a Locale 749

750 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 52. Customizing a Time Zone

You can customize time zone information using the following:
v LC_TOD category of a locale

You can customize the LC_TOD category in a locale to a particular time zone.
The LC_TOD category binds each LE C/C++ locale to one time zone. For more
information on customizing the LC_TOD category, see “LC_TOD Category” on
page 735 and “Chapter 51. Customizing a Locale” on page 745.

v TZ or _TZ environment variable
In a distributed environment, you might have users in several time zones. You
can use the TZ or _TZ environment variable to set each time zone. The user of
your application can use the ENVAR run-time option with the TZ or _TZ
environment variable to select the appropriate time zone.
For POSIX(ON) programs the TZ environment variable is used. For POSIX(OFF)
programs the _TZ environment variable is used. If neither TZ nor _TZ are
defined, time zone information is obtained from the LC_TOD category of the
current locale.

Using the TZ or _TZ Environment Variable to Specify Time Zone

The C/C++ run-time library assumes times returned by the operating system are
stored using Greenwich Mean Time (GMT) or Universal Time Coordinated (UTC).
This time is referred to as the universal reference time. You can use the TZ or _TZ
environment variable to specify information at run time. The C/C++ run-time
library uses this information to map universal reference times to local times.

The format of the TZ or _TZ environment variable is:
TZ=standardHH[:MM[:SS]]
[daylight[HH[:MM[:SS:]]]
[,startdate[/starttime],enddate[/endtime]]]

The value of the TZ or _TZ environment variable has the following five fields (two
required and three optional):

standard
An alphabetic abbreviation for the local standard time zone (for example,
GMT, EST, MSEZ).

HH[:MM[:SS]]
The time offset westward from the universal reference time. A leading minus
sign (-) means that the local time zone is east of the universal reference time.
An offset of this form must follow standard and can also optionally follow
daylight. An optional colon (:) separates hours from optional minutes and
seconds.

If daylight is specified without a daylight offset, daylight savings time is
assumed to be one hour ahead of the standard time.

[daylight]
The abbreviation for your local daylight savings time zone. If the first and
third fields are identical, or if the third field is missing, daylight savings time
conversion is disabled. The number of hours, minutes, and seconds your local
daylight savings time is offset from UTC when daylight savings time is in

© Copyright IBM Corp. 1996, 1999 751

effect. If the daylight savings time abbreviation is specified and the offset
omitted, the offset of one hour is assumed.

[,startdate[/starttime],enddate[/endtime]]
A rule that identifies the start and end of daylight savings time, specifying
when daylight savings time should be in effect. Both the startdate and enddate
must be present and must either take the form Jn, n, or Mm.n.d where:
v Jn is the Julian day n (1 <= n <=365) and does not account for leap days.
v n is the zero-based Julian day (0 <= n <= 365). Leap days are counted;

therefore, you can refer to February 29th.
v For Mm.n.d, (0 <= n <= 6) of week n of month m of the year (1 <= n <=5, 1

<= m <= 12) where week 5 is the last d day in month m, which may occur
in either the fourth or fifth week. Week 1 is the first week in which the d
day occurs, and day zero is Sunday.

Neither starttime nor endtime are required, and when omitted, their values
default to 02:00:00. If this daylight savings time rule is omitted altogether, the
values in the rule default to the standard American daylight savings time rules
starting at 02:00:00 the first Sunday in April and ending at 02:00:00 the last
Sunday in October.

Relationship Between TZ or _TZ and LC_TOD

The C/C++ run-time library uses time zone information specified by the TZ or
_TZ environment variable to convert universal reference times to local times. When
neither the TZ nor _TZ variable are defined, the C/C++ run-time library uses time
zone information specified by the LC_TOD category of the current locale to map
universal reference times to local times. If LC_TOD in the current locale has not
been customized, the C/C++ run-time library uses the time zone of the system on
which LE C/C++ is installed. See “Chapter 51. Customizing a Locale” on page 745
for information about customizing LC_TOD.

Note: The time zone external variables, tzname, timezone, and daylight, declarations
remain feature test protected in time.h. Definition of these external variables
are only known to the C/C++ run-time library if the OS/390 UNIX System
Services C/C++ signature CSECT is link edited with your LE C/C++
application.

752 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 53. Definition of S370 C, SAA C, and POSIX C
Locales

The default C locales for POSIX SAA, and S370 are pre-built into the run-time library.
The SAA C locale provides compatibility with previous releases of C/370. The POSIX
C locale provides consistency with POSIX requirements and supports the OS/390
UNIX environment.

The POSIX definition of the C locale is described below, with the IBM extensions
LC_SYNTAX and LC_TOD showing their default values.

The SAA and S370 definitions of the C locale are different from the POSIX definition;
consistency with previous releases of OS/390 C/C++ is provided for migration
compatibility. The differences are described in “Differences between SAA C and
POSIX C Locales” on page 759.

The relationship between the POSIX C and SAA C locales is as follows. If you are
running with the run-time option POSIX(OFF):
1. The SAA C locale definition is the default. "C", "SAA", and "S370" are synonyms

for the SAA C locale definition, which is prebuilt into the library.
The source file EDC$SAAC LOCALE is provided for reference, but cannot be used
to alter the definition of this prebuilt locale.

2. Issuing setlocale(category, "") has the following effect:
v Locale-related environment variables are checked to find the name of locales

to use to set the category specified. Querying the locale with
setlocale(category, NULL) returns the name of the locales specified by the
appropriate environment variables.

v If no non-null environment variable is present, then it is the equivalent of
having issued setlocale(category, "S370"). That is, the locale chosen is the
SAA C locale defintion, and querying the locale with setlocale(category,
NULL) returns "S370" as the locale name.

3. If no setlocale() function is issued, or setlocale(LC_ALL, "C"), then the
locale chosen is the pre-built SAA C locale, and querying the locale with
setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale,
and querying the locale with setlocale(category, NULL) returns ″SAA″ as the
locale name.

5. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale,
and querying the locale with setlocale(category, NULL) returns "S370" as the
locale name.

6. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C
locale, and querying the locale with setlocale(category, NULL) returns
"POSIX" as the locale name.

If you are running with the run-time option POSIX(ON):
1. The POSIX C locale definition is the default. "C" and "POSIX" are synonyms for

the POSIX C locale definition, which is pre-built into the library.
The source file EDC$POSX LOCALE is provided for reference, but cannot be used
to alter the definition of this pre-built locale.

2. Issuing setlocale(category, "") has the following effect:

© Copyright IBM Corp. 1996, 1999 753

v Locale-related environment variables are checked to find the name of locales
that can set the category specified. Querying the locale with
setlocale(category, NULL) returns the name of the locale specified by the
appropriate environment variables.

v If no non-null environment variable is present, then the result is equivalent
to having issued setlocale(category,"C"). That is, the locale chosen is the
POSIX C locale definition, and querying the locale with setlocale(category,
NULL) returns "C" as the locale name.

3. If no setlocale() function is issued, or if setlocale(LC_ALL, "C") is used, then
the locale chosen is the pre-built POSIX C locale. Querying the locale with
setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C
locale, and querying the locale with setlocale(category, NULL) returns
"POSIX" as the locale name.

5. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale.
Querying the locale with setlocale(category, NULL) returns ″SAA″ as the
locale name.

6. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale.
Querying the locale with setlocale(category, NULL) returns "S370" as the
locale name.

The setlocale() function supports locales built using the localedef utility, as well
as locales built using the assembler source and produced by the EDCLOC macro.

The LC_TOD category for the SAA C and POSIX C locales can be customized during
installation of the library by your system programmer. See “Customizing Your
Installation” on page 749 for more information. The supplied default will obtain the
time zone difference from the operating system. However, it will not define the
daylight savings time.

The LC_SYNTAX category for the SAA C and POSIX C locales is set to the IBM-1047
definition of the variant characters.

The other locale categories for the POSIX C locale are as follows.
escape_char /
comment_char %

%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%

% "alpha" is by default "upper" and "lower"
% "alnum" is by definition "alpha" and "digit"
% "print" is by default "alnum", "punct" and <space> character
% "punct" is by default "alnum" and "punct"

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/
<carriage-return>;<space>

754 OS/390 V2R8.0 C/C++ Programming Guide

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;/
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;/
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;/
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;/
<IS1>;

punct <exclamation-mark>;<quotation-mark>;<number-sign>;/
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/
<left-parenthesis>;<right-parenthesis>;<asterisk>;/
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;/
<greater-than-sign>;<question-mark>;<commercial-at>;/
<left-square-bracket>;<backslash>;<right-square-bracket>;/
<circumflex>;<underscore>;<grave-accent>;/
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;<tilde>

xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;;<C>;<D>;<E>;<F>;/
<a>;;<c>;<d>;<e>;<f>

blank <space>;/
<tab>

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);/
(<z>,<Z>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);/
(<Z>,<z>)

END LC_CTYPE

%%%%%%%%%%%%
LC_COLLATE
%%%%%%%%%%%%

order_start
% ASCII Control characters
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>

Chapter 53. Definition of S370 C, SAA C, and POSIX C Locales 755

<CAN>

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>

756 OS/390 V2R8.0 C/C++ Programming Guide

<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

END LC_COLLATE

%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%

int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping ""
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1

END LC_MONETARY

%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%

decimal_point "<period>"

Chapter 53. Definition of S370 C, SAA C, and POSIX C Locales 757

thousands_sep ""
grouping ""

END LC_NUMERIC

%%%%%%%%%%%%
LC_TIME
%%%%%%%%%%%%

abday "<S><u><n>";/
"<M><o><n>";/
"<T><u><e>";/
"<W><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
"<S><a><t>"

day "<S><u><n><d><a><y>";/
"<M><o><n><d><a><y>";/
"<T><u><e><s><d><a><y>";/
"<W><e><d><n><e><s><d><a><y>";/
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
"<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/
"<F><e>";/
"<M><a><r>";/
"<A><p><r>";/
"<M><a><y>";/
"<J><u><n>";/
"<J><u><l>";/
"<A><u><g>";/
"<S><e><p>";/
"<O><c><t>";/
"<N><o><v>";/
"<D><e><c>"

mon "<J><a><n><u><a><r><y>";/
"<F><e><r><u><a><r><y>";/
"<M><a><r><c><h>";/
"<A><p><r><i><l>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><l><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><e><r>";/
"<O><c><t><o><e><r>";/
"<N><o><v><e><m><e><r>";/
"<D><e><c><e><m><e><r>"

% equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"

% appropriate date and time representation (%c) "%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign><space><percent-sign><e>/
<space><percent-sign><H><colon><percent-sign><M>/
<colon><percent-sign><S><space><percent-sign><Y>"

% appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d><slash><percent-sign><y>"

% appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><M><colon><percent-sign><M><colon><percent-sign><S>"

% appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon><percent-sign><S>/
<space><percent-sign><p>"

END LC_TIME

758 OS/390 V2R8.0 C/C++ Programming Guide

%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

END LC_MESSAGES

Differences between SAA C and POSIX C Locales

In fact, there are three built-in locales, S370 C, SAA C, and POSIX C. The default
locale at your site depends on the system that is running the application. Issuing
setlocale(LC_ALL,"") sets the default, based on the current environment. Issuing
setlocale(LC_ALL,"SAA") sets the SAA C locale, even when you are running with
the POSIX(ON) run-time option. Likewise, setlocale(LC_ALL,"POSIX") sets the
POSIX locale.

If you are running in a C locale, one way you can determine whether the SAA C or
the POSIX locale is in effect is to check whether the cent sign (¢ at X'4A') is defined
as a punctuation character. Under the default POSIX support, the cent sign is not
part of the POSIX portable character set. The following code illustrates how to
perform this test:

CBC3GDL1

Under the SAA or System/370 default locales, the lowercase letters collate before
the uppercase letters, whereas under the POSIX definition, the lowercase letters
collate after the uppercase letters. The locale "" is the same locale as the one
obtained from setlocale(LC_ALL,""). For more detail on these special environment
variables, see “Chapter 33. Using Environment Variables” on page 457.

Other differences between the SAA C locale and the POSIX C locale are as follows:

<mb_cur_max> The POSIX C locale is built using coded character
set IBM-1047, with <mb_cur_max> as 1.

/* this example shows how to determine whether the SAA C or POSIX */
/* locale is in effect */

#include <stdio.h>
#include <ctype.h>

int main(void)
{

if (ispunct(0x4A)) {
printf(" cent sign is punct\n");
printf(" current locale is SAA- or S370-like\n");

}
else {

printf(" cent sign is not punct\n");
printf(" default locale is POSIX-like\n");

}

return(0);
}

Figure 228. Determing Which Locale is in Effect

Chapter 53. Definition of S370 C, SAA C, and POSIX C Locales 759

The SAA C locale is built using coded character set
IBM-1047, with <mb_cur_max> as 4.

The cent sign In the default POSIX support, the cent sign (¢) is
not part of the POSIX portable character set, but in
the SAA locale it is defined as a punctuation
character.

Collation weight by case In the POSIX definition, the lowercase letters collate
after the uppercase letters, whereas in the SAA or
System/370 default locales, the lowercase letters
collate before the uppercase letters.

LC_CTYPE category The SAA C locale has all the EBCDIC control
characters defined in the 'cntrl' class. The POSIX
C locale has only the ASCII control characters in
the 'cntrl' class.

The SAA C locale includes ¢ (the cent character) and
¦ (the broken vertical line) as 'punct' characters.
The POSIX C locale does not group these characters
as 'punct' characters.

LC_COLLATE category The default collation for the SAA C locale is the
EBCDIC sequence. The POSIX C locale uses the
ASCII collation sequence; the first 128 ASCII
characters are defined in the collation sequence,
and the remaining EBCDIC characters are at the
end of the collating sequence.

LC_TIME category The SAA C locale uses the date and time format
(d_t_fmt) as "%Y/%M/%D %X", whereas the POSIX C
locale uses "%a %b %d %H/%M/%S %Y".

The SAA C locale uses the strings "am" and "pm",
whereas the POSIX C locale uses "AM" and "PM".

760 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 54. Code Set Conversion Utilities

This chapter describes the code set conversion utilities supported by the OS/390
C/C++ compiler. These utilities are as follows:

genxlt utility
Generates a translation table for use by the iconv utility and iconv()
functions.

iconv utility
Converts a file from one code set encoding to another.

iconv() functions
Perform code set translation. These functions are iconv_open(), iconv(),
and iconv_close(). They are used by the iconv utility and may be called
from any OS/390 C/C++ program requiring code set translation.

See the OS/390 C/C++ User’s Guide for descriptions of the genxlt and iconv utilities,
and the OS/390 C/C++ Run-Time Library Reference for descriptions of the iconv()
functions.

The genxlt Utility

The genxlt utility reads a source translation file from InputFile, writes the
compiled version to OutputFile, and then generates the translation load module.
The source translation file provides the conversion specification from fromCodeSet
to toCodeSet. The source translation file contains directives that are acted upon by
the genxlt utility to produce the compiled version of the translation table.

The name of the conversion programs have the following naming conventions:
v The name starts with the constant four letter prefix EDCU.
v The prefix is followed by the two-letter CC code that corresponds to the

CodesetRegistry.CodesetEncoding name of the fromCodeSet defined in the
Table 75 on page 742.

v The first CC code is followed by the two-letter CC code than corresponds to the
CodesetRegistry.CodesetEncoding name of the toCodeSet defined in the Table 75
on page 742.

To generate your own conversions, you must modify the codeset name table
EDCUCSNM with the macros described in “Locale Naming Conventions” on page 739.
For descriptions of the genxlt and iconv utilities, refer to OS/390 C/C++ User’s
Guide.

The iconv Utility

The iconv utility reads characters from the input file, converts them from
fromCodeSet encoding to toCodeSet encoding, and writes them to the output file.

The conversion is performed according to the tables generated by the genxlt utility.
The tables used are determined by the CC codes of the fromCodeSet and toCodeSet
appended to the four-character string EDCU. See the OS/390 C/C++ User’s Guide for

© Copyright IBM Corp. 1996, 1999 761

descriptions of the genxlt and iconv utilities. For a description of iconv as a shell
command refer to OS/390 UNIX System Services Command Reference.

Code Conversion Functions

The iconv_open(), iconv(), and iconv_close() library functions can be called from
C or C++ source to initialize and perform the characters conversions from one
character set encoding to another.

Code Set Converters Supplied

There is a set of code set converters that are provided in the National Language
Resources component of OS/390 Language Environment. Consult your system
programmer to see whether this component has been installed on your system.

The converters are as follows:
Round Trip Conversions(RTC) or Customized
Round Trip Conversions(C-RTC), which means round trip with exceptions.

Conversions:
Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC
Non-Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC
Latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC
Non_latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC

Example of Customized Round Trip Conversions(C-RTC) is
IBM-850 to/from IBM-1047 conversion.

Customized Round Trip Conversion

IBM-850 IBM-1047
Code Point Code Point

0A <-> 15
DA -> 3F
0A <- 25

The code set converters provided as programs are shown in Table 76. The GENXLT
source for the code set converters are shipped in the CEE.SCEEGXLT dataset.

Table 76. Coded Character Set Conversion Table

FromCode ToCode GENXLT Source Program Name

IBM-037 IBM-500 Yes EDCUEAEO

IBM-037 IBM-850 Yes EDCUEAAA

IBM-037 IBM-1047 Yes EDCUEAEY

IBM-037 ISO8859-1 Yes EDCUEAI1

IBM-273 IBM-500 Yes EDCUEBEO

IBM-273 IBM-850 Yes EDCUEBAA

IBM-273 IBM-1047 Yes EDCUEBEY

IBM-273 ISO8859-1 Yes EDCUEBI1

IBM-274 IBM-500 Yes EDCUECEO

IBM-274 IBM-1047 Yes EDCUECEY

762 OS/390 V2R8.0 C/C++ Programming Guide

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-274 IBM-1148 Yes EDCUECHO

IBM-274 ISO8859-1 Yes EDCUECI1

IBM-275 IBM-500 Yes EDCUEDEO

IBM-275 IBM-1047 Yes EDCUEDEY

IBM-275 IBM-1148 Yes EDCUEDHO

IBM-275 ISO8859-1 Yes EDCUEDI1

IBM-277 IBM-500 Yes EDCUEEEO

IBM-277 IBM-850 Yes EDCUEEAA

IBM-277 IBM-1047 Yes EDCUEEEY

IBM-277 ISO8859-1 Yes EDCUEEI1

IBM-278 IBM-500 Yes EDCUEFEO

IBM-278 IBM-850 Yes EDCUEFAA

IBM-278 IBM-1047 Yes EDCUEFEY

IBM-278 ISO8859-1 Yes EDCUEFI1

IBM-280 IBM-500 Yes EDCUEGEO

IBM-280 IBM-850 Yes EDCUEGAA

IBM-280 IBM-1047 Yes EDCUEGEY

IBM-280 ISO8859-1 Yes EDCUEGI1

IBM-281 IBM-500 Yes EDCUEHEO

IBM-281 IBM-1047 Yes EDCUEHEY

IBM-281 IBM-1148 Yes EDCUEHHO

IBM-281 ISO8859-1 Yes EDCUEHI1

IBM-282 IBM-500 Yes EDCUEIEO

IBM-282 IBM-1047 Yes EDCUEIEY

IBM-282 IBM-1148 Yes EDCUEIHO

IBM-282 ISO8859-1 Yes EDCUEII1

IBM-284 IBM-500 Yes EDCUEJEO

IBM-284 IBM-850 Yes EDCUEJAA

IBM-284 IBM-1047 Yes EDCUEJEY

IBM-284 ISO8859-1 Yes EDCUEJI1

IBM-285 IBM-500 Yes EDCUEKEO

IBM-285 IBM-850 Yes EDCUEKAA

IBM-285 IBM-1047 Yes EDCUEKEY

IBM-285 ISO8859-1 Yes EDCUEKI1

IBM-290 IBM-500 Yes EDCUELEO

IBM-290 IBM-1027 Yes EDCUELEX

IBM-290 IBM-1047 Yes EDCUELEY

IBM-290 IBM-1148 Yes EDCUELHO

IBM-290 ISO8859-1 Yes EDCUELI1

IBM-297 IBM-500 Yes EDCUEMEO

Chapter 54. Code Set Conversion Utilities 763

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-297 IBM-850 Yes EDCUEMAA

IBM-297 IBM-1047 Yes EDCUEMEY

IBM-297 ISO8859-1 Yes EDCUEMI1

IBM-500 IBM-037 Yes EDCUEOEA

IBM-500 IBM-273 Yes EDCUEOEB

IBM-500 IBM-274 Yes EDCUEOEC

IBM-500 IBM-275 Yes EDCUEOED

IBM-500 IBM-277 Yes EDCUEOEE

IBM-500 IBM-278 Yes EDCUEOEF

IBM-500 IBM-280 Yes EDCUEOEG

IBM-500 IBM-281 Yes EDCUEOEH

IBM-500 IBM-282 Yes EDCUEOEI

IBM-500 IBM-284 Yes EDCUEOEJ

IBM-500 IBM-285 Yes EDCUEOEK

IBM-500 IBM-290 Yes EDCUEOEL

IBM-500 IBM-297 Yes EDCUEOEM

IBM-500 IBM-850 Yes EDCUEOAA

IBM-500 IBM-871 Yes EDCUEOER

IBM-500 IBM-1027 Yes EDCUEOEX

IBM-500 IBM-1047 Yes EDCUEOEY

IBM-500 IBM-1140 Yes EDCUEOHA

IBM-500 IBM-1141 Yes EDCUEOHB

IBM-500 IBM-1142 Yes EDCUEOHE

IBM-500 IBM-1143 Yes EDCUEOHF

IBM-500 IBM-1144 Yes EDCUEOHG

IBM-500 IBM-1145 Yes EDCUEOHJ

IBM-500 IBM-1146 Yes EDCUEOHK

IBM-500 IBM-1147 Yes EDCUEOHM

IBM-500 IBM-1149 Yes EDCUEOHR

IBM-500 ISO8859-1 Yes EDCUEOI1

IBM-833 IBM-1047 Yes EDCUGPEY

IBM-836 IBM-1047 Yes EDCUGLEY

IBM-850 IBM-037 Yes EDCUAAEA

IBM-850 IBM-273 Yes EDCUAAEB

IBM-850 IBM-277 Yes EDCUAAEE

IBM-850 IBM-278 Yes EDCUAAEF

IBM-850 IBM-280 Yes EDCUAAEG

IBM-850 IBM-284 Yes EDCUAAEJ

IBM-850 IBM-285 Yes EDCUAAEK

IBM-850 IBM-297 Yes EDCUAAEM

764 OS/390 V2R8.0 C/C++ Programming Guide

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-850 IBM-500 Yes EDCUAAEO

IBM-850 IBM-871 Yes EDCUAAER

IBM-850 IBM-1047 Yes EDCUAAEY

IBM-850 IBM-1140 Yes EDCUAAHA

IBM-850 IBM-1141 Yes EDCUAAHB

IBM-850 IBM-1142 Yes EDCUAAHE

IBM-850 IBM-1143 Yes EDCUAAHF

IBM-850 IBM-1144 Yes EDCUAAHG

IBM-850 IBM-1145 Yes EDCUAAHJ

IBM-850 IBM-1146 Yes EDCUAAHK

IBM-850 IBM-1147 Yes EDCUAAHM

IBM-850 IBM-1148 Yes EDCUAAHO

IBM-850 IBM-1149 Yes EDCUAAHR

IBM-871 IBM-500 Yes EDCUEREO

IBM-871 IBM-850 Yes EDCUERAA

IBM-871 IBM-1047 Yes EDCUEREY

IBM-871 ISO8859-1 Yes EDCUERI1

IBM-875 IBM-1047 Yes EDCUESEY

IBM-875 ISO8859-7 Yes EDCUESI7

IBM-930 IBM-1047 Yes EDCUEUEY

IBM-933 IBM-1047 Yes EDCUGZEY

IBM-933 ISO8859-1 Yes EDCUGZI1

IBM-935 IBM-1047 Yes EDCUGYEY

IBM-937 IBM-1047 Yes EDCUGWEY

IBM-939 IBM-1047 Yes EDCUEVEY

IBM-1026 IBM-1047 Yes EDCUEWEY

IBM-1026 ISO8859-9 Yes EDCUEWI9

IBM-1027 IBM-290 Yes EDCUEXEL

IBM-1027 IBM-500 Yes EDCUEXEO

IBM-1027 IBM-1047 Yes EDCUEXEY

IBM-1027 IBM-1148 Yes EDCUEXHO

IBM-1027 ISO8859-1 Yes EDCUEXI1

IBM-1047 IBM-037 Yes EDCUEYEA

IBM-1047 IBM-273 Yes EDCUEYEB

IBM-1047 IBM-274 Yes EDCUEYEC

IBM-1047 IBM-275 Yes EDCUEYED

IBM-1047 IBM-277 Yes EDCUEYEE

IBM-1047 IBM-278 Yes EDCUEYEF

IBM-1047 IBM-280 Yes EDCUEYEG

IBM-1047 IBM-281 Yes EDCUEYEH

Chapter 54. Code Set Conversion Utilities 765

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1047 IBM-282 Yes EDCUEYEI

IBM-1047 IBM-284 Yes EDCUEYEJ

IBM-1047 IBM-285 Yes EDCUEYEK

IBM-1047 IBM-290 Yes EDCUEYEL

IBM-1047 IBM-297 Yes EDCUEYEM

IBM-1047 IBM-500 Yes EDCUEYEO

IBM-1047 IBM-833 Yes EDCUEYGP

IBM-1047 IBM-836 Yes EDCUEYGL

IBM-1047 IBM-850 Yes EDCUEYAA

IBM-1047 IBM-871 Yes EDCUEYER

IBM-1047 IBM-875 Yes EDCUEYES

IBM-1047 IBM-930 Yes EDCUEYEU

IBM-1047 IBM-933 Yes EDCUEYGZ

IBM-1047 IBM-935 Yes EDCUEYGY

IBM-1047 IBM-937 Yes EDCUEYGW

IBM-1047 IBM-939 Yes EDCUEYEV

IBM-1047 IBM-1026 Yes EDCUEYEW

IBM-1047 IBM-1027 Yes EDCUEYEX

IBM-1047 IBM-1140 Yes EDCUEYHA

IBM-1047 IBM-1141 Yes EDCUEYHB

IBM-1047 IBM-1142 Yes EDCUEYHE

IBM-1047 IBM-1143 Yes EDCUEYHF

IBM-1047 IBM-1144 Yes EDCUEYHG

IBM-1047 IBM-1145 Yes EDCUEYHJ

IBM-1047 IBM-1146 Yes EDCUEYHK

IBM-1047 IBM-1147 Yes EDCUEYHM

IBM-1047 IBM-1148 Yes EDCUEYHO

IBM-1047 IBM-1149 Yes EDCUEYHR

IBM-1047 ISO8859-1 Yes EDCUEYI1

IBM-1140 IBM-500 Yes EDCUHAEO

IBM-1140 IBM-850 Yes EDCUHAAA

IBM-1140 IBM-1047 Yes EDCUHAEY

IBM-1140 IBM-1148 Yes EDCUHAHO

IBM-1140 ISO8859-1 Yes EDCUHAI1

IBM-1141 IBM-500 Yes EDCUHBEO

IBM-1141 IBM-850 Yes EDCUHBAA

IBM-1141 IBM-1047 Yes EDCUHBEY

IBM-1141 IBM-1148 Yes EDCUHBHO

IBM-1141 ISO8859-1 Yes EDCUHBI1

IBM-1142 IBM-500 Yes EDCUHEEO

766 OS/390 V2R8.0 C/C++ Programming Guide

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1142 IBM-850 Yes EDCUHEAA

IBM-1142 IBM-1047 Yes EDCUHEEY

IBM-1142 IBM-1148 Yes EDCUHEHO

IBM-1142 ISO8859-1 Yes EDCUHEI1

IBM-1143 IBM-500 Yes EDCUHFEO

IBM-1143 IBM-850 Yes EDCUHFAA

IBM-1143 IBM-1047 Yes EDCUHFEY

IBM-1143 IBM-1148 Yes EDCUHFHO

IBM-1143 ISO8859-1 Yes EDCUHFI1

IBM-1144 IBM-500 Yes EDCUHGEO

IBM-1144 IBM-850 Yes EDCUHGAA

IBM-1144 IBM-1047 Yes EDCUHGEY

IBM-1144 IBM-1148 Yes EDCUHGHO

IBM-1144 ISO8859-1 Yes EDCUHGI1

IBM-1145 IBM-500 Yes EDCUHJEO

IBM-1145 IBM-850 Yes EDCUHJAA

IBM-1145 IBM-1047 Yes EDCUHJEY

IBM-1145 IBM-1148 Yes EDCUHJHO

IBM-1145 ISO8859-1 Yes EDCUHJI1

IBM-1146 IBM-500 Yes EDCUHKEO

IBM-1146 IBM-850 Yes EDCUHKAA

IBM-1146 IBM-1047 Yes EDCUHKEY

IBM-1146 IBM-1148 Yes EDCUHKHO

IBM-1146 ISO8859-1 Yes EDCUHKI1

IBM-1147 IBM-500 Yes EDCUHMEO

IBM-1147 IBM-850 Yes EDCUHMAA

IBM-1147 IBM-1047 Yes EDCUHMEY

IBM-1147 IBM-1148 Yes EDCUHMHO

IBM-1147 ISO8859-1 Yes EDCUHMI1

IBM-1148 IBM-274 Yes EDCUHOEC

IBM-1148 IBM-275 Yes EDCUHOED

IBM-1148 IBM-281 Yes EDCUHOEH

IBM-1148 IBM-282 Yes EDCUHOEI

IBM-1148 IBM-290 Yes EDCUHOEL

IBM-1148 IBM-850 Yes EDCUHOAA

IBM-1148 IBM-1027 Yes EDCUHOEX

IBM-1148 IBM-1047 Yes EDCUHOEY

IBM-1148 IBM-1140 Yes EDCUHOHA

IBM-1148 IBM-1141 Yes EDCUHOHB

IBM-1148 IBM-1142 Yes EDCUHOHE

Chapter 54. Code Set Conversion Utilities 767

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

IBM-1148 IBM-1143 Yes EDCUHOHF

IBM-1148 IBM-1144 Yes EDCUHOHG

IBM-1148 IBM-1145 Yes EDCUHOHJ

IBM-1148 IBM-1146 Yes EDCUHOHK

IBM-1148 IBM-1147 Yes EDCUHOHM

IBM-1148 IBM-1149 Yes EDCUHOHR

IBM-1148 ISO8859-1 Yes EDCUHOI1

IBM-1149 IBM-500 Yes EDCUHREO

IBM-1149 IBM-850 Yes EDCUHRAA

IBM-1149 IBM-1047 Yes EDCUHREY

IBM-1149 IBM-1148 Yes EDCUHRHO

IBM-1149 ISO8859-1 Yes EDCUHRI1

ISO8859-1 IBM-037 Yes EDCUI1EA

ISO8859-1 IBM-273 Yes EDCUI1EB

ISO8859-1 IBM-274 Yes EDCUI1EC

ISO8859-1 IBM-275 Yes EDCUI1ED

ISO8859-1 IBM-277 Yes EDCUI1EE

ISO8859-1 IBM-278 Yes EDCUI1EF

ISO8859-1 IBM-280 Yes EDCUI1EG

ISO8859-1 IBM-281 Yes EDCUI1EH

ISO8859-1 IBM-282 Yes EDCUI1EI

ISO8859-1 IBM-284 Yes EDCUI1EJ

ISO8859-1 IBM-285 Yes EDCUI1EK

ISO8859-1 IBM-290 Yes EDCUI1EL

ISO8859-1 IBM-297 Yes EDCUI1EM

ISO8859-1 IBM-500 Yes EDCUI1EO

ISO8859-1 IBM-871 Yes EDCUI1ER

ISO8859-1 IBM-933 Yes EDCUI1GZ

ISO8859-1 IBM-1027 Yes EDCUI1EX

ISO8859-1 IBM-1047 Yes EDCUI1EY

ISO8859-1 IBM-1140 Yes EDCUI1HA

ISO8859-1 IBM-1141 Yes EDCUI1HB

ISO8859-1 IBM-1142 Yes EDCUI1HE

ISO8859-1 IBM-1143 Yes EDCUI1HF

ISO8859-1 IBM-1144 Yes EDCUI1HG

ISO8859-1 IBM-1145 Yes EDCUI1HJ

ISO8859-1 IBM-1146 Yes EDCUI1HK

ISO8859-1 IBM-1147 Yes EDCUI1HM

ISO8859-1 IBM-1148 Yes EDCUI1HO

ISO8859-1 IBM-1149 Yes EDCUI1HR

768 OS/390 V2R8.0 C/C++ Programming Guide

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 76. Coded Character Set Conversion Table (continued)

FromCode ToCode GENXLT Source Program Name

ISO8859-7 IBM-875 Yes EDCUI7ES

ISO8859-9 IBM-1026 Yes EDCUI9EW

The following code set converters are also supplied. These converters are used by
the code set converters between the codesets IBM-930, IBM-932, IBM-932C,
IBM-939, IBM-2022-JP, IBM-5052, IBM-eucJC, and IBM-eucJP.

Notes:

1. Specify IBM-932C or IBM-eucJC as the iconv_open() source or target code set
name to set up for conversion of POSIX data encoded by IBM-932 or IBM-eucJP
to or from a host code set encoding of the data such as IBM-930 or IBM-939.
Examples of POSIX data are C/C++ source and shell scripts. The data includes
characters from the POSIX character set. The names IBM-932C and IBM-eucJC
indicate that the <yen> and <overline> characters in POSIX data encoded by
IBM-932 or IBM-eucJP map to the <backslash> and <tilde> characters,
respectively, when the data is converted to or from host encodings.

FromCode ToCode GENXLT source Program Name

IBM-290 IBM-932 Yes EDCUELAB

IBM-290 IBM-932C Yes EDCUELAG

IBM-290 IBM-eucJC No EDCUELAH

IBM-290 IBM-eucJP No EDCUELAC

IBM-300 IBM-eucJP No EDCUENAC

IBM-300 IBM-eucJC No EDCUENAH

IBM-300 IBM-932 No EDCUENAB

IBM-300 IBM-932C No EDCUENAG

IBM-930 IBM-932 No EDCUEUAB

IBM-930 IBM-932C No EDCUEUAG

IBM-930 IBM-956 No EDCUEUJB

IBM-930 IBM-957 No EDCUEUJC

IBM-930 IBM-958 No EDCUEUJD

IBM-930 IBM-959 No EDCUEUJE

IBM-930 IBM-2022-JP No EDCUEUJA

IBM-930 IBM-5052 No EDCUEUJF

IBM-930 IBM-5053 No EDCUEUJG

IBM-930 IBM-5054 No EDCUEUJH

IBM-930 IBM-5055 No EDCUEUJI

IBM-930 IBM-eucJP No EDCUEUAC

IBM-930 IBM-eucJC No EDCUEUAH

IBM-932 IBM-290 Yes EDCUABEL

IBM-932 IBM-300 No EDCUABEN

IBM-932C IBM-300 No EDCUAGEN

IBM-932 IBM-930 No EDCUABEU

IBM-932C IBM-930 No EDCUAGEU

Chapter 54. Code Set Conversion Utilities 769

FromCode ToCode GENXLT source Program Name

IBM-932 IBM-939 No EDCUABEV

IBM-932C IBM-939 No EDCUAGEV

IBM-932C IBM-290 Yes EDCUAGEL

IBM-932 IBM-1027 Yes EDCUABEX

IBM-932C IBM-1027 Yes EDCUAGEX

IBM-932C IBM-1047 Yes EDCUAGEY

IBM-939 IBM-932 No EDCUEVAB

IBM-939 IBM-932C Yes EDCUEVAG

IBM-939 IBM-956 No EDCUEVJB

IBM-939 IBM-957 No EDCUEVJC

IBM-939 IBM-958 No EDCUEVJD

IBM-939 IBM-959 No EDCUEVJE

IBM-939 IBM-1047 Yes EDCUEVEY

IBM-939 IBM-2022-JP No EDCUEVJA

IBM-939 IBM-5052 No EDCUEVJF

IBM-939 IBM-5053 No EDCUEVJG

IBM-939 IBM-5054 No EDCUEVJH

IBM-939 IBM-5055 No EDCUEVJI

IBM-939 IBM-eucJP No EDCUEVAC

IBM-939 IBM-eucJC No EDCUEVAH

IBM-956 IBM-930 No EDCUJBEU

IBM-956 IBM-939 No EDCUJBEV

IBM-957 IBM-930 No EDCUJCEU

IBM-957 IBM-939 No EDCUJCEV

IBM-958 IBM-930 No EDCUJDEU

IBM-958 IBM-939 No EDCUJDEV

IBM-959 IBM-930 No EDCUJEEU

IBM-959 IBM-939 No EDCUJEEV

IBM-1027 IBM-932 Yes EDCUEXAB

IBM-1027 IBM-932C Yes EDCUEXAG

IBM-1027 IBM-eucJC No EDCUEXAH

IBM-1027 IBM-eucJP No EDCUEXAC

IBM-1047 IBM-930 Yes EDCUEYEU

IBM-1047 IBM-939 Yes EDCUEYEV

IBM-2022-JP IBM-930 No EDCUJAEU

IBM-2022-JP IBM-939 No EDCUJAEV

IBM-5052 IBM-930 No EDCUJFEU

IBM-5052 IBM-939 No EDCUJFEV

IBM-5053 IBM-930 No EDCUJGEU

IBM-5053 IBM-939 No EDCUJGEV

IBM-5054 IBM-930 No EDCUJHEU

770 OS/390 V2R8.0 C/C++ Programming Guide

FromCode ToCode GENXLT source Program Name

IBM-5054 IBM-939 No EDCUJHEV

IBM-5055 IBM-930 No EDCUJIEU

IBM-5055 IBM-939 No EDCUJIEV

IBM-eucJC IBM-290 Yes EDCUAHEL

IBM-eucJC IBM-1027 No EDCUAHEX

IBM-eucJP IBM-290 No EDCUACEL

IBM-eucJP IBM-300 No EDCUACEN

IBM-eucJC IBM-300 No EDCUAHEN

IBM-eucJP IBM-930 No EDCUACEU

IBM-eucJC IBM-930 No EDCUAHEU

IBM-eucJP IBM-939 No EDCUACEV

IBM-eucJC IBM-939 No EDCUAHEV

IBM-eucJP IBM-1027 No EDCUACEX

Universal Coded Character Set Converters

You can use the name UCS-2 to request setup for conversion to and from the
Universal Two-Octet Coded Character Set, UCS-2, specified in ISO/IEC
International Standard 10646–1. For example, iconv_open("UCS-2", "IBM-1047")
requests setup for conversion from IBM-1047 character encoding to UCS-2
character encoding.

You can also use the name UTF-8 to request setup for conversion to and from
Transform Format 8, UTF-8, specified in Unicode Standard, Version 2.1,
Appendices A-7 and A-8. For example, iconv_open("UTF-8", "IBM-1047") requests
setup for conversion from IBM-1047 character encoding to UTF-8 character
encoding.

Source for UCS-2 converters resides in an OS/390 C/C++ dataset named
installation-prefix.SCEEUMAP, where the installation prefix for C/C++ datasets
default to CEE. When the OS/390 shell is installed, UCS-2 source is also installed
in the hierarachical file system (HFS) directory /usr/lib/nls/locale/ucmap.

The uconvdef command, which is documented in the OS/390 UNIX System Services
Command Reference, produces uconvTable binary files required by uconv_open()
from UCS-2 source files. Table 77 on page 772 lists coded character sets for which
OS/390 C/C++ provides UCS-2 source and uconvTable binaries. The uconvTable
binaries reside in an OS/390 C/C++ dataset named installation-
prefix.SCEEUTBL. The same as for the UCS-2 source dataset, the default value of
the installation-prefix is CEE.

Notes:

1. If your installation uses an installation-prefix different from CEE for OS/390
C/C++ datasets, you must use the environment variable _ICONV_UCS2_PREFIX to
specify the value of your installation-prefix before using iconv_open() to set up
UCS-2 converters. Otherwise, iconv_open() cannot find your OS/390 C/C++
uconvTable binary dataset. One way to do this is to use the ENVAR runtime
option when you start your application. For example, ENVAR(...,
_ICONV_UCS2_PREFIX=OUR.PREFIX, ...) has iconv_open() search for uconvTable
binaries it requires in the dataset OUR.PREFIX.SCEEUTBL.

Chapter 54. Code Set Conversion Utilities 771

|
|
|
|
|

2. When the OS/390 shell is installed, uconvTable binaries are installed in the HFS
directory named /usr/lib/nls/locale/uconvTable. The iconv_open()function
searches for uconvTable binaries in the HFS before looking in the OS/390
C/C++ UCS-2 dataset.

3. You can use the LOCPATH environment variable to give iconv_open() a
colon-separated list of pathname prefixes to use instead of /usr/lib/nls/locale/
to find uconvTable directories in your HFS

4. UCS-2 source and binaries found in installation-prefix.SCEEUMAP and
installation-prefix.SCEEUTBL datasets (or corresponding HFS directories),
respectively, pertain to conversions to and from UTF-8 as well as UCS-2.

Members in the OS/390 C/C++ UCS-2 source and uconvTable binary datasets
have names of the form EDCUUccU; where cc is the CC-id associated with a
particular coded character set name. Table 77 shows the CC-id and member name
associated with each coded character set name for which OS/390 C/C++ provides
source and a uconvTable binary in UCS-2 datasets.

Table 77. UCS-2 Converters

Codeset Name CC-id UCS-2 source

IBM-850 AA EDCUUAAU

IBM-932 AB EDCUUABU

IBM-eucJP AC EDCUUACU

IBM33722 AC EDCUUACU

IBM-922 AD EDCUUADU

IBM-1046 AF EDCUUAFU

IBM-858 AI EDCUUAIU

IBM-921 BD EDCUUBDU

IBM-866 BE EDCUUBEU

IBM-862 BH EDCUUBHU

IBM-eucTW BW EDCUUBWU

IBM-964 BW EDCUUBWU

IBM-1383 BY EDCUUBYU

IBM-eucKR BZ EDCUUBZU

IBM-970 BZ EDCUUBZU

IBM-861 CA EDCUUCAU

IBM-852 CB EDCUUCBU

IBM-8550 CE EDCUUCEU

IBM-864 CF EDCUUCFU

IBM-869 CG EDCUUCGU

IBM-856 CH EDCUUCHU

IBM-1115 CL EDCUUCLU

IBM-1380 CM EDCUUCMU

IBM-904 CN EDCUUCNU

IBM-927 CO EDCUUCOU

IBM-1088 CP EDCUUCPU

IBM-951 CQ EDCUUCQU

772 OS/390 V2R8.0 C/C++ Programming Guide

|
|
|

|||

Table 77. UCS-2 Converters (continued)

Codeset Name CC-id UCS-2 source

IBM-942 CR EDCUUCRU

IBM-1386 CV EDCUUCVU

IBM-948 CW EDCUUCWU

IBM-1381 CY EDCUUCYU

IBM-949 CZ EDCUUCZU

IBM-1252 DA EDCUUDAU

IBM-1250 DB EDCUUDBU

IBM-1251 DE EDCUUDEU

IBM-1256 DF EDCUUDFU

IBM-1253 DG EDCUUDGU

IBM-1255 DH EDCUUDHU

IBM-950 DW EDCUUDWU

IBM-946 DY EDCUUDYU

IBM-037 EA EDCUUEAU

IBM-273 EB EDCUUEBU

IBM-274 EC EDCUUECU

IBM-275 ED EDCUUEDU

IBM-277 EE EDCUUEEU

IBM-278 EF EDCUUEFU

IBM-280 EG EDCUUEGU

IBM-282 EI EDCUUEIU

IBM-284 EJ EDCUUEJU

IBM-285 EK EDCUUEKU

IBM-290 EL EDCUUELU

IBM-297 EM EDCUUEMU

IBM-300 EN EDCUUENU

IBM-500 EO EDCUUEOU

IBM-838 EP EDCUUEPU

IBM-870 EQ EDCUUEQU

IBM-871 ER EDCUUERU

IBM-880 ET EDCUUETU

IBM-930 ET EDCUUETU

IBM-939 EV EDCUUEVU

IBM-1026 EW EDCUUEWU

IBM-1027 EX EDCUUEXU

IBM-1047 EY EDCUUEYU

IBM-424 FB EDCUUFBU

IBM-1122 FD EDCUUFDU

IBM-1025 FE EDCUUFEU

IBM-420 FF EDCUUFFU

Chapter 54. Code Set Conversion Utilities 773

Table 77. UCS-2 Converters (continued)

Codeset Name CC-id UCS-2 source

IBM-1112 GD EDCUUGDU

IBM-836 GL EDCUUGLU

IBM-837 GM EDCUUGMU

IBM-835 GO EDCUUGOU

IBM-833 GP EDCUUGPU

IBM-834 GQ EDCUUGQU

IBM-1388 GV EDCUUGVU

IBM-937 GW EDCUUGWU

IBM-935 GY EDCUUGYU

IBM-933 GZ EDCUUGZU

IBM-1140 HA EDCUUHAU

IBM-1141 HB EDCUUHBU

IBM-1142 HE EDCUUHEU

IBM-1143 HF EDCUUHFU

IBM-1144 HG EDCUUHGU

IBM-1145 HJ EDCUUHJU

IBM-1146 HK EDCUUHKU

IBM-1147 HM EDCUUHMU

IBM-1148 HO EDCUUHOU

IBM-1149 HR EDCUUHRU

ISO8859-1 I1 EDCUUI1U

IBM-819 I1 EDCUUI1U

ISO8859-2 I2 EDCUUI2U

IBM-912 I2 EDCUUI2U

ISO8859-4 I4 EDCUUI4U

IBM-914 I4 EDCUUI4U

ISO8859-5 I5 EDCUUI5U

IBM-915 I5 EDCUUI5U

ISO8859-6 I6 EDCUUI6U

IBM-1089 I6 EDCUUI6U

ISO8859-7 I7 EDCUUI7U

IBM-813 I7 EDCUUI7U

ISO8859-8 I8 EDCUUI8U

IBM-916 I8 EDCUUI8U

ISO8859-9 I9 EDCUUI9U

IBM-920 I9 EDCUUI9U

Codeset Conversion Using UCS-2

OS/390 C/C++ iconv supports use of UCS-2 as an intermediate code set for
conversion of characters encoded in one code set to another. The _ICONV_UCS2

774 OS/390 V2R8.0 C/C++ Programming Guide

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

environment variable instructs iconv_open("Y", "X") whether or not to set up
indirect conversion from code set X to code set Y using UCS-2 as an intermediate
code set. Values iconv_open() recognizes for _ICONV_UCS2 are:

1 Set up indirect conversion using UCS-2 first. If this fails, try to set up
direct conversion.

2 Set up direct conversion first. If this fails, try to set up indirect conversion
using UCS-2. This is the default.

O Only set up indirect conversion using UCS-2. If required unconvTable
binaries cannot be found, the iconv_open() request is not successful.

N Never set up indirect conversion using UCS-2. If a direct converter cannot
be found, theiconv_open()

request fails.

Notes:

1. If the value of the _ICONV_UCS2 environment variable allows iconv_open("Y",
"X") to use UCS-2 as an intermediate code set when it cannot find a direct
converter from X to Y, iconv_open() will attempt to do so even if X and Y are
not compatible code sets. That is , even if character sets encoded by X and Y
are not the same, iconv_open() will set up conversion from X to UCS-2 to Y.

2. The application must specify compatible source and target code set names on
various iconv_open() requests. For example, this can be accomplished by using
a code set registry such as is used by DCE to prevent iconv setup for
conversion from incompatible code sets.

UCMAP Source Format

A UCMAP source file defines UCS-2 (Unicode) conversion mappings for input to
the uconvdef command. Conversion mapping values are defined using UCS-2
symbolic character names followed by character encoding (code point) values for
the multibyte code set. For example:

<U0020>
\x20 represents the mapping between the <U0020> UCS-2 symbolic
character name for the space character and the \x20 hexadecimal code
point for the space character in ASCII.

In addition to the code set mappings, directives are interpreted by the uconvdef
command to produce the compiled table. These directives must precede the code
set mapping section. They consist of the following keywords surrounded by <>
(angle brackets), starting in column 1, followed by white space and the value to be
assigned to the symbol:

<comment_char>
Character used to denote start of escape sequence. Default escape character
is <number_sign> (#). In ucmap, source shipped by C/370 <percent_sign>
(%) is specified for <comment_char>.

<escape_char>
Character used to denote start of escape sequence. Default escape character
is <backslash> (\). In ucmap source shipped by C/370 <slash> (/) is
specified for <escape_char>.

<code_set_name>
The name of the coded character set, enclosed in quotation marks(″), for
which the character set description file is defined.

Chapter 54. Code Set Conversion Utilities 775

<mb_cur_max>
The maximum number of bytes in a multibyte character. The default value
is 1.

<mb_cur_min>
An unsigned positive integer value that defines the minumum number of
bytes in a character for the encoded character set. The value is less than or
equal to <mb_cur_max>. If not specified, the minimum number is equal to
<mb_cur_max>.

<char_name_mask>
A quoted string consisting of format specifiers for the UCS-2 symbolic
names. This must be a value of AXXXX, indicating an alphabetic character
followed by 4 hexadecimal digits. Also, the alphabetic character must be a
U, and the hexadecimal digits must represent the UCS-2 code point for the
character. An example of a symbolic character name based on this mask is
<U0020> Unicode space character.

<uconv_class>
Specifies the type of the code set. It must be one of the following:

SBCS Single-byte encoding

DBCS Stateless double-byte, single-byte, or mixed encodings

EBCDIC_STATEFUL
Stateful double-byte, single-byte, or mixed encodings

MBCS Stateless multibyte encoding

This type is used to direct uconvdef on the type of table to build. It is also stored
in the table to indicate the type of processing algorithm in the UCS conversion
methods.

<locale>
Specifies the default locale name to be used if locale information is needed.

<subchar>
Specifies the encoding of the default substitute character in the multibyte
code set.

The mapping definition section consists of a sequence of mapping definition lines
preceded by a CHARMAP declaration and terminated by an END CHARMAP
declaration. Empty lines and lines containing <comment_char> in the first column
are ignored.

Symbolic character names in mapping lines must follow the pattern specified in
the <char_name_mask>, except for the reserved symbolic name, <unassigned>,
that indicates the associated code points are unassigned.

Each noncomment line of the character set mapping definition must be in one of
the following formats:
1. ″%s%s%s/n″, <symbolic_name>, <encoding>, <comments>

<U3004> \x81\x57
This format defines a single symbolic character name and a corresponding
encoding.
The encoding part is expressed as one or more concatenated decimal,
hexadecimal, or octal constants in the following formats:
v ″%cd%d″,<escape_char>, <decimal byte value>

776 OS/390 V2R8.0 C/C++ Programming Guide

v ″%cx%x″,<escape_char>,<hexadecimal byte value>
v ″%c%o″,<escape_char>,<octal byte value>

Decimal constants are represented by two or more decimal digits preceded by
the escape character and the lowercase letter d, as in \d97 or \d143.
Hexadecimal constants are represented by two or more hexadecimal digits
preceded by an escape character and the lowercase letter x, as in \x61 or \x8f.
Octal constants are represented by two or more octal digits preceded by an
escape character.

Each constant represents a single—byte value. When constants are concatenated
for multibyte character values, the last value specifies the least significant octet
and preceding constants specify successively more significant octets.

2. ″%s...%s %s %s/n″,<symbolic-
name>,<symbolic_name>,<encoding><comments>
For example:
<U3003><U3006> \x81\x56
This format defines a range of symbolic character names and corresponding
encodings. The range is interpreted as a series of symbolic names formed from
the alphabetic prefix and all the values in the range defined by the numeric
suffixes.
The listed encoding value is assigned to the first symbolic name, and
subsequent symbolic names in the range are assigned corresponding
incremental values. For example, the line:
<U3003>...<U3006> \x81\x56

is interpreted as:
<U3003> \x81\x56
<U3004> \x81\x57
<U3005> \x81\x58
<U3006> \x81\x59

3. ″<unassigned>″%s...%s %s/n″,<encoding>,<comments>
This format defines a range of one or more unassigned encodings. For example,
the line
<unassigned> \x9b...\x9c

is interpreted as:
<unassigned> \x9b <unassigned> \x9c

Chapter 54. Code Set Conversion Utilities 777

778 OS/390 V2R8.0 C/C++ Programming Guide

Chapter 55. Coded Character Set Considerations with Locale
Functions

Each EBCDIC coded character set consists of a mapping of all the available glyphs to
their respective hex encodings and unique Graphic Character Global Identifiers
(GCGIDs). GCGIDs are unique identifiers assigned to each character in the
Unicode standard. A glyph is the printed appearance of a character. Each coded
character set serves one linguistic environment.

There is wide variation among coded character sets: many glyphs do not appear in
all coded character sets, and hexadecimal encodings for some glyphs differ from
one coded character set to another. You may have trouble when you export a file
from a system running in one coded character set to a system running in another.
For example, a left bracket ([) entered under the APL-293 or Open Systems
IBM-1047 coded character set will appear as the capitalized Y-acute (Ý). This occurs
in such common coded character sets as International 500, France 297, Germany
273, and US or Canada 037.

OS/390 C/C++ contains the following extensions to prevent such problems:
v The pragma filetag directive allows you to specify the coded character set that

was used when entering the source files. See “The pragma filetag Directive” on
page 787 for details on this pragma.

v The compiler option locale enables you to tell the compiler what locale to use at
compile time. See “Converting Coded Character Sets at Compile Time” on
page 788 for details on this compiler option.

v The compiler option CONVLIT enables you to change the assumed code page for
string literals. See page 788 for details on this compiler option.

These facilities cause the compiler to respect your code page. Thus, you can enter
source code with what appears to you to be the correct characters, and the
compiler will recognize those characters.

The rest of this chapter discusses other ways to work efficiently in different locales.

Variant Character Detail

The POSIX Portable Character Set (PPCS) identifies the core set of 128 characters
that are needed to write code and to run applications. Of these, 13 characters are
variant among the EBCDIC coded character sets.

“Mappings of 13 PPCS Variant Characters” on page 780 lists these 13 characters. It
also displays their appearance when the Open Systems coded character set
IBM-1047 hexadecimal values are entered on systems where different Country
Extended Coded Character Sets are installed. These hex values are the ones
expected by OS/390 C/C++, and are consistent with the use of the APL-293 coded
character set. Table 79 on page 780 lists the hexadecimal values assigned across
some of the EBCDIC coded character sets for the 13 variant characters from the
PPCS. “Appendix C. OS/390 C/C++ Code Point Mappings” on page 807 gives
more information about the mapping of glyphs. “Appendix A. POSIX Character
Set” on page 797 lists the full PPCS.

© Copyright IBM Corp. 1996, 1999 779

Mappings of 13 PPCS Variant Characters
Table 78. Mappings of 13 PPCS Variant Characters

Character

Open
Systems
Hex Value
(Default)

Open
Systems
IBM-1047
view

APL
IBM-293
view

Inter-
national
IBM-500
view

France
IBM-297
view

Germany
IBM-273
view

US/Can
IBM-037
view

left bracket AD [[Ý Ý Ý Ý

right bracket BD]] ü ˜ ü }

left brace C0 { { { é ä {

right brace D0 } } } è ü }

backslash E0 \ \ \ ç Ö \

circumflex 5F | ¬ | | | ¬

tilde A1 ˜ ˜ ˜ ü . ß ˜

exclamation mark 5A ! !] § Ü !

pound (number) sign 7B # # # £ # #

vertical bar 4F | | ! ! ! |

accent grave 79 v v v µ v v

dollar sign 5B $ $ $ $ $ $

commercial ″at″ 7C @ @ @ á § @

Two tables are available to show the full code—point mappings for Open Systems
coded character set IBM-1047 (Figure 237 on page 807) and for the APL coded
character set IBM-293 (Figure 238 on page 809). Upon examination of those coded
character sets, you will notice that coded character set 1047 is a ″Latinized″ coded
character set IBM-293. All the APL code points have been replaced by Latin 1 code
points, allowing a one-to-one mapping among coded character set IBM-1047 and
all other coded character sets in the Latin 1 group.

Although the official current coded character set for OS/390 C/C++ is now coded
character set IBM-1047 (Open Systems), the coded character set IBM-293 syntax
points are still valid. Those points are the ones with syntactic relevance to the
OS/390 C/C++ compiler. Refer to “Mappings of 13 PPCS Variant Characters” and
“Mappings of Hex Encoding of 13 PPCS Variant Characters” for more information.

Mappings of Hex Encoding of 13 PPCS Variant Characters
Table 79. Mappings of Hex Encoding of 13 PPCS Variant Characters

Character
Name Glyph GCGID

Open
Systems
IBM-
1047
view

APL
IBM-293
view

Inter-
national
500
view

France
297
view

Germany
273
view

US/Canada
037
view

left bracket [SM060000 AD AD 4A 90 63 BA

right
bracket

] SM080000 BD BD 5A B5 FC BB

left brace { SM110000 C0 C0 C0 51 43 C0

right brace } SM140000 D0 D0 D0 54 DC D0

backslash \ SM070000 E0 E0 E0 48 EC E0

780 OS/390 V2R8.0 C/C++ Programming Guide

Table 79. Mappings of Hex Encoding of 13 PPCS Variant Characters (continued)

Character
Name Glyph GCGID

Open
Systems
IBM-
1047
view

APL
IBM-293
view

Inter-
national
500
view

France
297
view

Germany
273
view

US/Canada
037
view

circumflex | SD150000 5F 5F 5F 5F 5F B0

tilde ˜ SD190000 A1 A1 A1 BD 59 A1

exclamation
mark

! SP020000 5A 5A 4F 4F 4F 5A

pound
(number)
sign

SM010000 7B 7B 7B B1 7B 7B

vertical bar | SM130000 4F 4F BB BB BB 4F

accent
grave

v SD130000 79 79 79 A0 79 79

dollar sign $ SC030000 5B 5B 5B 5B 5B 5B

commercial
″at″

@ SM050000 7C 7C 7C 44 B5 7C

Alternate Code Points

All syntactic code points that were supported in previous versions of OS/390
C/C++ will continue to be supported if you are compiling with the nolocale
option.

To be compatible, the vertical bar character is represented by the following two
encodings, providing you are not using a locale compiler option or the nolocale
option:
v X'4F'
v X'6A'

If you do specify the locale option, each of these characters is represented by a
unique value specified in the LC_SYNTAX category of the selected locale.

Coding without Locale Support

To avoid using the locale of the compiler, use a hybrid coded character set. A
hybrid piece of code is in the local coded character set but the syntax is written as if
it were in coded character set IBM-1047.

Using a Hybrid Coded Character Set

You can continue coding in the local coded character set, writing the syntax as if it
were in coded character set IBM-1047. This solution uses the existing behavior of
the compiler, but this method is not ideal for the following reasons:
v The code can be difficult to read and may not even look like C code anymore.
v There may be ambiguities in the code.
v Exporting code to another site can be difficult because the mapping between the

hybrid characters used and the target coded character set may not be exact.

The following example illustrates these difficulties.

Chapter 55. Coded Character Set Considerations with Locale Functions 781

CBC3GCC1:

The code points in “CBC3GCC1”, which have different glyphs in character code set
IBM-273 and APL-293, appear in “CBC3GCC1”, and are described below:

«1¬ This is the code point for the { character. In coded character set 273, this is
the character ä.

/* this has strings in codepage 273 with APL 293 syntax, and is a */
/* pre-locale source file for a user in Germany */
#define MAX_NAMES 20
#define MAX_NAME_LEN 80
#define STR(num) #num
#define SCAN_FORMAT(len) "%"STR(len)"s %"STR(len)"s"

struct NameList ä «1¬
char firstÝMAX_NAME_LEN+1}; «2¬ «3¬
char surnameÝMAX_NAME_LEN+1}; «2¬ «3¬

ü; «4¬
int compareNames(const void *elem1, const void *elem2) ä «1¬
struct NameList *name1 = (struct NameList *) elem1;
struct NameList *name2 = (struct NameList *) elem2;
int surnameComp = strcoll(name1->surname,

name2->surname);
int firstComp = strcoll(name1->first,

name2->first);

return(surnameComp ? surnameComp : firstComp);
ü «4¬

main() ä «1¬

int i, rc, numEntries;
struct NameList curName;
struct NameList nameListÝMAX_NAMES}; «2¬ «3¬

printf("Bitte geben Sie die Namen ein, "
"im Format <Familienname> <Vorname> "
"(Maximum %d Namen!)Ön", «8¬ «5¬
MAX_NAMES);

for (i=0; i<MAX_NAMES; ++i) ä «1¬
printf("Name (oder EOF wenn fertig):Ön"); «5¬
rc = scanf(SCAN_FORMAT(MAX_NAME_LEN),

curName.surname, curName.first);
if (rc Ü= 2) ä «6¬ «1¬

break;
ü «4¬
nameListÝi} = curName; «2¬ «3¬

ü «4¬
numEntries = i+1;
qsort(nameList, numEntries, sizeof(struct NameList),

compareNames);
for (i=0; i<numEntries; ++i) ä «1¬
printf("Name %d:<%s, %s>Ön", i+1, «5¬

nameListÝi}.surname, «2¬ «3¬
nameListÝi}.first); «2¬ «3¬

ü «4¬
i != (MAX_NAMES << sizeof(int)/2); «7¬
return(i);

ü «4¬

Figure 229. Hybrid Coded Character Set Example

782 OS/390 V2R8.0 C/C++ Programming Guide

«2¬ This is the code point for the [character. In coded character set 273, this is
the character Ý.

«3¬ This is the code point for the] character. In coded character set 273, this is
the character }.

«4¬ This is the code point for the } character. In coded character set 273, this is
the character ü.

«5¬ This is the code point for the \ character. In coded character set 273, this is
the character Ö.

«6¬ This is the code point for the ! character. In coded character set 273, this is
the character Ü.

«7¬ This is the code point for the | character. In coded character set 273, this is
the character !. This particular code point mapping is unfortunate because
the | character and the ! character are both valid C syntax characters. Note
that the ! character used in the printf() call at «8¬ will appear as ! on a
terminal displaying in coded character set 273.

Writing Code Using a Hybrid Coded Character Set: “CBC3GCC1” on page 782
illustrates some of the problems with hybrid files. To write this code would require
the following steps:
1. Looking up each variant character in coded character set IBM-1047 to find out

what the compiler expects. For example, OS/390 C/C++ expects the character [
to have a byte value of X'AD'.

2. Determining which glyph is at X'AD' in her own coded character set so that
she can code that character in her application.

3. Always using the appropriate substitution. For example, to obtain a needed [
in Germany, one would look up X'AD' in the German IBM-273 coded character
set, and find the character Ý.

Converting Existing Work

This section describes some issues in conversion and presents some conversions.
We assume that existing source code and libraries cannot be quickly converted
from mixed coded character sets to a common coded character set. A staged
approach is suggested.
v Code your new source in one coded character set, preferably IBM-1047. Tag all

new source files to make them more portable by putting the pragma filetag
directive at the top of each one.

v If you need to interact with existing code, compile your new code using the
locale in which the existing code was written.

v If you want to write code in a coded character set that does not have a
one-to-one mapping to coded character set IBM-1047 (that is, a coded character
set that is not Latin-1), create your own conversion table and compile it with the
genxlt utility. Use your own conversion table with the iconv utility to convert
your source code to coded character set IBM-1047.

Converting Hybrid Code

Existing code that was written in a hybrid coded character set will continue to be
accepted.

Chapter 55. Coded Character Set Considerations with Locale Functions 783

“Appendix G. Converting Code from Coded Character Set IBM-1047” on page 831
shows you a program you can use to convert the hybrid code to another coded
character set.

Writing Source Code in Coded Character Set IBM-1047

There are two reasons why you write source in coded character set IBM-1047.

First, even though OS/390 C/C++ provides support for multiple coded character
sets, other tools may not do so. Tools such as CICS and DB2 may not support
source code in any coded character set other than the default coded character set,
IBM-1047. If you are using these tools, and you write your code in a code page
other than IBM-1047, you will need to use the OS/390 C/C++ iconv utility to
convert your code to coded character set IBM-1047 before you can use the tool.

Second, older versions of the C/370 product do not support source in coded
character sets other than IBM-1047. This makes it difficult to share code with a site
using an older compiler.

Exporting Source Code to Other Sites

This section deals with the exporting of code from one Latin-1 coded character set
to another. That is, it deals with how to write code that will be run in a locale that
uses a different coded character set than the one used to write the source.

The simplest way to export code is to use the iconv() utility to convert each
source file, header file, and data file to the target coded character set, then to send
all files to the target location for compilation. You should ensure that your code
runs with the same locale that it was compiled under before you try running it
with any other locales.
1. Use the pragma filetag directive to tag each source file, header file, and data file.
2. Use message files for all external strings, such as prompts, help screens, and

error messages, to write truly portable code, Convert these strings to the run
time coded character set in your application code.

3. Use the setlocale() function so that the library functions are sensitive to the
run time coded character set.
Be sure that locale-sensitive information, such as decimal points, are displayed
appropriately. Use either nl_langinfo() or localeconv() to obtain this
information.
The setlocale() function does not change the CEE functions under the OS/390
Language Environment in such areas as date, time, currency, and time zones.
Internationalization is specific to OS/390 C/C++ applications. Also, the OS/390
Language Environment CEE callable services do not change the OS/390 C/C++
locales. For a list of these callable services, see the OS/390 Language Environment
Programming Guide.

4. Compile with the locale specifying coded character set IBM-1047.

If you specify locale(″locale-name″), your code will run correctly with libraries
running in the same coded character set. However, if you compile with a different
locale than you run under, you have to ensure that your code has no internal
data, and also that all libraries you use are run time locale sensitive. Consider the
following code fragment:

784 OS/390 V2R8.0 C/C++ Programming Guide

int main() {
setlocale(LC_ALL, "");

...

rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

...

}

For example, if you compile with locale("De_DE.IBM-273"), the square brackets
are converted to the hex values X'63' and X'FC'. If the default locale you then run
under is not ″De_DE.IBM-273″, but instead ″En_US.IBM-1047″, and you have not
used setlocale(), the square brackets will be interpreted as Ä and Ü, and the call
to scanf() will not do what you intended.

If you only need to run your code locally or export it to a site that has your locale
environment, you can solve this problem by coding:
int main() {
setlocale(LC_ALL, __LOCALE__);

...

rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

...

}

This ensures that your code runs with the same locale it was compiled under.
Library functions such as printf(), scanf(), strfmon(), and regcomp() are
sensitive to the current coded character set. The __LOCALE__ macro is described in
“Using Predefined Macros” on page 790.

If you are generating code to export to a site that may not have your locale
environment, you should write your code in IBM-1047.

Coded Character Set Independence in Developing
Applications

To work effectively with the locale functionality, you may need to use functions,
macros, and tools. Here is a summary of the compile-edit work flow, showing
what functions you can use where.

Chapter 55. Coded Character Set Considerations with Locale Functions 785

The highlighted numbers refer to the following functions:

«1¬ Setup. The localedef information (see overview in “Chapter 51.
Customizing a Locale” on page 745 and details in “Locale Source Files” on
page 715).

«2¬ Coded character set of source, header files, and data.

The complier must support the coded character set used to create a source
file so that it will recognize the variant C syntax characters correctly.
v The pragma filetag directive identifies the coded character set of the

source file as well as the library or user’s include files (for an overview
see “The pragma filetag Directive” on page 787)

v Predefined macros __LOCALE__, __FILETAG__, and __CODESET__ (for an
overview see “Using Predefined Macros” on page 790)

v The function setlocale()

«3¬ Coded character set conversion utilities and functions. The coded
character set of a file, or a stream of data, can be converted to another
coded character set using the utilities genxlt and iconv (for an overview
see “Chapter 54. Code Set Conversion Utilities” on page 761; for details see
the OS/390 C/C++ User’s Guide), as well as the functions in the run time
library.

«4¬ Coded character set conversion at compile time is determined by the
compile-time locale and supported by the compile-time options, locale and
nolocale (for an overview see “Converting Coded Character Sets at
Compile Time” on page 788; for details see the OS/390 C/C++ User’s Guide).

«5¬ Run time environment. During run time, the setlocale() function has an
effect on run time functions, such as printf(), scanf(), and regcomp(),
which use variant characters.

Source Set up

Compiler Runtime

Converter

Listings and output files

2

3

1

4

6

5

Figure 230. Compile-Edit, Related to Locale Function

786 OS/390 V2R8.0 C/C++ Programming Guide

«6¬ Listings and output files. The coded character set used to create or to
convert source files may affect listings, preprocessed source code, object
modules, and SYSEVENT files (for an overview see “Working With
Listings and Output Files” on page 792). Your application can, however,
include logic using the following to minimize the impact:
v __LOCALE__, __FILETAG__, and __CODESET__ macros
v Locale functions such as setlocale()

Coded Character Set of Source Code and Header Files

There are four types of locale-related changes that you can make in your source
code:
1. You can tag your source code and other associated files with the pragma filetag

directive to specify the coded character set that was used while entering the
file. Next, run compiles, being sure that all variant characters in your file are
correct.

2. You can use the three new macros: __LOCALE__, __FILETAG__, and __CODESET__.
These OS/390 C/C++ macros expand to provide information about the pragma
filetag directive of the current source, and the locale and target coded character
set used by the compiler at compile time. See the chapter ″Predefined Macros″
in the OS/390 C/C++ Language Reference for more information.

3. You can use the setlocale() function to set the run-time locale to be the same
as the locale used to compile the application. This can be used when your
application contains dependencies on the coded character set, as it would when
comparing constants with external data. Using the macros forces the run-time
locale to be the same as the one used to compile your code.

4. You can use the #pragma convlit suspend and resume to exclude portions of
you code from string literal conversion. See the OS/390 C/C++ User’s Guide for
more details on the CONVLIT compiler option and theOS/390 C/C++ Language
Reference for more details on this #pragma.

The pragma filetag Directive

By using the pragma filetag directive, you may write your programs in any
convenient supported coded character set (see “Appendix D. Locales Supplied with
OS/390 C/C++” on page 809 for a list of coded character set names). The pragma
filetag directive instructs the OS/390 C/C++ compiler how to “read” the source.
As long as you tag the source files, the header files, and all data files (including
messages) with the pragma filetag directive, you keep the information about the
coded character set used to create each source file in the source file itself. This
information can be helpful when moving source files to systems with different
coded character sets. Here is the syntax:

ÊÊ ??=pragma filetag (″ code page name ″) ÊÍ

Here is an example tag that uses the German coded character set IBM-273:
??=pragma filetag("IBM-273")

Because the # character is variant in different coded character sets, you must use
the trigraph ??= instead for the pragma filetag directive.

Chapter 55. Coded Character Set Considerations with Locale Functions 787

The pragma filetag directive specifies the coded character set in which the source or
data was entered. The coded character set specified in the pragma filetag directive
is in effect for the entire source file, but not for any other source file. This also
applies to header files and data files.

The pragma filetag directive may appear at most once per file. It must appear
before the first statement in a program. If encountered elsewhere, a warning
appears and the directive does not change. Comments that contain variant
characters and appear before the directive do not translate.

Attention: If you use the iconv utility on a file tagged with the ??= pragma filetag
directive, you must update the file manually to change the filetag to the correct
converted coded character set. iconv does not update the pragma in source files.

Converting Coded Character Sets at Compile Time

The compile option locale enables you to tell the compiler what locale to use at
compile time; specifically, in what coded character set to generate output. The
output affected consists of:
v Preprocessed source code
v Listings
v Object Module

The syntax is:

ÊÊ locale (″ LOCALE ″)
NOLOCALE

ÊÍ

Further detail on this option is available in the OS/390 C/C++ Language Reference .

You can also control the conversion of string literals in your code by using the
compiler option CONVLIT.

The syntax is:

ÊÊ CONVLIT (″ codepage ″)
NOCONVLIT

ÊÍ

CONVLIT provides a means for changing the assumed code page for character string
literals. For example, if you write your code and use string literals on an ASCII
client machine and then upload to an EBCDIC Server, such as MVS, your string
literals would be converted to EBCDIC. However, if you were to specify the
following when you compiled your code, your string literals would be converted
to an ASCII code page:
CONVLIT(ISO8859-1)

Consider the following example:
/* header.h */
char *text="Hello World";

788 OS/390 V2R8.0 C/C++ Programming Guide

/* test.c */
#pragma convlit(suspend)
#pragma comment (user, "A user comment")

#include <stdio.h>
#include "header.h"
#pragma convlit(resume)

main (){
char *text2 ="Hi There!";

}

When this program is compiled with the CONVLIT (ISO8859-1) option, the string
″Hello World″ will not be converted while the string ″Hi there″ will be converted
to an ASCII string.

Further detail on this option is available in the OS/390 C/C++ User’s Guide.

Examples

To compile a sample file, userid.SORTNAME.C, enter:
CC 'userid.SORTNAME.C' (LOCALE("De_DE.IBM-273")

The compiler recognizes "De_DE.IBM-273" as a valid locale and automatically
converts the source code to coded character set IBM-273, for its own use. The
compiler would then generate listings in the German coded character set 273.

Here are the input files that are affected:
v The primary source file
v Library header files
v User header files

To generate a preprocessed file that can be sent to other sites, that use different
coded character sets, enter:
CC 'userid.SORTNAME.C' (LOCALE("De_DE.IBM-273") PPONLY

The compiler will insert the pragma filetag directive at the start of the preprocessed
file, using the coded character set specified in the locale option. In this example,
??=pragma filetag("IBM-273") is inserted.

Since the preprocessed file has been tagged, it can be compiled using the OS/390
C/C++ compiler at any site, regardless of the locale used.

Usage

If no pragma filetag directive was specified for the source file, and the locale
compile-time option is used, no conversion is performed. The compiler assumes
that the file is in the correct target coded character set already.

The locale-name is a string that represents the locale you want to compile source
with; this will determine the characteristics of output, including the coded
character set used for variant characters in the source. Usually, a locale-name
consists of two components: the territory name and the coded character set. For
example, the German locale for coded character set 273 is De_DE.IBM-273. The
territory name is De_DE and the coded character set is IBM-273. To determine the coded
character set of a given locale, use the function nl_langinfo(CODESET).

Chapter 55. Coded Character Set Considerations with Locale Functions 789

The special locale-name "" gives you the default locale, which can be set using
environment variables. The locale name "C" specifies the C default locale. Full
details about the C locale are found in “Chapter 53. Definition of S370 C, SAA C,
and POSIX C Locales” on page 753.

The default option setting is nolocale. It instructs the compiler to do no conversion
of text for input or for output. With nolocale, no conversion is performed on
source files being read. A warning message is issued if a pragma filetag directive is
encountered.

You can create your own locales by using the localedef utility. See “Locale Source
Files” on page 715 for details.

Summary of Source and Compile Use

The following list shows the results from different combinations of the pragma
filetag directive and the locale compiler option.

locale option specified
In this case, the compiler does the following:
v Converts the source code from the coded character set specified with the

pragma filetag directive to the code set specified by the locale option.
v If no pragma filetag directive is specified, the compiler assumes the

source is in the same coded character set as specified by the locale, and
does not perform any conversion.

v Converts compiler error messages from coded character set IBM-1047 to
the coded character set specified in the locale option.

v Generates compiler output in the same coded character set as that of the
locale specified in the locale option.

v Inserts the pragma filetag directive, using the coded character set
specified in the locale option, at the start of the preprocessor file, if
PPONLY is specified.

nolocale option specified
In this case, the compiler does the following:
v Does not convert text in the input or output file, and uses the default

coded character set IBM-1047 to interpret syntactic characters.
v If a pragma filetag directive is specified, the compiler suppresses the

pragma filetag directive in the preprocessor file. The compiler issues
warnings if the pragma filetag directive specifies a coded character set
other than IBM-1047, and uses IBM-1047 anyway.

Using Predefined Macros

There are three macros for OS/390 C/C++ that relate to locale.

__LOCALE__
This macro expands to a string literal representing the locale of the locale
compile option. This macro can be used to set the run time locale to be the
same as the compiled locale:
main() {
setlocale(LC_ALL, __LOCALE__);

...

}

790 OS/390 V2R8.0 C/C++ Programming Guide

The value of this macro is defined per compilation. If no locale compile
option was supplied, the macro is undefined.

__FILETAG__
This macro expands to a string literal representing the character coded
character set of the pragma filetag directive associated with the current file. For
example, to convert to the coded character set specified by the locale option
from the coded character set specified by the pragma filetag directive, you
would use the iconv_open() function:
iconv_open(__FILETAG__,variable);

The value of this macro is defined per source file. If no pragma filetag directive
is present, the macro is undefined.

__CODESET__
This macro expands to a string literal representing the character coded
character set of the locale compile option. If a value was not supplied at
compilation, the macro is undefined.

CBC3GCC2:

#include <iconv.h>
#include <string.h>
#include <stdio.h>

/* The following function could be in a header file */
#ifdef __CODESET__
static int convstr(iconv_t convInfo, char *in, int inSize,

char *out, int outSize) {
return(iconv(convInfo, in, inSize, out, outSize))

}
#else
static int convstr(iconv_t convInfo, char *in, int inSize,

char *out, int outSize) {
memcpy(out, in, outSize > inSize ? inSize : outSize);
return(outSize > inSize ? -1 : 0);

}
#endif

iconv_t convInfo;

int main() {
#ifdef __CODESET__
char *run-timeCodeSet;
setlocale(LC_ALL, ""); /* set locale to default locale */
run-timeCodeSet = nl_langinfo(CODESET);
convInfo = iconv_open(run-timeCodeSet, __CODESET__);

#endif
char intro[] = "Welcome to my variant world!\n";
char nlIntro[sizeof(intro)];
convstr(convInfo, intro, sizeof(intro),

nlIntro, sizeof(nlIntro));
puts(nlIntro); /* string will print appropriately */

#ifdef __CODESET__
iconv_close(convInfo);

#endif

return(0);
}

Figure 231. Example of __CODESET__ macro

Chapter 55. Coded Character Set Considerations with Locale Functions 791

The following illustration shows the values that these macros will take on,
emphasizing that for __FILETAG__, a value is assigned for each source file, but for
__LOCALE__ and __CODESET__, a value is assigned for a compilation.

Using a Predefined Locale

You can change the run time localeto any one of the other predefined locales
listed in Table 80 on page 810 To use a defined locale, refer to it by its setlocale()
parameter.

To define a new locale, copy the source file provided, edit it, and assemble it (see
“Chapter 51. Customizing a Locale” on page 745).

Working With Listings and Output Files

The compiler respects the locale specified by the locale compile option in
generating the listing. If the nolocale compile option is in effect, no locale
information is used and no conversion is performed on any of the output files.

The output files affected are:
v Object Modules
v Preprocessed source code

Assuming: Compiled source file with LOCALE("De_DE.IBM-273")

PRIMARY SOURCE FILE

#include <stdio.h>
.
.
.
.
.
.
.

#include "usrfile1.h"
.
.
.
.

#include "usrfile2.h"
.

STDIO.H

USRFILE1.H

USRFILE2.H

??=pragma filetag("IBM-1047")
...........

...........

??=pragma filetag("IBM-273")
...........

For the entire compilation: __LOCALE__ = "De_DE.IBM273"
__CODESET__ = "IBM-273"

In STDIO.H: __FILETAG__ = "IBM-1047"

In USRFILE1.H: __FILETAG__ is undefined

In USRFILE@.H: __FILETAG__ = "IBM-273"

Figure 232. Values of Macros __FILETAG__, __LOCALE__, and __CODESET__

792 OS/390 V2R8.0 C/C++ Programming Guide

v Listings

Object Modules

If the locale option is specified, the object module is generated in the coded
character set of your current locale. Otherwise, the object module is generated in
the coded character set IBM-1047.

Code will run correctly if the run time locale is the same as the locale of the object
module.

If the object was generated with a different locale from the one you run under, you
must ensure that your code can run under different locales. Refer to “Chapter 51.
Customizing a Locale” on page 745 for more information.

For information about exporting code to other sites, see “Exporting Source Code to
Other Sites” on page 784.

You can use the compile option locale to ensure that listings are sensitive to a
specified locale. For example, here is the result from compiling the source file
HELLO with:
CC HELLO (LIST SOURCE LOCALE("De_DE.IBM-273")

5647A01 V2 R4 M00 OS/390 C <1> 'TS12345.C.SOURCE(HELLO)'
«1¬26.06.96 10:11:59 Page 1

* * * * * P R O L O G * * * * *

Compile Time Library : 22040000
Command options:

Program name. : 'TS12345.C.SOURCE(HELLO)'
Compiler options. : *NOGONUMBER *NOALIAS *NODECK *NORENT *TERMINAL *NOUPCONV *SOURCE *LIST

: *NOXREF *NOAGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM

: *NOLONGNAME *START *EXECOPS *ARGPARSE *NOEXPORTAL *NODLL(NOCALLBACKANY)

: *NOLIBANSI *NOSIZEOF *REDIR *ANSIALIAS
: *TUNE(2) *ARCH(0) *SPILL(128)*MAXMEM(2097152)
: *TARGET(LE) *FLAG(I) *NOTEST(SYM,BLOCK,LINE,PATH,HOOK) *NOOPTIMIZE
: *NOINLINE(AUTO,NOREPORT,100,1000) *NESTINC(255)
: *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,NOEXTERN,TRUNC,INIT,NOPORT,GENERAL)
: *NOCSECT
: *NOEVENTS
: *OBJECT
: *NOGENPCH
: *NOUSEPCH
: *NOOPTFILE
: *NOSERVICE
: *NOOE
: *NOIPA
: *NOSEARCH
: *NOLSEARCH
: *LOCALE *HALT(16) *PLIST(HOST)

Language level. : *EXTENDED
Source margins. :
Varying length. : 1 - 32767
Fixed length. : 1 - 72

Sequence columns. :
Varying length. : none
Fixed length. : 73 - 80

Locale Name : DE_DE.IBM-273«2¬
Code Set. : IBM-273

5647A01 V2 R4 M00 OS/390 C 'TS12345.C.SOURCE(HELLO)'
26.06.96 10:11:59 Page 2

* * * * * S O U R C E * * * * *

LINE STMT
SEQNBR INCNO

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..
1 |??=pragma filetag("IBM-1047") | 1
2 |#include <stdio.h> | 2
3 | | 3
4 |void main() ä | 4
5 1 | printf("helloÖn"); | 5
6 |ü | 6

* * * * * E N D O F S O U R C E *
* * * *

Figure 233. Example of Output When Locale Option Used

Chapter 55. Coded Character Set Considerations with Locale Functions 793

In the listing above, notice the locale-specific information:

«1¬ The date at the top right. The format of the date in the listing is that
specified by the locale.

«2¬ The name of the locale and the code set.

Considerations With Other Products and Tools

Note: Any software tool that scans source code or compiler listings is affected by
the introduction of the locale functionality. Tools that read or generate
source code now need to recognize the pragma filetag directive. Tools that
read listings need to recognize the coded character set in the title header.

Since the following tools scan source code, they may be affected:
v The Debug Tool does not support code written in any coded character set other

than IBM-1047.
v Translators such as CICS and DB2 read source files and generate new source

files. If they do not, then follow these steps:
1. Convert the source file to coded character set IBM-1047 using the iconv

utility.
2. Remove the pragma filetag directive from the source file, or change it to

??=pragma filetag("IBM-1047"). Run the source that is in the IBM-1047
coded character set through the appropriate translator, if needed.

794 OS/390 V2R8.0 C/C++ Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1996, 1999 795

796 OS/390 V2R8.0 C/C++ Programming Guide

Appendix A. POSIX Character Set

POSIX 1003.2, section 2.4, specifies the characters that are in the portable character
set. The following table lists the characters in the portable character set with their
symbolic name, the GCGID, and the graphic symbol for the character. Some of the
characters (the hyphen, for example) also have alternate symbolic names.

The input files for the localedef utility, the charmap file and the locale definition
file, are coded using the characters in the portable character set.

Symbolic Name Alternate Name Character

<NUL>

<alert> <SE08>

<backspace> <SE09>

<tab> <SE10>

<newline> <SE11>

<vertical-tab> <SE12>

<form-feed> <SE13>

<carriage-return> <SE14>

<space> <SP01>

<exclamation-mark> <SP02> !

<quotation-mark> <SP04> "

<number-sign> <SM01> #

<dollar-sign> <SC03> $

<percent-sign> <SM02> %

<ampersand> <SM03> &

<apostrophe> <SP05> '

<left-parenthesis> <SP06> (

<right-parenthesis> <SP07>)

<asterisk< <SM04> *

<plus-sign> <SA01> +

<comma> <SP08> ,

<hyphen> <SP10> -

<hyphen-minus> <SP10> -

<period> <SP11> .

<slash> <SP12> /

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

© Copyright IBM Corp. 1996, 1999 797

Symbolic Name Alternate Name Character

<six> <ND06> 6

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<colon> <SP13> :

<semicolon> <SP14> ;

<less-than-sign> <SA03> <

<equals-sign> <SA04> =

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<commercial-at> <SM05> @

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<left-square-bracket> <SM06> [

<backslash> <SM07> \

<reverse-solidus> <SM07> \

<right-square-bracket> <SM08>]

798 OS/390 V2R8.0 C/C++ Programming Guide

Symbolic Name Alternate Name Character

<circumflex> <SD15> |

<circumflex-accent> <SD15> |

<underscore> <SP09> _

<low-line> <SP09> _

<grave-accent> <SD13> v

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

<left-brace> <SM11> {

<left-curly-bracket> <SM11> {

<vertical-line> <SM13> |

<right-brace> <SM14> }

<right-curly-bracket> <SM14> }

<tilde> <SD19> ˜

With OS/390 C/C++, the localedef utility uses code page IBM-1047 as the
definition of the code points for the characters in the Portable Character Set.
Therefore the default values for the escape-char and comment-char are the code
points from the IBM-1047 code page.

Appendix A. POSIX Character Set 799

There are some coded character sets, such as the Japanese Katakana coded
character set 290, that have code points for the lowercase characters different from
the code points for the lowercase characters in the set IBM-1047. A charmap file or
locale definition file cannot be coded using these coded character sets.

800 OS/390 V2R8.0 C/C++ Programming Guide

Appendix B. Mapping Variant Characters for OS/390 C/C++

This appendix describes how you can enter and display the variant characters.
These characters include square brackets ([]) and the caret character (|) for the
host environment. If you use a programmable workstation or a 3270 terminal, you
can follow the documented procedures to map the keys on your keyboard.
Remapping will send the correct variant character hexadecimal values to the host
system for the OS/390 C/C++ compiler.

«1¬ See the OS/390 C/C++ User’s Guide for more information on this utility. «2¬See
“Displaying Square Brackets When Using ISPF” on page 804 for more information
on variant characters.

Note: If you are running a programmable workstation by using host emulation
software, apply your host emulation software’s keyboard by remapping first.
If this allows correct hexadecimal values for the variant characters sent to
the host, then you have completed the task.

Displaying Hexadecimal Values

To ensure that your current keys generate correct hexadecimal values for the
OS/390 C/C++ compiler and its library, use the following program to show the
hexadecimal values on the display. This program displays the hexadecimal values
for the variant characters that your current setup uses, and the values that the
compiler and library expect.

Note: See the appropriate section of the OS/390 C/C++ User’s Guide for information
on the LOCALE|NOLOCALE option and the list of IBM-supported locales
available for use at compile time or run time. The default C locale is
encoded in code page IBM-1047; therefore the default encoding of variant
characters is as in IBM-1047.

Compile and run sample program
in Displaying Hexadecimal Values.
View hexadecimal values for the
variant characters.

Keyed in hex values match those
used by the compiler.

Use iconv() to convert your source coded
character set to IBM-1047 which the compiler
recognizes by default.

Use EDIT session to correct variant characters.

NO

YES
Done

Apply one
of the

following: 1

2

Figure 234. Variant Characters

© Copyright IBM Corp. 1996, 1999 801

Example

The sample program reads the ten characters from the input file MYFILE.DAT and
displays the character values in hexadecimal notation. The program also queries
the current compile time locale for the character values that compiler would
expect. These ten variant characters are selected because they are syntactically
important to the OS/390 C/C++ compiler. You must type them in MYFILE.DAT in
this order on a single line, without spaces between them:
v backslash \
v right square bracket]
v left square bracket [
v right brace }
v left brace {
v circumflex |
v tilde ˜
v exclamation mark !
v number sign #
v vertical line |

You can use the sample program to display the character values and then reset
your environment. This will generate the codes as shown in the column EXPECTED
BY COMPILER. After re-editing your input file, you can run this program again.
Consult your system programmer for the coded character set that your installation
uses. If you are running under TSO, the data file containing the ten variant
characters is TSOid.myfile.dat. Assign this file to SYSIN and run the program.

CBC3GMV1

/* this example will display hexadecimal values for the variant */
/* characters */

#include <stdio.h>
#include <locale.h>
#include <variant.h>
#include <stdlib.h>

Figure 235. Example of Displaying Hexadecimal Values (Part 1 of 2)

802 OS/390 V2R8.0 C/C++ Programming Guide

void read_user_data(char *, int);

void main() {
char *user_char, *compiler_char;

struct variant *compiler_var_char;
int num_var_char, index;
char *code_set;
char *char_names[]={"backslash",

"right bracket",
"left bracket",
"right brace",
"left_brace",
"circumflex",
"tilde",
"exclamation mark",
"number sign",
"vertical line"};

num_var_char=sizeof(char_names)/sizeof(char *);
if ((user_char=(char*)calloc(num_var_char, 1)) == NULL)
{
printf("Error: Unable to allocate the storage\n");
exit(99);

}

read_user_data(user_char, num_var_char);
/* managed to read the users' characters from the file */

code_set="default IBM-1047";
compiler_char="\xe0\xbd\xad\xd0\xc0\x5f\xa1\x5a\x7b\x4f";

/* standard compiler code page */

printf("Compiler and library code page is : %s\n\n", code_set);
printf(" Variant character values:\n");
printf(" %16s expected by compiler your current\n", "");
for (index=0; index<num_var_char; index++)
printf(" %16s : %X %X\n",

char_names[index], compiler_char[index], user_char[index]);
exit(0);

}

void read_user_data(char* char_array, int num_var_char)
{
FILE *stream;
int num;

if (stream = fopen ("myfile.dat", "rb"))
if(!(num = fread(char_array, 1, num_var_char, stream)))
{
printf("Error: Unable to read from the file\n");
exit(99);

}
else { ;}

else
{
printf("Error: Unable to open the file\n");
exit(99);

}
fclose(stream);
return;

}

Figure 235. Example of Displaying Hexadecimal Values (Part 2 of 2)

Appendix B. Mapping Variant Characters for OS/390 C/C++ 803

After executing this program, use the procedures described above to ensure that
your special characters on the keyboard generate the hexadecimal values expected
by the OS/390 C/C++ compiler.

Using pragma Filetag To Specify Code Page in C

Add the following pragma filetag in the source and header file to specify that the
code page encodes the file:
??=ifdef __COMPILER_VER__
??=pragma filetag ("codepage")

??=endif

codepage is the codepage in which the source code is written.

Note: If you are running standard 3270 emulation in the U.S., your workstation
software most likely uses code page 37. You can then use this alternative by
specifying IBM-037 as codepage.

Displaying Square Brackets When Using ISPF

When your workstation is sending correct hexadecimal values for the square
brackets to the host system, you may still find that they are not correctly displayed
by the ISPF editor when you key them in. The following sample ISPF macro can be
used to view the [and] characters in text, trigraph, or hex form. You can then
toggle between the three settings. Include this macro in a regular CLIST library
that is concatenated to the ddname SYSPROC.

804 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GMV2

Using The CBC3GMV2 Macro

Follow these steps to use the CBC3GMV2 macro:
1. Remap your host emulation software keyboard. If this does not enable correct

display of [and] on ISPF, try this macro.

/* this ISPF macro can be used to display square brackets in different
/* formats

PROC 0
ISREDIT MACRO

SET RP = &STR())
/* Symbolic values for 6 C language symbols.
/* 1. left bracket, ebcdic hex value
/* 2. right bracket, ebcdic hex value
/* 3. left bracket, trigraph
/* 4. right bracket, trigraph
/* 5. left bracket, square
/* 6. right bracket, square

SET LBRACKET_HEX = X'AD'
SET RBRACKET_HEX = X'BD'
SET LBRACKET_TRI = &STR(??(
SET RBRACKET_TRI = &STR(??&RP)
SET LBRACKET_SQR = X'BA' /* LBRACKET_SQR = HEX BA */
SET RBRACKET_SQR = X'BB' /* RBRACKET_SQR = HEX BB */

ISREDIT FIND &LBRACKET_HEX ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_HEX ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED HEX BRACKETS
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_HEX &LBRACKET_TRI ALL NX
ISREDIT CHANGE &RBRACKET_HEX &RBRACKET_TRI ALL NX
EXIT

END

ISREDIT FIND &LBRACKET_TRI ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_TRI ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED TRIGRAPH
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_TRI &LBRACKET_SQR ALL NX
ISREDIT CHANGE &RBRACKET_TRI &RBRACKET_SQR ALL NX
EXIT

END

ISREDIT FIND &LBRACKET_SQR ALL NX
ISREDIT (N1) = FIND_COUNTS
ISREDIT FIND &RBRACKET_SQR ALL NX
ISREDIT (N2) = FIND_COUNTS
IF (&N1 ¬= &N2) THEN WRITEUNBALANCED SQUARE BRACKETS
IF (&N1 > 0) THEN DO

ISREDIT CHANGE &LBRACKET_SQR &LBRACKET_HEX ALL NX
ISREDIT CHANGE &RBRACKET_SQR &RBRACKET_HEX ALL NX
EXIT

END

Figure 236. Sample ISPF Macro for Displaying Square Brackets

Appendix B. Mapping Variant Characters for OS/390 C/C++ 805

2. Start ISPF to edit the C or C++ source file.
3. Run the CBC3GMV2 macro before editing to convert the compiler recognizable

hexadecimal values of the square brackets to trigraphs.
4. Run the CBC3GMV2 macro again to convert the trigraphs to displayable

characters.
5. Edit your C or C++ source code.
6. Run the CBC3GMV2 macro again to convert the displayable characters back to

original hexadecimal values.
7. Save and File the C source file.

Procedure for Mapping on 3279

Follow this procedure if you are using a 3279-S3G-1 with ISPF, OS/390 batch, or
TSO. You should have the APL keys on your keyboards.
v Go to ISPF 0.1 and set the terminal type to 3278A.
v Edit the file which has the square brackets.

When you want to enter brackets [or] , press ALT APLon, enter the square
brackets and then ALT APLoff. You get = X'AD', and = X'BD', which is what
OS/390 C/C++ expects for square brackets.

806 OS/390 V2R8.0 C/C++ Programming Guide

Appendix C. OS/390 C/C++ Code Point Mappings

The tables below show the code point mappings for Latin-1/Open Systems coded
character set 1047 (Figure 237) and for the APL coded character set 293 (Figure 238
on page 809).

Code Page 01047

Figure 237. Coded Character Set for Latin 1/Open Systems

© Copyright IBM Corp. 1996, 1999 807

808 OS/390 V2R8.0 C/C++ Programming Guide

Appendix D. Locales Supplied with OS/390 C/C++

The following table lists the compiled locales supported by default with the
OS/390 C/C++ product. All of these locale files are provided with the National
Language Resources feature of OS/390 Language Environment. Consult your
system programmer to determine whether they have been installed.

Note: Not all locales listed in the following table are fully enabled. The compiler
cannot compile source that is coded in Ja_JP.IBM-290, Ja_JP.IBM-930, or
Tr_TR.IBM-1026.

The table lists each setlocale() parameter and its corresponding language,
country, codeset, and actual program name. The S370 C, POSIX C and SAA C locales
do not have locale modules associated with them. They are built-in locales that
cannot be modified, and are always present. Their names cannot be changed. These
locales are based on the coded character set IBM-1047. The new versions of the

Code Page 00293

Figure 238. Coded Character Set for APL

© Copyright IBM Corp. 1996, 1999 809

POSIX C and SAA C locales can be provided, but to refer to them, you must specify
the full name of the requested locale, including the CodesetRegistry-
CodesetEncoding names. For example,
"SAA.IBM-037"

refers to the SAA C locale built from the coded character set IBM-037.

Table 80. Compiled locales supplied with OS/390 C/C++

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Bg_BG.IBM-1025 Bulgarian Bulgaria IBM-1025 EDC$BGFE

Cs_CZ.IBM-870 Czech Czech Republic IBM-870 EDC$CZEQ

Da_DK.IBM-277 Danish Denmark IBM-277 EDC$DAEE

Da_DK.IBM-1047 Danish Denmark IBM-1047 EDC$DAEY

Da_DK.IBM-1142 Danish Denmark IBM-1142 EDC$DAHE

Da_DK.IBM-1142@euro Danish Denmark IBM-1142 EDC@DAHE

De_CH.IBM-500 German Switzerland IBM-500 EDC$DCEO

De_CH.IBM-1047 German Switzerland IBM-1047 EDC$DCEY

De_CH.IBM-1148 German Switzerland IBM-1148 EDC$DCHO

De_CH.IBM-1148@euro German Switzerland IBM-1148 EDC@DCHO

De_DE.IBM-273 German Germany IBM-273 EDC$DDEB

De_DE.IBM-1047 German Germany IBM-1047 EDC$DDEY

De_DE.IBM-1141 German Germany IBM-1141 EDC$DDHB

De_DE.IBM-1141@euro German Germany IBM-1141 EDC@DDHB

El_GR.IBM-875 Ellinika Greece IBM-875 EDC$ELES

En_GB.IBM-285 English United Kingdom IBM-285 EDC$EKEK

En_GB.IBM-1047 English United Kingdom IBM-1047 EDC$EKEY

En_GB.IBM-1146 English United Kingdom IBM-1146 EDC$EKHK

En_GB.IBM-1146@euro English United Kingdom IBM-1146 EDC@EKHK

En_JP.IBM-1027 English Japan IBM-1027 EDC$EJEX

En_US.IBM-037 English United States IBM-037 EDC$EUEA

En_US.IBM-1047 English United States IBM-1047 EDC$EUEY

En_US.IBM-1140 English United States IBM-1140 EDC$EUHA

En_US.IBM-1140@euro English United States IBM-1140 EDC@EUHA

Es_ES.IBM-284 Spanish Spain IBM-284 EDC$ESEJ

Es_ES.IBM-1047 Spanish Spain IBM-1047 EDC$ESEY

Es_ES.IBM-1145 Spanish Spain IBM-1145 EDC$ESHJ

Es_ES.IBM-1145@euro Spanish Spain IBM-1145 EDC@ESHJ

Et_EE.IBM-1122 Estonian Estonia IBM-1122 EDC$EEFD

Fi_FI.IBM-278 Finnish Finland IBM-278 EDC$FIEF

Fi_FI.IBM-1047 Finnish Finland IBM-1047 EDC$FIEY

Fi_FI.IBM-1143 Finnish Finland IBM-1143 EDC$FIHF

Fi_FI.IBM-1143@euro Finnish Finland IBM-1143 EDC@FIHF

Fr_BE.IBM-500 French Belgium IBM-500 EDC$FBEO

810 OS/390 V2R8.0 C/C++ Programming Guide

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 80. Compiled locales supplied with OS/390 C/C++ (continued)

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Fr_BE.IBM-1047 French Belgium IBM-1047 EDC$FBEY

Fr_BE.IBM-1148 French Belgium IBM-1148 EDC$FBHO

Fr_BE.IBM-1148@euro French Belgium IBM-1148 EDC@FBHO

Fr_CA.IBM-037 French Canada IBM-037 EDC$FCEA

Fr_CA.IBM-1047 French Canada IBM-1047 EDC$FCEY

Fr_CA.IBM-1140 French Canada IBM-1140 EDC$FCHA

Fr_CA.IBM-1140@euro French Canada IBM-1140 EDC@FCHA

Fr_CH.IBM-500 French Switzerland IBM-500 EDC$FSEO

Fr_CH.IBM-1047 French Switzerland IBM-1047 EDC$FSEY

Fr_CH.IBM-1148 French Switzerland IBM-1148 EDC$FSHO

Fr_CH.IBM-1148@euro French Switzerland IBM-1148 EDC@FSHO

Fr_FR.IBM-297 French France IBM-297 EDC$FFEM

Fr_FR.IBM-1047 French France IBM-1047 EDC$FFEY

Fr.FR.IBM-1147 French France IBM-1147 EDC$FFHM

Fr.FR.IBM-1147@euro French France IBM-1147 EDC@FFHM

Hr_HR.IBM-870 Croatian Croatia IBM-870 EDC$HREQ

Hu_HU.IBM-870 Hungarian Hungary IBM-870 EDC$HUEQ

Is_IS.IBM-871 Icelandic Iceland IBM-871 EDC$ISER

Is_IS.IBM-1047 Iceland Iceland IBM-1047 EDC$ISEY

Is_IS.IBM-1149 Icelandic Iceland IBM-1149 EDC$ISHR

Is_IS.IBM-1149@euro Icelandic Iceland IBM-1149 EDC@ISHR

It_IT.IBM-280 Italian Italy IBM-280 EDC$ITEG

It_IT.IBM-1047 Italian Italy IBM-1047 EDC$ITEY

It_IT.IBM-1144 Italian Italy IBM-1144 EDC$ITHG

It_IT.IBM-1144@euro Italian Italy IBM-1144 EDC@ITHG

Iw_IL.IBM-424 Hebrew Israel IBM-424 EDC$ILFB

Ja_JP.IBM-290 Japanese Japan IBM-290 EDC$JAEL

Ja_JP.IBM-930 Japanese Japan IBM-930 EDC$JAEU

Ja_JP.IBM-939 Japanese Japan IBM-939 EDC$JAEV

Ja_JP.IBM-1027 Japanese Japan IBM-1027 EDC$JAEX

Ko_KR.IBM-933 Korean Korea IBM-933 EDC$KRGZ

Lt_LT.IBM-1112 Lithuanian Lithuania IBM-1112 EDC$LTGD

Mk_MK.IBM-1025 Macedonian Macedonia IBM-1025 EDC$MMFE

Nl_BE.IBM-500 Dutch Belgium IBM-500 EDC$NBEO

Nl_BE.IBM-1047 Dutch Belgium IBM-1047 EDC$NBEY

Nl_BE.IBM-1148 Dutch Belgium IBM-1148 EDC$NBHO

Nl_BE.IBM-1148@euro Dutch Belgium IBM-1148 EDC@NBHO

Nl_NL.IBM-037 Dutch The Netherlands IBM-037 EDC$NNEA

Nl_NL.IBM-1047 Dutch Netherlands IBM-1047 EDC$NNEY

Appendix D. Locales Supplied with OS/390 C/C++ 811

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 80. Compiled locales supplied with OS/390 C/C++ (continued)

Locale name as in
setlocale() argument Language Country Codeset

Load module
name

Nl_NL.IBM-1140 Dutch Netherlands IBM-1140 EDC$NNHA

Nl_NL.IBM-1140@euro Dutch Netherlands IBM-1140 EDC@NNHA

No_NO.IBM-277 Norwegian Norway IBM-277 EDC$NOEE

No_NO.IBM-1047 Norwegian Norway IBM-1047 EDC$NOEY

No_NO.IBM-1142 Norwegian Norway IBM-1142 EDC$NOHE

No_NO.IBM-1142@euro Norwegian Norway IBM-1142 EDC@NOHE

Pl_PL.IBM-870 Polish Poland IBM-870 EDC$PLEQ

Pt_BR.IBM-037 Portugese Brazil IBM-037 EDC$BREA

Pt_BR.IBM-1047 Portugese Brazil IBM-1047 EDC$BREY

Pt_BR.IBM-1140 Portugese Belgium IBM-1140 EDC$BRHA

Pt_BR.IBM-1140@euro Portugese Belgium IBM-1140 EDC@BRHA

Pt_PT.IBM-037 Portugese Portugal IBM-037 EDC$PTEA

Pt_PT.IBM-1047 Portugese Portugal IBM-1047 EDC$PTEY

Pt_PT.IBM-1140 Portugese Portugal IBM-1140 EDC$PTHA

Pt_PT.IBM-1140@euro Portugese Portugal IBM-1140 EDC@PTHA

Ro_RO.IBM-870 Romanian Romania IBM-870 EDC$ROEQ

Ru_RU.IBM-1025 Russian Russia IBM-1025 EDC$RUFE

Sh_SP.IBM-870 Serbian (Latin) Serbia IBM-870 EDC$SLEQ

Sk_SK.IBM-870 Slovak Slovakia IBM-870 EDC$SKEQ

Sl_SL.IBM-870 Slovene Slovenia IBM-870 EDC$SIEQ

Sq_AL.IBM-500 Albanian Albania IBM-500 EDC$SAEO

Sq_AL.IBM-1047 Albanian Albania IBM-1047 EDC$SAEY

Sq_AL.IBM-1148 Albanian Albania IBM-1148 EDC$SAHO

Sq_AL.IBM-1148@euro Albanian Albania IBM-1148 EDC@SAHO

Sr_SP.IBM-1025 Serbian
(Cyrillic)

Serbia IBM-1025 EDC$SCFE

Sv_SE.IBM-278 Swedish Sweden IBM-278 EDC$SVEF

Sv_SE.IBM-1047 Swedish Sweden IBM-1047 EDC$SVEY

Sv_SE.IBM-1143 Swedish Sweden IBM-1143 EDC$SVHF

Sv_SE.IBM-1143@euro Swedish Sweden IBM-1143 EDC@SVHF

th_TH.IBM-838 Thai Thailand IBM-838 EDC$THEP

Tr_TR.IBM-1026 Turkish Turkey IBM-1026 EDC$TREW

Zh_CN.IBM-935 Simplified
Chinese

China (PRC) IBM-935 EDC$ZCGY

Zh_CN.IBM-1388 Simplified
Chinese

China (PRC) IBM-1388 EDC$ZCGV

Zh_TW.IBM-937 Traditional
Chinese

Taiwan (ROC) IBM-937 EDC$ZTGW

812 OS/390 V2R8.0 C/C++ Programming Guide

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

||
|
|||

|||||

|||||

The locale source files are supplied to enable you to build locales in coded
character sets other than those supplied. The locale sources supplied are listed in
the following table. Under MVS, the source files are in a separate partitioned data
set, CEE.SCEELOCX.

The “Applicable Codesets” column indicates which charmap files can be used with
the source files to build the locales. The values in this column indicate the
following:

All The locale source contains only the portable character set and can be used
to build a locale with any of the supplied charmap files.

Latin-1
The locale source contains characters from the Latin-1 character set, and
can be used to build a locale from any of the supplied Latin-1 charmap
files. See “Appendix E. Charmap Files Supplied with OS/390 C/C++” on
page 817 for a list of Latin-1 charmap files.

Other The locale source is specific to the specified coded character set, and can
only be used to build a locale with the specified charmap file.

Table 81. Locale source files supplied with OS/390 C/C++

Language Country Source name Applicable Codesets

POSIX (built-in) EDC$POSX All

SAA (built-in) EDC$SAAC Latin-1

Bulgarian Bulgaria EDC$BGFE IBM-1025

Portugese Brazil EDC$BREY Latin-1

Portuguese Brazil EDC$BRHA IBM-1140

Portuguese Brazil EDC@BRHA IBM-1140

Czech Czech Republic EDC$CZEQ IBM-870

Danish Denmark EDC$DAEY Latin-1

Danish Denmark EDC$DAHE IBM-1142

Danish Denmark EDC@DAHE IBM-1142

German Switzerland EDC$DCEY Latin-1

German Switzerland EDC$DCHO IBM-1148

German Switzerland EDC@DCHO IBM-1148

German Germany EDC$DDEY Latin-1

German Germany EDC$DDHB IBM-1141

German Germany EDC@DDHB IBM-1141

Estonian Estonia EDC$EEFD IBM-1122

English Japan EDC$EJEX IBM-1027

English United Kingdom EDC$EKEY Latin-1

English United Kingdom EDC$EKHK IBM-1146

English United Kingdom EDC@EKHK IBM-1146

Ellinika Greece EDC$ELES IBM-875

Spanish Spain EDC$ESEY Latin-1

Spanish Spain EDC$ESHJ IBM-1145

Spanish Spain EDC@ESHJ IBM-1145

Appendix D. Locales Supplied with OS/390 C/C++ 813

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 81. Locale source files supplied with OS/390 C/C++ (continued)

Language Country Source name Applicable Codesets

English United States EDC$EUEY Latin-1

English United States EDC$EUHA IBM-1140

English United States EDC@EUHA IBM-1140

French Belgium EDC$FBEY Latin-1

French Belgium EDC$FBHO IBM-1148

French Belgium EDC@FBHO IBM-1148

French Canada EDC$FCEY Latin-1

French Canada EDC$FCHA IBM-1140

French Canada EDC@FCHA IBM-1140

French France EDC$FFEY Latin-1

French France EDC$FFHM IBM-1147

French France EDC@FFHM IBM-1147

Finnish Finland EDC$FIEY Latin-1

Finnish Finland EDC$FIHF IBM-1143

Finnish Finland EDC@FIHF IBM-1143

French Switzerland EDC$FSEY Latin-1

French Switzerland EDC$FSHO IBM-1148

French Switzerland EDC@FSHO IBM-1148

Croatian Croatia EDC$HREQ IBM-870

Hungarian Hungary EDC$HUEQ IBM-870

Hebrew Israel EDC$ILFB IBM-424

Iceland Iceland EDC$ISEY Latin-1

Iceland Iceland EDC$ISHR IBM-1149

Iceland Iceland EDC@ISHR IBM-1149

Italian Italy EDC$ITEY Latin-1

Italian Italy EDC$ITHG IBM-1144

Italian Italy EDC@ITHG IBM-1144

Japanese Japan EDC$JAEL IBM-290

Japanese Japan EDC$JAEU IBM-930

Japanese Japan EDC$JAEV IBM-939

Japanese Japan EDC$JAEX IBM-1027

Korean Korea EDC$KRGZ IBM-933

Lithuanian Lithuania EDC$LTGD IBM-1112

Macedonian Macedonia EDC$MMFE IBM-1025

Dutch Belgium EDC$NBEY Latin-1

Dutch Belgium EDC$NBHO IBM-1148

Dutch Belgium EDC@NBHO IBM-1148

Dutch Netherlands EDC$NNEY Latin-1

Dutch Netherlands EDC$NNHA IBM-1140

Dutch Netherlands EDC@NNHA IBM-1140

814 OS/390 V2R8.0 C/C++ Programming Guide

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 81. Locale source files supplied with OS/390 C/C++ (continued)

Language Country Source name Applicable Codesets

Norwegian Norway EDC$NOEY Latin-1

Norwegian Norway EDC$NOHE IBM-1142

Norwegian Norway EDC@NOHE IBM-1142

Polish Poland EDC$PLEQ IBM-870

Portuguese Portugal EDC$PTEY Latin-1

Portuguese Portugal EDC$PTHA IBM-1140

Portuguese Portugal EDC@PTHA IBM-1140

Romanian Romania EDC$ROEQ IBM-870

Russian Russia EDC$RUFE IBM-1025

Albanian Albania EDC$SAEY Latin-1

Albanian Albania EDC$SAHO IBM-1148

Albanian Albania EDC@SAHO IBM-1148

Serbian (Cyrillic) Serbia EDC$SCFE IBM-1025

Slovene Slovenia EDC$SIEQ IBM-870

Slovak Slovakia EDC$SKEQ IBM-870

Serbian (Latin) Serbia EDC$SLEQ IBM-870

Swedish Sweden EDC$SVEY Latin-1

Swedish Sweden EDC$SVHF IBM-1143

Swedish Sweden EDC@SVHF IBM-1143

Thai Thailand EDC$THEP IBM-838

Turkish Turkey EDC$TREW IBM-1026

Simplified Chinese China (PRC) EDC$ZCGY IBM-935

Simplified Chinese China (PRC) EDC$ZCGV IBM-1388

Traditional Chinese Taiwan (ROC) EDC$ZTGW IBM-937

Appendix D. Locales Supplied with OS/390 C/C++ 815

||||

||||

||||

||||

||||

||||

||||

||||

||||

816 OS/390 V2R8.0 C/C++ Programming Guide

Appendix E. Charmap Files Supplied with OS/390 C/C++

All the locales supplied were built using the appropriate charmap file that
represents the coded character sets described by the CodesetRegistry-
CodesetEncoding element of the locale name.

All of these charmap files are provided with the National Language Resources
feature of OS/390 Language Environment. Consult your system programmer to
determine whether they have been installed.

Under MVS, the charmap files are provided in a separate partitioned data set,
CEE.SCEECMAP. The − sign is converted to the @ character.

The following table lists the coded character set name, which is the same as the
name of the corresponding charmap file, and the national language each code set
represents.

The column marked Latin-1 indicates whether the charmap file is for a coded
character set that contains the Latin-1 character set.

Table 82. Coded character set names and corresponding national languages

Codeset Primary Country/Territory Latin-1

IBM-037 USA, Canada, Brazil Yes

IBM-273 Germany, Austria Yes

IBM-274 Belgium Yes

IBM-277 Denmark, Norway Yes

IBM-278 Finland, Sweden Yes

IBM-280 Italy Yes

IBM-281 Japan (Latin-1) Yes

IBM-282 Portugal Yes

IBM-284 Spain, Latin America Yes

IBM-285 United Kingdom Yes

IBM-290 Japan (Katakana) No

IBM-297 France Yes

IBM-424 Israel No

IBM-500 International Yes

IBM-838 Thailand No

IBM-870 Croatia, Czech Republic,
Hungary, Poland, Romania,
Serbia (Latin), Slovakia,
Slovenia

No

IBM-871 Iceland Yes

IBM-875 Greece No

IBM-930 Japan (Katakana, combined
with DBCS)

No

IBM-933 Korea No

© Copyright IBM Corp. 1996, 1999 817

Table 82. Coded character set names and corresponding national languages (continued)

Codeset Primary Country/Territory Latin-1

IBM-935 China (PRC) No

IBM-937 Taiwan (ROC) No

IBM-939 Japan (Latin, combined with
DBCS)

No

IBM-1025 Bulgaria, Macedonia, Russia,
Serbia (Cyrillic)

No

IBM-1026 Turkey No

IBM-1027 Japan (Latin) extended No

IBM-1047 Latin 1/Open Systems Yes

IBM-1112 Lithuania No

IBM-1122 Estonia No

IBM-1140 USA, Canada, Brazil Yes

IBM-1141 Germany, Austria Yes

IBM-1142 Denmark, Norway Yes

IBM-1143 Finland, Sweden Yes

IBM-1144 Italy Yes

IBM-1145 Spain, Latin America Yes

IBM-1146 United Kingdom Yes

IBM-1147 France Yes

IBM-1148 International Yes

IBM-1149 Iceland Yes

IBM-1388 China (PRC) No

Only the charmap files for IBM-930 and IBM-939 specify <mb_cur_max> as 4 and
include the definition of the double-byte characters. All other charmap files define
the single-byte character sets, and specify the <mb_cur_max> as 1.

Note: The SAA C locale is built with the charmap IBM-1047, but has <mb_cur_max>
set to 4 to maintain compatibility with old releases of C/370.

Any of these charmaps that represent the same character set, even though they
represent different encoding of the same character sets, can be used with any locale
source that uses the same character set, to build a new locale and charmap
combination. See “Chapter 50. Building a Locale” on page 707 for information
about building your own locales.

818 OS/390 V2R8.0 C/C++ Programming Guide

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Appendix F. Examples of Charmap and Locale Definition
Source

Following are examples of the charmap source and locale definition source files.

Charmap File

This example shows the charmap file for the encoded character set IBM-1047.

Charmap File
<code_set_name> "IBM-1047"
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> /
<comment_char> %

CHARMAP
<NUL> /x00
<SOH> /x01
<STX> /x02
<ETX> /x03
<SEL> /x04
<tab> /x05
<HT> /x05
<RNL> /x06
 /x07
<GE> /x08
<SPS> /x09
<RPT> /x0a
<vertical-tab> /x0b
<VT> /x0b
<form-feed> /x0c
<FF> /x0c
<carriage-return> /x0d
<CR> /x0d
<SO> /x0e
<SI> /x0f
<DLE> /x10
<DC1> /x11
<DC2> /x12
<DC3> /x13
<RES> /x14
<newline> /x15
<backspace> /x16
<BS> /x16
<POC> /x17
<CAN> /x18
 /x19
<UBS> /x1a
<CU1> /x1b
<IFS> /x1c % file separator
<IS4> /x1c
<FS> /x1c
<IGS> /x1d % group separator
<IS3> /x1d
<GS> /x1d
<IRS> /x1e % record separator
<IS2> /x1e
<RS> /x1e
<IUS> /x1f % unit separator

© Copyright IBM Corp. 1996, 1999 819

<IS1> /x1f
<US> /x1f
<ITB> /x1f
<DS> /x20
<SOS> /x21
<FS> /x22 % field separator
<WUS> /x23
<BYP> /x24
<LF> /x25
<ETB> /x26
<ESC> /x27
<SA> /x28
<SFE> /x29
<SM> /x2a
<CSP> /x2b
<MFA> /x2c
<ENQ> /x2d
<ACK> /x2e
<alert> /x2f
<BEL> /x2f
<SYN> /x32
<IR> /x33
<PP> /x34
<TRN> /x35
<NBS> /x36
<EOT> /x37
<SBS> /x38
<IT> /x39
<RFF> /x3a
<CU3> /x3b
<DC4> /x3c
<NAK> /x3d
<SUB> /x3f
<space> /x40
<SP01> /x40
<RSP> /x41
<SP30> /x41
<a-circumflex> /x42
<LA15> /x42
<a-diaeresis> /x43
<LA17> /x43
<a-grave> /x44
<LA13> /x44
<a-acute> /x45
<LA11> /x45
<a-tilde> /x46
<LA19> /x46
<a-ring> /x47
<LA27> /x47
<c-cedilla> /x48
<LC41> /x48
<n-tilde> /x49
<LN19> /x49
<cent> /x4a
<SC04> /x4a
<period> /x4b
<SP11> /x4b
<less-than-sign> /x4c
<SA03> /x4c
<left-parenthesis> /x4d
<SP06> /x4d
<plus-sign> /x4e
<SA01> /x4e
<vertical-line> /x4f
<SM13> /x4f
<ampersand> /x50
<SM03> /x50

820 OS/390 V2R8.0 C/C++ Programming Guide

<e-acute> /x51
<LE11> /x51
<e-circumflex> /x52
<LE15> /x52
<e-diaeresis> /x53
<LE17> /x53
<e-grave> /x54
<LE13> /x54
<i-acute> /x55
<LI11> /x55
<i-circumflex> /x56
<LI15> /x56
<i-diaeresis> /x57
<LI17> /x57
<i-grave> /x58
<LI13> /x58
<s-sharp> /x59
<LS61> /x59
<exclamation-mark> /x5a
<SP02> /x5a
<dollar-sign> /x5b
<SC03> /x5b
<asterisk> /x5c
<SM04> /x5c
<right-parenthesis> /x5d
<SP07> /x5d
<semicolon> /x5e
<SP14> /x5e
<circumflex> /x5f
<circumflex-accent> /x5f
<SD15> /x5f
<hyphen> /x60
<hyphen-minus> /x60
<SP10> /x60
<slash> /x61
<SP12> /x61
<A-circumflex> /x62
<LA16> /x62
<A-diaeresis> /x63
<LA18> /x63
<A-grave> /x64
<LA14> /x64
<A-acute> /x65
<LA12> /x65
<A-tilde> /x66
<LA20> /x66
<A-ring> /x67
<LA28> /x67
<C-cedilla> /x68
<LC42> /x68
<N-tilde> /x69
<LN20> /x69
<broken-bar> /x6a
<SM65> /x6a
<comma> /x6b
<SP08> /x6b
<percent-sign> /x6c
<SM02> /x6c
<underscore> /x6d
<SP09> /x6d
<greater-than-sign> /x6e
<SA05> /x6e
<question-mark> /x6f
<SP15> /x6f
<o-slash> /x70
<LO61> /x70
<E-acute> /x71

Appendix F. Examples of Charmap and Locale Definition Source 821

<LE12> /x71
<E-circumflex> /x72
<LE16> /x72
<E-diaeresis> /x73
<LE18> /x73
<E-grave> /x74
<LE14> /x74
<I-acute> /x75
<LI12> /x75
<I-circumflex> /x76
<LI16> /x76
<I-diaeresis> /x77
<LI18> /x77
<I-grave> /x78
<LI14> /x78
<grave-accent> /x79
<SD13> /x79
<colon> /x7a
<SP13> /x7a
<number-sign> /x7b
<SM01> /x7b
<commercial-at> /x7c
<SM05> /x7c
<apostrophe> /x7d
<SP05> /x7d
<equals-sign> /x7e
<SA04> /x7e
<quotation-mark> /x7f
<SP04> /x7f
<O-slash> /x80
<LO62> /x80
<a> /x81
<LA01> /x81
 /x82
<LB01> /x82
<c> /x83
<LC01> /x83
<d> /x84
<LD01> /x84
<e> /x85
<LE01> /x85
<f> /x86
<LF01> /x86
<g> /x87
<LG01> /x87
<h> /x88
<LH01> /x88
<i> /x89
<LI01> /x89
<left-angle-quotes> /x8a
<guillemot-left> /x8a
<SP17> /x8a
<right-angle-quotes> /x8b
<guillemot-right> /x8b
<SP18> /x8b
<eth> /x8c
<LD63> /x8c
<y-acute> /x8d
<LY11> /x8d
<thorn> /x8e
<LT63> /x8e
<plus-minus> /x8f
<SA02> /x8f
<degree> /x90
<SM19> /x90
<j> /x91
<LJ01> /x91

822 OS/390 V2R8.0 C/C++ Programming Guide

<k> /x92
<LK01> /x92
<l> /x93
<LL01> /x93
<m> /x94
<LM01> /x94
<n> /x95
<LN01> /x95
<o> /x96
<LO01> /x96
<p> /x97
<LP01> /x97
<q> /x98
<LQ01> /x98
<r> /x99
<LR01> /x99
<feminine> /x9a
<SM21> /x9a
<masculine> /x9b
<SM20> /x9b
<ae> /x9c
<LA51> /x9c
<cedilla> /x9d
<SD41> /x9d
<AE> /x9e
<LA52> /x9e
<currency> /x9f
<SC01> /x9f
<mu> /xa0
<SM17> /xa0
<tilde> /xa1
<SD19> /xa1
<s> /xa2
<LS01> /xa2
<t> /xa3
<LT01> /xa3
<u> /xa4
<LU01> /xa4
<v> /xa5
<LV01> /xa5
<w> /xa6
<LW01> /xa6
<x> /xa7
<LX01> /xa7
<y> /xa8
<LY01> /xa8
<z> /xa9
<LZ01> /xa9
<exclamation-down> /xaa
<SP03> /xaa
<question-down> /xab
<SP16> /xab
<Eth> /xac
<LD62> /xac
<left-square-bracket> /xad
<SM06> /xad
<Thorn> /xae
<LT64> /xae
<registered> /xaf
<SM53> /xaf
<not> /xb0
<SM66> /xb0
<sterling> /xb1
<SC02> /xb1
<yen> /xb2
<SC05> /xb2
<dot> /xb3

Appendix F. Examples of Charmap and Locale Definition Source 823

<SD63> /xb3
<copyright> /xb4
<SM52> /xb4
<section> /xb5
<SM24> /xb5
<paragraph> /xb6
<SM25> /xb6
<one-quarter> /xb7
<NF04> /xb7
<one-half> /xb8
<NF01> /xb8
<three-quarters> /xb9
<NF05> /xb9
<Y-acute> /xba
<LY12> /xba
<diaeresis> /xbb
<SD17> /xbb
<macron> /xbc
<SM15> /xbc
<right-square-bracket> /xbd
<SM08> /xbd
<acute> /xbe
<SD11> /xbe
<multiply> /xbf
<SA07> /xbf
<left-brace> /xc0
<left-curly-bracket> /xc0
<SM11> /xc0
<A> /xc1
<LA02> /xc1
 /xc2
<LB02> /xc2
<C> /xc3
<LC02> /xc3
<D> /xc4
<LD02> /xc4
<E> /xc5
<LE02> /xc5
<F> /xc6
<LF02> /xc6
<G> /xc7
<LG02> /xc7
<H> /xc8
<LH02> /xc8
<I> /xc9
<LI02> /xc9
<syllable-hyphen> /xca
<SP32> /xca
<o-circumflex> /xcb
<LO15> /xcb
<o-diaeresis> /xcc
<LO17> /xcc
<o-grave> /xcd
<LO13> /xcd
<o-acute> /xce
<LO11> /xce
<o-tilde> /xcf
<LO19> /xcf
<right-brace> /xd0
<right-curly-bracket> /xd0
<SM14> /xd0
<J> /xd1
<LJ02> /xd1
<K> /xd2
<LK02> /xd2
<L> /xd3
<LL02> /xd3

824 OS/390 V2R8.0 C/C++ Programming Guide

<M> /xd4
<LM02> /xd4
<N> /xd5
<LN02> /xd5
<O> /xd6
<LO02> /xd6
<P> /xd7
<LP02> /xd7
<Q> /xd8
<LQ02> /xd8
<R> /xd9
<LR02> /xd9
<one-superior> /xda
<ND011> /xda
<u-circumflex> /xdb
<LU15> /xdb
<u-diaeresis> /xdc
<LU17> /xdc
<u-grave> /xdd
<LU13> /xdd
<u-acute> /xde
<LU11> /xde
<y-diaeresis> /xdf
<LY17> /xdf
<backslash> /xe0
<reverse-solidus> /xe0
<SM07> /xe0
<divide> /xe1
<division> /xe1
<SA06> /xe1
<S> /xe2
<LS02> /xe2
<T> /xe3
<LT02> /xe3
<U> /xe4
<LU02> /xe4
<V> /xe5
<LV02> /xe5
<W> /xe6
<LW02> /xe6
<X> /xe7
<LX02> /xe7
<Y> /xe8
<LY02> /xe8
<Z> /xe9
<LZ02> /xe9
<two-superior> /xea
<ND021> /xea
<O-circumflex> /xeb
<LO16> /xeb
<O-diaeresis> /xec
<LO18> /xec
<O-grave> /xed
<LO14> /xed
<O-acute> /xee
<LO12> /xee
<O-tilde> /xef
<LO20> /xef
<zero> /xf0
<ND10> /xf0
<one> /xf1
<ND01> /xf1
<two> /xf2
<ND02> /xf2
<three> /xf3
<ND03> /xf3
<four> /xf4

Appendix F. Examples of Charmap and Locale Definition Source 825

<ND04> /xf4
<five> /xf5
<ND05> /xf5
<six> /xf6
<ND06> /xf6
<seven> /xf7
<ND07> /xf7
<eight> /xf8
<ND08> /xf8
<nine> /xf9
<ND09> /xf9
<three-superior> /xfa
<ND031> /xfa
<U-circumflex> /xfb
<LU16> /xfb
<U-diaeresis> /xfc
<LU18> /xfc
<U-grave> /xfd
<LU14> /xfd
<U-acute> /xfe
<LU12> /xfe
<eo> /xff
END CHARMAP

CHARSETID
<NUL>...<SUB> 0
<space>...<U-acute> 1
END CHARSETID

The Locale Definition Source File

This example shows the typical locale definition file representing the cultural and
language conventions in the United States of America. For this example
(LC_COLLATE), please note the following:
v The digits (0...9) sort before the letters.
v Upper case and lowercase letters have the same primary sorting weight.
v For each letter, the uppercase letter sorts before the equivalent lowercase letter.

Locale Definition File
escape_char /
comment-char %

%%%%%%%%%%%%%
LC_CTYPE
%%%%%%%%%%%%%

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/
<carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/
<ETX>;<SEL>;<RNL>;;<GE>;<SPS>;<RPT>;<SI>;<SO>;<DLE>;<DC1>;/
<DC2>;<DC3>;<RES>;<POC>;<CAN>;;<UBS>;<CU1>;<IFS>;/
<IGS>;<IRS>;<ITB>;<DS>;<SOS>;<fs>;<WUS>;<BYP>;<LF>;/
<ETB>;<ESC>;<SA>;<SM>;<CSP>;<MFA>;<ENQ>;<ACK>;/
<SYN>;<IR>;<PP>;<TRN>;<NBS>;<EOT>;<SBS>;<IT>;<RFF>;/

826 OS/390 V2R8.0 C/C++ Programming Guide

<CU3>;<DC4>;<NAK>;<SUB>

punct <exclamation-mark>;<quotation-mark>;<number-sign>;<dollar-sign>;/
<percent-sign>;<ampersand>;<apostrophe>;<left-parenthesis>;/
<right-parenthesis>;<asterisk>;<plus-sign>;<comma>;/
<hyphen-minus>;<period>;<slash>;<colon>;<semicolon>;/
<less-than-sign>;<equals-sign>;<greater-than-sign>;/
<question-mark>;<commercial-at>;<left-square-bracket>;/
<backslash>;<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;<left-curly-bracket>;/
<vertical-line>;<right-curly-bracket>;<tilde>

digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>

xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;;<C>;<D>;<E>;<F>;/
<a>;;<c>;<d>;<e>;<f>

blank <space>;<tab>

END LC_CTYPE

%%%%%%%%%%%%%
LC_COLLATE
%%%%%%%%%%%%%

order_start forward;forward

<NUL>
...
<SUB>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen-minus>
<period>
<slash>
<zero>
...
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A> <A>;<A>
 ;
<C> <C>;<C>
<D> <D>;<D>
<E> <E>;<E>
<F> <F>;<F>
<G> <G>;<G>
<H> <H>;<H>

Appendix F. Examples of Charmap and Locale Definition Source 827

<I> <I>;<I>
<J> <J>;<J>
<K> <K>;<K>
<L> <L>;<L>
<M> <M>;<M>
<N> <N>;<N>
<O> <O>;<O>
<P> <P>;<P>
<Q> <Q>;<Q>
<R> <R>;<R>
<S> <S>;<S>
<T> <T>;<T>
<U> <U>;<U>
<V> <V>;<V>
<W> <W>;<W>
<X> <X>;<X>
<Y> <Y>;<Y>
<Z> <Z>;<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a> <A>;<a>
 ;
<c> <C>;<c>
<d> <D>;<d>
<e> <E>;<e>
<f> <F>;<f>
<g> <G>;<g>
<h> <H>;<h>
<i> <I>;<i>
<j> <J>;<j>
<k> <K>;<k>
<l> <L>;<l>
<m> <M>;<m>
<n> <N>;<n>
<o> <O>;<o>
<p> <P>;<p>
<q> <Q>;<q>
<r> <R>;<r>
<s> <S>;<s>
<t> <T>;<t>
<u> <U>;<u>
<v> <V>;<v>
<w> <W>;<w>
<x> <X>;<x>
<y> <Y>;<y>
<z> <Z>;<z>
UNDEFINED
order_end

END LC_COLLATE

%%%%%%%%%%%%%
LC_MONETARY
%%%%%%%%%%%%%

int_curr_symbol "<U><S><D><space>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping "3;0"
positive_sign ""
negative_sign "<hyphen-minus>"
int_frac_digits 2

828 OS/390 V2R8.0 C/C++ Programming Guide

frac_digits 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 2
n_sign_posn 2
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"

END LC_MONETARY

%%%%%%%%%%%%%
LC_NUMERIC
%%%%%%%%%%%%%

decimal_point "<period>"
thousands_sep "<comma>"
grouping "3;0"

END LC_NUMERIC

%%%%%%%%%%%%%
LC_TIME
%%%%%%%%%%%%%
abday "<S><u><n>";/

"<M><o><n>";/
"<T><u><e>";/
"<W><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
"<S><a><t>"

day "<S><u><n><d><a><y>";/
"<M><o><n><d><a><y>";/
"<T><u><e><s><d><a><y>";/
"<W><e><d><n><e><s><d><a><y>";/
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
"<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/
"<F><e>";/
"<M><a><r>";/
"<A><p><r>";/
"<M><a><y>";/
"<J><u><n>";/
"<J><u><l>";/
"<A><u><g>";/
"<S><e><p>";/
"<O><c><t>";/
"<N><o><v>";/
"<D><e><c>"

mon "<J><a><n><u><a><r><y>";/
"<F><e><r><u><a><r><y>";/
"<M><a><r><c><h>";/
"<A><p><r><i><l>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><l><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><e><r>";/
"<O><c><t><o><e><r>";/
"<N><o><v><e><m><e><r>";/

Appendix F. Examples of Charmap and Locale Definition Source 829

"<D><e><c><e><m><e><r>"

d_t_fmt "%a %b %e %H:%M:%S %Z %Y"

d_fmt "%m//%d//%y"

t_fmt "%H:%M:%S"

am_pm "<A><M>";"<P><M>"

END LC_TIME

%%%%%%%%%%%%%
LC_MESSAGES
%%%%%%%%%%%%%

yesexpr "<circumflex><left-parenthesis><left-square-bracket><y><Y>/
<right-square-bracket><left-square-bracket><e><E><right-square-bracket>/
<left-square-bracket><s><S><right-square-bracket><vertical-line>/
<left-square-bracket><y><Y><right-square-bracket><right-parenthesis>"
noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/
<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/
<vertical-line><left-square-bracket><n><N><right-square-bracket>/
<right-parenthesis>"

END LC_MESSAGES
%%%%%%%%%%%%%
LC_SYNTAX
%%%%%%%%%%%%%

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC_SYNTAX

%%%%%%%%%%%%%
LC_TOD
%%%%%%%%%%%%%

timezone_difference +480
timezone_name "<P><S><T>"
daylight_name "<P><D><T>"
start_month 0
end_month 0
start_week 0
end_week 0
start_day 0
end_day 0
start_time 0
end_time 0
shift 3600
END LC_TOD

830 OS/390 V2R8.0 C/C++ Programming Guide

Appendix G. Converting Code from Coded Character Set
IBM-1047

The following program shows you how to convert hybrid code to a specified code
page. Hybrid code is code in which the data is in the local coded character set but
the syntax uses IBM-1047 code.

CBC3GHC1

/*
* CBC3GHC1: Sample code to convert all C syntax from code page 1047
* to the coded character set the user specifies.
* Comments, string literals and character constants are
* left alone. The escape character in an escape sequence
* is changed, since it is variant.
*
* Usage: CBC3GHC1 <coded character set>
* The input file is read from stdin and the output is written
* to stdout.
*
* Example: If you want to convert all C syntax, written in coded character set
* 1047, in a file (test1047 c a) to coded character set 500, you can
* use CBC3GHC1 by issuing the following command.
*
* cbcghc1 <test1047.c.a >test1047.gen.a IBM-500
*
* The result will store in "test500 gen a" file.
*/

#include <stdio.h>
#include <stdlib.h>
#include <iconv.h>
#include <errno.h>

enum boolean { false=0, False=0, FALSE=0, true=1, True=1, TRUE=1 };

/*
* CharState - state that the FSM is in. Initial State is CodeState
*/

enum CharState { CodeState, SQuoteState, DQuoteState, CommentState,
DBCSState, EscState, EOFState };

/*
* CharVal - characters that can change the state of the FSM
*/

enum CharVal { SlashChar='/', SQuoteChar='\'', DQuoteChar='"',
StarChar='*', SOChar='\x0E', SIChar='\x0F',
BSlashChar='\\', EOFChar= -1 };

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 1 of 10)

© Copyright IBM Corp. 1996, 1999 831

/*
* XlateTable - type of translation table
*/

typedef iconv_t XlateTable;

static char *Initialize(int argc, char *argv[]);
static int Convert(char *codeset);
static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

char *codeSet, XlateTable *xlateTable);
static void ConvBuff(int start, int end,

char *buff, XlateTable xlateTable);
static enum CharVal LookAhead(char *inBuff, char *outBuff,

int *recSize, int *curPos,
int maxRecSize, int *codeStartPos,
enum CharState state,
XlateTable xlateTable);

static enum CharVal GetNextChar(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int *curPos, int *codeStartPos,
enum CharState state,
XlateTable xlateTable);

static int UpdateAndRead(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int codeStartPos, enum CharState state,
XlateTable xlateTable);

static int ReadAndCopy(char *inBuff,char *outBuff, int maxRecSize);

#pragma inline(LAST_POS)
#pragma inline(NEXT_TO_LAST_POS)
#pragma inline(LookAhead)
#pragma inline(GetNextChar)
#pragma inline(ConvBuff)

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 2 of 10)

832 OS/390 V2R8.0 C/C++ Programming Guide

/*
* Initialize the environment, and if everything is ok, convert input
*/

main(int argc, char *argv[]) {
char *codeset = Initialize(argc, argv);
if (codeset == NULL) {
return(8);

}
return(Convert(codeset));

}

/*
* Check that 1 parameter was specified - the coded character set to convert the
* the syntax to.
* Re-open stdin and stdout as binary files for record IO.
* Return the code set if everything is ok, NULL otherwise
*/

static char *Initialize(int argc, char *argv[]) {
if (argc != 2) {
fprintf(stderr, "Expected %d argument but got %d\n",

1, argc-1);
return(NULL);

}
stdin = freopen("", "rb,type=record", stdin);
stdout= freopen("", "wb,type=record", stdout);
if (stdin == NULL || stdout == NULL) {
fprintf(stderr, "Could not re-open standard streams\n");
return(NULL);

}

return(argv[1]);
}

/*
* Return the last position in a record
*/

static int LAST_POS(int recSize) {
return(recSize-1);

}

/*
* Return the next to last position in a record
*/

static int NEXT_TO_LAST_POS(int recSize) {
return(recSize-2);

}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 3 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 833

/*
* Convert the stdin file using codeset and write to stdout.
* Set up the translation table.
* Read the first record and copy it into the output buffer.
* Go through the FSM, starting in the Code State and leaving
* when EOFState is reached (End Of File).
* Close the translation table.
*/

static int Convert(char *codeset) {
enum CharVal c;
int recSize;
enum CharState prvState;
int rc;

int codeStartPos = 0;
int curPos = 0;
enum boolean high = FALSE;
enum CharState state = CodeState;

char * inBuff;
char * outBuff;
int maxRecSize;
XlateTable xlateTable;

rc = InitConv(&inBuff, &outBuff, &maxRecSize, codeset, &xlateTable);
if (rc) {
if (inBuff) free(inBuff);
if (outBuff) free(outBuff);
return(rc);

}

recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

while (state != EOFState) {
c = GetNextChar(inBuff, outBuff, &recSize, maxRecSize,

&curPos, &codeStartPos, state, xlateTable);
if (c == EOFChar) {
state = EOFState;

}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 4 of 10)

834 OS/390 V2R8.0 C/C++ Programming Guide

switch(state) {
case CodeState:
switch (c) {
case BSlashChar:
curPos = LAST_POS(recSize);
break;

case SlashChar:
if (LookAhead(inBuff, outBuff, &recSize,

&curPos, maxRecSize, &codeStartPos,
state, xlateTable)
== StarChar) {

state = CommentState;
}
break;

case SQuoteChar:
state = SQuoteState;
break;

case DQuoteChar:
state = DQuoteState;
break;

}
if (state != CodeState || curPos == NEXT_TO_LAST_POS(recSize)) {
if (curPos == NEXT_TO_LAST_POS(recSize)) {
++curPos;

}
else {
ConvBuff(codeStartPos, curPos, outBuff, xlateTable);

}
}
break;

case CommentState:
switch(c) {
case BSlashChar:
curPos = LAST_POS(recSize);
break;

case StarChar:
if (LookAhead(inBuff, outBuff, &recSize,

&curPos, maxRecSize, &codeStartPos,
state, xlateTable)
== SlashChar) {

state = CodeState;
codeStartPos = curPos;

}
break;

}
break;

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 5 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 835

case DQuoteState:
switch(c) {
case DQuoteChar:
state = CodeState;
codeStartPos = curPos;
break;

case SOChar:
prvState = state;
state = DBCSState;
break;

case BSlashChar:
ConvBuff(curPos, curPos, outBuff, xlateTable);
if (curPos != LAST_POS(recSize)) {
prvState = state;
state = EscState;

}
break;

}
break;

case SQuoteState:
switch(c) {
case SQuoteChar:
state = CodeState;
codeStartPos = curPos;
break;

case SOChar:
prvState = state;
state = DBCSState;
break;

case BSlashChar:
ConvBuff(curPos, curPos, outBuff, xlateTable);
if (curPos != LAST_POS(recSize)) {
prvState = state;
state = EscState;

}
break;

}
break;

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 6 of 10)

836 OS/390 V2R8.0 C/C++ Programming Guide

case DBCSState:
high ¬= 1; /* TRUE -> FALSE or FALSE -> TRUE */
if (high && (c == SIChar)) {
state = prvState;
high = FALSE;

}
break;

case EscState:
state = prvState; /* really, this is ok */
break;

case EOFState:
break;

default:
fprintf(stderr, "Internal error - ended up in state %d\n",

state);
return(16);

} /* end of switch statement */
++curPos;

}
rc = TermConv(inBuff, outBuff, xlateTable);
return(0);

}

/*
* Initialize the translation table and allocate the input and
* output buffers to use.
* Return 0 if successful.
*/

static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,
char *codeset, XlateTable* xlateTable) {

static char fileNameBuff[FILENAME_MAX+1];
fldata_t info;
int rc;

*outBuff = *inBuff = NULL;

rc = fldata(stdin, fileNameBuff, &info);
if (rc) {
return(rc);

}

*maxRecSize = info.__maxreclen;
*inBuff = malloc(*maxRecSize);
*outBuff = malloc(*maxRecSize);

if ((*xlateTable = iconv_open("IBM-1047",codeset)) == (iconv_t)(-1)) {
fprintf(stderr,"Cannot open convertor from %s to IBM-1047",codeset);
return (8);

}

return(!inBuff || !outBuff);
}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 7 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 837

/*
* Convert the buffer from start to end using the translation table
*/

static void ConvBuff(int start, int end,
char *buff, XlateTable xlateTable) {

int rc;
size_t inleft, outleft, org;
char *inptr, *outptr;

outleft = inleft = end-start+1;
inptr = outptr = &buff[start];

while (1) {
rc = iconv(xlateTable,&inptr,&inleft,&outptr,&outleft);

if (rc == -1) {
switch (errno) {

/* Skip the invalid character */
case EILSEQ: if (--inleft == 0) return;

++inptr;
++outptr;
--outleft;
break;

default: fprintf(stderr,"iconv() fails with errno = %d\n",errno);
exit(8);

}
} else
return;

}
}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 8 of 10)

838 OS/390 V2R8.0 C/C++ Programming Guide

/*
* Look ahead to the next character. If the current position
* is the last character of the input record, write the current
* output record and read in the next record.
* Return the 'character' read, which may be EOF if the end of
* the file was reached.
*/

static enum CharVal LookAhead(char *inBuff, char *outBuff,
int *recSize, int *curPos,
int maxRecSize, int *codeStartPos,
enum CharState state,
XlateTable xlateTable) {

if (*curPos == LAST_POS(*recSize)) {
if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

*codeStartPos, state, xlateTable)) {
return(EOFChar);

}
*curPos = 0;
*codeStartPos = 0;

}
else {
(*curPos)++;

}
return(inBuff[*curPos]);

}

/*
* Similar to LookAhead(), but return the current character
*/

static enum CharVal GetNextChar(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int *curPos, int *codeStartPos,
enum CharState state,
XlateTable xlateTable) {

if (*curPos > LAST_POS(*recSize)) {
if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

*codeStartPos, state, xlateTable)) {
return(EOFChar);

}
*curPos = 0;
*codeStartPos = 0;

}
return(inBuff[*curPos]);

}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 9 of 10)

Appendix G. Converting Code from Coded Character Set IBM-1047 839

840 OS/390 V2R8.0 C/C++ Programming Guide

Appendix H. Additional Examples

This chapter contains additional examples that you might find useful when you
are writing a C or C++ program.

/*
* If the current state is the code state, translate the remaining
* part of the record.
* Write out the record to stdout
* Read in the next record and copy it to the output buffer.
*/

static int UpdateAndRead(char *inBuff, char *outBuff,
int *recSize, int maxRecSize,
int codeStartPos, enum CharState state,
XlateTable xlateTable) {

if (state == CodeState) {
ConvBuff(codeStartPos, LAST_POS(*recSize), outBuff, xlateTable);

}
fwrite(outBuff, 1, *recSize, stdout);
*recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);
return((*recSize == 0) ? 1 : 0);

}

/*
* Read in a record from stdin and copy it to the output buffer.
* Return the number of bytes read.
*/

static int ReadAndCopy(char *inBuff, char *outBuff,
int maxRecSize) {

int recSize;

recSize = fread(inBuff, 1, maxRecSize, stdin);
if (feof(stdin) && recSize == 0) {
return(0);

}
else {
memcpy(outBuff, inBuff, recSize);
return(recSize);

}
}

/*
* Free allocated storage and close the translation table.
*/

static int TermConv(char *inBuff,
char *outBuff, XlateTable xlateTable) {

iconv_close(xlateTable);
free(inBuff);
free(outBuff);
return(0);

}

Figure 239. Converting Hybrid Code to a Specific Character Set (Part 10 of 10)

© Copyright IBM Corp. 1996, 1999 841

Memory Management

If you have ever received an error from overwriting storage created with the
malloc() function, the following code may be of interest. It shows how to use
debuggable versions of malloc()/calloc()/realloc() and free(). You can tailor the
following macros.

CBC3GMI1

Main routine follows:

/* debuggable malloc()/calloc()/realloc()/free() example */
/* part 1 of 2-other file is CBC3GMI2 */
#ifndef __STORAGE__
#define __STORAGE__

#define PADDING_SIZE 4 /* amount of padding around */
/* allocated storage */

#define PADDING_BYTE 0xFE /* special value to initialize*/
/* padding to */

#define HEAP_INIT_SIZE 4096 /* get 4K to start with */
#define HEAP_INCR_SIZE 4096 /* get 4K increments */
#define HEAP_OPTS 72 /* HEAP(,,ANYWHERE,FREE) */

extern int heapVerbose; /* If 0, heap allocation and */
/* free messages will be */
/* suppressed, otherwise, they*/
/* will be displayed */

#endif

Figure 240. Debuggable malloc()/calloc()/realloc()/free() example

842 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GMI2

/* debuggable malloc()/calloc()/realloc()/free() example */
/* part 2 of 2-other file is CBC3GMI1 */
/*
* STORAGE:
*
* EXTERNALS:
*
* This file contains code for the following functions:
* -malloc......allocate storage from a Language Environment heap
* -calloc......allocate storage from a Language Environement heap
* and initialize it to 0.
* file.
* this file. If a NULL pointer is passed instead of a
* directly.
*
* USAGE:
*
* You do not need to compile this code with any special options.
* The TEST option is useful, however, as the traceback will provide
* additional information. Line number information and the type and
* values of variables will be dumped in a traceback for all
* files compiled with TEST.
*
* Prelink,link, or bind this object module with your other object modules.
* malloc(), free(), and realloc().
*
* INTERNALS:
*
* General Algorithm:
*
* When storage is allocated, extra 'padding' is allocated at the
* start and end of the actual storage allocated for you.
* This padding is then initialized to a special pad value. If your
* code is functioning correctly, the padding should not
* have been changed when it comes time to free the storage. If the
* free() routine finds that the padding does not have the correct
* value, the storage about to be freed is dumped and a traceback
* is issued. The storage is then dumped, as usual.
* The padding size and padding byte value can be modified to suit
* your needs. Update the include file "cbc3gmi2.h" if you want
* to modify these values.
* Here is a diagram of how storage is allocated (assume that the
* pad value is xFE, the padding size is 4 bytes and 8 bytes of
* storage were requested):
*

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 1 of 10)

Appendix H. Additional Examples 843

* Length of Padding Allocated storage Padding
* storage | returned to user |
* | | | |
* +----+------+ +----+------+ +------------+------------+ +----+-----+
* | | | | | | | |
*+--+
*| 00 00 00 10 | FE FE FE FE | xx xx xx xx | xx xx xx xx | FE FE FE FE|
*+--+
*
* (Values above shown in hexadecimal)
*
* This method is fairly effective in tracking down storage
* allocation problems. Also, code does not have
* to be recompiled to use these routines - it just has to be
* relinked. Note that this method is not guaranteed to find all storage
* allocation errors - if you overwrite the padding with the
* same value it had before, or you overwrite more storage than
* you had padding for, you will still have problems.
*
* This code uses the Language Environment heap services to allocate,
* reallocate, and free storage. A User Heap is used instead of the
* library heap so that if the heap gets corrupted, the standard library
* services that use the heap will not be affected. For example,
* if the user heap is damaged, a call to a library function
* such as printf should still succeed.
*
* Notes of interest:
* - The run-time option STORAGE is very useful for tracking down
* random pointer problems - it initializes heap or stack frame
* storage to a particular value.
* - The run-time option RPTSTG(ON) is useful for improving heap and
* stack frame allocation - it generates a report indicating how
* stack and heap storage was managed for a given program.
*/

#include "storage.h"
#include <leawi.h>
#include <stdio.h>

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 2 of 10)

844 OS/390 V2R8.0 C/C++ Programming Guide

/*
* heapVerbose: external variable that controls whether heap
* allocation and free messages are displayed.
*/

int heapVerbose=1;

/*
* mallocHeapID: static variable that is the Heap ID used for allocating
* storage via malloc(). On the first call to malloc(),
* a Heap will be created and this Heap ID will be set.
* All subsequent calls to malloc will use this Heap ID.
*/

static _INT4 mallocHeapID=0;

/*
* CHARS_PER_LINE/BYTES_PER_LINE: Used by dump() and DumpLine()
* to control the width of a storage dump.
*/

#define CHARS_PER_LINE 40
#define BYTES_PER_LINE 16

/*
* align: Given a value and the alignment desired (in bits), round
* the value to the next largest alignment, unless it is
* already aligned, in which case, just return the value passed.
*/

#pragma inline(align)
static int align(int value, int shift) {
int alignment = (0x1 << shift);

if (value % alignment) {
return(((value >> shift) << shift) + alignment);

}
else {
return(value);

}
}

/*
* padding: given a buffer (address and length), return 1 if the
* entire buffer consists of the pad character specified,
* otherwise return 0.
*/

#pragma inline(padding)
static int padding(const char* buffer, long size, int pad) {
int i;
for (i=0;i<size;++i) {
if (buffer[i] != pad) return(0);

}
return(1);

}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 3 of 10)

Appendix H. Additional Examples 845

/*
* CEECmp: Given two feedback codes, return 0 if they have the same
* message number and facility id, otherwise return 1.
*/

#pragma inline(CEECmp)
static int CEECmp(_FEEDBACK* fc1, _FEEDBACK* fc2) {

if (fc1->tok_msgno == fc2->tok_msgno &&
!memcmp(fc1->tok_facid, fc2->tok_facid,

sizeof(fc1->tok_facid))) {
return(0);

}
else {
return(1);

}
}

/*
* CEEOk: Given a feedback code, return 1 if it compares the same to
* condition code CEE000.
*/

#pragma inline(CEEOk)
static int CEEOk(_FEEDBACK* fc) {
_FEEDBACK CEE000 = { 0, 0, 0, 0, 0, {0,0,0}, 0 };

return(CEECmp(fc, &CEE000) == 0);
}

/*
* CEEErr: Given a title string and a feedback code, print the
* title to stderr, then print the message associated
* with the feedback code. If the feedback code message can not
* be printed out, print out the message number and severity.
*/

static void CEEErr(const char* title, _FEEDBACK* fc) {
_FEEDBACK msgFC;
_INT4 dest = 2;

fprintf(stderr, "\n%s\n", title);
CEEMSG(fc, &dest, &msgFC);
if (!CEEOk(&msgFC)); {
fprintf(stderr, "Message number:%d with severity %d occurred\n",

fc->tok_msgno, fc->tok_sev);
}

}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 4 of 10)

846 OS/390 V2R8.0 C/C++ Programming Guide

/*
* DumpLine: Dump out a buffer (address and length) to stderr.
*/

static void DumpLine(char* address, int length) {
int i, c, charCount=0;

if (length % 4) length += 4;

fprintf(stderr, "%8.8p: ", address);
for (i=0; i < length/4; ++i) {
fprintf(stderr, "%8.8X ", ((int*)address)[i]);
charCount += 9;

}
for (i=charCount; i < CHARS_PER_LINE; ++i) {

putc(' ', stderr);
}
fprintf(stderr, "| ");
for (i=0; i < length; ++i) {
c = address[i];
c = (isprint(c) ? c : '.');
fprintf(stderr, "%c", c);

}
fprintf(stderr, "\n");

}

/*
* dump: dump out a buffer (address and length) to stderr by dumping out
* a line at a time (DumpLine), until the buffer is written out.
*/

static void dump(void* generalAddress, int length) {
int curr = 0;
char* address = (char*) generalAddress;

while (&address[curr] < &address[length-BYTES_PER_LINE]) {
DumpLine(&address[curr], BYTES_PER_LINE);
curr += BYTES_PER_LINE;

}
if (curr < length) {
DumpLine(&address[curr], length-curr);

}
}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 5 of 10)

Appendix H. Additional Examples 847

/*
* malloc: Create a heap if necessary by calling CEECRHP. This only
* needs to be done on the first call to malloc(). Verify
* that the heap creation was ok. If it was not, issue an
* error message and return a NULL pointer.
* Write a message to stderr indicating how many bytes
* are about to be allocated.
* Call CEEGTST to allocate the storage requested plus
* additional padding to be placed at the start and end
* of the allocated storage. Verify that the storage allocation
* was successful. If it was not, issue an error message and
* return a NULL pointer.
* Write a message to stderr indicating the address of the
* allocated storage.
* Initialize the padding to the value of PADDING_BYTE, so that
* free() will be able to test that the padding was not changed.
* Return the address of the allocated storage (starting after
* the padding bytes).
*/

void* malloc(long initSize) {
_FEEDBACK fc;
_POINTER address=0;
long totSize;
long* lenPtr;
char* msg;
char* start;
char* end;

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 6 of 10)

848 OS/390 V2R8.0 C/C++ Programming Guide

if (!mallocHeapID) {
_INT4 heapSize = HEAP_INIT_SIZE;
_INT4 heapInc = HEAP_INCR_SIZE;
_INT4 opts = HEAP_OPTS;

CEECRHP(&mallocHeapID, &heapSize, &heapInc, &opts,
&fc);
if (!CEEOk(&fc)) {
CEEErr("Heap creation failed", &fc);
return(0);

}
}
if (heapVerbose) {
fprintf(stderr, "Allocate %d bytes", initSize);

}
/*
* Add the padding size to the total size, then round up to the
* nearest double word
*/

totSize = initSize + (PADDING_SIZE*2) + sizeof(long);
totSize = align(totSize, 3);

CEEGTST(&mallocHeapID, &totSize, &address, &fc);
if (!CEEOk(&fc)) {
msg = "Storage request failed";
CEEErr(msg, &fc);
__ctrace(msg);

return(0);
}

lenPtr = (long*) address;
*lenPtr= initSize;
start = ((char*) address) + sizeof(long);
end = start + initSize + PADDING_SIZE;

memset(start, PADDING_BYTE, PADDING_SIZE);
memset(end, PADDING_BYTE, PADDING_SIZE);

if (heapVerbose) {
fprintf(stderr, " starting at address %p\n", address);

}

return(start + PADDING_SIZE);
}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 7 of 10)

Appendix H. Additional Examples 849

/*
* calloc: Call malloc() to allocate the requested amount of storage.
* If the allocation was successful, initialize the allocated
* storage to 0.
* Return the address of the allocated storage (or a NULL
* pointer if malloc returned a NULL pointer).
*/

void* calloc(long initSize) {
void* ptr;

ptr = malloc(initSize);
if (ptr) {
memset(ptr, 0, initSize);

}
return(ptr);

}
/*
* realloc: If a NULL pointer is passed, call malloc() directly.
* Call CEECZST to reallocate the storage requested plus
* additional padding to be placed at the start and end
* of the allocated storage.
* Verify that the storage re-allocation was ok. If it was not,
* issue an error message, dump the storage, and return a NULL
* pointer.
* Write a message to stderr indicating the address of the
* reallocated storage.
* Initialize the padding to the value of PADDING_BYTE, so
* that free() will be able to test that the padding was not
* changed. Note that the padding at the start of the storage
* does not need to be allocated, since it was already
* initialized by an earlier call to malloc().
* Return the address of the reallocated storage (starting
* after the padding bytes).
*/

void* realloc(char* ptr, long initSize) {
_FEEDBACK fc;
_POINTER address = (ptr - sizeof(long) - PADDING_SIZE);
long oldSize;
long* lenPtr;
char* start;
char* end;
char* msg;
long newSize = initSize;

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 8 of 10)

850 OS/390 V2R8.0 C/C++ Programming Guide

if (ptr == 0) {
return(malloc(newSize));

}

oldSize = *((long*) address);

if (heapVerbose) {
fprintf(stderr, "Re-allocate %d bytes from address %p to ",

newSize, address);
}

/*
* Add the padding size to the total size, then round up to the
* nearest double word
*/

newSize += (PADDING_SIZE*2) + sizeof(long);
newSize = align(newSize, 3);
CEECZST(&address, &newSize, &fc);
if (!CEEOk(&fc)) {
msg = "Storage re-allocation failed";

CEEErr(msg, &fc);
dump(address, oldSize + (PADDING_SIZE*2) + sizeof(long));
__ctrace(msg);
return(0);

}

lenPtr = (long*) address;
*lenPtr= initSize;
start = ((char*) address) + sizeof(long);
end = start + initSize + PADDING_SIZE;

memset(end, PADDING_BYTE, PADDING_SIZE);

if (heapVerbose) {
fprintf(stderr, "address %p\n", address);

}

return(start + PADDING_SIZE);
}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 9 of 10)

Appendix H. Additional Examples 851

Calling MVS WTO routines from C

The following sample code calls a function that will perform a Write To Operator
(WTO) call. You can tailor it as you wish. The C code performs an ILC to an
assembler routine to do a dynamic WTO call.

Assemble CBC3GWT1, compile CBC3GWT2, link the two together, and run
CBC3GWT2. Information writes to the job log.

Note: This example runs only in the TSO BATCH environment.

/*
* free: Calculate where the start and end of the originally
* allocated storage was. The start will be different than the
* address passed in because the address passed in points after
* the padding bytes added by malloc() or realloc().
* Write a message to stderr indicating what address is about
* to be freed.
* Verify that the start and end padding bytes have the original
* padding value. If they do not, dump out the originally
* allocated storage and issue a trace.
* Free the storage by calling CEEFRST. If the storage free
* fails, dump out the storage and issue a trace.
*/

void free(char* ptr) {
_FEEDBACK fc;
_POINTER address=(void*) (ptr - sizeof(long) - PADDING_SIZE);
char* start;
char* end;
long size;
long* lenPtr;
char* msg;

lenPtr = (long*) address;
size = *lenPtr;
start = ((char*) address) + sizeof(long);
end = start + size + PADDING_SIZE;

if (heapVerbose) {
fprintf(stderr, "Free address %p\n", address);

}
if (!padding(start, PADDING_SIZE, PADDING_BYTE) ||

!padding(end, PADDING_SIZE, PADDING_BYTE)) {

dump(address, size + (PADDING_SIZE*2) + sizeof(long));
msg = "Padding overwritten";
__ctrace(msg);

}
else {
CEEFRST(&address, &fc);
if (!CEEOk(&fc)) {
msg = "Storage free failed";

CEEErr(msg, &fc);
dump(address, size + (PADDING_SIZE*2) + sizeof(long));
__ctrace(msg);

}
}

}

Figure 241. Debuggable malloc()/calloc()/realloc()/free() example (Part 10 of 10)

852 OS/390 V2R8.0 C/C++ Programming Guide

CBC3GWT1

CBC3GWT2

Listing Partitioned Data Set Members

The following example shows a way to create a list of all members in a Partitioned
Data Set (PDS).

Note: This information is included to aid you in such a task and is not
programming interface information.

/* write to operator example */
/* part 1 of 2-other file is CBC3GWT2 */
DYNWTO CSECT
DYNWTO AMODE 31
DYNWTO RMODE ANY

PRINT GEN
EDCPRLG ALWAYS INCLUDE C PROLOG
L 6,=A(ACTMSG) SET SVC35.ACTMSG TO DYN MSG
LA 7,76 LEN(WTO MESSAGE)-SET MAX 76
L 5,0(,1) PARM1 IS LENGTH OF DYN MSG
L 5,0(,5)
O 5,=X'40000000' 1ST BYTE - PAD CHAR (' ')
L 4,4(,1) PARM2 IS DYN MSG ADDR
MVCL 6,4 COPY DYNMSG TO SVC35 STRUCT
CNOP 0,4
BAL 1,BARNDMSG BRANCH AROUND SVC35 STRUCT
DC AL2(80) TEXT LENGTH (76+4)
DC B'1000000000000000' MCSFLAGS

ACTMSG DC CL76' ' ARBITRARY SIZE OF 76
DC B'0000000000000000' DESCRIPTOR CODES
DC B'0100000000000000' ROUTING CODES

BARNDMSG DS 0H
SVC 35 ISSUE SVC 35
EDCEPIL
END

Figure 242. Performing a Write To Operator

/* write to operator example */
/* part 2 of 2-other file is CBC3GWT1 */
#pragma linkage(dynwto,OS)
void DYNWTO(int, char *);
main()
{
DYNWTO(9,"something");

}

Figure 243. Performing a Write To Operator

Appendix H. Additional Examples 853

CBC3GIP1

/* this example shows how to create a list of members of a PDS under */
/* OS/390 */
/* part 1 of 2-other file is CBC3GIP2 */
/*
* NODE_PTR pds_mem(const char *pds):
* pds must be a fully qualified pds name, for example,
* ID.PDS.DATASET * returns a * pointer to a linked list of
* nodes. Each node contains a member of the * pds and a
* pointer to the next node. If no members exist, the pointer
* is NULL.
*
* Note: Behavior is undefined if pds is the name of a sequential file.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cbc3gip2.h"

/*
* RECORD: each record of a pds will be read into one of these structures.
* The first 2 bytes is the record length, which is put into 'count',
* the remaining 254 bytes are put into rest. Each record is 256 bytes long.

*/

#define RECLEN 254

typedef struct {
unsigned short int count;
char rest[RECLEN];
} RECORD;

/* Local function prototypes */

static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr);
static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr);

Figure 244. Example of Listing All Members of a PDS (Part 1 of 5)

854 OS/390 V2R8.0 C/C++ Programming Guide

NODE_PTR pds_mem(const char *pds) {

FILE *fp;
int bytes;
NODE_PTR node, last_ptr;
RECORD rec;
int list_end;
char *qual_pds;

node = NULL;
last_ptr = NULL;
/*
* Allocate a new variable, qual_pds, which will be the same as pds, except
* with single quotes around it, i.e. ID.PDS.DATASET ==> 'ID.PDS.DATA SET'

*/

qual_pds = (char *)malloc(strlen(pds) + 3);
if (qual_pds == NULL) {
fprintf(stderr,"malloc failed for %d bytes\n",strlen(pds) + 3);
exit(-1);

}
sprintf(qual_pds,"'%s'",pds);

/*
* Open the pds in binary read mode. The PDS directory will be read one
* record at a time until either the end of the directory or end-of-file
* is detected. Call up gen_node() with every record read, to add member
* names to the linked list

*/

fp = fopen(qual_pds,"rb");
if (fp == NULL)
return(NULL);

do {
bytes = fread(&rec, 1, sizeof(rec), fp);
if ((bytes != sizeof(rec)) && !feof(fp)) {
perror("FREAD:");
fprintf(stderr,"Failed in %s, line %d\n"

"Expected to read %d bytes but read %d bytes\n",
__FILE__,__LINE__,sizeof(rec), bytes);

exit(-1);
}

list_end = gen_node(&node,&rec, &last_ptr);

} while (!feof(fp) &&; !list_end);
fclose(fp);
free(qual_pds);
return(node);

}

Figure 244. Example of Listing All Members of a PDS (Part 2 of 5)

Appendix H. Additional Examples 855

/*
* GEN_NODE() processes the record passed. The main loop scans through the
* record until it has read at least rec->count bytes, or a directory end
* marker is detected.
*
* Each record has the form:
*
* +------------+------+------+------+------+----------------+
* + # of bytes ¦Member¦Member¦......¦Member¦ Unused +
* + in record ¦ 1 ¦ 2 ¦ ¦ n ¦ +
* +------------+------+------+------+------+----------------+
* ¦--count---¦¦-----------------rest-----------------------¦
* (Note that the number stored in count includes its own
* two bytes)
*
* And, each member has the form:
*
* +--------+-------+----+-----------------------------------+
* + Member ¦TTR ¦info¦ +
* + Name ¦ ¦byte¦ User Data TTRN's (halfwords) +
* + 8 bytes¦3 bytes¦ ¦ +
* +--------+-------+----+-----------------------------------+

*/

#define TTRLEN 3 /* The TTR's are 3 bytes long */
/*
* bit 0 of the info-byte is '1' if the member is an alias,
* 0 otherwise. ALIAS_MASK is used to extract this information

*/
#define ALIAS_MASK ((unsigned int) 0x80)
/*
* The number of user data half-words is in bits 3-7 of the info byte.
* SKIP_MASK is used to extract this information. Since this number is
* in half-words, it needs to be double to obtain the number of bytes.

*/
#define SKIP_MASK ((unsigned int) 0x1F)

/*
* 8 hex FF's mark the end of the directory

Figure 244. Example of Listing All Members of a PDS (Part 3 of 5)

856 OS/390 V2R8.0 C/C++ Programming Guide

*/
char *endmark = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr) {

char *ptr, *name;
int skip, count = 2;
unsigned int info_byte, alias, ttrn;
char ttr[TTRLEN];
int list_end = 0;

ptr = rec->rest;

while(count < rec->count) {
if (!memcmp(ptr,endmark,NAMELEN)) {
list_end = 1;
break;

}

/* member name */
name = ptr;
ptr += NAMELEN;

/* ttr */
memcpy(ttr,ptr,TTRLEN);
ptr += TTRLEN;

/* info_byte */
info_byte = (unsigned int) (*ptr);
alias = info_byte & ALIAS_MASK;
if (!alias) add_name(node,name,last_ptr);
skip = (info_byte & SKIP_MASK) * 2 + 1;
ptr += skip;
count += (TTRLEN + NAMELEN + skip);

}
return(list_end);

}

Figure 244. Example of Listing All Members of a PDS (Part 4 of 5)

Appendix H. Additional Examples 857

CBC3GIP2

/*
* ADD_NAME: Add a new member name to the linked node. The new member is
* added to the end so that the original ordering is maintained.

*/

static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr) {

NODE_PTR newnode;

/*
* malloc space for the new node

*/

newnode = (NODE_PTR)malloc(sizeof(NODE));
if (newnode == NULL) {
fprintf(stderr,"malloc failed for %d bytes\n",sizeof(NODE));
exit(-1);

}

/* copy the name into the node and NULL terminate it */

memcpy(newnode->name,name,NAMELEN);
newnode->name[NAMELEN] = '\0';
newnode->next = NULL;

/*
* add the new node to the linked list

*/

if (*last_ptr != NULL) {
(*last_ptr)->next = newnode;
*last_ptr = newnode;

}
else {
*node = newnode;
*last_ptr = newnode;

}
return(newnode->name);

}
/*
* FREE_MEM: This function is not used by pds_mem(), but it should be used
* as soon as you are finished using the linked list. It frees the storage
* allocated by the linked list.

*/

void free_mem(NODE_PTR node) {

NODE_PTR next_node=node;

while (next_node != NULL) {
next_node = node->next;
free(node);
node = next_node;

}
return;

}

Figure 244. Example of Listing All Members of a PDS (Part 5 of 5)

/* this example shows how to create a list of members of a PDS under */
/* OS/390 */
/* part 2 of 2-other file is CBC3GIP1 */
/*
* NODE: a pointer to this structure is returned from the call to pds_mem().
* It is a linked list of character arrays - each array contains a member
* name. Each next pointer points * to the next member, except the last
* next member which points to NULL.

*/

858 OS/390 V2R8.0 C/C++ Programming Guide

Appendix I. Using Built-In Functions

The following functions are components of the OS/390 C/C++ compiler. The
compiler generates inline code for these functions at compile time.

Built-In Function Header File

abs() stdlib.h

alloca() stdlib.h

cds() stdlib.h

cs() stdlib.h

decabs() decimal.h

decchk() decimal.h

decfix() decimal.h

fabs() math.h

fortrc() stdlib.h

memchr() string.h

memcpy() string.h

memcmp() string.h

memset() string.h

strcat() string.h

strchr() string.h

strcmp() string.h

strcpy() string.h

strlen() string.h

strncat() string.h

strncmp() string.h

strncpy() string.h

strrchr() string.h

tsched() mtf.h

Note: tsched() is valid only under C

Note: Built-in functions do not correspond to inline functions that result from the
use of the compile-time option INLINE and the #pragma inline directive in C.
Built-in functions can be specified by the user in C++. Refer to the OS/390
C/C++ User’s Guide for more information.

© Copyright IBM Corp. 1996, 1999 859

860 OS/390 V2R8.0 C/C++ Programming Guide

Appendix J. Application Considerations for OS/390 UNIX
C/C++

This appendix briefly describes the extent of OS/390 C/C++ support available for
traditional MVS programming environments when you are using OS/390 UNIX.

Relationship to DATABASE 2 (DB2)

No explicit support for DATABASE 2 (DB2) programs exists for POSIX.1
implementation. DB2 OS/390 C/C++ programs must be processed by a
DATABASE 2 precompile step to replace Structured Query Language (SQL)
statements with OS/390 C/C++ functions. The precompilation step accepts only
MVS data set I/O. Therefore, a DB2 database cannot reside in a hierarchical file
system (HFS).

It is possible that an existing DB2 OS/390 C/C++ application program can be
changed to add POSIX.1-defined I/O functions to access data in HFS files. IBM,
however, does not explicitly support this access. It is also possible that you can
write a new POSIX.1.-conforming OS/390 C/C++ application program that access
DB2 data by calling non-POSIX.1-conforming DB2 programs. IBM, however, does
not explicitly support this either.

Application Programming Environments Not Supported

The following MVS programming environments are not supported for use when
developing POSIX.1 OS/390 C/C++ application programs:
v CICS
v IMS file system

Application programs that attempt to take advantage of these environments will
not work as intended.

Support for the Curses Library

The Curses library provides a set of functions that enable you to manipulate a
terminal’s display regardless of the terminal type. Using this structure, you can
manipulate data on a terminal’s display. You can instruct curses to treat the entire
terminal display as one large window or you can create multiple windows on the
display. The windows can be different sizes and can overlap one another.

Each window on a terminal’s display has its own window data structure. This
structure keeps state information about the window such as its size and where it is
located on the display. Curses uses the window data structure to obtain relevant
information it needs to carry out your instructions.

For more information about curses, refer to the OS/390 C Curses.

© Copyright IBM Corp. 1996, 1999 861

862 OS/390 V2R8.0 C/C++ Programming Guide

Appendix K. External Variables

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C
system header files define certain external variables. Additional variables are
defined for use with POSIX or XPG4.2 functions. If you define one of the POSIX or
XPG4 feature test macros and include one of these headers, the external variables
will be defined in your program. These external variables are treated differently
than other global variables in a multithreaded environment (values are
thread-specific) and across a call to a fetched module (values are propagated). To
access the global variable values (not thread specific), either C with the RENT
compiler option or C++ must be used, and the SCEEOBJ autocall library must be
specified during the OS/390 bind. Functions to access the thread-specific values of
these variables are provided for use in a multithreaded environment.

For a dynamically called DLL module to share access to the POSIX external
variables with its caller, the DLL module must define the _SHARE_EXT_VARS
feature test macro. APAR PQ03847 must be installed in order to use this
functionality. For more information, see the section on feature test macros in the
OS/390 C/C++ Run-Time Library Reference.

For more information on the header files referred to in the following sections, see
the OS/390 C/C++ Run-Time Library Reference.

errno

When a run-time library function is not successful, the function may do any of the
following to identify the error:
v Set errno to a documented value.
v Set errno to a value that is not documented. You can use strerror() or perror()

to get the message associated with the errno.
v Not set errno.
v Clear errno.

See also errno.h.

daylight

The daylight savings time flag set by tzset(). Note that other time zone sensitive
functions such as ctime(), localtime(), mktime(), and strftime() implicitly call
tzset(). Use the __dlght() function to access the thread-specific value of daylight.
See also time.h.

getdate_err

The variable is set to the following value when an error occurs in the getdate()
function.

Value Description

1 The DATEMASK environment variable is null or undefined.

2 The template file cannot be opened for reading.

© Copyright IBM Corp. 1996, 1999 863

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 Memory allocation is not successful.

7 There is no line in the template that matches the input.

8 There is no line in the template that matches the input.

Any changes to errno are unspecified. Use the __gderr() function to access the
thread-specific value of getdate_err. See also time.h.

h_errno

An integer that holds the specific error code when the network nameserver
encounters an error. The network nameserver is used by the gethostbyname() and
gethostbyaddr() functions. Use the __h_errno() function to access the
thread-specific value of h_errno. See also netdb.h.

__loc1

A global character pointer that is set by the regex() function to point to the first
matched character in the input string. Use the ____loc1() function to access the
thread-specific value of __loc1. See also libgen.h.

loc1

A pointer to characters matched by regular expressions used by step(). The value
is not propagated across a call to a fetched module. See also regexp.h.

loc2

A pointer to characters matched by regular expressions used by step(). The value
is not propagated across a call to a fetched module. See also regexp.h.

locs

Used by advance() to stop regular expression matching in a string. The value is
not propagated across a call to a fetched module. See also regexp.h.

optarg

Character pointer used by getopt() for options parsing variables. Use the
__optargf() function to access the thread-specific value of optarg. See also stdio.h
and unistd.h.

opterr

Error value used by getopt(). Use the __operrf() function to access the
thread-specific value of opterr. See also stdio.h and unistd.h.

864 OS/390 V2R8.0 C/C++ Programming Guide

optind

Integer pointer used by getopt() for options parsing variables. Use the __opindf()
function to access the thread-specific value of optind. See also stdio.h and
unistd.h.

optopt

Integer pointer used by getopt() for options parsing variables. Use the __opoptf()
function to access the thread-specific value of optopt. See also stdio.h and
unistd.h.

signgam

Storage for sign of lgamma(). This function defaults to thread specific. See also
math.h.

stdin

Standard Input stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard input file. There is no multithreaded
function. See also stdio.h.

stderr

Standard Error stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard error file. There is no multithreaded
function. See also stdio.h.

stdout

Standard Output stream. The external variable will be initialized to point to the
enclave-level stream pointer for the standard output file. There is no multithreaded
function. See also stdio.h.

t_errno

An integer that holds the specific error code when a failure occurs in one of the
X/Open Transport Interface (XTI) functions. Use the __t_errno() function to access
the thread-specific value of t_errno. See also xti.h.

timezone

Long integer difference from UTC and standard time as set by tzset(). Note that
other time zone sensitive functions such as, ctime(), localtime(), mktime(), and
strftime() implicitly call tzset(). Use the __tzone() function to access the
thread-specific value of timezone. See also time.h.

Appendix K. External Variables 865

tzname

Character pointer to unsized array of timezone strings used by tzset() and
ctime(). The *tzname variable contains the Standard and Daylight Savings time
zone names. If the TZ environment variable is present and correct, tzname is set
from TZ. Otherwise tzname is set from the LC_TOD locale category. See the
tzset() function for a description. There is no multithreaded function. See also
time.h.

866 OS/390 V2R8.0 C/C++ Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 1999 867

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
North York, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on the OS/390 operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to IBM’s application programming interfaces.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other
countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400

868 OS/390 V2R8.0 C/C++ Programming Guide

BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN OS/2 OS/390
OS/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application

Architecture
VisualAge

VM/ESA VSE/ESA VTAM
3090 3890 400

Microsoft, Windows, Windows NT, and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute
of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International

Notices 869

Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the
X/Open Company Ltd, UK.

870 OS/390 V2R8.0 C/C++ Programming Guide

Glossary

This glossary defines terms and abbreviations that
are used in this book. Included are terms and
definitions from the following sources:
v American National Standard Dictionary for

Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI/ISO). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Such definitions are indicated
by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699. These
definitions are indicated by the registered
trademark IBM after the definition.

v X/Open CAE Specification, Commands and
Utilities, Issue 4. July, 1992. These definitions are
indicated by the symbol X/Open after the
definition.

v ISO/IEC 9945-1:1990/IEEE POSIX 1003.1-1990.
These definitions are indicated by the symbol
ISO.1 after the definition.

v The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the
symbol ISO Draft after the definition, indicating
that final agreement has not yet been reached
among the participating National Bodies of
SC1.

A
abstract class. (1) A class with at least one pure virtual
function that is used as a base class for other classes.
The abstract class represents a concept; classes derived
from it represent implementations of the concept. You
cannot have a direct object of an abstract class. See also
base class. (2) A class that allows polymorphism. There
can be no objects of an abstract class; they are only
used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data). A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access. An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration. A declaration used to restore
access to members of a base class.

access mode. (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request).
IBM. (3) A particular form of access permitted to a file.
X/Open.

access resolution. The process by which the
accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit). A measurement used by the
OS/390 C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available to
a computer program. ANSI/ISO. (2) The complete range
of addresses that are available to a programmer. See
also virtual address space. (3) The area of virtual storage
available for a particular job. (4) The memory locations
that can be referenced by a process. X/Open. ISO.1.

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a structure
or union in the listing. (3) An array or a class object
with no private or protected members, no constructors,
no base classes, and no virtual functions. (4) In

© Copyright IBM Corp. 1996, 1999 871

programming languages, a structured collection of data
items that form a data type. ISO-JTC1.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's
terminal to give some audible or visual indication that
an error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character. A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias. (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program.
ANSI/ISO. (2) An alternate name for a member of a
partitioned data set. IBM. (3) An alternate name used
for a network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO).
An organization consisting of producers, consumers,
and general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the
United States. ANSI/ISO.

AMODE (addressing mode). In MVS, a program
attribute that refers to the address length that a
program is prepared to handle upon entry. In MVS,
addresses may be 24 or 31 bits in length. IBM.

angle brackets. The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets”, the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system
or the licensed program. IBM.

application. (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a
network application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator. An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries. The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

argument. (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. Also called parameter. (3) In the shell, a parameter
passed to a utility as the equivalent of a single string in

872 OS/390 V2R8.0 C/C++ Programming Guide

the argv array created by one of the exec functions. An
argument is one of the options, option-arguments, or
operands following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) An integral object, a bit field, or
floating-point object. (2) A real object or objects having
the type float, double, or long double.

array. In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting.
IBM.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H. An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language. A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit. In the OS/390 Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression. An expression that assigns the
value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list. A list of actions specified in the OS/390
C/C++ atexit() function that occur at normal program
termination.

auto storage class specifier. A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library. Contains modules that are used
as secondary input to the prelinker or the binder to
resolve external symbols left undefined after all the
primary input has been processed.

The automatic call library can contain:

v Object modules, with or without binder control
statements

v Load modules

v OS/390 C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control
sections are processed by the binder or loader to
resolve references to members of partitioned data sets.
IBM.

automatic storage. Storage that is allocated on entry to
a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or dynamic
storage.

B
background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group. Any process group, other
than a foreground process group, that is a member of a
session that has established a connection with a
controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named
<backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from
another base class. See also abstract class.

based on. The use of existing classes for implementing
new classes.

binary expression. An expression containing two
operands and one operator.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind. To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign virtual
storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA or OS/390 operating system.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the
value of an object at the bit level.

blank character. (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the

Glossary 873

LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block. (1) In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it. A block may
also specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data elements
recorded or transmitted as a unit. The elements may be
characters, words or physical records. ISO Draft. (3) The
unit of data transmitted to and from a device. Each
block contains one record, part of a record, or several
records.

block statement. In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces. The characters { (left brace) and } (right brace),
also known as curly braces. When used in the phrase
“enclosed in (curly) braces” the symbol { immediately
precedes the object to be enclosed, and } immediately
follows it. When describing these characters in the
portable character set, the names <left-brace> and
<right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It
is used to end an iterative or a switch statement by
exiting from it at any point other than the logical end.
Control is passed to the first statement after the
iteration or switch statement.

built-in. (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in
function SIN in PL/I, the predefined data type
INTEGER in FORTRAN. ISO-JTC1. Synonymous with
predefined. IBM.

byte-oriented stream. See orientation of a stream.

C
C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement. A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an
OS/390 UNIX application program from the OS/390
shell.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services. A set of services that can be invoked
by a OS/390 Language Environment-conforming high
level language using the conventional OS/390
Language Environment-defined call interface, and
usable by all programs sharing the OS/390 Language
Environment conventions.

Use of these services helps to decrease an application's
dependence on the specific form and content of the
services delivered by any single operating system.

call chain. A trace of all active routines and
subroutines.

caller. A routine that calls another routine.

cancelability point. A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character. A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is
the exact sequence transmitted to an output device by
the system to accomplish the movement to the
beginning of the line. X/Open.

case clause. In a C or C++ switch statement, a CASE
label followed by any number of statements.

case label. The word case followed by a constant
expression and a colon. When the selector evaluates the
value of the constant expression, the statements
following the case label are processed.

874 OS/390 V2R8.0 C/C++ Programming Guide

cast expression. A cast expression explicitly converts
its operand to a specified arithmetic, scalar, or class
type.

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier. A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char are
all distinct data types.

character. (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more bytes
representing a single graphic symbol or control code.
This term corresponds to the ISO C standard term
multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing an
attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant. (1) A constant with a character
value. IBM. (2) A string of any of the characters that
can be represented, usually enclosed in apostrophes.
IBM. (3) In some languages, a character enclosed in
apostrophes. IBM.

character set. (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded
Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a
programming language or for a computer system. IBM.
(3) A group of characters used for a specific reason; for
example, the set of characters a printer can print. IBM.
(4) See also portable character set.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file. X/Open.
ISO.1.

character string. A contiguous sequence of characters
terminated by and including the first null byte. X/Open.

child. A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result of
certain commands being issued from a parent enclave.

CICS (Customer Information Control System).
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class. (1) A C++ aggregate that may contain functions,
types, and user-defined operators in addition to data.
Classes may be defined hierarchically, allowing one
class to be derived from another, and may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and
union.

class library. A collection of classes.

class member operator. An operator used to access
class members through class objects or pointers to class
objects. The class member operators are:

. -> .* ->*

class name. A unique identifier of a class type that
becomes a reserved word within its scope.

class scope. An indication that a name of a class can
be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of
related classes can be constructed.

client program. A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list
containing the name of the program and the load
address.

Glossary 875

COBCOM. Control block containing information
about a COBOL partition.

COBOL (common business-oriented language). A
high-level language, based on English, that is primarily
used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set. (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft. (3)
Loosely, a code. ANSI/ISO.

code element set. (1) The result of applying a code to
all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code values
may be unassigned. X/Open. (3) Synonym for codeset.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for an 8-bit code, assignment of characters
and meanings to 128 code points for a 7-bit code. (2) A
particular assignment of hexadecimal identifiers to
graphic characters.

code point. (1) A 1-byte code representing one of 256
potential characters. (2) An identifier in an alert
description that represents a short unit of text. The
code point is replaced with the text by an alert display
program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used
in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering
assigned to a set of items, such that any two sets in
that assigned order can be collated. ANSI/ISO. (3) The

relative ordering of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The character order, as defined for the
LC_COLLATE category in the current locale, defines
the relative order of all collating elements, such that
each element occupies a unique position in the order.
This is the order used in ranges of characters and
collating elements in regular expressions and pattern
matching. In addition, the definition of the collating
weights of characters and collating elements uses
collating elements to represent their respective positions
within the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection. (1) An abstract class without any ordering,
element properties, or key properties. All abstract
classes are derived from collection. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library. A set of classes that provide
basic functions for collections, and can be used as base
classes.

column position. A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily
related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

comma expression. An expression that contains two
operands separated by a comma. Although the
compiler evaluates both operands, the value of the
expression is the value of the right operand. If the left
operand produces a value, the compiler discards this
value. Typically, the left operand of a comma
expression is used to produce side effects.

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,

876 OS/390 V2R8.0 C/C++ Programming Guide

register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

Common Business-Oriented Language. See COBOL.

common expression elimination. Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit. (1) A portion of a computer
program sufficiently complete to be compiled correctly.
IBM. (2) A single compiled file and all its associated
include files. (3) An independently compilable sequence
of high-level language statements. Each high-level
language product has different rules for what makes up
a compilation unit.

complete class name. The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical
operations on them.

computational independence. No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class. A class that implements an abstract
data type but does not allow polymorphism.

condition. (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
OS/390 Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression. A compound expression that
contains a condition (the first expression), an expression
to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be
evaluated if the condition has the value zero (the third
expression).

condition handler. A user-written condition handler
or language-specific condition handler (such as a PL/I
ON-unit or OS/390 C/C++ signal() function call)
invoked by the OS/390 C/C++ condition manager to
respond to conditions.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token. In the OS/390 Language
Environment, a data type consisting of 12 bytes (96
bits). The condition token contains structured fields that
indicate various aspects of a condition including the
severity, the associated message number, and
information that is specific to a given instance of the
condition.

const. (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that
allows you to define a variable whose value does not
change.

constant. (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1. (2)
A data item with a value that does not change. IBM.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation. An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated
at compile time.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

constructor. A special C++ class member function that
has the same name as the class and is used to create an
object of that class.

control character. (1) A character whose occurrence in
a particular context specifies a control function. ISO
Draft. (2) Synonymous with nonprinting character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

control statement. (1) In programming languages, a
statement that is used to alter the continuous sequential
execution of statements; a control statement may be a
conditional statement, such as IF, or an imperative
statement, such as STOP. ISO Draft. (2) A statement that
changes the path of execution.

controlling process. The session leader that establishes
the connection to the controlling terminal. If the
terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

controlling terminal. A terminal that is associated
with a session. Each session may have at most one

Glossary 877

controlling terminal associated with it, and a
controlling terminal is associated with exactly one
session. Certain input sequences from the controlling
terminal cause signals to be sent to all processes in the
process group associated with the controlling terminal.
X/Open. ISO.1.

conversion. (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types.
Information may be lost because of conversion since
accuracy of data representation varies among different
data types. ISO-JTC1. (2) The process of changing from
one method of data processing to another or from one
data processing system to another. IBM. (3) The process
of changing from one form of representation to another;
for example to change from decimal representation to
binary representation. IBM. (4) A change in the type of
a value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor. A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function. A member function that specifies
a conversion from its class type to another type.

coordinated universal time (UTC). Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class
object of the same class type.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two
parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated
with a process, that is used in path-name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the OS/390 UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor. A reference to an element at a specific position
in a data structure.

Customer Information Control System. See CICS.

D
data abstraction. A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

DATABASE 2. Pertaining to an IBM relational
database.

data definition (DD). (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that describes
the features of, specifies relationships of, or establishes
context of, data. ANSI/ISO. (3) A statement that is
stored in the environment and that externally identifies
a file and the attributes with which it should be
opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of complete
data. Elements are composed of data members.

data object. (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which
operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of data
structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable
character set of the language in which a program is
coded. IBM.

data set. Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure. The internal data representation of an
implementation.

data type. The properties and internal representation
that characterize data.

Data Window Services (DWS). Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

DBCS (double-byte character set). A set of characters
in which each character is represented by 2 bytes.

878 OS/390 V2R8.0 C/C++ Programming Guide

Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double-byte character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name
of a file within an application. The ddname provides
the means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement). (1) In
MVS, serves as the connection between the logical
name of a file and the physical name of the file. (2) A
job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination. A process that eliminates code
that exists for calculations that are not necessary. Code
may be designated as dead by other optimization
techniques.

dead store elimination. A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant. (1) A numerical data type used in
standard arithmetic operations. (2) A number
containing any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration. (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM. (2)
Establishes the names and characteristics of data objects
and functions used in a program.

declarator. Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument. An argument that is declared with
a default value in a function prototype or declaration. If
a call to the function omits this argument, the default

value is used. Arguments with default values must be
the trailing arguments in a function prototype
argument list.

default clause. In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the
conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is
specified by the programmer.

default locale. (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

define directive. A preprocessor statement that directs
the preprocessor to replace an identifier or macro
invocation with special code.

define statement. A preprocessor statement that
causes the preprocessor to replace an identifier or
macro call with specified code. IBM.

definition. (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free
storage deallocation operator. (2) A C++ operator used
to destroy objects created by new.

demangling. The conversion of mangled names back
to their original source code names. During C++
compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

denormal. Pertaining to a number with a value so
close to 0 that its exponent cannot be represented
normally. The exponent can be represented in a special
way at the possible cost of a loss of significance.

deque. A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element
of a queue.

Glossary 879

dereference. In the C and C++ languages, the
application of the unary operator * to a pointer to
access the object the pointer points to. Also known as
indirection.

derivation. In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class. A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table. See DCT.

destructor. A special member function that has the
same name as its class, preceded by a tilde (˜), and that
"cleans up" after an object of that class, for example,
freeing storage that was allocated when the object was
created. A destructor has no arguments and no return
type.

detach state attribute. An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device. A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference
contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph. A combination of two keystrokes used to
represent unavailable characters in a C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory. A type of file containing the names and
controlling information for other files or other
directories. IBM.

Direct-to-SOM (DTS). (1) Term applied to the method
by which the OS/390 C++ compiler converts existing

C++ classes to SOM classes. (2) Term applied to a class
that has been converted to SOM by the OS/390 C++
compiler.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If
the output is not directed to the terminal, the results
are undefined. X/Open.

do statement. In the C and C++ compilers, a looping
statement that contains the keyword “do”, followed by
a statement (the action), the keyword “while”, and an
expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as quotation
mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or
fixed time. IBM.

dynamic allocation. Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to
external variables and functions at run time.

dynamic link library (DLL). A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can
be shared by several applications simultaneously.
Compiling code with the DLL option does not mean that
the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are added
to the stack when a routine is entered and removed
upon exit in a last in, first out (LIFO) manner. In
Language Environment, a DSA is known as a stack
frame.

880 OS/390 V2R8.0 C/C++ Programming Guide

dynamic storage. Synonym for automatic storage.

dynamic storage area. See DSA

E
EBCDIC. See extended binary-coded decimal interchange
code.

effective group ID. An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier. A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element. The component of an array, subrange,
enumeration, or set.

element equality. A relation that determines if two
elements are equal.

element occurrence. A single instance of an element in
a collection. In a unique collection, element occurrence
is synonymous with element value.

element value. All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one
occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause. The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line
character. X/Open.

empty string. (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal. The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

enclave. In the Language Environment for MVS and
VM, an independent collection of routines, one of
which is designated as the main routine. An enclave is
roughly analogous to a program or run unit.

enqueue. An operation that adds an element as the
last element to a queue.

entry point. In assembler language, the address or
label of the first instruction that is executed when a
routine is entered for execution.

enumeration constant. In the C or C++ language, an
identifier, with an associated integer value, defined in
an enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and C++
language, a data type that represents a set of values
that a user defines. IBM. (2) A type that represents
integers and a set of enumeration constants. Each
enumeration constant has an associated integer value.

enumeration tag. In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator. In the C and C++ language, an
enumeration constant and its associated value. IBM.

equivalence class. (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase character
in the same equivalence class as its lowercase form, but
some languages distinguish between accented and
unaccented character forms for the purpose of collation.
IBM. (2) A set of collating elements with the same
primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

Glossary 881

escape sequence. (1) A representation of a character.
An escape sequence contains the \ symbol followed by
one of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one or more octal or hexadecimal digits.
(2) A sequence of characters that represent, for example,
nonprinting characters, or the exact code point value to
be used to represent variant and nonvariant characters
regardless of code page. (3) In the C and C++ language,
an escape character followed by one or more
characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any
member of the character set used at runtime can be
represented using an escape sequence. (4) A character
that is preceded by a backslash character and is
interpreted to have a special meaning to the operating
system. (5) A sequence sent to a terminal to perform
actions such as moving the cursor, changing from
normal to reverse video, and clearing the screen.
Synonymous with multibyte control. IBM.

exception. (1) Any user, logic, or system error detected
by a function that does not itself deal with the error
but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided.
The internal format of an executable file is unspecified,
but a conforming application cannot assume an
executable file is a text file. X/Open.

exception handler. (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A
set of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided.

The internal format of an executable file is unspecified,
but a conforming application cannot assume an
executable file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a processor.
IBM.

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier. A specifier that enables
the programmer to declare objects and functions that
several source files can use.

F
feature test macro (FTM). A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access
control mechanism uses the file permission bits. The
bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor. (1) A small positive integer that the
system uses instead of the file name to identify an open
file. IBM. (2) A per-process unique, non-negative
integer used to identify an open file for the purpose of
file access. ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A
process can have no more than {OPEN_MAX} file
descriptors open simultaneously. File descriptors may
also be used to implement directory streams. X/Open.

file mode. An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

882 OS/390 V2R8.0 C/C++ Programming Guide

file permission bits. Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the
corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks and
classes has file scope and can be used after the point of
declaration in a source file.

filter. A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function
is to perform some transformation on the data stream.
X/Open.

first element. The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical
structure.

float constant. (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the
word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the
action). Each expression in the parenthesized list is
separated by a semicolon. You can omit any of the
expressions, but you cannot omit the semicolons.

foreground process. (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of a
foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that receives
the signals generated by a terminal. IBM. (2) A process
group whose member processes have certain privileges,
denied to processes in background process groups,
when accessing their controlling terminal. Each session
that has established a connection with a controlling
terminal has exactly one process group of the session as
the foreground process group of that controlling
terminal. X/Open. ISO.1.

foreground process group ID. The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream
that indicates that printing should start on the next

page of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the
result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output
device by the system to accomplish the movement to
the next page. X/Open.

forward declaration. A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application. (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An OS/390
C/C++ application that does not use the services of the
dynamic OS/390 C/C++ run-time library or of the
Language Environment. Under OS/390 C support, this
ability is a feature of the System Programming C
support.

free store. Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class. A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

// ...
};

friend function. A function that is granted access to
the private and protected parts of a class. It is named
in the declaration of the other class with the prefix
friend.

function. A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator. The part of a function definition
that names the function, provides additional
information about the return value of the function, and
lists the function parameters. IBM.

function definition. The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations,
and a block statement (the function body).

Glossary 883

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the
compiler at the time that the function is declared, so
that the compiler can check the type.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization. Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

generic class. Synonym for class templates.

global. Pertaining to information available to more
than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time). The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM).
Pertaining to an IBM licensed program that provides a
group of routines that allows pictures to be defined and
displayed procedurally through function routines that
correspond to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer, which
can be contained in an object of type gid_t, that is used
to identify a group of system users. ISO.1.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit. IBM.

hash function. A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table. (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed
by way of a shortened search key (that hash value).
Using a hash table minimizes average search time.

header file. A text file that contains declarations used
by a group of functions, programs, or users.

heap storage. An area of storage used for allocation of
storage whose lifetime is not related to the execution of
the current routine. The heap consists of the initial heap
segment and zero or more increments.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

hiperspace memory file. An IBM file used under MVS
to deal with memory files as large as 2 gigabytes. IBM.

hooks. Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control
of the program at selected points during its execution.

hybrid code. Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data
object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence of
letters, digits, and underscores used to identify a data
object or function. IBM.

884 OS/390 V2R8.0 C/C++ Programming Guide

if statement. A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an
optional else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication). The ability of
routines written in different programming languages to
communicate. ILC support enables the application
writer to readily build applications from component
routines written in a variety of languages.

implementation-defined behavior. Application
behavior that is not defined by the standards. The
implementing compiler and library defines this
behavior when a program contains correct program
constructs or uses correct data. Programs that rely on
implementation-defined behavior may behave
differently on different C or C++ implementations.
Refer to the OS/390 C/C++ books that are listed in
“IBM OS/390 C/C++ and Related Publications” on
page 4 for information about implementation-defined
behavior in the OS/390 C/C++ environment. Contrast
with unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive. A preprocessor directive that causes
the preprocessor to replace the statement with the
contents of a specified file.

include file. See header file.

include statement. In the C and C++ languages, a
preprocessor statement that causes the preprocessor to
replace the statement with the contents of a specified
file. IBM.

incomplete class declaration. A class declaration that
does not define any members of a class. Until a class is
fully declared, or defined, you can only use the class
name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type. A type that has no value or meaning
when it is first declared. There are three incomplete
types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be
completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection. (1) A mechanism for connecting objects by
storing, in one object, a reference to another object. (2)

In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class. Synonym for reference class.

inheritance. A technique that allows the use of an
existing class as the base for creating other classes.

initial heap. The OS/390 C/C++ heap controlled by
the HEAP runtime option and designated by a heap_id
of 0. The initial heap contains dynamically allocated
user data.

initializer. An expression used to initialize data
objects. The C++ language, supports the following
types of initializers:

v An expression followed by an assignment operator
that is used to initialize fundamental data type
objects or class objects that contain copy constructors.

v A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

inlined function. A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and nonmember functions can be inlined.

input stream. A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

instantiate. To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor to
perform a specific operation.

instruction scheduling. An optimization technique
that reorders instructions in code to minimize execution
time.

Glossary 885

integer constant. A decimal, octal, or hexadecimal
constant.

integral object. A character object, an object having an
enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC (interlanguage
communication).

internationalization. The capability of a computer
program to adapt to the requirements of different
native languages, local customs, and coded character
sets. X/Open.

Synonymous with I18N.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library. A class library that provides the
facilities to deal with many varieties of input and
output.

IPA (Interprocedural Analysis). A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language). A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

job control. A facility that allows users to selectively
stop (suspend) the execution of a process and continue
(resume) their execution at a later point.

The user typically employs this facility via the
interactive interface jointly supplied by the terminal
I/O driver and a command interpreter. X/Open. ISO.1.

K
keyword. (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute. An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label. An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment. Abbreviated form of IBM
Language Environment for MVS and VM. Pertaining to
an IBM software product that provides a common
runtime environment and runtime services to
applications compiled by Language
Environment-conforming compilers.

last element. The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

late binding. Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves. Nodes without children. Synonymous with
terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that can
be specified in a link command.

linkage editor. Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA or
OS/390 operating systems. See binder.

Linkage. Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is
declared with the inline keyword, or is a nonmember
function declared with the static keyword. All other
functions have external linkage.

886 OS/390 V2R8.0 C/C++ Programming Guide

linker. A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA). In MVS, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity in
a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader. A routine, commonly a computer program,
that reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a
form suitable for loading into main storage for
execution. A load module is usually the output of a
linkage editor. ISO Draft.

local. (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a
computer program. ANSI/ISO.

local customs. The conventions of a geographical area
or territory for such things as date, time, and currency
formats. X/Open.

locale. The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization. The process of establishing information
within a computer system specific to the operation of
particular native languages, local customs, and coded
character sets. X/Open.

local scope. A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name. An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case characters.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the
identifier main that is the first user function—aside
from exit routines and C++ static object
constructors—to get control when program execution
begins. Each C and C++ program must have exactly
one function named main.

makefile. A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility. Maintains all of the parts and
dependencies for your application. The make utility
uses a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the
OS/390 shell and by default, uses the c89 utility to
recompile and bind your application.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

manipulator. A value that can be inserted into streams
or extracted from streams to affect or query the
behavior of the stream.

member. A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function. (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method. In the C++ language, a synonym for member
function.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

Glossary 887

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character set.

multicharacter collating element. A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance. An object-oriented
programming technique implemented in the C++
language through derivation, in which the derived class
inherits members from more than one base class.

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of
two or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by
threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage the
characteristics of mutexes in their application by
defining a set of values to be used for the mutex
during its creation. A mutex attribute object allows the
user to create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object. Used to identify a mutex.

N
name space. A category used to group similar types of
identifiers.

named pipe. A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy. A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of
another class.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

newline character. A character that in the output
stream indicates that printing should start at the

beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

nonprinting character. See control character.

null character (NUL). The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used
to represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer. The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value
will not match that of any legitimate pointer, so it is
used by many functions that return pointers to indicate
an error. X/Open.

null statement. A C or C++ statement that consists
solely of a semicolon.

null string. (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A character
array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is
specified. IBM.

null wide-character code. A wide-character code with
all bits set to zero. X/Open.

number sign. The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object. (1) A region of storage. An object is created
when a variable is defined. An object is destroyed
when it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a class.

object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module. (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data abstraction and

888 OS/390 V2R8.0 C/C++ Programming Guide

inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

open file. A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence. In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream
is a stream that had a byte input or output function
applied to it when it had no orientation. A
wide-oriented stream is a stream that had a wide
character input or output function applied to it when it
had no orientation. A stream has no orientation when it
has been associated with an external file but has not
had any operations performed on it.

OS/390 UNIX System Services (OS/390 UNIX). An
element of the OS/390 operating system, (formerly
known as OpenEdition). OS/390 UNIX includes a
POSIX system Application Programming Interface for
the C language, a shell and utilities component, and a
dbx debugger. All the components conform to IEEE
POSIX standards (ISO 9945-1: 1990/IEEE POSIX
1003.1-1990, IEEE POSIX 1003.1a, IEEE POSIX 1003.2,
and IEEE POSIX 1003.4a).

overflow. (1) A condition that occurs when a portion
of the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an
operation that exceeds the capacity of the intended unit
of storage. IBM.

overlay. The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO.

overloading. An object-oriented programming
technique that allows you to redefine functions and
most standard C++ operators when the functions and
operators are used with class types.

P
parameter. (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and nested
enclave.

parent process. (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process that
creates other processes.

parent process ID. (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of an
implementation-dependent system process. X/Open. (2)
An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An
attempted access to a member whose name occurs
more than once in the concatenated data sets, returns
the first member with that name found in the entire
concatenation.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data. IBM.

partitioned data set extended (PDSE). Similar to
partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file.
A path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an
optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an implementation-
dependent manner, although more than two leading
slashes are treated as a single slash. The interpretation

Glossary 889

of the path name is described in path name resolution.
ISO.1. (2) A file name specifying all directories leading
to the file.

path name resolution. Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with
regular expression notation or for path name
expansion, as a means of selecting various characters
strings or path names, respectively. The syntaxes of the
two patterns are similar, but not identical. X/Open.

PCH (precompiled header). One or more headers that
have already been compiled.

period. The character (.). The term period is contrasted
against dot, which is used to describe a specific
directory entry. This character is named <period> in the
portable character set.

permissions. Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to
it, and explicitly terminate it.

pointer. In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the
address of non-static members of a class.

polymorphism. The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set. The set of characters specified
in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)

<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> ⁄
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> |
<circumflex-accent> |
<underscore> _
<low-line> _
<grave-accent> v
<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g

890 OS/390 V2R8.0 C/C++ Programming Guide

<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set. The set of characters
from which portable file names are constructed. For a
file name to be portable across implementations
conforming to the ISO POSIX-1 standard and to
ISO/IEC 9945, it must consists only of the following
characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter. A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence. The priority system for grouping different
types of operators with their operands.

precompiled header. See PCH.

predefined macros. Frequently used routines provided
by an application or language for the programmer.

preinitialization. A process by which an environment
or library is initialized once and can then be used
repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker. A utility provided with OS/390 Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C
applications that are compiled with the RENT, DLL,
LONGNAME or IPA options. As of Version 2 Release 4,
the prelinker was superseded by the binder. See also
binder.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that are
then executed, resulting in the alteration of the source
program.

preprocessor statement. In the C and C++ languages,
a statement that begins with the symbol # and is
interpreted by the preprocessor during compilation.
IBM.

primary expression. (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

private. Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process. (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the fork()
function. The process that issues the fork() function is
known as the parent process, and the new process
created by the fork() function is known as the child
process. X/Open. ISO.1.

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is
identified by the process group ID. A newly created
process joins the process group of its creator. IBM.
X/Open. ISO.1.

process group ID. The unique identifier representing a
process group during its lifetime. A process group ID is
a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process group
ID will not be reused by the system until the process
group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins
when a process group is created and ends when the
last remaining process in the group leaves the group,

Glossary 891

because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there
exists a process group whose process group ID is equal
to that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A
process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use. When
another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the
OS/390 Binder and is a newer more flexible format
(e.g. longer external names) than a load module.

protected. Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible
to all functions.

pure virtual function. A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name. Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name. Used to qualify a nonclass type name
such as a member by its class name.

qualified type name. Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF). Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue. A sequence with restricted access in which
elements can only be added at the back end (or bottom)
and removed from the front end (or top). A queue is
characterized by first-in, first-out behavior and
chronological order.

quotation marks. The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character. The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID. The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to change
during the process lifetime, as describe in setgid().
X/Open. ISO.1.

real user ID. The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

reason code. A code that identifies the reason for a
detected error. IBM.

reassociation. An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection. In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class. A class that links a concrete class to
an abstract class. Reference classes make polymorphism
possible with the Collection Classes. Synonymous with
indirection class.

refresh. To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

register variable. A variable defined with the register
storage class specifier. Register variables have
automatic storage.

892 OS/390 V2R8.0 C/C++ Programming Guide

regular expression. (1) A mechanism to select specific
strings from a set of character strings. (2) A set of
characters, meta-characters, and operators that define a
string or group of strings in a search pattern. (3) A
string containing wildcard characters and operations
that define a set of one or more possible strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed
by the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name. The name of a directory or file
expressed as a sequence of directories followed by a file
name, beginning from the current directory. See path
name resolution. IBM.

reserved word. (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode). In MVS, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact
that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

runtime library. A compiled collection of functions
whose members can be referred to by an application
program during runtime execution. Typically used to
refer to a dynamic library that is provided in object
code, such that references to the library are resolved
during the linking step. The runtime library itself is not
statically bound into the application modules.

S
saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the
effective group ID attribute, as described in the exec()
family of functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the
effective user ID attribute, as described in exec() and
setuid(). X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::). An operator that defines the scope
for the argument on the right. If the left argument is
blank, the scope is global; if the left argument is a class
name, the scope is within that class. Synonymous with
scope resolution operator.

scope resolution operator (::). Synonym for scope
operator.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order. In
the case of partitioned data-set members, you can
access or update the members in order. Repositioning is
possible if all of the data sets in the concatenation
support repositioning.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session. A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session. X/Open.
ISO.1.

shell. A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands
from a terminal. X/Open.

This feature is provided as part of the OS/390 Shell
and Utilities feature licensed program.

Short name. An external non-C++ name in an object
module produced by compiling with the
NOLONGNAME option. Such a name is up to 8
characters long and single case.

signal. (1) A condition that may or may not be
reported during program execution. For example,
SIGFPE is the signal used to represent erroneous
arithmetic operations such as a division by zero. (2) A
mechanism by which a process may be notified of, or
affected by, an event occurring in the system. Examples
of such events include hardware exceptions and
specific actions by processes. The term signal is also
used to refer to the event itself. X/Open. ISO.1. (3) A
method of interprocess communication that simulates
software interrupts. IBM.

Glossary 893

signal handler. A function to be called when the
signal is reported.

single-byte character set (SBCS). A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as
apostrophe. This character is named <quotation-mark> in
the portable character set.

slash. The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket. (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address. (2)
A port identifier. (3) A 16-bit port-identifier. (4) A port
on a specific host; a communications end point that is
accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map. A sorted flat collection with key and
element equality.

sorted relation. A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element
equality.

source module. A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character. The character defined in the portable
character set as <space>. The space character is a
member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. X/Open.

spanned record. A logical record contained in more
than one block. IBM.

specialization. A user-supplied definition which
replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of
the object or function being declared.

spill area. A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language). A language
designed to create, access, update and free data tables.

square brackets. The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output. X/Open.
(2) The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are
surrounded by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal
variables, the variable has block scope and retains its
value between function calls. For external values, the
variable has file scope and retains its value within the
source file. For class variables, the variable is shared by
all objects of the class and retains its value within the
entire program.

static binding. The act of resolving references to
external variables and functions before run time.

storage class specifier. One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream. (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an ordered
sequence of characters, as described by the ISO C
standard. Such objects can be created by the fdopen()
or fopen() functions, and are associated with a file
descriptor. A stream provides the additional services of
user-selectable buffering and formatted input and
output. X/Open.

894 OS/390 V2R8.0 C/C++ Programming Guide

string. A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in
double quotation marks.

string literal. Zero or more characters enclosed in
double quotation marks.

striped data set. A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary
types.

structure. A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data
types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag. The identifier that names a structure
data type.

Structured Query Language. See SQL.

stub routine. A routine, within a runtime library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram. In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily
denoting a node to be the root node in a tree. A subtree
is always part of a whole tree.

superset. Given two sets A and B, A is a superset of B
if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch expression. The controlling expression of a
switch statement.

switch statement. A C or C++ language statement that
causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile. IBM.

System Object Model (SOM). Defines an IBM
interface between programs, or between libraries and
programs, so that an object's interface is separated from
its implementation. SOM allows classes of objects to be
defined in one programming language and used in
another, and it allows libraries of such classes to be
updated without requiring client code to be
recompiled. IBM.

system process. (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other than
a process executing an application, that is defined by
the system, and has a process ID. ISO.1.

T
tab character. A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

This character is named <tab> in the portable character
set.

task library. A class library that provides the facilities
to write programs that are made up of tasks.

template. A family of classes or functions with
variable types.

template class. A class instance generated by a class
template.

Template Declaration. A prototype of a template
which can optionally include a template definition.

Template Definition. A blueprint the compiler uses to
generate a template instantiation.

template function. A function generated by a function
template.

Template Instantiation. Compiler generated code for a
class or function using the referenced types and the
corresponding class or function template definition.

terminals. Synonym for leaves.

text file. A file that contains characters organized into
one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the

Glossary 895

new-line character. The term text file does not prevent
the inclusion of control or other unprintable characters
(other than NUL). X/Open.

thread. The smallest unit of operation to be performed
within a process. IBM.

throw expression. An argument to the C++ exception
being thrown.

tilde. The character ˜. This character is named <tilde>
in the portable character set.

token. The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language
syntax. IBM.

traceback. A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence. An alternative spelling of some
characters to allow the implementation of C in
character sets that do not provide a sufficient number
of non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a string
or literal is replaced by the single character that it
represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is
passed to a handler.

type conversion. Synonym for boundary alignment.

type definition. A definition of a name for a data
type. IBM.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand. IBM.

undefined behavior. Action by the compiler and
library when the program uses erroneous constructs or
contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely

with unpredictable results. It also includes behaving in
a documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can
also include terminating a translation or execution,
while issuing a diagnostic message. Contrast with
unspecified behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union. (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag. The identifier that names a union data
type.

unnamed pipe. A pipe that is accessible only by the
process that created the pipe and its child processes. An
unnamed pipe does not have to be opened before it can
be used. It is a temporary file that lasts only until the
last file descriptor that uses it is closed.

unique collection. A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior. Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific
requirements. Such action should not cause compiler or
application failure. You should not, however, write any
programs to rely on such behavior as they may not be
portable to other systems. Contrast with
implementation-defined behavior and undefined behavior.

user-defined data type. (1) A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps. (2) See also abstract
data type.

user ID. A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.
ISO.1.

896 OS/390 V2R8.0 C/C++ Programming Guide

user prefix. In an MVS environment, the user prefix is
typically the user's logon user identification.

V
value numbering. An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a
single instruction.

variable. In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character. A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters are
an exception to the portability of the portable character
set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> |
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> v
<dollar-sign> $
<commercial-at> @

vertical-tab character. A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++ languages.
If the current position is at or past the last defined
vertical tabulation position, the behavior is unspecified.
It is unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the tabulation. X/Open. This character is
named <vertical-tab> in the portable character set.

virtual address space. (1) In virtual storage systems,
the virtual storage assigned to a batched or terminal
job, a system task, or a task initiated by a command. (2)
In VSE, a subdivision of the virtual address area
available to the user for the allocation of private,
non-shared partitions.

virtual function. A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable length records on direct access devices. The
records in a VSAM data set or file can be organized in

logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement. A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space. (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character. A character whose range of values can
represent distinct codes for all members of the largest
extended character set specified among the supporting
locales.

wide-character code. An integral value corresponding
to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

working directory. Synonym for current working
directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output
destination for all uses of the term write. X/Open. (2) To
make a permanent or transient recording of data in a
storage device or on a data medium. ISO-JTC1.
ANSI/ISO.

WSA (writable static area). An area of memory in the
program that is modifyable during program execution.

Glossary 897

Typically, this area contains global variables and
function and variable descriptors for DLLs.

898 OS/390 V2R8.0 C/C++ Programming Guide

Bibliography

This bibliography lists the publications for IBM products that are related to the
OS/390 C/C++ product. It includes publications covering the application
programming task. The bibliography is not a comprehensive list of the publications
for these products, however, it should be adequate for most OS/390 C/C++ users.
Refer to the OS/390 Information Roadmap, GC28-1727, for a complete list of
publications belonging to the OS/390 product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition: MVS Collection CD-ROM (SK2T-0710), the IBM Online
Library Omnibus Edition: OS/390 Collection CD-ROM (SK2T-6700), or on a tape
available with OS/390.

OS/390
v OS/390 Printing Softcopy BOOKs, S544-5354
v OS/390 Introduction and Release Guide, GC28-1725
v OS/390 Planning for Installation, GC28-1726
v OS/390 Summary of Message Changes, GC28-1499
v OS/390 Information Roadmap, GC28-1727

VS COBOL II Release 4
v General Information, GC26-4042
v Migration Guide for MVS and CMS, GC26-3151
v Installation and Customization for MVS, SC26-4048
v Application Programming Guide for MVS and CMS, SC26-4045
v Application Programming Language Reference, GC26-4047
v Application Programming Reference Summary, SX26-3721
v Application Programming Debugging, SC26-4049
v Application Programming Diagnosis Guide, LY27-9523
v Application Programming Diagnosis Reference, LY27-9522

COBOL FOR MVS & VM Release 2
v Compiler and Run-Time Migration Guide, GC26-4764
v Programming Guide, SC26-4767
v Language Reference, SC26-4769
v Diagnosis Guide, SC26-3138
v Licensed Program Specifications, GC26-4761
v Installation and Customization under MVS, SC26-4766

© Copyright IBM Corp. 1996, 1999 899

COBOL for OS/390 & VM Version 2 Release 1
v Compiler and Run-Time Migration Guide, GC26-4764
v Programming Guide, SC26-9049
v Language Reference, SC26-9046
v Diagnosis Guide, GC26-9047
v Licensed Program Specifications, GC26-9044
v Installation and Customization under OS/390, GC26-9045
v Program Directory for VM

v Fact Sheet, GC26-9048

PL/I for MVS & VM Release 1 Modification 1
v Language Reference, SC26-3114
v Compiler and Run-Time Migration Guide, SC26-3118
v Programming Guide, SC26-3113
v Compile-Time Messages and Codes, SC26-3229
v Reference Summary, SX26-3821
v Diagnosis Guide, SC26-3149
v Installation and Customization under MVS, SC26-3119
v Licensed Program Specifications, GC26-3116

OS PL/I Version 2 Release 3
v Programming Guide, SC26-4307
v Programming: Language Reference, SC26-4308
v Programming: Messages and Codes, SC26-4309

VS FORTRAN Version 2 Release 6
v Programming Reference, SC26-4221
v Programming Guide, SC26-4222

CICS/ESA Version 4 Release 1
v Application Programming Reference, SC33-1170
v Application Programming Guide, SC33-1169
v Installation Guide, SC33-1163
v System Definition Guide, SC33-1164
v Resource Definition Guide, SC33-1166
v Messages and Codes, SC33-1177

CICS Transaction Server for OS/390 Release 2
v Application Programming Guide, SC33-1687
v Application Programming Reference, SC33-1688
v System Programming Reference, SC33-1689
v Distributed Transaction Programming Guide, SC33-1691
v Front End Programming Interface User’s Guide, SC33-1692

900 OS/390 V2R8.0 C/C++ Programming Guide

DB2 Version 3 Release 1
v SQL Reference, SC26-4890
v Reference Summary, SX26-3801
v Command and Utility Reference, SC26-4891
v Application Programming and SQL Guide, SC26-4889

DB2 Version 4 Release 1
v SQL Reference, SC26-3270
v Reference Summary, SX26-3829
v Command Reference, SC26-3267
v Application Programming and SQL Guide, SC26-3266
v Utility Guide and Reference, SC26-3395

DB2 Version 5 Release 1
v Administration Guide, SC26-8957
v Application Programming and SQL Guide, SC26-8958
v Call Level Interface Guide and Reference, SC26-8959
v Command Reference, SC26-8960
v Data Sharing: Planning and Administration, SC26-8961
v Installation Guide, GC26-8970
v Messages and Codes, GC26-8979
v SQL Reference, SC26-8966
v Reference for Remote DRDA Requesters and Servers, SC26-8964
v Utility Guide and Reference, SC26-8967

IMS/ESA Version 4 Release 1
v Application Programming: Design Guide, SC26-3066
v Application Programming: DL/I Calls, SC26-3062
v Application Programming: Data Communication, SC26-3058
v Application Programming: EXEC DL/I Commands, SC26-3063

IMS/ESA Version 5 Release 1
v Application Programming: Design Guide, SC26-8016
v Application Programming: Transaction Manager, SC26-8017
v Application Programming: Database Manager, SC26-8015
v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8018

IMS/ESA Version 6 Release 1
v Application Programming: Design Guide, SC26-8728
v Application Programming: Transaction Manager, SC26-8729
v Application Programming: Database Manager, SC26-8727
v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8726

Bibliography 901

QMF Version 3 Release 2
v Introducing QMF, GC26-4713
v Using QMF, SC26-8078
v Developing QMF Applications, SC26-4722
v Reference, SC26-4716
v Managing QMF for MVS, SC26-8218
v Reference, SC26-4716
v Messages and Codes, SC26-4834
v Installing on MVS, SC26-4719

VSAM
v MVS/ESA VSAM Catalog Administration: Access Method Services Reference,

SC26-4501
v MVS/ESA VSAM Administration: Macro Instruction Reference, SC26-4517
v MVS/ESA VSAM Administration Guide for MVS/DFP, SC26-4518
v MVS/ESA Integrated Catalog Administration: Access Method Services Reference,

SC26-4500
v DFSMS/MVS Access Method Services for VSAM, SC26-4905
v MVS/DFP Access Method Services for VSAM Catalogs, SC26-4570
v MVS/Extended Architecture VSAM Catalog Administration: Access Method Services

Reference (Data Facility Product, Version 2), GC26-4136

902 OS/390 V2R8.0 C/C++ Programming Guide

INDEX

Special Characters
// (double slash), part of MVS data-set

name 104, 165
/* (EOF sequence for text terminal) 201
] (right square bracket) and [(left square

bracket)
entering and displaying 801

& (ampersand)
using to specify temporary data-set

names (MVS) 104
! (exclamation point)

entering and displaying 802
(number sign)

entering and displaying 802
??=pragma filetag directive 787
\a (alarm) 126
__abendcode macro, using for

debugging 228
__amrc structure

debugging I/O programs 227
example 229
using with VSAM 162, 185

__amrc2 structure
usage 230

\b (backspace) 126
__csplist() library function 595
\f (form feed) 126
__isDTSClass function 675
__last_op codes for __amrc 231
\n (newline) 126
\r (carriage return) 126
__rsncode macro 228, 375
__SOM_ENABLED__ macro 675
\t (horizontal tab) 126
\v (vertical tab) 126
\x0E (DBCS shift out) 126
\x0F (DBCS shift in) 126
_24malc() library function 523
_4kmalc() library function 524
˜ (tilde)

entering and displaying 802
| (caret)

entering and displaying 801
_EDC_GLOBAL_STREAMS environment

variable 464
_EDC_IP_CACHE_ENTRIES environment

variable 465
_EDC_RRDS_HIDE_KEY environment

variable 171
{ (left brace)

entering and displaying 802
} (right brace)

entering and displaying 802
_TZ environment variable 751
| (vertical bar)

entering and displaying 802
_xhotc() library function 519
_xhotl() library function 520
_xhott() library function 520
_xhotu() library function 521
_xregs() library function 522

_xsacc() library function 522
_xsrvc() library function 523
_xusr() library function 523
_xusr2() library function 523

Numerics
24malc() library function 523
4kmalc() library function 524

A
abend

CICS and assembler user exit 533
codes

CEEBXITA, CEEAUE_RETURN
field 531

specifying those to be
percolated 534

dumps, CEEAUE_DUMP 533
generating 510
percolating 529, 534
requesting

dump 533
system 529, 534
TRAP run-time option 530
user 529, 534

absolute value 349
decimal type 349

absolute value, decimal type 349
acc parameter for fopen()

memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 168

accept()
network example 422

additive operators, decimal 339
address, Internet 419
address, socket 418
address families 418
addressing

within AF_INET domain 420
within AF_UNIX domain 420
within sockets 418

AF_INET domain
addressing 420
defined 420

AF_UNIX domain
addressing 420
defined 420

alarm escape sequence \a 126
alternate code point support 781
AMODE

processing option
for CEEBXITA user exit 530

AMODE processing option
for CEEBXITA user exit 530

AMODE/RMODE under CICS 570, 591
application, network 426

application service routines 491
argc (argument count)

under CICS 576
argc under CICS 576
ARGPARSE run-time option

preinitialization 253
argv (argument vector)

under CICS 576
argv under CICS 576
arithmetic

constructions 386
operators, decimal data type

additive 339
conditional 340
equality 340
multiplicative 339
relational 339

ASA (American Standards Association)
control characters 69
example 69
overview 69

asis parameter, fopen()
memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 168

assembler
assembler user exit for termination

of 531
epilog 244
example 246, 254
interlanguage calls 241
level 243
macros 241
multiple invocations 248
prolog 243
system programming alternative 473
user exits

CEEBXITA 526
assignment

operators, decimal 341
standard stream 90

asynchronous
I/O 120

asynchronous I/O (MVS) 120
atoi() library function 388

B
backspace escape sequence \b 126
BDAM data sets, restriction 103
BDW (block descriptor word)

viewing 117
Berkeley Socket 413
binary

files 35
byte stream behavior 42
fixed behavior 35
undefined format behavior 41
using fseek() and ftell(), OS

I/O 133

© Copyright IBM Corp. 1996, 1999 903

binary (continued)
variable behavior 39

I/O, description 32
binary files

byte stream behavior 42
fixed behavior 35
undefined format behavior 41
using fseek() and ftell(), OS I/O 133
variable behavior 39

binary I/O, description 32
bind()

network example 421
bit fields 387
blksize parameter

defaults 54
memory file I/O 212
OS/390 OS I/O 118
specifying 53
terminal I/O 200
VSAM data sets 167

block
viewing I/O blocks 117

blocked records 34
buffers

full buffering 67
line buffering 67
multiple 120
no buffering

HFS files 67
memory files 67

OS I/O 120
terminal I/O 201
using 67

BUFNO subparameter, multiple
buffering 120

built-in library functions
__isDTSClass 675
list of 859
optimizing code 387

byte order, network 419
byteseek parameter in fopen()

effects on OS files 133
memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 169

C
C locale

comparing with POSIX and SAA
locales 759

defined 753
C or C++ interlanguage calls

with assembler 241
with C++ 239
with COBOL 239
with FORTRAN 239
with PL/I 239

CALL
command 595
token for preinitialization 250

calling
assembler from C or C++ 241
C from C++ 239
C or C++ from assembler 241
COBOL from C++ 239

calling (continued)
FORTRAN from C++ 239
functions repeatedly 248
PL/I from C++ 239

card
punch output 116
reader input 116

carriage return escape sequence \r 126
cast operator, decimal 343
catalogued procedure 439

changes for sockets 438, 439
EDCC sample 439
EDCCB sample 438
link edit 438

catch 363
in exception handling 363

cdump() library function 577
CEE.SCEEMAC 243
CEEAUE_ parameters 529
CEEBINT HLL user exit

customizing 527
invoking 526
using default version 527

CEEBXITA assembler user exit
abends 529
customizing for your installation 527
during enclave termination 529
during process termination 529
effects of run-time options 529
error handling 530
invoking 526, 528
using default version 527

CEESTART
data set

creating modules without 477
using with MTF 561

cerr, C++ standard error stream 83
cerr predefined stream, usage 45
CESE, CICS data queue 223
CESO, CICS data queue 223
character

special files (HFS)
creating 140
I/O rules 153
using 139

Character Set
hexadecimal values 807
POSIX 797

character special files (HFS)
creating 140
I/O rules 153
using 139

charmap file
example 819
input 797
restriction, Japanese Katakana 799

charmap section 712
CHARSETID section 714
CICS

OS/390 C/C++ library support 576
CICS (Customer Information Control

System)
AMODE/RMODE

considerations 570, 591
arguments to C or C++ main() 576
cdump() library function 577
CESE data queue 223

CICS (Customer Information Control
System) (continued)

CESO data queue 223
clock() library function 577
compile 585, 590
Cross System Product (CSP) 595
CSD considerations 593
csnap() library function 577
ctdli() library function 577
ctrace() library function 577
define and run the program 592
designing and coding a program 570
developing a C or C++ program 569
DLL 577
dump functions 577
dynamic allocation 577
EXEC CICS LINK 577
EXEC CICS XCTL 577
fetch() library function 577
floating point arithmetic 578
input and output 51, 223
interlanguage support 579
iscics() library function 578
JCL to translate and compile 590
link considerations 592
link load module 591
linking for reentrancy 591
locale support 576, 794
memory file support 575
MTF support 577
OS/390 UNIX 861
overview 569
packed decimal support 576
POSIX support 576
prelinking 591
preparing for use with OS/390

Language Environment 569
program processing 592
program termination 578
redirecting standard streams 94
reentrancy 592
release() library function 577
requirements 569
run-time 576
run-time options 576
SP C support 577
standard stream support 574
storage management 578
svc99() library function 577
system() library function 577
translate 585
using with IMS 577

cin, C++ standard input stream 83
cin predefined stream, usage 45
CINET 432
clearenv() library function 460
clearing memory 388
client

perspective 423
client/server

allocation with socket() 421
conversation 421
exchanging data 420
server perspective 421

clock() library function 577
clog

C++ standard error stream 83

904 OS/390 V2R8.0 C/C++ Programming Guide

clog (continued)
predefined stream, usage 45

closing
HFS files 146
memory files 218
OS/390 Language Environment

message file 226
OS I/O files 136
terminal files 206
VSAM data sets 185

clrmemf() library function
memory I/O files 219

COBOL
assembler user exit 528
using linkage specifications 239

code
independence 551
motion 397
point mapping 807

coded character set
CICS support 569
considerations with locale 779
conversion during compile 788
conversion utilities 761
converters supplied 762
IBM-1047

converting code from 831
converting code to 783

IBM-1047 vs. IBM-293 780
independence 785
related to compile-edit cycle 785

collating sequence difference, SAA and
POSIX 759

common expression elimination 397
Common INET 432
Common Object Request Broker

Architecture (CORBA)
and IDL 660
and SOM 650
definition 650
environment parameter 661

Common Programming Interface
(CPI) 641

communication
network basics 414

communications, interprocess
asynchronous signal delivery 370
TCP/IP for MVS considerations 435

compile-edit cycle related to coded
character set 785

compiler options
locale 788

compiler options, locale 788
compiler restrictions 434
compiling

for a locale 788
include files 437
linking 433
procedures 433
restrictions 434
sockets programs 433
under batch

for Berkeley Sockets 438
for X/Open Sockets 439
with X Windows 439

using c89
for Berkeley Sockets 439

compiling (continued)
using c89 (continued)

with X Windows 439
compiling for a locale 788
computational independence 544, 551
concatenation

compatibility rules 112
in-stream data sets 113
sequential and partitioned 111

condition
severity, CEEBXITA assembler user

exit 532
condition variable 313
conditional operators, decimal 340
configuration file access, TCP/IP for

MVS 436
constant

fixed-point decimal 336
propagation 397

constants defined in idecimal.hpp 355
control characters

ASA text files 69
OS I/O text files 126
recognized by OS/390 C/C++ text

files 31
terminal I/O files 204

conversation 420
conversion

decimal object and
IBinaryCodedDecimal object 361

decimal object from a char * type 361
decimal object from an integer

type 361
decimal object to a decimal

object 361
decimal object to an IString

object 361
decimal objects 361
IBinaryCodedDecimal object to a

IBinaryCodedDecimal object 357
IBinaryCodedDecimal objects 357

conversions
code set 761
coding with optimizations 385
decimal types

decimal to decimal 343
decimal to float 346
decimal to integer 345
float to decimal 346
integer to decimal 345

hybrid code from IBM-1047 831
hybrid code to IBM-1047 783

converters, locale code set 762
CORBA

and IDL 660
and SOM 650
definition 650
environment parameter 661

cout, C++ standard output stream 83
cout predefined stream, usage 45
creat() library function

HFS files 140
CSECT (control section)

CEESTART 477
csid() library function 704
csnap() library function 577

CSP (Cross System Product)
common data types 595
overview 595
passing control 595
passing parameters 595
under CICS 595

CSP/AD (Cross System
Product/Application
Development) 595

CSP/AE (Cross System
Product/Application Execution) 595

ctdli() library function 577
ctrace() library function 577
CXIT control block 529

D
DASD (Direct-Access Storage Device)

input and output 103
multivolume data sets, input and

output 115
sequential and partitioned

concatenation 111
striped data sets, input and

output 115
data

independence 544, 551
data set

include files 437
data sets

in-stream 113
multivolume 115
name

opening a memory file 210
opening an MVS data set 165
opening an OS/390 OS file 103

sequential vs. partitioned
concatenation 111

striped 115
temporary 104

datagram
sockets 418

DB2 (DataBase 2)
application programming

environment, OS/390 UNIX 861
locale support 794
with OS/390 C/C++ 613

DBCS (Double-Byte Character Support)
input and output functions 73
reading 74
shift in character 126
shift out character 126
writing 75

DCB (Data Control Block)
OS I/O 121
parameter on a DD statement 106
parameters, optimizing code 389

ddname
creating

description 56
in source code 57
under MVS batch 56
under TSO 56

opening an HFS I/O file under
MVS 143

opening an OS I/O file under
OS/390 105

INDEX 905

ddname (continued)
restriction 57

dead code elimination 397
dead store elimination 397
Debug Tool

CEEBINT and 539
debugging

I/O programs 227
DEC_DIG decimal constant

numerical limit 337
range of values 336, 359

DEC_EPSILON decimal constant 337
DEC_MAX decimal constant 337
DEC_MIN decimal constant 337
DEC_PRECISION decimal constant

numerical limit 337
range of values 336, 359

decchk() library function 353
decimal

constructing objects 358
data type

absolute value 349
assignments 337
constants 336
constructing 358
conversions 343
declarations 335
error messages 354
exception handling 352, 362
fixing sign of 349
operators 337
printing with library

functions 348
SPC restriction 353
validating 348
variables 336
viewing with library

functions 348
exceptions 362

decimal class 358
input and output 359
mathematical operators 359

decimal class representation 358
decimal data type

absolute value 349
assignments 337
constants 336
constructing 358
conversions 343
declarations 335
error messages 354
exception handling 352, 362
fixing sign of 349
operators 337
printing with library functions 348
SPC restriction 353
validating 348
variables 336
viewing with library functions 348

decimal object
asBCD 361
asString 361
digitsof 362
precisionof 362

declarations
decimal 335, 358

declarations (continued)
extern, using for linkage to other

languages 239
using optimization 386

default
C locales for POSIX, SAA, and

S370 753
DCB attributes for SYSOUT data

set 114
fopen() 54
locales 753, 759
LRECL, fopen() 54
RECFM 54

definition side-deck 280
delete

HFS files 147
named module from storage 514
pipes with HFS 150
VSAM records 173

delimiter in JCL statements 113
delivery, signals

ANSI C rules 368
asynchronous 370
POSIX rules 368

differences among C, POSIX, and SAA
locales 759

differences between SAA C and POSIX
C 759

digitsof operator 342
direct processing 171
Direct-to-SOM 649
directories (HFS)

creating 140
deleting 147
using 139

disabled signals 372
DISP=MOD specification, DD statement

DDnames 57
OS I/O, fopen() modes 105

displaying variant characters 801
DL/I (Data Language I) 624
DLL code 287
DLL Rename Utility 271
DLLs (Dynamic Link Libraries)

applications 272
binding a DLL 280
binding a DLL application 280
C++ example 299
C example 295, 301, 302
C or C++ example 273
calling explicitly 273
calling implicitly 272
CICS 577
compatibility with non-DLL 290
Complex

assigning pointers 292
compatibility issues 290
creating 287
guidelines 288
modifying source 290

creating 277
#pragma export 278
C 277
description 277
exporting functions 278
guidelines 288

DLL Rename Utility 271

DLLs (Dynamic Link Libraries)
(continued)

entry point 283
example 282
freeing 277
load-on-call 272
loading 276
managing the use of 275
performance 284
restrictions 283
sharing among application executable

files 277
using 281

domain
AF_INET 420
AF_UNIX 420

DSQCOMMC.H header file 641
DUMMY data set output 116
dumps

requesting in the CEEBXITA assembler
user exit 529, 533

duplicate alternate index keys
retrieval sequence 171
under VSAM 168

DWS (Data Window Services)
with OS/390 C/C++ 609

DXFR, transfer control 595
dynamic

memory 396
dynamic memory 396

E
EDCCB 438, 439

cataloged procedure 438, 439
changes for sockets 438, 439
sample 438, 439

EDCDPLNK macro 331
EDCDSAD macro 244
EDCDSADmacro 243
EDCDXD macro 331
EDCEPIL macro 243, 244
EDCLA macro 331
EDCLDEF JCL procedure 745
EDCPRLG macro 243
EDCPROL macro 243
EDCRCINT routine 482
EDCX4KGT routine 512
EDCXABND routine 510
EDCXABRT module

using during link edit 479
EDCXABRT routine 482, 486
EDCXENV module 486
EDCXENVL module 486
EDCXEXIT module

exit(), system programming
version 486, 491, 509

freestanding applications 482
EDCXFREE routine 512
EDCXGET routine 510
EDCXHOTC library function 519
EDCXHOTC routine 491
EDCXHOTL library function 520
EDCXHOTL routine 491
EDCXHOTT library function 520
EDCXHOTT routine 491
EDCXHOTU library function 521

906 OS/390 V2R8.0 C/C++ Programming Guide

EDCXHOTU routine 491
EDCXISA module

entry point 479
in freestanding applications 482

EDCXLANE module 514
EDCXLANK module 514
EDCXLANU module 514
EDCXLOAD routine 513
EDCXMEM module

freestanding applications 482
persistent environment 491
system programming memory

management 486, 509
EDCXREGS library function 522
EDCXSACC library function 522
EDCXSACC routine

accepting a request for service 508
EDCXSPRT module

in freestanding applications 482
sprintf(), system programming

version 491
sprintf(), system programming version

of 486
System programming version of

sprintf() 509
EDCXSRC routine

xsrvc library function 523
EDCXSRVC routine 508
EDCXSRVN routine

initiating a server request 508
EDCXSTRL module

in freestanding applications 482
usage 478

EDCXSTRT module
in freestanding applications 482
usage 477

EDCXSTRX module
in freestanding applications 482
usage 478

EDCXUNLD routine 514
EDCXUSR library function 523
EDCXUSR2 library function 523
ELPA (Extended Link Pack Area) 328
empty records

_EDC_ZERO_RECLEN 40, 466
enabled signals 372
enclave

terminating with an abend
using CEEAUE_ABND to 533

encoded offset 133
ENGLISH run-time messages 514
environment

IMS 624
environment variables

_CEE_DMPTARG 467
_CEE_ENVFILE 467
_EDC_ADD_ERRNO2 462
_EDC_ANSI_OPEN_DEFAULT 462
_EDC_ANSI_OPEN_DEFAULT

_EDC_ANSI_OPEN_DEFAULT 121
_EDC_BYTE_SEEK 119, 134, 463
_EDC_CLEAR_SCREEN 205, 463
_EDC_COMPAT 463
_EDC_GLOBAL_STREAMS 464
_EDC_IP_CACHE_ENTRIES 465
_EDC_RRDS_HIDE_KEY 465
_EDC_STOR_INCREMENT 466

environment variables (continued)
_EDC_STOR_INITIAL 466
_EDC_ZERO_RECLEN 466
locale 458
naming conventions 461
using 460

EOF (end of file)
resetting terminal I/O 201

equality operators 340
decimal 340

equality operators, decimal 340
equality operators for decimal

objects 360
equality operators for

IBinaryCodedDecimal 356
ERRCOUNT run-time option 368
errno values 863
errors, debugging 375
ESCON channels, striped data sets 115
ESDS (Entry-Sequenced Data Set)

alternate index keys 162
use of 159

established signals 371
examples

cbc3gas1 69
cbc3gca1 246
cbc3gca2 245, 247
cbc3gca3 247
cbc3gca5 246
cbc3gca6 254
cbc3gca7 257
cbc3gcc2 791
cbc3gch1 365
cbc3gch2 366
cbc3gci1 571
cbc3gci2 582
cbc3gci3 586
cbc3gcl1 747
cbc3gcl2 748
cbc3gcl3 749
cbc3gcp1 597
cbc3gcp2 599
cbc3gcp3 601
cbc3gcp4 602
cbc3gcp5 605
cbc3gcp6 605
cbc3gcp7 607
cbc3gdb1 613
cbc3gdc1 338
cbc3gdc2 340
cbc3gdc3 350
cbc3gdc4 352
cbc3gdi1 229
cbc3gdi2 234
cbc3gdl1 759
cbc3gdw1 611
cbc3gdw2 610
cbc3gec1 382
cbc3gev1 468
cbc3gev2 469
cbc3ggd1 619
cbc3ggd2 621
cbc3ghc1 831
cbc3ghf1 148
cbc3ghf2 150
cbc3ghf3 154
cbc3gim1 627

examples (continued)
cbc3gim2 629
cbc3gim3 631
cbc3gip1 854
cbc3gip2 858
cbc3gis1 634
cbc3gis2 635
cbc3gis3 635
cbc3gis4 636, 639
cbc3gis5 636, 640
cbc3gis6 637
cbc3gis7 637
cbc3gis8 638
cbc3gis9 638
cbc3gisa 638
cbc3gisb 639
cbc3gmf1 214
cbc3gmf2 215
cbc3gmf3 221
cbc3gmf4 222
cbc3gmi1 842
cbc3gmi2 843
cbc3gmt1 558
cbc3gmt2 559
cbc3gmt3 560
cbc3gmv1 802
cbc3gmv2 805
cbc3gof1 51
cbc3gop1 393
cbc3gop2 393
cbc3gop3 385
cbc3gos1 108
cbc3gos2 109
cbc3gos3 130
cbc3gqm1 641
cbc3gqm2 644
cbc3gqm3 645
cbc3gre1 329
cbc3gre2 330
cbc3gre3 332
cbc3gre4 333
cbc3gsp1 480
cbc3gsp2 481
cbc3gsp3 484
cbc3gsp4 488
cbc3gsp5 489
cbc3gsp6 493
cbc3gsp7 494
cbc3gsp8 499
cbc3gsp9 501
cbc3gspa 510
cbc3gspb 511
cbc3gspc 513
cbc3gspd 502
cbc3gspe 504
cbc3gspf 506
cbc3gth1 318
cbc3gvs1 163
cbc3gvs2 187
cbc3gvs3 192
cbc3gvs4 195
cbc3gwt1 853
cbc3gwt2 853
machine-readable 9
naming of 9
softcopy 9

INDEX 907

exception handling
C++ -IMS 624
C exceptions under C++ 364
C-IMS 624
CEEBXITA assembler user exit 530
decimal type 352, 362
description 363
hardware exceptions under C++ 364

EXEC CICS commands
FREEMAIN 578
GETMAIN 578
how to use 570
LINK 577
RETURN 578
WRITEQ TD 233
XCTL 577

exec family of functions
data definition considerations 143
described 390

EXECUTE extended parameter list
request 251

exporting functions 272
exporting source to other sites 784
expressions

optimizing 385
expressions, optimizing 385
extended parameter list 249
extern declaration

using for linkage to other
languages 239

external
static 328
variables 384, 387

F
F-format records 34
families, address 418
families, socket 417
fclose() library function

_EDC_COMPAT environment
variable 463

fcntl() library function
HFS files 140

fdelrec() library function
using to delete records 164, 173

fetch() library function
and writable statics 324
calling other OS/390 C/C++ modules

in C 391
system programming C

environment 475
under CICS 577

fflush() library function
_EDC_COMPAT environment

variable 463
optimizing code 390, 391

fgetpos() library function
_EDC_COMPAT environment

variable 463
optimizing code 390

fgets() library function
optimizing code 389

fgetwc() library function 74
fgetws() library function 74
FIFO

mkfifo() 147, 149

FIFO (continued)
special files

creating 140
using 139, 149

files
memory

closing 218
extending 218
flushing 217
opening 210
positioning 218
reading 216
repositioning 218
writing 217

MVS
opening 103

named pipe
using 149

origin of OS attributes 121
OS

flushing 129
opening 103
reading from 123
removing 136
renaming 136
repositioning 132, 136
writing to 125

VSAM
closing 185
deleting a record 173
flushing 176
locating a record 174
reading a record 170
repositioning 174
updating a record 172
writing a record 171

filetag pragma 787
fixed-format records

overview 34
standard format 34

fldata() library function
HFS I/O 156
memory file I/O 219
OS I/O files 136
terminal I/O 207

floating-point
registers 247

floating-point registers 247
flocate() library function

VSAM data sets 162, 174
flushing

binary streams, wide character
I/O 78

buffers for terminal files 205
HFS records 146
memory files 217
OS/390 Language Environment

message file 226
OS I/O files 129
terminal files 205
text streams, wide character I/O 78
VSAM data sets 176, 182

fopen() library function
HFS files 140
list of parameters, for

HFS I/O 143
memory file I/O 211

fopen() library function (continued)
list of parameters, for (continued)

OS/390 OS I/O 116
terminal I/O 200
VSAM I/O 167

restrictions 54
under MTF 564

for statement 386
fork() library function

data definition considerations 143
using with memory files 390

form feed escape sequence \f 126
format-D files restriction,

ISCII/ASCII 33
four k 524
fputc() library function

optimizing code 389
fputs() library function

optimizing code 389
fputwc() library function 75
fputws() library function 75
fread() library function

optimizing code 389, 390
FREE=CLOSE parameter, DD

statement 106
freestanding applications

EDCXISA 479
EDCXSTRL 478
EDCXSTRT 477
EDCXSTRX 478

freopen() library function
HFS files 140
noseek parameter

in-stream data sets 113
under MTF 564
VSAM data sets 165
warning 56

fseek() library function
_EDC_COMPAT environment

variable 463
optimizing code 389

fsetpos() library function
optimizing code 390

fstream class 46
ftell() library function

_EDC_COMPAT environment
variable 463

full buffering 67
functions

__isDTSClass 675
arguments 384
descriptors 271
exported 272
imported 272

fupdate() library function
use of 164, 172

fwrite() library function
optimizing code 389, 390

G
GDDM (Graphical Data Display

Manager)
interface 618
with OS/390 C/C++ 617

GDG (Generation Data Group)
C++ example 108

908 OS/390 V2R8.0 C/C++ Programming Guide

GDG (Generation Data Group)
(continued)

C example 108
input and output 107

genxlt utility 761
getenv() library function 460
getsyntx() library function 704
getwc() library function 75
getwchar() library function 75
global assembler user exit 527
global variables 384
graph coloring register allocation 398
graphics support 617

H
hard-coding 781
hardware signals 372
header files

iostream.h 45
HEAP run-time option

system programming C
environment 475

HFS (Hierarchical File System)
character special 140
closing files 146
creating files 139
deleting 147
directory 140
example 154
FIFO 140
file types 139
flushing records 146
I/O, description 50
I/O functions, example program 153
I/O Stream class library 139
input and output 139
link 140
naming files 140
reading streams and files 145
record I/O rules 144
regular 139
setting positions within files 146
writing to streams and files 145

high-level
language user exits

CEEBINT 526
qualifier

defaults 105, 210
running without RACF 105, 210
setting the user prefix under

TSO 105, 211
hiperspace memory files

I/O, description 51
input and output 209
POSIX restrictions 51
specifying buffer size, setvbuf() 209
thread affinity restrictions 322

horizontal tab escape sequence \t 126
hybrid coded character set, using 781

I
I/O

binary stream 32
card input and output 116

I/O (continued)
category descriptions

CICS data queues 51
HFS files 50
hiperspace memory files 51
memory files 51
OS/390 Language Environment

message files 52
OS files 50
terminal 50
VSAM files 50

CICS 223, 574
debugging 227
DUMMY data-set output 116
errors 227
Hierarchical File System (HFS) 139

functions 153
using with I/O 139

hiperspace memory files 209
in-stream data sets 113
low-level OS/390 UNIX 153
memory file 209
multivolume data sets 115
object-oriented 45
optical reader input 116
optimizing code 389
OS 103
OS/390 Language Environment

message file 225
pipe 147
printer output 116
record

introduction 32
model 33
rules, HFS 144

restrictions in multithreaded
applications 322

striped data sets 115
summary table 48
sysout data set 113
tapes 114
terminal 199
text stream 31
types, general information 31
wide characters 73

I/O Stream Library 83
I/O Streams File I/O 45
IBinaryCodedDecimal 355

constants 355
constructing objects 356
exceptions 358
input and output 356
mathematical operators 356

IBinaryCodedDecimal class
representation 355

IBinaryCodedDecimal object
digitsof 358
precisionof 358

IBM-1047 coded character set
converting code from 831
converting code to 783

iconv() library function 762
iconv utility

converting code sets 761
preparing source code for

exporting 784
idecimal.hpp header file 355, 358

IDL
callstyles 661
definition 660
limitations 662
names 660
pragma directives 678, 692
types 660

IEBGENER utility (TSO)
tape files 114

if statement 386
ifstream class 46
IMS (Information Management System)

default high-level qualifier 105, 211
error handling 624
opening files 105, 211
OS/390 UNIX 861
other considerations 625
redirecting standard streams 94
using with CICS 577
with OS/390 C/C++ 623

in-stream data sets
delimiter for data 113
input 113
noseek parameter 113

INCLUDE control statement
application specific user exit 528

include files
with OS/390 UNIX sockets 437

INCLUDE statement, MVS 528
INIT token preinitialization 250
initialization

nested enclave
CEEBXITA’s function code

for 531
using CEEBXITA 528

inlining
optimization 392
suggestions 393
under IPA 395

installation-wide assembler user exit 527
instruction scheduling 397
interface

CICS 569
DB2 613
DWS 609
GDDM 617
IMS 623
ISPF 633
locale-sensitive 704
preinitialized program 249

interlanguage calls
C or C++ and assembler 241
using linkage specifications 239

interleaving
standard streams I/O 85
without sync_with_stdio() 86

international enabling
for programming languages 703
OS/390 C/C++ support for 704

Internet address 419
internetworking

concepts 413
interprocess communication

asynchronous signal delivery 370
TCP/IP for MVS considerations 435

INTRDR, using to create job stream
within a program 114

INDEX 909

ios class
usage 45

iostream.h header file 45
IPA

date and time stamps 411
effect of LOCALE option 411
effects on your program 410
flow of processing

IPA 401
IPA Compile step 401
IPA Link step 402
non-IPA 400

invoking from the c89 utility 407
object record formats 405
partitioning 406
restrictions 411
specifying #pragmas under IPA 409
specifying compiler options under

IPA 408
types of procedural analysis 399

ISAM data sets, restriction 103
ISASIZE run-time option

system programming C
environment 475

iscics() library function 578
ISCII/ASCII format-D files,

restriction 33
isDTSClass function 675
ISPF (Interactive System Productivity

Facility)
with OS/390 C/C++ 633

K
KANJI run-time messages 514
keyboard, mapping variant

characters 801
KSDS (Key-Sequenced Data Set)

alternate index, under VSAM 162
description 159

L
LC_ALL locale variable 715
LC_COLLATE locale variable 715
LC_CTYPE locale variable 715
LC_MONETARY locale variable 715
LC_NUMERIC locale variable 715
LC_SYNTAX locale variable 737
LC_TIME locale variable 715
LC_TOD locale category 751
LC_TOD locale variable 715
library

extensions 391
line buffering 67
linear data sets 160
link() library function

HFS files 140
link edit 438
link files (ampersand)

using 139
link files (HFS), creating 140
linkage editor

CICS 569
linkage editor, CICS 569

linkage pragma for interlanguage
calls 247

linking
kinds of linkage 239
sockets programs 433
syntax 239

listen()
network example 421

listings 792
locale sensitive 792

listings, locale sensitive 792
loading

named module into storage 513
VSAM data sets 171

local
constant propagation 397
expression elimination 397
variables 383

localdtconv() library function 704
locale

C 753
categories

LC_ALL 715
LC_COLLATE locale variable 715
LC_MONETARY locale

variable 715
LC_NUMERIC locale variable 715
LC_SYNTAX locale variable 737
LC_TIME locale variable 715
LC_TOD locale variable 715
LC_TYPE locale variable 715

CICS support 569
compiler option examples 789
compiler options 788
converting existing work 783
customizing 745
environment variables 458
generating an object module 793
hybrid coded character set,

using 781
library functions

localdtconv() 704
localeconv() 704
setlocale() 704

localeconv() library function 715
macros 790
overview of OS/390 C/C++

support 704
predefined 792
source-code functions summary 787
summary of support in compiler 790
tests for SAA or POSIX 759
using with CICS 576

Locale
_TZ 751
TZ 751

localeconv() library function 704
localedef file

example 819
localedef utility 745

for customization 745
loop statements, optimizing 386
low-level OS/390 UNIX I/O 153
LPA (Link Pack Area) 328
LRECL (logical record length) parameter

defaults 54

LRECL (logical record length) parameter
(continued)

fopen() library function
memory file I/O 212
OS/390 OS I/O 118
terminal I/O 200
VSAM data sets 167

lrecl=X 118
OS I/O 118

M
machine

print-control codes 34
macros

EDCDSAD 243
EDCEPIL 243
EDCPRLG 243
EDCPROL 243
offsetof 667
sizeof 667
use with locale 790

main task for MTF 543
malloc() library function

system programming C
environment 486, 491, 509

mapping variant characters 801
MB_CUR_MAX, effect on DBCS 73
MB_CUR_MAX macro 73
member

PDS and PDSE 110
memcmp library function 388
memory files

automatic name generation 213
closing 218
example 51, 221
example program 220
extending 218
flushing 217
I/O, description 51
I/O Stream class library 209
in hiperspace 209
input and output 209
opening 210
positioning within 218
reading from 216
repositioning within 218
return values for fldata() 219
simulated partitioned data sets

description 214
example 214, 215

specifying asterisk as file name 213
support under CICS 575
text mode treated as binary 213
ungetc() considerations 217
using to optimize code 391
writing to 217

memset library function 388
mkdir() library function

HFS files 140
mkfifo() library function

HFS files 140
with HFS files 147, 149

mknod() library function
HFS files 140, 149

MSGCLASS, matching for SYSOUT data
sets 114

910 OS/390 V2R8.0 C/C++ Programming Guide

MSGFILE (OS/390 Language
Environment)

closing 226
default destination SYSOUT 92
flushing buffers 226
I/O Stream class library 225
opening files 225
output 225
reading from 225
repositioning within 226
writing to 225

MTF (multitasking facility)
coding for 551
compiling 560
concepts illustrated 546
DD statements 563
designing for 551
dynamic commons 558
EDCMTFS 561
examples 555
independence requirement 551
introduction to 543
Job Control Language (JCL) 561, 563
link-editing considerations 562
linking 560
load modules 560
modifying run-time options 562
multithreading 324
passing data 553
restrictions 564
rules 552
running under 562
tasks 543
with OS/390 C++ 471

multibyte characters 73
effect of MB_CUR_MAX 73
reading 74
writing 75

multibyte characters, effect of
MB_CUR_MAX 73

multiple buffering 120
multiple invocations, preinitialized

program 248
multiple threads 311
multiplicative operators, decimal 339
multivolume data sets

opening 115
mutex 313
MVS (Multiple Virtual System)

alternative initialization routine 477
building freestanding

applications 479
Data Window Services (DWS) 609
file names 103
file names for memory files 210
listing PDS members 853
reentrant modules 480

N
named pipes

example 150
using 149

naming
environment variables 461

natural reentrancy 327
description 327

NCP subparameter
multiple buffering 120

network
application example 426

network byte order 419
network communication basics 414
newline escape sequence \n 126
nl_langinfo() library function 704
NOARGPARSE run-time option

preinitialization 253
non-DASD devices, I/O 116
nonoverrideable run-time options in the

user exit 533
NOSEEK parameter

in-stream data sets 113
memory file I/O 212
OS/390 OS I/O 119
sequential concatenations 112
terminal I/O 201
VSAM data sets 169

Notices 867

O
object-oriented

model for I/O 45
offsetof macro 667
ofstream class

description 46
open() library function

for low-level OS/390 UNIX files 140
HFS files 140
with pipes 149

Open Socket 413
opening

CICS data queues 51
determining type of file to open 48
files for I/O, overview 47
HFS files 50, 141
memory files

description 51
example 51

memory I/O files 210
multibyte character files 74
OS/390 Language Environment

message files 52, 225
OS files 50
terminal files 199
terminal I/O files 50
VSAM data sets 50, 165

operators, decimal
arithmetic 339
assignment 341
cast 343
summary 343
unary 342

optica/reader input 116
optimization

additional hints and tips 398
arithmetic constructions 386
code motion 397
common expression elimination 397
constant propagation 397
control constructs 386
conversions 385
dead code elimination 397
dead store elimination 397

optimization (continued)
declarations 386
dynamic memory 396
expressions 385
fixed standard format records 34
function arguments 384
graph coloring register allocation 398
inlining 392, 393
inlining under IPA 395
input/output 389
instruction scheduling 397
levels 383
library extensions 391
library functions 387
loop statements 386
noseek parameter for OS I/O 119
pointers 384
programming recommendations 34,

383
straightening 397
strength reduction 397
techniques 392
value numbering 397
variables 383

order, network byte 419
OS/390 Language Environment

message file I/O, description 52
message file output 225

OS/390 UNIX
application programming

environment 861
I/O

low-level 153
OS I/O

acc= parameter 119
asis parameter 119
asynchronous reads 119, 120
asynchronous writes 119, 121
buffering 120
byteseek parameter 119
closing files 136
description 50
fgetpos() and ftell() values 133
flushing records

description 129
example 130

I/O Stream class library 103
in-stream data sets 113
lrecl=X 118
multivolume data sets 115
opening files under MVS 103
opening files under OS/390 103
overview 103
password= parameter 119
PDS and PDSE considerations

BLKSIZE values 118
LRECL values 118
overview 110
RECFM values 117

reading from files 123
repositioning within files 132
space= parameter 118
striped data sets 115
tapes 114
type= parameter 119
ungetc() considerations 131, 133
writing to files 125

INDEX 911

OS linkage 239, 242, 247
os parameter, fopen()

memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM I/O 169

overlapped I/O 120
overrideable run-time options in the user

exit 533

P
packed

decimal
assignments 337
constructing 358
conversions 343
declarations 335
operators 337
using with CICS 576
variables 336

packed decimal
assignments 337
constructing 358
conversions 343
declarations 335
operators 337
using with CICS 576
variables 336

parallel functions 544
parameter

list, OS 242
passing, OS 242

partitioned concatenation
compatibility rules 112
data sets 111

passing
global behavior 98
streams across system calls 95

passing streams across system calls 95
password= parameter

memory file I/O 212
OS/390 OS I/O 119
VSAM data sets 168

PATH, under VSAM 162
pathname, under POSIX.1 141
PDS (partitioned data set)

input and output 110
listing members 853
memory files simulation

description 214
example 214, 215

opening 117
OS I/O, restriction on opening 110

PDSE (partitioned data set extended)
input and output 110
opening 117
OS I/O, restriction on opening 110

performance
impact from BYTESEEK mode for OS

files 134
improvements by using fixed standard

format records 34
memory files 209
noseek parameter for OS I/O 119
opening memory files 213
specifying FBS format 118

persistent C environments 486
perspective, the client 423
pipe() library function

HFS files 140
pipes

creating 140
I/O 147
named 149
unnamed 147

description 140
example 148

PL/I
using linkage specifications 239

PLIST
compiler option (C++)

OS 624
directive (IMS)

OS 624
system programming

environment 475
plotters, Graphical Data Display Manager

(GDDM) 617
pointers 292

assigning in DLLs 292
optimization 384

port
locating the server’s 425

portability
VM/CMS and OS/390 filenames 105

portable character set 779
ports 419
positioning

HFS files 146
memory files 218
OS/390 Language Environment

message file 226
OS I/O files 132
terminal files 206

POSIX
character set 797
locale, defined 753
POSIX C locale and SAA C locale

differences 759
pragmas

environment 483, 485
filetag directive, ??=pragma 787
inline 859
linkage 479
runopts

description 514, 516
heap 562
IMS 624
plist 475
stack 562

variable
NORENT 327
RENT 327

precisionof operator 342
predefined locale 792
preinitialization

argparse run-time option 253
CALL token 250
example 253
INIT token 250
OS/390 259
TERM token 251

presentation interface 617

printer output
Graphical Data Display Manager

(GDDM) 617
protocols

transport 414
putc() library function

optimizing code 389
putwc() library function 75
putwchar() library function 75

Q
QMF (Query Management Facility)

with has SAA callable interface 641

R
RACF (Resource Access Control Facility)

no hyphens in names for 104
qualifier required in data-set

name 105
raise() library function

error handling 367
RBA (Random Byte Address)

in VSAM 162
RDW (record descriptor word)

viewing 117
read() library function

HFS files 145
with pipes 149

read-write lock 313
reading

from HFS files 145
from memory files 216
from OS I/O files 123
from terminal files 202
from the OS/390 Language

Environment message file 225
from VSAM data sets 170
multibyte characters 74
using recfm=U 117

realloc() library function
system programming C

environment 491, 509
reason codes

in user exits 532
RECFM (record format)

F (fixed-format) 34
memory file I/O 212
OS/390 OS I/O 117
overview 33
recfm=* extension 53, 117
recfm=A extension 117
RECFM defaults 54
restrictions 56
S (fixed standard) 34
S (variable spanned) 38
specifying 53
terminal I/O 200
U (undefined format)

overview 41
reading OS files 117

V (variable format)
overview 37

VSAM data sets 167

912 OS/390 V2R8.0 C/C++ Programming Guide

record
empty

_EDC_ZERO_RECLEN 40, 466
files, using fseek() and ftell() 135
fixed standard format 34
HFS I/O rules 144
I/O

byte stream behavior 42
fixed-format behavior 37
introduction 32
restriction 74
undefined-format behavior 42
variable-format behavior 40

spanned 38
specifying length 53
undefined-length 41
variable-length 37
zero-byte

_EDC_ZERO_RECLEN 40, 466
redirection

standard streams 83
introduction 92
to fully qualified data sets 92
using DD statements 92
using freopen() 92
using PARM 92

standard streams in a system
programming C environment 475

stderr, with OS/390 Language
Environment MSGFILE option 90

stream, using assignment 90
streams, using freopen() 90
streams under CICS 94
streams under IMS 94
streams under TSO

from the command line 94
introduction 94

symbols 89
reentrancy

in OS/390 C/C++ 327
limitations 328
modified CEEBXITA must be

reentrant 530
register

allocation 398
conventions 247
variables 384

regular HFS files 139
relational operators 339

decimal 339
relational operators, decimal 339
relational operators for decimal

class 360
relational operators for

IBinaryCodedDecimal 356
relative byte offset 133
remove() library function

memory I/O files 219
OS I/O files 136

rename() library function
OS I/O files 136

RENT compiler option 327
repositioning

binary streams, wide character
I/O 79

HFS files 146
memory files 218

repositioning (continued)
OS/390 Language Environment

message file 226
OS I/O files 132
terminal files 206
text streams, wide character I/O 79
VSAM records 174

restrictions, compiler 434
retaining for multiple invocations

assembler to C repeatedly 248
preinitialized program 248

return
codes

__amrc structure 185
CEEAUE_RETURN field of

CEEBXITA and 531
in user exits 531

value under CICS 578
RPC (Remote Procedure Call) 435
RRDS (Relative Record Data Set)

choosing whether key and data are
contiguous 170

choosing whether key is returned with
data on read 171

key structure 170
related environment variable 465
use of 159

RRN (Relative Record Number)
under VSAM 163

run-time
decimal

arithmetic 339
assignment 341
cast 343
summary 343
unary 342

messages
EDCXLANE 514
EDCXLANK 514
UENGLISH 514

options
in the user exit 528, 533
TRAP 529, 530, 533

user exits 525

S
S370 locale 753
SAA (Systems Application Architecture)

applications using QMF callable
interface 641

differences between C and POSIX
locales 759

locale 753
screen layouts 617
SEEK_CUR macro

effects of ungetc() 133
effects of ungetwc() 80

seeking
OS/390 Language Environment

message file 226
OS I/O files 132
terminal files 206
within HFS files 146
within memory files 218

select()
network example 422

sequential
concatenation

compatibility rules 112
data sets 111
noseek parameter 112

processing 170, 171
server

allocation with socket() 421
locating the port 425
perspective 421

service routines 491
session

typical TCP socket 423
typical UDP socket 424

setenv() library function
setting environment variables 460

setlocale() library function 704
setvbuf() library function

hiperspace memory files 67, 210
specifying size of buffer for

hiperspace 209
usage 391

severity of a condition
CEEBXITA assembler user exit

and 532
shared

programs 327
shared programs 327
shareoptions specification, VSAM

deleting records 172
opening a data set 166

shift-in character (DBCS) 126
shift-out character (DBCS) 126
SIGABND signal 372
SIGABRT signal

description 372
SIGFPE signal

error condition 372
under decimal 341

SIGILL signal 372
SIGINT signal 372
SIGIOERR signal 372

using 234
signal

actions, defaults 375
delivery

ANSI C rules 368
asynchronous 370
POSIX rules 368

handling
default 375
disabled 372
enabled 372
established 371
hardware 372
raise 367
software 372
with OS/390 Language

Environment 367
with signal() and raise() 367

SIGSEGV signal 372
SIGTERM signal

description 372
SIGUSR1 signal 372
SIGUSR2 signal 372
sizeof macro 667
sizeof operator 342

INDEX 913

socket
address families 418
addressing within 418
AF_INET domain 420
AF_UNIX domain 420
client perspective 423
compiling 433
data sets 437
defined 413, 415
domains 418
families 417
include files 437
Internet 413
linking 433
local 413
OS/390 UNIX specific 417
types

datagram 417
guidelines for using 418
stream 417

typical TCP session 423
typical UDP session 424
using over TCP/IP 413

socket address 418
sockets

TCP/IP for MVS 435, 436
sockets, datagram 418
software signals 372
SOM

#pragma directives
general information 675
SOM 677
SOMAsDefault 673, 677
SOMAttribute 659, 678
SOMCallStyle 662, 680
SOMClassInit 680
SOMClassName 668, 680
SOMClassVersion 654, 681
SOMDataName 682
SOMDefine 668, 683
SOMIDLDecl 692
SOMIDLPass 692
SOMIDLTypes 692
SOMMetaClass 667, 683
SOMMethodAppend 692
SOMMethodName 661, 684, 686
SOMNoDataDirect 687
SOMNoMangling 661, 687
SOMNonDTS 688
SOMReleaseOrder 652, 689

and CORBA 650
constructors

invoking from other
languages 658

converting C++ to SOM 673
default release order 654
definition 649
differences between SOM and C++

abstract classes 666
calling methods using NULL 664
casting to pointer-to-SOM

object 664
classes as objects 666
data member offsets 664
function overloading 663
initializer lists and

constructors 663

SOM (continued)
differences between SOM and C++

(continued)
instance data 668
local classes 665
memory management 669
metaclasses 667
multiple inheritance of a base

class 665
offsetof 667
sizeof 667
templates 668

Direct-to-SOM
definition 649
description 650
support for C++ 650

examples
building a SOM-enabled class

library 695
using a SOM-enabled class

library 699
get and set methods 687
IDL 660
inheriting from SOMObject 673
interlanguage sharing

overview 656
macros

__SOM_ENABLED__ 675
recompilation requirements 651, 655
release order 652
required default constructor 656
set and get methods 659
special member functions

accessing from other
languages 657

upward binary compatibility 651,
699

version control 654
SOM pragma 677
SOMAsDefault pragma 673, 677
SOMAttribute pragma 659, 678
SOMCallStyle pragma 662, 680
SOMClassInit pragma 680
SOMClassName pragma 668, 680
SOMClassVersion pragma 654, 681
SOMDataName pragma 682
SOMDefine pragma 668, 683
SOMENABLED macro 675
SOMIDLDecl pragma 692
SOMIDLPass pragma 692
SOMIDLTypes pragma 692
SOMMetaClass pragma 667, 683
SOMMethodAppend pragma 692
SOMMethodName pragma 661, 684, 686
SOMNoDataDirect pragma 687
SOMNoMangling pragma 661, 687
SOMNonDTS pragma 688
SOMReleaseOrder pragma 652, 689
space= parameter

memory file I/O 212
OS/390 OS I/O 118
terminal I/O 201
VSAM data sets 167

spanned records
overview 38

spool data sets 463

sprintf() library function
in freestanding routines 480
system programming C

environment 486, 491, 509
square brackets ([and])

displaying on workstation or
3270 801

displaying square brackets 804
square brackets 804

sscanf() library function
character to integer conversions 388

stand-alone modules 476
standard

records 34
stream

association with ddnames 93
buffering 67
cerr 45
cin 45
clog 45
cout 45
default open modes 84
direct assignment 90
global behavior 98, 464
interleaving 85
interleaving without

sync_with_stdio() 86
passing across a system() call 95
redirecting 83
redirection to fully qualified data

sets 92
redirection under MVS 92
restrictions in threaded

applications 322
stderr 83
stdin 83
stdout 83
support under CICS 574
using 83

standard error, redirecting 83
standard in, redirecting 83
standard out, redirecting 83
static variables 384
STDERR

redirecting with OS/390 Language
Environment MSGFILE option 90

stdin, C standard input stream 83
stdout

C standard output stream 83
stdout, C standard output stream 83
STEPLIB DD statement 562
storage

allocating with the system
programming C environment 474

freeing with EDCXFREE 512
getting with EDCXGET 510
page-aligned, getting with

EDCX4KGT 512
under CICS 578

straightening 397
strcat() library function 388
stream sockets 417
streambuf class

usage 45
streams 73

orientation of 73
streams, orientation of 73

914 OS/390 V2R8.0 C/C++ Programming Guide

strength reduction 397
strings

comparisons 388
processing 388

striped data sets 115
description 115

strlen library function 388
structure comparison 388
structures

comparison 388
stub routines

in a user-server environment 508
svc99() library function 577
swprintf() library function 75
swscanf() library function 75
symbolic link (HFS)

files, creating 140
symlink() library function

HFS files 140
syntax diagrams, how to read 11
SYSERR data set

with stdout 84, 92
SYSIN data set for stdin

description of 84, 92
SYSOUT data set

DCB attributes, defaults 114
default destination for OS/390

Language Environment
MSGFILE 92

output 113
SYSPRINT data set

with stdout 84, 92
system

exit routines 483
functions

built-in 474
memory management 474

programming facilities
additional library routines 515
building persistent C

environments 486, 487
building system exit routines 483
building user-server

environments 509
freestanding applications 476
run-time messages 514
tailoring the environment 509
with OS/390 C++ 471

system() library function
CICS 577
library extension 391
programming C environment 475

SYSTERM data set
with stdout 84, 92

T
tab, horizontal 126
tab, vertical 126
tapes

input and output 114
multivolume data sets 115

TARGET compiler option (C++)
IMS 624

tasks
using MTF 543

TCP/IP for MVS
child process creation restrictions 436
configuration file access 436
header file restrictions 435
interprocess communication 435
socket API restrictions 436

TCP socket session 423
templates

NOTEMPINC
example source code 455
programs without automatic

template generation 454
source code organization 454

TEMPINC
contents of the

template-instantiation file 453
example 448
examples of source files 451
JCL to compile examples 452
regenerating the

template-instantiation file 453
source code organization 450

terms
declaration 447
definition 447
function instantiation 450
generalization 447
instantiation 447
internal linkage 447, 449
specialization 447

Using TEMPINC or NOTEMPINC
example of multipurpose header

file 455
example source code 455
multipurpose header file 455

temporary data sets (MVS)
using & names 104

temporary files 209
TERM token preinitialization 251
terminals

closing 206
flushing 205
Graphical Data Display Manager

(GDDM) 617
I/O

description 50
overview 199
reading from files 202
writing to files 204

I/O Stream class library 199
opening I/O files 199
positioning within 206
responses to fldata() 207

termination
enclave

as indicated in CEEAUE_ABND
field of CEEAUE_FLAGS 533

as indicated in CEEAUE_ABTERM
field of CEEAUE_FLAGS 532

CEEBXITA’s behavior during 529
CEEBXITA’s function codes

for 531
process 529, 531

text
files

ASA RECFM fixed-format
behavior 37

text (continued)
files (continued)

ASA RECFM undefined-format
behavior 42

ASA RECFM variable-format
behavior 40

non-ASA RECFM fixed-format
behavior 35

non-ASA RECFM
undefined-format behavior 41

non-ASA RECFM variable-format
behavior 40

RECFM byte stream behavior 42
using fseek() and ftell() 135

I/O 31
text files

ASA RECFM fixed-format
behavior 37

ASA RECFM undefined-format
behavior 42

ASA RECFM variable-format
behavior 40

non-ASA RECFM fixed-format
behavior 35

non-ASA RECFM undefined-format
behavior 41

non-ASA RECFM variable-format
behavior 40

RECFM byte stream behavior 42
using fseek() and ftell() 135

text I/O 31
threads

cancel 320
cleanup 321
condition variable 313
create 312
functions 311
low-level OS/390 UNIX I/O 153
management 311
mutex 313
read-write lock 313
signals 318
thread-specific data 316
using in an OS/390 UNIX

application 311
using with MVS files 322

throw 363
description 363

time zone
customizing 751
specifying 715

traceback 364
translation

tables 761
transport protocols 414
TRAP run-time option

CEEBXITA assembler user exit
and 529

how CEEAUE_ABND is affected
by 533

IMS considerations 624
try 363

description 363
TSO (Time Sharing Option)

default high-level qualifier 105, 210
opening files 105, 210
redirecting standard streams 94

INDEX 915

TSO (Time Sharing Option) (continued)
setting the user prefix 105, 211
variant characters 802

twenty four 523
type= parameter

memory file I/O 212
OS/390 OS I/O 119
terminal I/O 201
VSAM data sets 168

types, sockets 418
TZ environment variable 751

U
UDP socket session 424
unary operators

decimal data type
digitsof 342
precisionof 342
sizeof 342

unary operators, decimal data type
digitsof 342
precisionof 342
sizeof 342

unbuffered I/O
setvbuf() function 120

undefined format records 41
ungetc() library function

_EDC_COMPAT environment
variable 463

memory file I/O, effect on
fflush() 217

OS I/O, effect on fflush() 131
OS I/O, effect on fgetpos() and

ftell() 133
SEEK_CUR 133

ungetwc() library function
effect on fflush(), wide character

I/O 78
effect on fgetpos(), ftell() and

fseek() 80
seek_cur 80

universal reference time 751
unlink() library function

using with named pipes 150
with HFS files 147

unnamed pipes
creating 140
example 148
using 147

updating VSAM records 172
user

words 523
user exit

for initialization 528
for termination 527, 529
run-time options 533
under CICS 531, 533, 534

user-server stub routines 508
user words 523
Utilities

DLL Rename Utility 271

V
V-format records 37
value numbering 397
variable-format records

overview 37
variables

decimal 336
environment

locale 458
exported 272
external 384
global 384
local 383
register 384
static 384

variant characters
detail 779
mapping 779
mapping keyboard 801
use of 779

VB-format records 37
VBS-format records 37
vertical tab escape sequence \v 126
VS-format records 37
VSAM (Virtual Storage Access Method)

__amrc structure 185
closing a data set 185
example programs 185

KSDS 185
RRDS 194

example showing how to access
__amrc structure 163

I/O, description 50
I/O operations

deleting a record 173
loading a data set 171
locating a record 174
overview 159
reading a record 170
repositioning 174
specifying access mode 166
summary of binary I/O

operations 183
summary of operations 163
summary of record I/O

operations 176
summary of text I/O

operations 182
updating a record 172
using fopen() 165
using freopen() 165
writing a record 171

I/O Stream class library 159
keys 162
KSDS example 187
linear data sets 160
naming MVS data sets 165
organization of data sets 159
Record Level Sharing 177
Relative Byte Addresses (RBA) 162
Relative Record Numbers (RRN) 163
return codes 185
RLS 177
RSDS example 195
types and advantages of data

sets 161

vswprintf() library function 75

W
wcsid() library function 704
wide characters

effect of MB_CUR_MAX 73
input and output functions 73
reading streams and files 74
ungetwc() considerations 78
writing streams and files 75

windowing 617
writable static

assembler code 331
in reentrant programs 327

write() library function
HFS I/O 146
with pipes 149

writing
binary streams, wide character

I/O 77
in coded character set IBM-1047 784
multibyte characters 75
text streams, wide character I/O 76
to HFS files 145
to memory files 217
to OS I/O files 125
to terminal files 204
to the OS/390 Language Environment

message file 225
VSAM data sets 171

X
X/Open Socket 413
X/Open Transport Interface (XTI)

concepts 440
transport endpoints 441
transport providers 441

X Windows, TCP/IP for MVS 435
XFER, transfer control 595
xhotc library function 519
xhotl library function 520
xhott library function 520
xhotu library function 521
XITPTR, CXIT control block 530
xregs library function 522
xsacc library function 522
xusr() library function 523
xusr2() library function 523

Z
zero-byte records,

_EDC_ZERO_RECLEN 40, 466

916 OS/390 V2R8.0 C/C++ Programming Guide

IBMR

Printed in the United States of America

SC09-2362-04

	Contents
	Part 1. Introduction
	Chapter 1. About This Book
	Who Should Use This Book
	A Note about Examples
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	OS/390 C/C++ on the World Wide Web
	C/C++ News...
	How to Read the Syntax Diagrams

	Chapter 2. About IBM OS/390 C/C++
	Changes for Version 2 Release 8
	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the OS/390 C and C++ Compilers
	OS/390 C Compiler Specific Features
	Features That Are Specific to the OS/390 C++ Compiler

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	OS/390 Language Environment
	The Program Management Binder
	OS/390 UNIX System Services (OS/390 UNIX)
	OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C++

	Part 2. Input and Output
	Chapter 3. Introduction to C and C++ Input and Output
	Types of C and C++ Input and Output
	Text Streams
	Binary Streams
	Record I/O

	Chapter 4. Understanding Models of C I/O
	The Record Model for C I/O
	Record Formats
	Fixed-Format Records
	Variable-Format Records
	Undefined-Format Records

	The Byte Stream Model for C I/O
	Mapping the C Types of I/O to the Byte Stream Model

	Chapter 5. Using the I/O Stream Class Library in C++
	Advantages to Using the C++ I/O Stream Class Library
	Predefined Streams for C++
	How C++ I/O Streams Relate to C Streams
	Specifying File Attributes
	Related Information

	Chapter 6. Opening Files
	Prototypes of functions
	Categories of I/O
	Specifying What Kind of File to Use
	OS Files
	HFS Files
	VSAM Data Sets
	Terminal Files
	Memory Files and Hiperspace Memory Files
	CBC3GOF1

	CICS Data Queues
	OS/390 Language Environment Message File
	How to Specify RECFM, LRECL, and BLKSIZE
	fopen() Defaults
	RECFM Defaults
	LRECL and BLKSIZE defaults

	DDnames

	How OS/390 C/C++ Determines What Kind of File to Open

	Chapter 7. Buffering of C Streams
	Chapter 8. Using ASA Text Files
	Example of Writing to an ASA File
	CBC3GAS1

	ASA File Control

	Chapter 9. OS/390 C Support for the Double-Byte CharacterSet
	Opening Files
	Reading Streams and Files
	Writing Streams and Files
	Writing Text Streams
	Writing Binary Streams

	Flushing Buffers
	Flushing Text Streams
	Flushing Binary Streams
	ungetwc() Considerations

	Setting Positions within Files
	Repositioning within Text Streams
	Repositioning within Binary Streams
	ungetwc() Considerations

	Closing Files
	Manipulating Wide Character Array Functions

	Chapter 10. Using C and C++ Standard Streams andRedirection
	Default Open Modes
	Interleaving the Standard Streams I/O with sync_with_stdio()
	Interleaving the Standard Streams I/O without sync_with_stdio()
	Redirecting Standard Streams
	Redirecting Streams from the Command Line
	Using the Redirection Symbols

	Assigning the Standard Streams
	Using the freopen() Library Function
	Redirecting Streams with the MSGFILE Option
	MSGFILE Considerations

	Redirecting Streams under OS/390
	Under MVS Batch
	Using the PARM Parameter of the EXEC Statement
	Using DD Statements

	Redirecting Streams under TSO
	From the Command Line
	Using the Parameter List in a CALL Command

	Redirecting Streams under IMS
	Redirecting Streams under CICS

	Passing C and C++ Standard Streams Across a system() Call
	Passing Binary Streams
	Passing Text Streams
	C++ I/O Streams Considerations

	Passing Record I/O Streams

	Using Global Standard Streams
	Command Line Redirection
	Direct Assignment
	freopen()
	MSGFILE() Run-Time Option
	fclose()
	File Position and Visible Data
	C++ I/O Stream Class Library

	Chapter 11. Performing OS I/O Operations
	Opening Files
	Using fopen() or freopen()
	Using a Data Set Name
	Using a DDname

	Generation Data Group I/O
	CBC3GOS1
	CBC3GOS2

	Regular and Extended Partitioned Data Sets
	Partitioned and Sequential Concatenated Data Sets
	In-stream Data Sets
	SYSOUT Data sets
	Tapes
	Multivolume Data Sets
	Striped Data Sets
	Other Devices
	fopen() and freopen() Parameters

	Buffering
	Multiple Buffering

	DCB (Data Control Block) Attributes
	Reading from Files
	Reading from Binary Files
	Reading from Text Files
	Reading from Record I/O Files

	Writing to Files
	Writing to Binary Files
	Writing to Text Files
	Writing to Fixed-Format Text Files
	Writing to Variable-Format Text Files
	Writing to Undefined-Format Text Files
	Truncation Versus Splitting

	Writing to Record I/O Files

	Flushing Buffers
	Updating Existing Records
	Reading Updated Records
	CBC3GOS3

	Writing New Records
	Binary Streams
	Text Streams
	Record I/O

	ungetc() Considerations

	Repositioning within Files
	ungetc() Considerations
	How Long fgetpos() and ftell() Values Last
	Using fseek() and ftell() in Binary Files
	Relative Byte Offsets
	Encoded Offsets

	Using fseek() and ftell() in Text Files (ASA and Non-ASA)
	Using fseek() and ftell() in Record Files
	Porting Old C Code That Uses fseek() or ftell()

	Closing Files
	Renaming and Removing Files
	fldata() Behavior

	Chapter 12. Performing Hierarchical File System I/OOperations
	Creating Files
	Regular Files
	Link and Symbolic Link Files
	Directory Files
	Character Special Files
	FIFO Files

	Opening Files
	Using fopen() or freopen()
	File Naming Considerations
	Opening a File by Name
	Opening a File by DDname
	fopen() and freopen() Parameters

	Reading from HFS Files
	Opening and Reading from HFS Directory Files
	Writing to HFS Files
	Flushing Records
	Setting Positions within Files
	Closing Files
	Deleting Files
	Pipe I/O
	Using Unnamed Pipes
	CBC3GHF1

	Using Named Pipes
	CBC3GHF2

	Character Special File I/O

	Low-Level OS/390 UNIX I/O
	Example of HFS I/O Functions
	CBC3GHF3

	fldata() Behavior

	Chapter 13. Performing VSAM I/O Operations
	VSAM Types (Data Set Organization)
	Access Method Services

	Choosing VSAM Data Set Types
	Keys, RBAs and RRNs
	Keys for Indexed VSAM Data Sets
	Relative Byte Addresses
	CBC3GVS1
	Relative Record Numbers

	Summary of VSAM I/O Operations

	Opening VSAM Data Sets
	Using fopen() or freopen()
	File Names for MVS Data Sets: Using a Data Set Name
	File Names for MVS Data Sets: Using a DDname
	Specifying fopen() and freopen() Keywords
	fopen() and freopen() Keywords
	Keyword Descriptions

	Buffering

	Record I/O in VSAM
	RRDS Record Structure
	Reading Record I/O Files
	Writing to Record I/O Files
	Updating Record I/O Files
	Deleting Records
	Repositioning within Record I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()
	rewind()

	Flushing Buffers
	Summary of VSAM Record I/O Operations

	VSAM Record Level Sharing
	Error Reporting

	Text and Binary I/O in VSAM
	Reading from Text and Binary I/O Files
	Writing to and Updating Text and Binary I/O Files
	Deleting Records in Text and Binary I/O Files
	Repositioning within Text and Binary I/O Files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()

	Flushing Buffers
	Summary of VSAM Text I/O Operations
	Summary of VSAM Binary I/O Operations

	Closing VSAM Data Sets
	VSAM Return Codes
	VSAM Examples
	KSDS Example
	CBC3GVS2
	CBC3GVS3

	RRDS Example
	CBC3GVS4

	fldata() Behavior

	Chapter 14. Performing Terminal I/O Operations
	Opening Files
	Using fopen() and freopen()
	Opening a File by Data Set Name
	Opening a File by DD Name
	fopen() and freopen() Keywords
	Opening a Terminal File Under the Shell

	Buffering

	Reading from Files
	Reading from Binary Files
	Reading from Fixed Binary Files
	Reading from Variable or Undefined Binary Files

	Reading from Text Files
	Reading from Fixed Text Files
	Reading from Variable or Undefined Text Files

	Reading from Record I/O Files
	Reading from Fixed Record I/O Files
	Reading from Variable or Undefined Record I/O Files

	Writing to Files
	Writing to Binary Files
	Writing to Fixed Binary Files
	Writing to Variable or Undefined Binary Files

	Writing to Text Files
	Writing to Fixed Text Files
	Writing to Variable or Undefined Text Files

	Writing to Record I/O Files
	Writing to Fixed Record I/O Files
	Writing to Variable or Undefined Record I/O Files

	Flushing Records
	Text Streams
	Binary Streams
	Record I/O

	Repositioning within Files
	Closing Files
	fldata() Behavior

	Chapter 15. Performing Memory File and Hiperspace I/OOperations
	Using Hiperspace Operations
	Opening Files
	Using fopen() or freopen()
	File-Naming Considerations
	fopen() and freopen() Keywords
	Opening Hiperspace Files

	Simulating Partitioned Data Sets
	CBC3GMF1
	CBC3GMF2

	Buffering

	Reading from Files
	Writing to Files
	Flushing Records
	ungetc() Considerations

	Repositioning within Files
	Closing Files
	Performance Tips

	Removing Memory Files
	fldata() Behavior
	Example Program
	CBC3GMF3
	CBC3GMF4

	Chapter 16. Performing CICS I/O Operations
	Chapter 17. Language Environment Message File Operations
	Opening Files
	Reading from Files
	Writing to Files
	Flushing Buffers
	Repositioning within Files
	Closing Files

	Chapter 18. Debugging I/O Programs
	Using the __amrc Structure
	CBC3GDI1

	Using the __amrc2 Structure
	Using __last_op Codes
	Using the SIGIOERR Signal
	CBC3GDI2

	Part 3. Interlanguage Calls with OS/390 C/C++
	Chapter 19. Using Linkage Specifications in C++
	Syntax for Linkage
	Kinds of Linkage used by C++ Interlanguage Programs

	Chapter 20. Combining C or C++ and Assembler
	Establishing the OS/390 C/C++ Environment
	Specifying Linkage for C or C++ to Assembler
	Parameter List for OS Linkage
	Using Standard Macros
	Assembler Prolog
	Assembler Epilog
	Accessing Automatic Memory

	Calling Run-Time Library Routines from Assembler — C Example
	CBC3GCA4
	CBC3GCA2
	CBC3GCA5
	Calling Run-Time Library Routines from Assembler — C++Example
	CBC3GCA1
	CBC3GCA2
	CBC3GCA3
	Register Content at Entry to an ASM Routine Using OS linkage
	Register Content at Exit from an ASM Routine to OS/390 C/C++

	Retaining the C Environment Using Preinitialization
	Setting Up the Interface for Preinitializable Programs
	Preinitializing a C Program
	CBC3GCA6
	CBC3GCA7
	CBC3GCA8
	Return Codes
	User Exits in Preinitializable Programs
	Run-Time Options
	Calling a Preinitializable Program

	Multiple Preinitialization Compatibility Interface CEnvironments
	Request Modifier 4 Environment Characteristics
	Request Modifier 5 Environment Characteristics
	Restrictions on Using batch Environments with PreinitializationCompatibility Interface C Environments
	Behaviors When Mixing Request Modifier 4 and Request Modifier5

	Using the Service Vector and Associated Routines
	Using the Service Vector
	Load Service Routine
	Delete Service Routine
	Get-Storage Service Routine
	Free-Storage Service Routine
	Exception Router Service Routine
	Attention Router Service Routine
	Message Router Service Routine

	Part 4. Coding: Advanced Topics
	Chapter 21. Building and Using Dynamic Link Libraries (DLLs)
	Support for DLLs
	DLL Concepts and Terms
	Loading a DLL
	Loading a DLL Implicitly
	Loading a DLL Explicitly
	Explicit Use of a DLL in an Application

	Managing the Use of DLLs When Running DLL Applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	Creating a DLL or a DLL Application
	Building a Simple DLL
	Writing Your C Code
	Writing Your C++ Code

	Compiling Your Code
	Binding Your Code
	Building a Simple DLL Application
	Creating and Using DLLs
	DLL Restrictions
	Improving Performance

	Chapter 22. Building Complex DLLs
	Rules for Compiling Source Code
	Modifying Noncompliant Source
	Compatibility Issues Between DLL and Non-DLL Code
	Pointer Assignment
	Function Pointers

	DLL Function Pointer Call in Non-DLL Code
	C Example
	Non-DLL Function Pointer Call in DLL(CBA) Code
	Non-DLL Function Pointer Call in DLL Code
	C and C++ Example

	Function Pointer Comparison in Non-DLL Code
	Comparing a DLL function pointer to a non-DLL function pointer
	C Example
	Comparing a DLL function pointer to another DLL functionpointer
	C Example
	Comparison of Two DLL Function Pointers in Non-DLL code
	Comparing a DLL function pointer to a constant functionaddress other than NULL

	Function Pointer Comparison in DLL Code

	Using DLLs That Call Each Other

	Chapter 23. Using Threads in an OS/390 UNIX Application
	Models and Requirements
	Functions
	Creating a Thread
	Synchronization Primitives
	Models
	Functions
	Creating a Mutex
	Creating a Condition Variable
	Creating a Read-Write Lock

	Thread-specific Data
	Model
	Functions
	Creating Thread-specific Data

	Signals
	Generating a Signal
	sigaction()
	sigprocmask()

	Thread Cancellation
	Functions
	Cancelling a Thread

	Cleanup for Threads
	Functions

	Behaviors and Restrictions in an OS/390 UNIX Application
	Using Threads with MVS Files
	Thread-Scoped Functions
	Unsafe Thread Functions
	Fetched Functions and Writable Statics
	MTF and OS/390 UNIX Threading
	Thread Queuing Function
	Thread Scheduling
	iconv() Family of Functions

	Chapter 24. Reentrancy in OS/390 C/C++
	Natural or Constructed Reentrancy
	Limitations of Constructed Reentrancy for C Programs

	Controlling External Static in C Programs
	Controlling Writable Strings
	CBC3GRE1

	Controlling the Memory Area in C++

	Controlling Where String Literals Exist in C++ Code
	CBC3GRE2

	Using Writable Static in Assembler Code
	CBC3GRE3
	CBC3GRE4

	Chapter 25. Using the Decimal Data Type in C
	Declaring Decimal Types
	Declaring Fixed-Point Decimal Constants
	Declaring Decimal Variables

	Defining Decimal-Related Constants
	Using Operators
	Arithmetic Operators
	CBC3GDC1
	Additive Operators
	Relational Operators
	CBC3GDC2
	Equality Operators
	Conditional Operators
	Intermediate Results

	Assignment Operators
	Unary Operators
	sizeof Operator
	digitsof Operator
	precisionof Operator

	Cast Operator
	Summary of Operators Used With Decimal Types

	Converting Decimal Types
	Converting Decimal Types to Decimal Types
	Examples

	Converting Decimal Types to and from Integer Types
	Conversion to Integer Types
	Example of Conversion to Integer Type
	Conversion from Integer Types
	Example of Conversion from Integer Type

	Converting Decimal Types to and from Floating Types
	Conversion to Floating Types
	Conversion from Floating Types
	Example of Conversion from Floating Type

	Calling Functions
	Using Library Functions
	Using Variable Arguments with Decimal Types

	Formatting Input and Output Operations
	Validating Values
	Fix Sign
	Decimal Absolute
	Programming Example
	CBC3GDC3
	Output from Programming Example One
	CBC3GDC4
	Output from Programming Example Two

	Decimal Exception Handling
	System Programming Calls Restrictions
	printf() and scanf() Restrictions
	Additional Considerations
	Error Messages
	Decimal Exceptions and Assembler Interlanguage Calls

	Chapter 26. Using Decimal Data in C++
	The IBinaryCodedDecimal Class
	Header File and Constants for IBinaryCodedDecimal
	Constants Defined in idecimal.hpp

	Constructing IBinaryCodedDecimal Objects
	IBinaryCodedDecimal Input and Output
	Mathematical Operators for IBinaryCodedDecimal
	Relational Operators
	Equality Operators

	Converting IBinaryCodedDecimal Objects
	An IBinaryCodedDecimal Object to a IBinaryCodedDecimalObject

	Number of Digits in an IBinaryCodedDecimal Object
	Precision of a IBinaryCodedDecimal Object
	IBinaryCodedDecimal Object Exceptions
	The Decimal Class
	Header File for the Decimal Class
	Constructing Decimal Objects
	Decimal Class Input and Output
	Operators for Decimal Class
	Mathematical Operators
	Relational Operators
	Equality Operators

	Converting Decimal Objects
	Decimal Object to a Decimal Object
	Decimal Object to an IString Object
	Decimal Object From a char * Type
	Decimal Object From an Integer Type
	Decimal Object to and from IBinaryCodedDecimal Object

	Number of Digits in an Decimal Object
	Precision of a Decimal Object
	Decimal Object Exceptions

	Chapter 27. Handling Exceptions, Error Conditions, andSignals
	Handling C Software Exceptions under C++
	Handling Hardware Exceptions under C++
	Tracebacks under C++
	CBC3GCH1
	CBC3GCH2

	Handling Signals with POSIX(OFF) Using signal() and raise()
	Handling Signals Using Language Environment Callable Services
	Handling Signals Using OS/390 UNIX with POSIX(ON)
	Asynchronous Signal Delivery under OS/390 UNIX
	C Signal Handling Features under OS/390 C/C++
	Establishing a Signal Handler
	Enabling a Signal
	Interrupting a Program
	Raising a Signal
	Identifying Hardware and Software Signals
	SIGABND Considerations
	SIGIOERR Considerations
	Default Handling of Signals
	Using OS/390 UNIX
	Signal Considerations using OS/390 UNIX

	Example of C Signal Handling under OS/390 C or OS/390 C++
	CBC3GEC1

	Chapter 28. Optimizing Code
	Programming Recommendations
	Using Variables
	Passing Function Arguments
	Coding Expressions
	Coding Conversions
	CBC3GOP3

	Arithmetic Considerations
	Using Loops and Control Constructs
	Choosing a Data Type
	Using Built-In Library Functions and Macros

	Input/Output Considerations
	When Accessing MVS data sets
	When Accessing HFS Files
	When Using the I/O Stream Class library with C++
	Using Library Extensions

	Compile Time Considerations
	Using Optimization Facilities
	Specifying Inline Functions
	CBC3GOP1
	CBC3GOP2
	Selective Mode
	Automatic Mode in C
	Automatic Mode in C++
	Improving Your Performance
	Inline defaults
	Inlining under IPA

	Optimizing Use of Dynamic Memory
	Using the OPTIMIZE Option
	Optimizations Performed by the Compiler

	Additional Hints and Tips

	Chapter 29. Optimizing Your C/C++ Code with InterproceduralAnalysis
	Types of Procedural Analysis
	Compiler Processing Flow
	Regular Compiler Execution
	Compiler Execution with IPA
	IPA Compile Step Processing
	IPA Link Step Processing
	Object File Formats
	Object Record Formats
	Partitioning

	Invoking IPA from the c89 Utility
	Specifying Options
	Other Considerations

	Controlling IPA Execution
	Specifying Compiler Options with IPA
	Specifying Pragmas under IPA

	Effects of IPA on Your Program
	Restrictions
	Locale Support
	Date and Time Stamps Within IPA Objects

	Chapter 30. Network Communications under UNIX SystemServices
	Understanding OS/390 UNIX Sockets and Internetworking
	The Basics of Network Communication
	Transport Protocols for Sockets

	What Is a Socket?
	OS/390 UNIX Socket Families
	OS/390 UNIX Socket Types
	Stream Sockets
	Datagram Sockets

	Guidelines for Using Socket Types
	Addressing within Sockets
	Address Families
	Socket Address
	Internet Addresses
	Ports
	Network Byte Order
	Addressing within the AF_INET Domain
	Addressing within the AF_UNIX Domain

	The Conversation
	The Server Perspective
	Allocation with socket()
	bind()
	listen()
	accept()
	select()

	The Client Perspective
	A Typical TCP Socket Session

	A Typical UDP Socket Session
	A Typical Datagram Socket Session

	Locating the Server's Port
	Network Application Example
	Using Common INET
	Compiling and Binding
	Using TCP/IP APIs
	Restrictions for Using MVS TCP/IP API with OS/390 UNIX

	Using OS/390 UNIX Sockets
	Compiling under MVS Batch for Berkeley Sockets
	Sample EDCC Cataloged Procedure Additions and Changes
	Compiling under MVS Batch with X Windows for BerkeleySockets
	Compiling Using the c89 Utility for Berkeley Sockets
	Compiling Using c89 with X Windows

	Compiling under MVS Batch for X/Open Sockets
	Sample EDCC Cataloged Procedure Additions and Changes
	Using API Data Sets and Files for Open Sockets

	Understanding The X/Open Transport Interface (XTI)
	Transport endpoints
	Transport providers for X/Open Transport Interface
	General Restrictions for OS/390 UNIX

	Chapter 31. Interprocess Communication Using OS/390 UNIX
	Message Queues
	Semaphores
	Shared Memory
	Memory Mapping
	TSO Commands from the Shell

	Chapter 32. Structuring a Program That Uses C++ Templates
	Template Terms
	Generating Template Functions
	Class Template Example
	Template Declaration
	Template Function Definition
	Use of the Stack Template
	Template Functions with Internal Linkage
	Generation of Template Function Instantiations
	Resolving Multiple Definitions of the Same Function

	Using TEMPINC
	Organizing Source Code for the TEMPINC option
	Instantiating the Functions
	Examples of Source Files
	stackadd.cpp
	stackops.cpp
	stackops.h
	JCL to Compile Examples
	Syntax to compile under the OS/390 Shell
	Regenerating the Template-Instantiation File
	Contents of Template-Instantiation Files

	Using the NOTEMPINC Option
	Organizing Source Code for the NOTEMPINC option
	Example of Source Code Organized for the NOTEMPINC option

	Using TEMPINC or NOTEMPINC
	Example of a Multipurpose Header File
	Example of Source Code with Multipurpose Header File

	Chapter 33. Using Environment Variables
	Working with Environment Variables
	Naming Conventions

	Environment Variables Specific to the OS/390 C/C++ Library
	_EDC_ADD_ERRNO2
	_EDC_ANSI_OPEN_DEFAULT
	_EDC_BYTE_SEEK
	_EDC_CLEAR_SCREEN
	_EDC_COMPAT
	_EDC_GLOBAL_STREAMS
	_EDC_IP_CACHE_ENTRIES
	_EDC_RRDS_HIDE_KEY
	_EDC_STOR_INCREMENT
	_EDC_STOR_INITIAL
	_EDC_ZERO_RECLEN
	_CEE_DMPTARG
	_CEE_ENVFILE

	Example
	CBC3GEV1
	CBC3GEV2

	Part 5. OS/390 C/C++ Environments
	Chapter 34. Using the System Programming C Facilities
	Using Functions in the System Programming C Environment
	System Programming C Facility Considerations and Restrictions
	Creating Freestanding Applications
	Creating Modules without CEESTART
	Including an Alternative Initialization Routine under OS/390
	Initializing a Freestanding Application without LanguageEnvironment.
	EDCXSTRT

	Initializing a Freestanding Application Using C Functions
	EDCXSTRL

	Setting up a C Environment with Preallocated Stack and Heap
	EDCXSTRX

	Determining ISA requirements
	EDCXISA

	Building Freestanding Applications to Run under OS/390
	CBC3GSP1
	Special Considerations for Reentrant Modules
	CBC3GSP2
	JCL Required

	Parts Used for Freestanding Applications

	Creating System Exit Routines
	Building System Exit Routines under OS/390
	An Example of a System Exit
	CBC3GSP3

	Creating and Using Persistent C Environments
	Building Applications That Use Persistent C Environments
	An Example of Persistent C Environments
	CBC3GSP4
	CBC3GSP5

	Developing Services in the Service Routine Environment
	Using Application Service Routine Control Flow
	Service Routine User Perspective
	Service Routine Perspective

	Understanding the Stub Perspective
	CBC3GSP8
	CBC3GSP9
	CBC3GSPD
	CBC3GSPE
	CBC3GSPF

	Establishing a Server Environment
	EDCXSRVI

	Initiating a Server Request
	EDCXSRVN

	Accepting a Request for Service
	EDCXSACC

	Returning Control from Service
	EDCXSRVC

	Constructing User-Server Stub Routines
	Building User-Server Environments

	Tailoring the System Programming C Environment
	Generating Abends
	EDCXABND

	Getting Storage
	EDCXGET
	CBC3GSPB

	Getting Page-Aligned Storage
	EDCX4KGT

	Freeing Storage
	EDCXFREE

	Loading a Module
	EDCXLOAD

	Deleting a Module
	EDCXUNLD

	Including a Run-Time Message File
	Additional Library Routines
	Summary of Application Types

	Chapter 35. Library Functions for System Programming C
	__xhotc() — Set Up a Persistent C Environment (No Library)
	Format
	Description
	Returned Value
	Example
	__xhotl() — Set Up a Persistent C Environment (With Library)
	Format
	Description
	Returned Value
	Example

	__xhott() — Terminate a Persistent C Environment
	Format
	Description
	Example

	__xhotu() — Run a Function in a Persistent C Environment
	Format
	Description
	Returned Value
	Example

	__xregs() — Get Registers on Entry
	Format
	Description
	Returned Value

	__xsacc() — Accept Request for Service
	Format
	Description
	Returned Value

	__xsrvc() — Return Control from Service
	Format
	Description

	__xusr() - __xusr2() — Get Address of User Word
	Format
	Description
	Returned Value

	__24malc() — Allocate Storage below 16MB Line
	Format
	Description

	__4kmalc() — Allocate Page-Aligned Storage
	Format
	Description

	Chapter 36. Using Run-Time User Exits
	Using Run-Time User Exits in OS/390 Language Environment
	Understanding the Basics
	PL/I and C/370 Compatibility
	User Exits Supported under OS/390 Language Environment.
	Order of Processing of User Exits
	Using Installation-Wide or Application-Specific User Exits
	Using the Assembler User Exit
	Using Sample Assembler User Exits
	CEEBXITA Behavior during Enclave Initialization
	CEEBXITA Behavior during Enclave Termination
	CEEBXITA Behavior during Process Termination
	Specifying Abend Codes to Be Percolated by OS/390 LanguageEnvironment
	Actions Taken for Errors that Occur within the Assembler UserExit

	Assembler User Exit Interface
	Parameter Values in the Assembler User Exit
	First Enclave within Process Initialization—Entry
	First Enclave within Process Initialization—Return
	First Enclave within Process Termination—Entry
	First Enclave within Process Termination—Return
	Nested Enclave Initialization—Entry
	Nested Enclave Initialization—Return
	Nested Enclave Termination—Entry
	Nested Enclave Termination—Return
	Process Termination—Entry
	Process Termination—Return

	PL/I and C/370 Compatibility
	High Level Language User Exit Interface
	Usage Requirements

	Chapter 37. Using The OS/390 C MultiTasking Facility
	Organizing a Program with MTF
	Ensuring Computational Independence
	Running a C Program without MTF
	Running a C Program with MTF
	Running a C Program with One Parallel Function
	Processor Use
	Sample Program

	Running a C Program with Two Different Parallel Functions
	Processor Use
	Sample Program

	OS/390 C with Multiple Instances of the Same ParallelFunction
	Processor Use
	Sample Program

	Designing and Coding Applications for MTF
	Step 1: Identifying Computationally-Independent Code
	Step 2: Creating Parallel Functions
	Parallel Functions
	Calling Other Functions
	Separate Storage for Separate Modules
	Passing Data
	Input/Output
	Exception/Signal Handling
	Function Termination

	Step 3: Inserting Calls to Parallel Functions
	Changing an Application to Use MTF
	Example 1
	Create Parallel Functions
	Insert Calls to Parallel Functions
	Example 2
	Create Parallel Functions

	Compiling and Linking Programs That Use MTF
	Creating the Main Task Program Load Module
	Creating the Parallel Functions Load Module
	Specifying the Linkage-Editor Option
	Modifying Run-Time Options

	Running Programs That Use MTF
	STEPLIB DD Statement
	DD Statements for Standard Streams
	Example of JCL
	Debugging Programs That Use MTF
	Avoiding Undesirable Results when Using MTF

	Part 6. Programming with Other Products
	Chapter 38. Using the Customer Information Control System(CICS)
	Developing C and C++ Programs for the CICS Environment
	Preparing CICS for Use with OS/390 Language Environment
	Designing and Coding for CICS
	Using the CICS Command-Level Interface
	CBC3GCI1

	Using Input and Output
	Standard Stream Support
	Full Memory File Support
	Support for Disk Files and Other Devices

	Using OS/390 C/C++ Library Support
	Arguments to C or C++ main()
	Run-Time Options
	Using Packed Decimal with CICS
	Locales
	Code Set Conversion Tables
	POSIX
	Multitasking Facility
	System Programming C Facilities
	SVC99 and Dynamic Allocation Functions
	IMS
	Dump Functions
	Dynamic Linked Libraries (DLL)
	fetch()
	release()
	system()
	Time Functions
	iscics()
	Floating Point Arithmetic
	Program Termination

	Storage Management
	Using Interlanguage Support
	Exception Handling
	Example of Error Handling in CICS
	CBC3GCI2

	ABEND Codes and Error Messages under OS/390 C/C++
	Coding Hints and Tips

	Translating and Compiling for Reentrancy
	Translating
	Translating Example
	CBC3GCI3

	Compiling
	Sample JCL to Translate and Compile

	Prelinking and Linking All Object Modules
	Defining and Running the CICS Program
	Program Processing
	Link Considerations for C Programs
	CSD Considerations
	Sample JCL to Install OS/390 C/C++ Application Programs

	Chapter 39. Using Cross System Product (CSP)
	Common Data Types
	Passing Control
	Running CSP under MVS
	Calling CSP Applications from OS/390 C
	Examples
	CBC3GCP1
	CBC3GCP2

	Calling OS/390 C from CSP
	Examples
	CBC3GCP3
	CBC3GCP4

	Running under CICS Control
	Examples
	CBC3GCP5
	CBC3GCP6
	CBC3GCP7

	Chapter 40. Using Data Window Services (DWS)
	CBC3GDW2
	Example

	CBC3GDW1

	Chapter 41. Using DATABASE 2 (DB2)
	C++ Example
	CBC3GDB1
	CBC3GDB2

	C Example
	CBC3GDB4

	Chapter 42. Using Graphical Data Display Manager (GDDM)
	Example
	CBC3GGD1
	CBC3GGD2

	Chapter 43. Using the Information Management System (IMS)
	Handling Errors
	Other Considerations
	Examples
	CBC3GIM1
	CBC3GIM2
	CBC3GIM3

	Chapter 44. Using the Interactive System Productivity Facility(ISPF)
	Examples
	CBC3GIS1
	CBC3GIS2
	CBC3GIS3
	CBC3GIS4
	CBC3GIS5
	CBC3GIS6
	CBC3GIS7
	CBC3GIS8
	CBC3GIS9
	CBC3GISA
	CBC3GISB
	CBC3GIS4
	CBC3GIS5

	Chapter 45. Using the Query Management Facility (QMF)
	Example
	CBC3GQM1
	CBC3GQM2
	CBC3GQM3

	Part 7. SOM support Under OS/390 C/C++
	Chapter 46. The IBM System Object Model
	What is SOM?
	SOM and the CORBA Standard
	The Cost of Using SOM

	What is DTS?
	Interface Definition Language
	SOM and Upward Binary Compatibility of Libraries
	Release Order of SOM Objects
	Default Release Order Rules

	Version Control for SOM Libraries and Programs
	Recompiling Requirements for SOM Programs

	SOM and Interlanguage Sharing of Objects and Methods
	Providing a Default Constructor with No Arguments
	Accessing Special Member Functions from Other Languages
	Assignment Methods
	Invoking Constructors from Other Languages

	set and get Methods for Attribute Class Members

	Understanding the Interface Definition Language
	IDL Types and C++ Types
	IDL Names and C++ SOM Pragmas
	IDL and OIDL Callstyles
	Callstyles and Pointer-to-Member

	The Environment Pointer
	C++ Limitations to Interface Definition Language

	Differences between SOM and C++
	Initializer Lists and Constructors
	Function Overloading
	Calling Methods through a NULL Pointer
	Data Member Offsets
	Casting to Pointer-to-SOM Object
	Dereferencing a Virtual Base Pointer to a Derived Base
	Multiple Inheritance of a Base Class
	Local Classes
	Abstract Classes
	Classes as Objects
	Metaclasses
	offsetof macro
	sizeof operator
	Instance Data
	Templates
	Renaming Methods of Template Classes

	Allocating Memory
	Heap and Stack Memory Allocation
	Overloading the new and delete Operators
	Using new.h in C++ SOM Programs
	Determining which new and delete Operators Are Used

	Volatile Objects
	Data Members Implemented as Attributes
	Addresses of Embedded SOM objects

	Converting C++ Programs to SOM Using SOMAsDefault
	Creating SOM-Compliant Programs by Inheriting from SOMObject
	Creating DLLs with SOM

	Chapter 47. Macros, Built-in Functions, and Pragmas for SOM
	Macros Defined for SOM
	Built-in Functions for SOM
	Pragmas for Using SOM
	Conventions Used by the SOM Pragmas
	Pragmas Containing on | off | pop
	Pragmas Containing an Asterisk (*)

	The SOM Pragma
	The SOMAsDefault Pragma
	The SOMAttribute Pragma
	The SOMCallStyle Pragma
	The SOMClassInit Pragma
	The SOMClassName Pragma
	The SOMClassVersion Pragma
	The SOMDataName Pragma
	The SOMDefine Pragma
	The SOMMetaClass Pragma
	The SOMMethodName Pragma
	SOMMethodName and Inheritance

	The SOMNoDataDirect Pragma
	The SOMNoMangling Pragma
	The SOMNonDTS Pragma
	The SOMReleaseOrder Pragma
	Elements Preceded by !
	Multiple SOMReleaseOrder Pragmas
	Other Requirements
	Templates and Release Orders
	Compatibility Pragmas

	Chapter 48. Examples and Tips
	Building a C++ SOM-Enabled Class Library
	Explicitly Deriving Classes from SOMObject
	Implicitly Deriving Classes from SOMObject Using the SOMOption
	Implicitly Deriving Classes from SOMObject Using theSOMAsDefault Pragma
	Sample JCL to Compile and Create a SOM-Enabled ClassLibrary
	Release-to-Release Binary Compatibility

	Using a C++ SOM-Enabled Class Library

	Part 8. Internationalization: Locales and Character Sets
	Chapter 49. Introduction to Locale
	Internationalization in Programming Languages
	Elements of Internationalization
	OS/390 C/C++ Support for Internationalization
	Locales and Localization
	Locale-Sensitive Interfaces

	Chapter 50. Building a Locale
	Using the charmap File
	The CHARMAP Section
	The CHARSETID Section

	Locale Source Files
	LC_CTYPE Category
	LC_COLLATE Category
	Collating Rules
	Collating Keywords
	Comparison of Strings

	LC_MONETARY Category
	LC_NUMERIC Category
	LC_TIME Category
	LC_MESSAGES Category
	LC_TOD Category
	LC_SYNTAX Category

	Using the localedef Utility
	Locale Naming Conventions

	Chapter 51. Customizing a Locale
	Using the Customized Locale
	Referring Explicitly to a Customized Locale
	CBC3GCL1

	Referring Implicitly to a Customized Locale
	CBC3GCL2
	CBC3GCL3

	Chapter 52. Customizing a Time Zone
	Using the TZ or _TZ Environment Variable to Specify Time Zone
	Relationship Between TZ or _TZ and LC_TOD

	Chapter 53. Definition of S370 C, SAA C, and POSIX CLocales
	Differences between SAA C and POSIX C Locales
	CBC3GDL1

	Chapter 54. Code Set Conversion Utilities
	The genxlt Utility
	The iconv Utility
	Code Conversion Functions
	Code Set Converters Supplied
	Universal Coded Character Set Converters
	Codeset Conversion Using UCS-2
	UCMAP Source Format

	Chapter 55. Coded Character Set Considerations with LocaleFunctions
	Variant Character Detail
	Mappings of 13 PPCS Variant Characters
	Mappings of Hex Encoding of 13 PPCS Variant Characters

	Alternate Code Points
	Coding without Locale Support
	Using a Hybrid Coded Character Set

	Converting Existing Work
	Converting Hybrid Code

	Writing Source Code in Coded Character Set IBM-1047
	Exporting Source Code to Other Sites

	Coded Character Set Independence in DevelopingApplications
	Coded Character Set of Source Code and Header Files
	The pragma filetag Directive

	Converting Coded Character Sets at Compile Time
	Examples
	Usage
	Summary of Source and Compile Use
	Using Predefined Macros
	Using a Predefined Locale

	Working With Listings and Output Files
	Object Modules

	Considerations With Other Products and Tools

	Part 9. Appendixes
	Appendix A. POSIX Character Set
	Appendix B. Mapping Variant Characters for OS/390 C/C++
	Displaying Hexadecimal Values
	Example
	CBC3GMV1

	Using pragma Filetag To Specify Code Page in C
	Displaying Square Brackets When Using ISPF
	CBC3GMV2
	Using The CBC3GMV2 Macro

	Procedure for Mapping on 3279

	Appendix C. OS/390 C/C++ Code Point Mappings
	Appendix D. Locales Supplied with OS/390 C/C++
	Appendix E. Charmap Files Supplied with OS/390 C/C++
	Appendix F. Examples of Charmap and Locale DefinitionSource
	Charmap File
	The Locale Definition Source File

	Appendix G. Converting Code from Coded Character SetIBM-1047
	CBC3GHC1

	Appendix H. Additional Examples
	Memory Management
	CBC3GMI1
	CBC3GMI2

	Calling MVS WTO routines from C
	CBC3GWT1
	CBC3GWT2

	Listing Partitioned Data Set Members
	CBC3GIP1
	CBC3GIP2

	Appendix I. Using Built-In Functions
	Appendix J. Application Considerations for OS/390 UNIXC/C++
	Relationship to DATABASE 2 (DB2)
	Application Programming Environments Not Supported
	Support for the Curses Library

	Appendix K. External Variables
	errno
	daylight
	getdate_err
	h_errno
	__loc1
	loc1
	loc2
	locs
	optarg
	opterr
	optind
	optopt
	signgam
	stdin
	stderr
	stdout
	t_errno
	timezone
	tzname

	Notices
	Programming Interface Information
	Trademarks
	Standards

	Glossary
	Bibliography
	OS/390
	VS COBOL II Release 4
	COBOL FOR MVS & VM Release 2
	COBOL for OS/390 & VM Version 2 Release 1
	PL/I for MVS & VM Release 1 Modification 1
	OS PL/I Version 2 Release 3
	VS FORTRAN Version 2 Release 6
	CICS/ESA Version 4 Release 1
	CICS Transaction Server for OS/390 Release 2
	DB2 Version 3 Release 1
	DB2 Version 4 Release 1
	DB2 Version 5 Release 1
	IMS/ESA Version 4 Release 1
	IMS/ESA Version 5 Release 1
	IMS/ESA Version 6 Release 1
	QMF Version 3 Release 2
	VSAM

	INDEX

