Debug Tool
User's Guide and Reference

Release 2

SC09-2137-03

Debug Tool
User's Guide and Reference

Release 2

SC09-2137-03

— Note!

Before using this information and the product it supports, be sure to read the general information under
[Appendix_F, “Notices” on page 427)

Fifth Edition (March 1999)

This edition applies to the Debug Tool feature of the following compilers:
¢ Release 4 of 0S/390* C/C++ and OS/390 Language Environment* (Program Number 5645-001)

e Version 1, Release 2, of IBM* COBOL for MVS* & VM (Program Number 5688-197), with Version 1, Release 5 of the IBM
Language Environment for MVS & VM (Program Number 5688-198),

¢ Version 2, Release 1 of IBM COBOL for OS/390 & VM (Program Number 5648-A25) with Release 3 of OS/390 Language Envi-
ronment (Program Number 5645-001)

e Version 1, Release 1, Modification Level 1, of the IBM PL/I for MVS & VM (Program Number 5688-235). with Version 1, Release
4, Modification Level 0, of the IBM Language Environment for MVS & VM (Program Number 5688-198),

and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.
Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department W92/H3
P. O. Box 49023

San Jose, CA 95161-9023

United States of America

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
To find out how, see “We'd Like to Hear from You” at the back of this publication.

You can find out more about Debug Tool by visiting the IBM web site for Debug Tool at: www.s390.ibm.com/dt

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book
Who might use this book
How this book is organized
How to read the syntax diagrams

Summary of Changes

Chapter 1. Before you begin debugging
Debug Tool debugging environments
Debug Tool sessions
Denoting environmental differences
Terminology
Planning to run your program with Debug Tool

Chapter 2. Preparing to debug your program
Compiling a C program with the compile-time TEST option
Using #pragma to specify compile-time TEST option
Compiling a C++ program with the compile-time TEST option
Placing compiled-in hooks for functions and nested blocks
Placing compiled-in hooks for statements and path points
Compiling a COBOL program with the compile-time TEST option
Compiling a PL/I program with the compile-time TEST option
Debug Tool's use of the program source/listing
CICH+

Debugging multilanguage programs
Debugging an application fully supported by Language Environment
Debugging an application partially supported by Language Environment

Chapter 3. Beginning a debugging session
Data sets used by Debug Tool
Using the run-time TEST option
Run-time TEST option
Run-time TEST option examples
Invoking your program when starting a debugging session
Invoking Debug Tool under CICS
Invoking Debug Tool under MVSin TSO
Invoking Debug Tool under CMS
Invoking Debug Tool in batch
Using alternative Debug Tool invocation methods
Invoking Debug Tool with CEETEST
Invoking Debug Tool with PLITEST
Invoking Debug Tool with the __ctest() function
Specifying run-time TEST option with #pragma runopts in C and C++

Chapter 4. Debugging your programs in full-screen mode
Preparing for debugging
Starting a debug session
Ending a debug session

© Copyright IBM Corp. 1995, 1999

19
19
20
21
28
30
30
30
32
33
34
35
40
41
43

44
44
44
45

Contents

Basic tasks of Debug Tool 45
Debug Tool interface 45
Saving your log file for futureuse 46
Help . . . 46
Window control 46
Setting a line breakpoint 48
Stepping through or running your program. 48

Using a C program to demonstrate a Debug Tool session 49
Ctasks 54

Using a C++ program to demonstrate a Debug Tool session 59
CHttasks 63

Using a COBOL program to demonstrate a Debug Tool session 70
COBOL tasks 74

Using a PL/I program to demonstrate a Debug Tool session 80
PL/tasks o 84

Chapter 5. Using the Debug Tool interfaces 89

Customizing Debug Tool for your environment 89
Using the Debug Tool Session Panel 89

Session Panel windows 90
Source window (1) 91
Monitor window (3) 92
Logwindow (2) 92
Using the session log file to maintain a record of your session 92

Entering commands in a Debug Tool session 94
Command Sequencing 95
Using the command line 95
Issuing system commands 95
Using prefix commands 96
Using cursor commands e 96
Using Program Function (PF) keys to enter commands 96

Defining PF Keys 96
Abbreviating commands 97
Retrieving commands 97
Retrieving lines from the Session log and Source windows 97
Creating EQUATES and using string substitution 97

Navigating through Debug Tool Session Panel windows 98
Moving the cursor 98
Scrolling the windows 98
Positioning lines at the top of windows 99
Searching for a character or character string 99

Customizing your SeSSION 100
Changing Session Panel window layout 100
Opening and closing Session Panel windows 101
Sizing Session Panel windows 0L 101
Intersecting windows 102
Horizontal windows 102
Vertical windows 102
Zooming awindow 102
Customizing colors 103
Customizing settings 104
Using a Preferences File to customize your session 106

Getting help during your session 107

iv Debug Tool User's Guide and Reference

Contents

Chapter 6. Multiple processes and enclaves 108
Debugging applications within multiple enclaves 108
Invoking Debug Tool withinanenclave 108
Using the source window and related windows 108
Retaining a log file of your Debug Tool session 109
Processing commands from a commands file 109
Using breakpoints within multiple enclaves 109
Ending a Debug Tool session 109
Using Debug Tool commands within multiple enclaves 110
Chapter 7. Using Debug Tool in different modes and environments ... 112
Using Debug Tool inlinemode 112
Commands you can use inline mode 112
Getting HELP during a line-mode session 113
Using Debug Tool in batchmode 113
Running multitasking programs with Debug Tool 113
MVS/ESA* SP V5R1 with OpenEdition R2 requirement 114
Restrictions when debugging multitasking applications 114
Debugging ISPF applications 114
Debugging DB2 programs 114
Programming considerations 115
Program preparation 115
Precompile requirements 115
Compile requirements 115
Link requirements 116
Bind requirements 116
Using Debug Tool with DB2 programs 116
Batchmode 116
Interactive mode 117
Debugging IMS programs 118
Program preparation 119
Compile requirements 119
Link requirements 119
Using Debug Tool with IMS programs 119
Interactive mode 119
Batchmode 120
Using alternative methods of command input under IMS 120
Debugging CICS programs 120
Debug modes under CICS 121
Invoking Debug Tool under CICS 121
DTCN OVEIVIEW e e 122
Preparing DTCN to invoke Debug Tool under CICS 122
Creating and storing a DTCN Profile in the DTCN Repository 123
Using CEEUOPT to invoke Debug Tool under CICS 127
Using compile-time directives to invoke Debug Tool under CICS 127
Using CEDF to invoke Debug Toolunder CICS 127
Restrictions when debugging under CICS 128
Chapter 8. Debug Tool Support of programming languages 129
Multiple enclaves and interlanguage communication (ILC) 129
Compatible attributes mapped between HLL datatypes 130
Debug Tool evaluation of HLL expressions 130
Debug Tool interpretation of HLL variables and constants 130
HLL variables 130

Contents V

Contents

HLL constants 131
Debug Tool variables (or intrinsic functions) 131
Modifiable Debug Tool variables 132
Nonmodifiable Debug Tool variables 132
Interpretive subsets 134
Qualifying variables and changing the point of view 135
Qualification 135
Changing the pointof view 137
Debug Tool handling of conditions and exceptions 137
Condition handling in Debug Tool 138
Exception handling within expressions (C/C++ and PL/lonly) 139
Requesting an attention interrupt during interactive sessions 139
Debug Tool's built-in functions 140
For use with C/C++, COBOL, and PL/l 140
For use with C/C++and PL/l 140
Foruse with PL/L 141
Chapter 9. Using Debug Tool with C/C++ programs 142
Debug Tool commands 142
Using C/C++ variables with Debug Tool 142
Accessing program variableso 142
Displaying values of C/C++ variables or expressions 143
Declaring temporary variables 143
Assigning values to C/C++ variables 144
Using Debug Tool variables in C/C++ 144
C/C++ expressions 149
Using Debug Tool functions with C/C++ 152
Debug Tool evaluation of C/C++ expressions 154
Using SET INTERCEPT with C programs 155
Objects and scopes e 157
Storage classes 159
Blocks and block identifiersforC 160
Blocks and block identifiers for C++ 161
Displaying environmental information 161
Using qualification for C/C++ 162
Using qualifiers 164
Changing the point of view 166
Stepping through C++ programs 167
Setting breakpoints in C++ 167
AT ENTRY/EXIT 167
AT CALL . . . 168
Examining C++ objects 168
Objects 169
Classes e 169
Staticdata 169
Globaldata 170
Low-level debugging 170
Chapter 10. Using Debug Tool with COBOL Programs 172
Debugging environment provided for COBOL programs 172
Debug Tool Subset of COBOL commands 172
Restrictions on COBOL-like commands 173
Using COBOL variables with Debug Tool 176
Accessing program variables o 176

Vi Debug Tool User's Guide and Reference

Contents

Assigning values to COBOL variables 176
Declaring temporary variables 178
Displaying values of COBOL variables 178
Using DBCS characters 179
Using Debug Tool variablesin COBOL 179
Debug Tool evaluation of COBOL expressions 185
Displaying the results of expression evaluation 185
Using constants in expressions 186
Using Debug Tool functions with COBOL 186
Using %oHEX 186
Using the %STORAGE function 186
Using qualification for COBOL 187
Using qualifiers 187
Changing the pointof view 189
Chapter 11. Using Debug Tool with PL/I programs 190
Debug Tool Subset of PL/l commands 190
PL/I language statements 190
Using Debug Tool variables in PL/l 191
Conditions and condition handling 192
Freeform input 193
TEST(ERROR, ...) e 193
LIST STORAGE e 193
Session variables 193
Accessing program variableso 193
Structures 194
PL/I eXpressions 195
PL/I built-in functions 195
Using SET WARNING command with built-ins 196
Unsupported PL/I language elements 196
Positive identification of a compile unit (CU) 196
Chapter 12. Using Debug Tool commands 197
Command modes and language support 197
Entering commands 197
Command format 197
Charactersetand case 197
Abbreviating keywords 198
Continuation (full-screen and line mode) 199
Significance of blanks 200
Comments 201
Constants 201
Retrieving commands from the log and source windows 202
Online command syntax help 202
Common syntax elements 203
Block_Name 203
Block_Spec 203
Compile_Unit Name 204
CU_Spec 205
Expression 205
Load_Module Name 206
Load_Spec 206
References 206
Statement_Id 207

Contents Vil

Contents

Statement_Id_Range and Stmt_Id_Spec 207
Statement_Label 208
Chapter 13. Debug Tool commands 209
ANALYZE command (PL/I) 209
Assignment command (PL/l) 210
AT command 211
Every clause 212
AT ALLOCATE (PL/I) e 213
AT APPEARANCE 214
AT CALL . . . e 216
AT CHANGE 218
AT CURSOR (full-screen mode) 221
AT DATE (COBOL) s, 222
AT DELETE 222
AT ENTRY/EXIT 223
AT GLOBAL 224
AT LABEL 226
AT LINE . . . 228
AT LOAD 228
AT OCCURRENCE e, 229
AT PATH . . 232
AT Prefix (full-screen mode) 233
AT STATEMENT 234
AT TERMINATION e 235
BEGIN command (PL/l) 236
block command (C/C++) 237
break command (C/C++) 237
CALL command 238
CALL %DUMP 239
CALL entry name (COBOL) 243
CALL procedure 244
CLEAR command 244
CLEAR prefix (full-screenmode) 247
CMS command (VM) 248
COMMENT command 249
COMPUTE command (COBOL) 249
CURSOR command (full-screenmode) 250
Declarations (C/C++) 251
C/C++ compatible attributes 253
Declarations (COBOL) 254
DECLARE command (PL/I) 257
PL/I compatible attributes 258
DESCRIBE command 259
DISABLE command 261
DISABLE prefix (full-screenmode) 262
do/while command (C/C++) 262
DO command (PL/1) 263
ENABLE command 265
ENABLE prefix (full-screenmode) 266
EVALUATE command (COBOL) 266
Expression command (C/C++) 268
FIND command 268
for Command (C/C++) 270

viii Debug Tool User's Guide and Reference

Contents

GO command 271
GOTO command e 272
GOTO LABEL command 273
if command (C/C++) 274
IF command (COBOL) 275
IF command (PL/I) 276
IMMEDIATE command (full-screenmode) 277
INPUT command (C/C++and COBOL) 277
LIST command 278
LIST (blank) 279
LIST AT . 279
LIST CALLS 281
LIST CURSOR (full-screen mode) 282
LIST expression 282
LIST FREQUENCY 283
LIST LAST 284
LIST LINE NUMBERS, 284
LISTLINES 285
LIST MONITOR e 285
LIST NAMES 285
LISTON (PL/) s 287
LIST PROCEDURES 287
LIST REGISTERS e 287
LIST STATEMENT NUMBERS 288
LIST STATEMENTS, 289
LIST STORAGE e 289
MONITOR command 290
MOVE command (COBOL) 292
Null command 293
ON command (PL/I) 293
PANEL command (full-screen mode) 295
PERFORM command (COBOL), 297
Prefix commands (full-screen mode) 299
PROCEDURE command, 299
QUERY command 300
QUERY Prefix (full-screenmode) 303
QUIT command e 303
RETRIEVE command (full-screen mode) 304
RUN command 305
SCROLL command (full-screenmode) 305
SELECT command (PL/l) 307
SET command 308
SET CHANGE 309
SET COLOR (full-screen and line mode) 310
SET COUNTRY e 312
SETDBCS 312
SET DEFAULT LISTINGS (MVS) 313
SET DEFAULT SCROLL (full-screenmode) 313
SET DEFAULT WINDOW (full-screen mode) 314
SETECHO 314
SET EQUATE 315
SETEXECUTE 316
SET FREQUENCY 316
SET HISTORY 317

Contents X

Contents

SET INTERCEPT (C/C++and COBOL) 318
SET KEYS (full-screen and linemode) 319
SETLOG 319
SET LOG NUMBERS (full-screen and line mode) 320
SET MONITOR NUMBERS (full-screen and line mode) 320
SETMSGID 321
SET NATIONAL LANGUAGE 321
SET PACE 322
SET PFKEY 322
SET PROGRAMMING LANGUAGE 323
SET PROMPT (full-screen and linemode) 324
SET QUALIFY 325
SET REFRESH (full-screen mode) 326
SET REWRITE 327
SET SCREEN (full-screen and line mode) 327
SET SCROLL DISPLAY (full-screen mode) 328
SET SOURCE 328
SET SUFFIX (full-screen mode) 329
SET TEST 330
SET WARNING (C/C++and PL/l) 331
SET command (COBOL) 332
SHOW Prefix command (full-screen mode) 333
STEP command 333
switch command (C/C++) 336
SYSTEM command 338
TRIGGER command 339
TSO command (MVS) 341
USEcommand e 341
while command (C/C++) 343
WINDOW command (full-screen mode) 344
WINDOW CLOSE 344
WINDOW OPEN 345
WINDOW SIZE 345
WINDOW ZOOM 346
Appendix A. Coexistence 348
Coexistence with other debuggers 348
Coexistence with unsupported HLL modules 348
Appendix B. Using Debug Tool in a production mode 349
Fine-tuning your programs with Debug Tool 349
Removing hooks, statement tables, and symbol tables 349
Using Debug Tool on optimized programs 350
Appendix C. Using C/C++ Reference Information with Debug Tool 352
Creserved keywords 352
Operators and operands 352
Language Environment conditions and their C/C++ equivalents 353
Appendix D. Using COBOL Reference Information with Debug Tool ... 355
COBOL listing files 355
Debug Tool interpretive subset of COBOL commands 355
COBOL reserved keywords 355
Allowable comparisons for the Debug Tool IF command 355

X Debug Tool User's Guide and Reference

Contents

Allowable moves for the Debug Tool MOVE command 358
Allowable moves for the Debug Tool SET command 359
Appendix E. Debug Tool Messages, 360
Symbols in messages 360
Appendix F. Notices 427
Copyright License e 428
Programming interface information 428
Trademarks and service marks L. 428
Bibliography 429
High level language publications 429
Related publications 429
Softcopy publications 430
Glossary 431
Index 436

Contents Xi

About This Book

About this book

Debug Tool combines the richness of the System/370* and System/390* subsystem
environments with the power of Language Environment to provide a debugger for
programmers to isolate and fix their program bugs and test their applications.
Debug Tool gives you the capability of testing programs in batch or using a nonpro-
grammable terminal in full-screen or line mode to debug your programs interac-
tively.

This book contains instructions and examples to help you use the Debug Tool to
debug C, C++, COBOL, and PL/I applications running with Language Environment.
Topics covered include preparing your application for debugging, accomplishing
basic debugging tasks, and Debug Tool's interaction with different programming
languages. A complete command reference section is also included.
You can begin testing with Debug Tool after learning just a few concepts:

e How to invoke it

e How to set, display, and remove breakpoints

e How to step through your program
Debug Tool commands are similar to commands from the supported high level lan-
guages (HLLs).
Note: When MVS is used in this book, it refers to both MVS and OS/390 systems.

Who might use this book

Xii

This book is intended for application programmers using Debug Tool to debug
HLLs with Language Environment*. Throughout this book, these languages are
referred to as C/C++, COBOL, and PL/I.

The following operating systems and subsystems are supported:

* 0OS/390* and MVS*

- TSO
CICs*
JES/Batch
— IMS*

— DB2*

s VM
— SQL/DS*

Note: To use this book and debug a program written in one of the supported lan-
guages, you need to know how to write, compile, and run such a program.

© Copyright IBM Corp. 1995, 1999

About This Book

How this book is organized

This book is divided into areas of similar information for easy retrieval of appro-
priate information. The main topics include:

Chapters 1-4 - Discuss the preparatory work you must complete before using
Debug Tool and provide a sample program for each language with scenarios of
some basic debugging tasks to help you begin using Debug Tool.

Chapters 5-6 - Discuss how to customize and use Debug Tool for your partic-

ular environment. The environments included are MVS/JES batch mode, line

mode, Customer Information Control System (CICS), Information Management
System (IMS), DATABASE 2* (DB2*), and debugging applications that contain
Structured Query Language/Data System (SQL/DS) statements.

Chapters 8-11 - provide information about Debug Tool's interaction with dif-
ferent programming languages. Debug Tool variables, functions, and
expression evaluation are explained.

Chapter 12 - contains the Debug Tool commands with their syntax and pro-
vides examples of their use.

The appendixes include the following information:

— How Debug Tool coexists with HLL modules compiled with previous ver-
sions of compilers

— How to optimize your programs while retaining debugging capability

— Reference information for C and COBOL that include HLL reserved
keywords interpretive subsets of HLL commands

— Complete list of Debug Tool messages
— Notices page

Bibliography and a glossary of terms.

How to read the syntax diagrams

The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

»— Indicates the beginning of a statement.

— Indicates that the statement syntax is continued on the next line.
— Indicates that a statement is continued from the previous line.
—>< Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
»— symbol and end with the — symbol.

Conventions

e Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase. These items must be entered exactly as shown.

e Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

About this book Xiii

About This Book

e When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

e Enter punctuation marks (slashes, commas, periods, parentheses, quota-
tion marks, equal signs) and numbers exactly as given.

¢ Footnotes are shown by a number in parentheses, for example, (1).

¢ A b symbol indicates one blank position.

Required items

Required items appear on the horizontal line (the main path).
»»>—REQUIRED_ITEM

\4
A

Optional Items

Optional items appear below the main path.
»>—REQUIRED_ITEM

\ 4
A

|—opt ional_i temJ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

optional_item
»>—REQUIRED_ITEM []

\4
A

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

\4
A

»»—REQUI RED_ITEM—Er‘equi red_choicel
required_choi ce2J

If choosing one of the items is optional, the entire stack appears below the
main path.

A

optional_choicel

»»—REQUIRED_ITEM k >
optional_choice2

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

\4
A

»—REQUIRED_ITEM—Lrepeatable_item |

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

\ 4
A

»»—REQUIRED_ITEM—Y—repeatable_item—L

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Xiv Debug Tool User's Guide and Reference

About This Book

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

default_choice
»»>—REQUIRED_ITEM E]

\ 4
A

optional_choice:‘
optional_choice

About this book XV

About This Book

Summary of Changes

This section describes the major changes that have been made to this manual
since the previous edition. Technical changes are marked in the text by a change
bar (|) in the left margin. Some of this information might have been included in
previous softcopy books (BookManager*) provided since September 1997.

e Support for IEEE floating point arithmetic
e Support for COBOL Millennium Language Extensions
* New enhancements to DTCN to provide easier use

e Support in MVS, CICS, and OS/390 UNIX* System Services (OS/390 UNIX),
previously called OpenEdition* Services, for source level debugging of header
file functions that allows you to view the source of a function residing in the
header file while it runs

e Web site address for Debug Tool provided in the Edition Notice

XVi © Copyright IBM Corp. 1995, 1999

Before you begin debugging

Chapter 1. Before you begin debugging

Debug Tool is a program-testing and analysis aid that helps you examine, monitor,
and control the execution of programs written in C/C++, COBOL, or PL/l on an
0S/390, MVS, or VM system. Your applications can include other languages, but
Debug Tool does not debug those portions of your application. In this book, MVS
refers to both MVS and 0S/390.

This chapter provides a description of the Debug Tool debugging environments, an
overview of the terminology used by Debug Tool, and some helpful hints you
should consider before beginning.

Debug Tool debugging environments

The following sections describe the types of debugging sessions or interfaces avail-
able with Debug Tool, either stand-alone or in conjunction with another product:

Debug Tool sessions

The terms full-screen mode, line mode, and batch mode are used to describe the
types of debugging sessions or interfaces Debug Tool provides. The following
session descriptions are supported by Debug Tool:

Full-Screen Session Debug Tool provides an interactive full-screen interface on a
3270 device. The full-screen interface is made up of
session panel windows containing information about your
debugging session.

Line-Mode Session Enter Debug Tool commands on the command line and
receive debugging information, one line at a time, while you
are programming. This is an interactive type of session.

Batch-Mode Session Debug Tool command files provide a mechanism to prede-
fine series of Debug Tool commands to be performed on an
executing batch application. Neither terminal input nor user
interaction is available for batch debugging of a batch appli-
cation.

VisualAge* Session Debug Tool, in conjunction with the VisualAge remote
debugger, provides users with the ability to debug host pro-
grams, including batch, through a Graphical User Interface
(GUI) on the workstation. The VisualAge remote debugger
is available through products such as VisualAge COBOL
Enterprise for OS/2* and Windows NT** and VisualAge for
Java, Enterprise Edition for OS/390. For more information,
visit the IBM Software web site: www.software.ibm.com/ad

CODE/370 Programmable Workstation (PWS) Session
Debug Tool, as a component of CODE/370, provides users
with the ability to debug host COBOL, PL/I, and C applica-
tions using an OS/2 GUI interface. The GUI interface is
provided through the CODE/370 PWS feature. For more
information, see CoOperative Development
Environment/370 General Information.

© Copyright IBM Corp. 1995, 1999 1

Before you begin debugging

For a full-screen session, Debug Tool provides:
e A Source window in which to view your program source or listing

¢ A Log window, which records commands and other interactions between Debug
Tool and your program

¢ A Monitor window in which to monitor changes in your program

You can adjust the sizes of the windows with the cursor and change the relative
locations of the windows by typing your preferences on a template. See Figref
refid=windw.. The following screens provide examples of the three Debug Tool

windows:

COBOL LOCATION: MULTCU :> 75.1

Command =—> Scroll ==> PAGE
MONITOR --+----1l----t----P-oeet-ee-Beemtome et 5ot -—-6 LINE: 1 OF 2
*kkkkhrkkkkkkhrhkkxkxhrrkkxcxkkxk*x JOP OF MONITOR ***kxkkkkkhkkkkhkhkkkkhxhkrkkkkhxk
0001 1 01 MULTCU:>PROGRAM-USHORT-BIN 00000

0002 2 01 MULTCU:>PROGRAM-SSHORT-BIN +00000

khkkkhkkkhkxkhkxrkhkxrkkkxrkxkkxx* BOTTOM OF MONITOR ****xkkkkkkhkkhhkkhkhkkhhkrkkhkrrk

Figure 1. Debug Tool Monitor Window

SOURCE: MULTCU ===l-==-#mmnoemmmtommn3ommmtooocboaoctona-booot LINE: 66 OF 85

70 PROCEDURE DIVISION. .
7]_ hkkkkkhhkkhhkhhkkhkhhhkhkhkhhhhhkhkhhkhkhhhkhhhkhkkhkhhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkx |
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays

73 * text. .
74. hhkhhhhhhhhhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhhhhrrdhhrdhdrdivsvsxsx |
75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE.

76 MOVE 25 TO PROGRAM-USHORT-BIN.

77 MOVE —25 TO PROGRAM-SSHORT-BIN.

78 PERFORM TEST-900.

79 PERFORM TEST-1000.

80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE.

Figure 2. Debug Tool Source Window

LOG @--==+====lommmtomoo2oooboooo3ommbooobomotooo-booooto——-6 LINE: 6 OF 14
0007 MONITOR

0008 LIST PROGRAM-USHORT-BIN ;

0009 MONITOR

0010 LIST PROGRAM-SSHORT-BIN ;

0011 AT 75 ;

0012 AT 77 ;

0013 AT 79 ;

0014 GO ;

Figure 3. Debug Tool Log Window

Debug Tool User's Guide and Reference

Before you begin debugging

For an explanation of all the windows, see [Chapter 5, “Using the Debug Tool|
linterfaces” on page 89|

Denoting environmental differences

Terminology

Certain aspects of Debug Tool usage can differ, not only across platforms but from
system to system and from subsystem to subsystem. When this occurs, differ-
ences are marked in the text in the following manner:

For MVS Only : MVS-specific information.

Special language-specific information about accomplishing a task or using a partic-
ular procedure might also be marked the same way. More extensive differences
are usually discussed in separate sections.

Because of differing terminology among the various languages supported by Debug
Tool, as well as differing terminology between platforms, a group of common terms
has been established. Table 1 lists these terms and their equivalency in each lan-
guage.

Table 1. Terminology

Debug Tool C/C++ Equivalent COBOL Equivalent PL/I Equivalent
Term
Compile Unit C/C++ source file Program or Class Program
Block Function or Compound Program, Nested Block
Statement Program, Method or

PERFORM Group of

Statements
Label Label Paragraph Name or Label

Section Name

Planning to run your program with Debug Tool

Before you test your program using Debug Tool, you should plan how you want to
conduct your debugging session. Although you can prepare your program by com-
piling with the compile-time TEST option and no suboptions, and then invoking
Debug Tool with the TEST run-time option without selecting any suboptions, you
should consider the following list of questions before testing your application in this
manner:

* Do you want to compile your program with hooks?

Hooks are instructions inserted in a program by a compiler at compile time.
Using hooks allows you to set breakpoints that instruct Debug Tool to gain
control at selected points during program run time.

You can decide where to place the hooks. For example, you can place them at
statements, or only at entry to and exit from blocks.

Information on placing hooks is in[Chapter 2, “Preparing to debug your]
[program” on page 5|

* Do you want to reference variables during your Debug Tool session?

Chapter 1. Before you begin debugging 3

Before you begin debugging

4

If yes, you need to instruct the compiler to create a symbol table. The symbol
table contains descriptions of variables, their attributes, and their location in
storage. These descriptions are used by Debug Tool when referencing vari-
ables.

Information on symbol tables is in|Chapter 2, “Preparing to debug your]
[program” on page 5

Do you want full debugging capability or smaller application size and higher
performance?

Removing hooks, statement tables, or symbol tables can increase your applica-
tion's performance and/or decrease its size. See |Appendix B, “Using Debug|
[Tool in a production mode” on page 349|for a complete discussion.

When do you want to start Debug Tool and when do you want it to gain
control?

There are a variety of ways to invoke Debug Tool, as well as many options for
allowing it to gain control of your test program.

To invoke Debug Tool, you can use the run-time TEST option. This option gives
you the choice of invoking Debug Tool either before you run your application, at
the occurrence of an HLL condition while your application is running, or at the
occurrence of an attention interrupt. Also, Language Environment, as well as
certain HLLs, provides a run-time service you can call while your program is
executing, at the location of your choice.

After Debug Tool is invoked, it gains control of your program and suspends
execution to allow you to take such actions as checking the value of a variable
or examining the contents of storage.

Do you want to use Debug Tool interactively, in line mode, or in batch mode?

Refer to[‘Debug Tool sessions” on page 1jto determine how you want to use
Debug Tool when debugging your application.

Debug Tool User's Guide and Reference

Compiling a C program with TEST

Chapter 2. Preparing to debug your program

This chapter describes how to prepare your programs for debugging with Debug
Tool. It discusses how to compile your programs using the compile-time TEST
option to furnish Debug Tool with the necessary debugging information.

Information for using the TEST option with each language compiler and debugging
multilanguage programs is discussed separately in the following sections:

Compiling your C program with the compile-time TEST option
Compiling your C++ program with the compile-time TEST option
Compiling your COBOL program with the compile-time TEST option
Compiling your PL/I program with the compile-time TEST option
Debugging multilanguage programs

Debug Tool does not need any special postcompile step to be added to your
compile JCL. All you need to do is provide the appropriate compile-time TEST
option and retain the program listing (COBOL and PL/l) or compiler source input
(CIC++) data sets for Debug Tool to read when you debug the program.

If you are preparing to debug a CICS program and want to use DTCN to invoke
Debug Tool, update the link-edit step to include member EQADCCXT from the Debug
Tool library +*.SEQAMOD into the application load module.

Compiling a C program with the compile-time TEST option

Before testing your C program with Debug Tool, you must compile it with the C
compile-time TEST option, as described below. This option causes the compiler to
retain information about your application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks that are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain infor-
mation about the variables in the program.

When using the C compile-time TEST option, be aware that:
e The C compile-time TEST option generates entry and exit hooks for functions.

e The C compile-time TEST option implicitly specifies the GONUMBER option, which
causes the compiler to generate line number tables corresponding to the input
source file. You can explicitly remove this option by specifying NOGONUMBER.

* Programs compiled with both the TEST and either OPT(1) or OPT(2) options do
not have line hooks, block hooks, path hooks, or a symbol table generated,
regardless of the TEST suboptions specified. Only function entry and exit hooks
are generated for optimized programs.

e You can specify any humber of TEST suboptions, including conflicting sub-
options (for example, both PATH and NOPATH). The last suboptions specified
take effect. For example, if you specify TEST(BLOCK, NOBLOCK, BLOCK, NOLINE,

© Copyright IBM Corp. 1995, 1999 5

Compiling a C program with TEST

6

LINE), what takes effect is TEST(BLOCK, LINE) since BLOCK and LINE are speci-
fied last.

* No duplicate hooks are generated even if two similar TEST suboptions are spec-
ified. For example, if you specify TEST(BLOCK, PATH), the BLOCK suboption
causes the generation of entry and exit hooks. The PATH suboption also
causes the generation of entry and exit hooks. However, only one hook is gen-
erated at each entry and exit.

See 0S/390 C/C++ User's Guide for more information on the compile-time TEST
option.

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, PATH, and SYM.

The syntax for the C compile-time TEST option is:

NOTEST |
TEST

\ 4
A

—BLOCK—

—LINE——
—PATH—
—SYM——
(—NOBLOCK)
—NOLINE—
—NOPATH—
—NOSYM—
—ALL—
—NONE——

The compile-time TEST suboptions control the generation of symbol tables and
program hooks Debug Tool needs to debug your programs. The choices you make
when compiling your program affect the amount of Debug Tool function available
during your debugging session. When a program is under development, you
should compile the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and how
Debug Tool uses them when debugging your program:

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

The following restrictions apply when using TEST:

¢ The maximum number of lines in a single source file cannot exceed
131,072.

¢ The maximum number of include files that have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

Debug Tool User's Guide and Reference

Compiling a C program with TEST

NOTEST
Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

e You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

e You cannot examine or use any program variables.

e You can LIST storage and registers.

e You cannot use the Debug Tool command GOTO.

BLOCK
Inserts only block entry and exit hooks into your program's object output. A
block is any number of data definitions, declarations, or statements
enclosed within a single set of braces. BLOCK also creates entry and exit
hooks for nested blocks. If SYM is enabled, symbol tables are generated for
variables local to these nested blocks.

e You can only gain control at entry and exit of blocks.

¢ |ssuing a command such as STEP causes your program to run, until it
reaches the exit point.

NOBLOCK
Prevents symbol information and entry and exit hooks from being gener-
ated for nested blocks.

LINE

Hooks are generated at most executable statements. Hooks are not gener-
ated for:

¢ Lines that identify blocks (lines containing braces)
e Null statements
e Labels

NOLINE
Suppresses the generation of statement (line number) hooks.

PATH
Hooks are generated at all path points.

* This option does not influence the generation of entry and exit hooks
for nested blocks. The BLOCK suboption must be specified if such
hooks are desired.

e Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e The Debug Tool command GOTO is valid only for statements and labels
coinciding with path points.

NOPATH
No path hooks are generated.

SYM
Generates symbol tables in the program's object output that gives Debug
Tool access to variables and other symbol information.

Chapter 2. Preparing to debug your program 7

Compiling a C program with TEST

e You can reference all program variables by name, allowing you to
examine them or use them in expressions.

e You can use the Debug Tool command GOTO to branch to a label (para-
graph or section name).

NOSYM
Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.

e You cannot reference program variables by name.

¢ You cannot use commands such as LIST or DESCRIBE to access a vari-
able or expression.

¢ You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section name).

ALL
Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then-else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE
Generates all compiled-in hooks only at function entry and exit points.
Block and line hooks are not inserted, and the symbol tables is suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:

e The hook for function entry is placed before any initialization or statements for
the function.

¢ The hook for function exit is placed just before actual function return.

¢ The hook for nested block entry is placed before any statements or initialization
for the block.

¢ The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements and
path points:

e Label hooks are placed before the code and all other statement or path point
hooks for the statement.

e The statement hook is placed before the code and path point hook for the
statement.

* A path point hook for a statement is placed before the code for the statement.

8 Debug Tool User's Guide and Reference

Compiling a C++ program with TEST

Using #pragma to specify compile-time TEST option
The compile-time TEST/NOTEST option can be specified either when you invoke your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile unit are honored. With multiple enclaves, the
options specified with the first enclave (or compile unit) invoked in each new
process are honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the compile-time
EXECOPS option, prevents any command line options from taking effect.

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:

#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH). The default PATH means that the
PATH breakpoint will be triggered for the program containing the following statement:

#pragma options(test)
You can also use a #pragma to specify run-time options. This is explained, with

examples, in ['Specifying run-time TEST option with #pragma runopts in C and C++7|
on page 43

For more information about #pragma options, refer to 0S/390 C/C++ Language Ref-
erence.

Compiling a C++ program with the compile-time TEST option

Before testing your C++ program with Debug Tool, you must compile it with the
C++ compile-time TEST option, as described below. This option causes the com-
piler to retain information about your application program that Debug Tool uses.
See [‘Compiling a C program with the compile-time TEST option” on page 5|for an
explanation of the debug information generated by TEST(ALL).

NOTEST
>>—|:TEST |

\4
A

The following list explains what is produced by each option and how Debug Tool
uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

¢ You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.
* You cannot examine or use any program variables.

Chapter 2. Preparing to debug your program 9

Compiling a COBOL program with TEST

* You can LIST storage and registers.
e You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The following restrictions apply when using the TEST option

e The maximum number of lines in a single source file cannot exceed
131,072.

¢ The maximum number of include files that have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

Placing compiled-in hooks for functions and nested blocks

The following rules apply to the placement of compiled-in entry and exit hooks for
functions and nested blocks:

e The hook for function entry is placed before any initialization or statements for
the function.

* The hook for function exit is placed just before actual function return.

e The hook for nested block entry is placed before any statements or initialization
for the block.

* The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points

The following rules apply to the placement of compiled-in hooks for statements and
path points:

e Label hooks are placed before the code and all other statement or path point
hooks for the statement.

* The statement hook is placed before the code and path point hook for the
statement.

* A path point hook for a statement is placed before the code for the statement.

Compiling a COBOL program with the compile-time TEST option

When you compile with the TEST option, the compiler creates the dictionary tables
that Debug Tool uses to obtain information about program variables, and inserts
program hooks at selected points in your program. Your source is not modified.
These points can be at the entrances and exits of blocks, at statement boundaries,
and at points in the program where program flow might change between statement
boundaries (called path points), such as before and after a CALL statement. Using
these hooks, you can set breakpoints to instruct Debug Tool to gain control of your
program at selected points during its execution.

When using the COBOL compile-time TEST option, be aware that:

 If you specify NUMBER with TEST, make sure the sequence fields in your source
code all contain numeric characters.

10 Debug Tool User's Guide and Reference

Compiling a COBOL program with TEST

e Usually, when you specify TEST, the compile-time options NOOPTIMIZE and
OBJECT automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
limited debugging of optimized programs. See |Appendix B, “Using Debug Tool|
in_a production mode” on page 349| for more information on debugging pro-
duction programs.

e The compile-time TEST option and the run-time DEBUG option are mutually exclu-
sive, with DEBUG taking precedence. If you specify both the WITH DEBUGGING
MODE clause in your SOURCE-COMPUTER paragraph and the USE FOR DEBUGGING
statement in your code, TEST is deactivated. The compile-time TEST option
appears in the list of options, but a diagnostic message is issued telling you
that because of the conflict, TEST is not in effect.

The syntax for the COBOL compile-time TEST option is:

NOTEST
NOTES
’—(ALL, SYM)
> TEST_J |_ >«
TES (ALL , I_SYM a)
BLOCK: NOSYM
NONE
PATH
STMT

The compile-time TEST suboptions control the production of such debugging aids as
dictionary tables and program hooks that Debug Tool needs to debug your
program. The choices you make when compiling your program can affect the
amount of Debug Tool function available during your debugging session. When a
program is under development, compile the program with TEST(ALL) to get the full
capability of Debug Tool. The following list explains each option and suboption and
the capabilities of Debug Tool when your program is compiled using these options.

NOTEST
Specifies that no debugging information is to be generated, that is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

e You cannot STEP through program statements.

¢ You can suspend execution of the program only at the initialization of the
main compile unit.

e You can include calls to CEETEST in your program to allow you to suspend
program execution and issue Debug Tool commands.

¢ You cannot examine or use any program variables.
e You can LIST storage and registers.

e The source listing produced by the compiler cannot be used; therefore, no
listing is available during a debugging session.

e Because a statement table is not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location.

Chapter 2. Preparing to debug your program 11

Compiling a COBOL program with TEST

TEST

Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

ALL

Generates all compiled-in hooks, which includes all statement, path, date
processing, and program entry and exit hooks.

BLOCK

The COBOL compiler only generates compiled-in hooks for date proc-
essing statements when either the DATEPROC (FLAG) or

DATEPROC (NOFLAG) compile-time option is specified. A date processing
statement is any statement that references a date field, or any EVAL-
UATE or SEARCH statement WHEN phrase that references a date
field.

You can set breakpoints at all statements and path points, and STEP
through your program.

Debug Tool can gain control of the program at all statements, path
points, date processing statements, labels, and block entry and exit
points, allowing you to enter Debug Tool commands.

Branching to statements and labels using the Debug Tool command
GOTO is allowed.

Hooks are inserted at all block entry and exit points.

NONE

Debug Tool gains control at entry and exit of your program, methods,
nested programs, and PERFORM group of statements.

Debug Tool can be explicitly invoked at any point with a call to CEETEST.

Issuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

GOTO can be used to branch to statements that coincide with block entry
and exit points.

No hooks are inserted in the program.

PATH

The GOTO command is valid for some statements and labels coinciding
with path points.

A call to CEETEST can be used at any point to invoke Debug Tool.

Hooks are inserted at all path points.

Debug Tool can gain control only at path points and block entry and

exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e A call to CEETEST can be used at any point to invoke Debug Tool.

e The Debug Tool command GOTO is valid for all statements and labels

coinciding with path points.

12 Debug Tool User's Guide and Reference

Compiling a COBOL program with TEST

STMT
Hooks are inserted at every statement and label, at every date processing
statement, and at all entry and exit points.

e The COBOL compiler only generates compiled-in hooks for date proc-
essing statements when either the DATEPROC (FLAG) or
DATEPROC (NOFLAG) compile-time option is specified. A date processing
statement is any statement that references a date field, or any EVAL-
UATE or SEARCH statement WHEN phrase that references a date
field.

* You can set breakpoints at all statements and STEP through your
program.

e Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

e Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates dictionary tables in the program's object output (including the
symbol table), that gives Debug Tool access to variables and other symbol
information.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

* SYMis required to support labels (paragraph or section names) as GOT0O
targets.

NOSYM
Suppresses the generation of dictionary tables. Debug Tool does not have
access to any symbol information. Using NOSYM produces the following
results:

¢ You cannot reference program variables by name.

e You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

e You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (paragraph or section
name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM).

See the COBOL Language Reference publications for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,

you must direct the listing to a nontemporary file that is available during the
debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See

['SET SOURCE” on page 328|as well as|*'SET DEFAULT LISTINGS (MVS)’]

[on page 313 for partitioned data sets).

Chapter 2. Preparing to debug your program 13

Compiling a PL/I program with TEST

Compiling a PL/I program with the compile-time TEST option

The PL/I compiler provides support for Debug Tool under control of the compile-
time TEST option and its suboptions for hook locations and symbol tables. The
hook location suboptions (BLOCK, STMT, PATH, ALL, and NONE) regulates the points at
which the compiler inserts hooks. These program hooks allow Debug Tool to gain
control at select points in a program during execution. The symbol table suboption
(SYM or NOSYM) controls the insertion of symbol tables into the program. Debug Tool
uses the symbol tables to obtain information about program variables.

The syntax for the PL/I compile-time TEST option is:

NOTEST
NOTES
I——(NONE, SYM)
> TESTJ |_ >«
TES (ALL , LSYM .)—
BLOCK: NOSYM
NONE:
PATH
STMT

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debugging session. When a program is
under development, compile the program with TEST(ALL) to get the full capability of
Debug Tool. The following list explains each option and suboption and the capabili-
ties of Debug Tool when your program is compiled using these options:

NOTEST
Specifies that no debugging information is generated, that is, no statement
hooks or path hooks are compiled into your program, no dictionary tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

e You can LIST storage and registers.

e You can include calls to PLITEST or CEETEST in your program SO you can
suspend running your program and issue Debug Tool commands.

e You cannot STEP through program statements. You can suspend running
your program only at the initialization of the main compile unit.

e You cannot examine or use any program variables.

e Because statement hooks are not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY LOCATION. A state-
ment table is available if compiled with STMT or GOSTMT.

TEST
Produces debugging information for Debug Tool to use during batch and inter-

active debugging. The extent of the information provided depends on which of
the following suboptions are selected:

ALL

Generates all compiled-in hooks, which includes all statement, path, and
program entry and exit hooks.

14 Debug Tool User's Guide and Reference

BLOCK

Compiling a PL/I program with TEST

You can set breakpoints at all statements and path points, and STEP
through your program.

Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

Enables branching to statements and labels using the Debug Tool
command GOTO.

Hooks are inserted at all block entry and exit points.

NONES
No

PATH

Enables Debug Tool to gain control at block boundaries: block entry
and block exit.

You can gain control only at entry and exit of your program and all
entry and exit points of internal program blocks.

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Issuing a command such as STEP causes your program to run until it
reaches the next block entry or exit point.

Block hooks are not inserted into a NULL ON-unit or an ON-unit consisting
of a single GOTO statement.

hooks are inserted in the program.

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Causes hooks to be inserted:

Before the THEN part of an IF statement.

Before the ELSE part of an IF statement.

Before the first statement of all WHEN clauses of a SELECT-group.
Before the OTHERWISE statement of a SELECT-group.

At the end of a repetitive DO statement, just before the Do-group is to be
executed.

At every CALL or function reference, both before and after control is
passed to the routine.

Before the statement following a user label, excluding labeled FORMAT
statements. If a statement has multiple labels, only one hook is
inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT

Hooks are inserted before most executable statements and labels. STMT
also causes BLOCK hooks to be inserted.

You can set breakpoints at all statements and STEP through your
program.

Chapter 2. Preparing to debug your program 15

Use of program source/listing

e Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

e Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates a symbol table to be compiled into the program. The symbol
table is required for examining program variables or program control con-
stants by name.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

e SYMis required to support labels as GOTO targets.

NOSYM
Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information that causes the following results:

e You cannot reference program variables by name.

¢ You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

¢ You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (procedure or block name).

See the PL/I for MVS and VM Programming Guide for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,
PL/I programs must be compiled using the PL/I compile-time SOURCE option.
You must also direct the listing to a nontemporary file that is available
during the debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See
['SET SOURCE” on page 328} as well as|'SET DEFAULT LISTINGS|
[(MVS)” on page 313 (for partitioned data sets).

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) causes a statment number
table to be generated. If the compile-time STMT option is in effect, TEST causes
GOSTMT to apply. If the compile-time NUMBER option is in effect, TEST causes
GONUMBER to apply.

Debug Tool's use of the program source/listing

When you debug your program, Debug Tool shows you the actual program state-
ments as they are executing. The following sections explain how Debug Tool
accomplishes this for each language.

16 Debug Tool User's Guide and Reference

C/C++

COBOL

PL/I

Debugging multilanguage programs

For C/C++, Debug Tool uses the program source data set. The C/C++ compiler
stores the name of the program source data set inside the load module. The data
set can be a PDS member, a sequential file, or an HFS file. Debug Tool uses this
data set name to access the source. Note that Debug Tool uses the input to the
compiler. This might not be the original source, for example, if the program has
been preprocessed by the CICS translator. If you use a preprocessor, you must
ensure that the data set input to the compiler is retained in a permanent data set.

As these data sets might be read many times by Debug Tool, we recommend that
you define them with the largest block size that your DASD can hold.

For COBOL, Debug Tool uses the program listing data set, which is produced by
the compiler and can be either a PDS member or a sequential file. The COBOL
compiler stores the name of the program listing data set inside the load module.

Debug Tool uses this data set name to access the listing.

Debug Tool does not use the output created by the COBOL compile-time LIST
option; performance will be improved if you specify NOLIST.

Note: The above behavior does not apply to VS COBOL Il or OS/VS COBOL.

As these data sets might be read many times by Debug Tool, we recom-
mend that you define them with the largest block size that your DASD can
hold.

For PL/I, Debug Tool uses the program listing data set produced by the compiler.
The PL/I compiler does not store the name of the program listing data set so, when
you debug PL/I programs, you will need to provide the listing data set name. See
['[SET DEFAULT LISTINGS (MVS)” on page 313 and FSET SOURCE” on page 328
for details.

Debug Tool does not use the output created by the PL/I compiler LIST option; per-
formance will be improved if you specify NOLIST.

Note: As these data sets might be read many times by Debug Tool, we recom-
mend that you define them with the largest block size that your DASD can
hold.

Debugging multilanguage programs

This section discusses strategies you can employ when debugging programs
written in more than one language.

The process of debugging multilanguage programs is simplified by the introduction
of Language Environment. Language Environment supports the creation of applica-
tion programs written in more than one HLL by providing a single environment to
run such programs using interlanguage communication (ILC).

When the need to debug a multilanguage program arises, you can find yourself
facing one of the following scenarios:

Chapter 2. Preparing to debug your program 17

Debugging multilanguage programs

e You need to debug an application written in more than one language, where
each language is supported by Language Environment and can be debugged
by Debug Tool.

* You need to debug an application written in more than one language, where
not all of the languages are supported by Language Environment, nor can they
be debugged by Debug Tool.

When writing a multilanguage application, a number of special considerations arise
because you must work outside the scope of any single language. The Language
Environment initialization process establishes an environment tailored to the set of
HLLs constituting the main load module of your application program. This removes
the need to make explicit calls to manipulate the environment. Also, termination of
the Language Environment environment is accomplished in an orderly fashion,
regardless of the mixture of HLLs present in the application.

Debugging an application fully supported by Language Environment

If you are debugging a program written in a combination of languages supported by
Language Environment and compiled by supported compilers, very little is required
in the way of special actions. Debug Tool normally recognizes a change in pro-
gramming languages and automatically switches to the correct language when a
breakpoint is reached. If desired, you can use the SET PROGRAMMING LANGUAGE
command to stay in the language you specify; however, you can only access vari-
ables defined in the currently set programming language. For details, see
[PROGRAMMING LANGUAGE” on page 323

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes. See|‘C/C++ compat-
ible attributes” on page 253} FCOBOL compatible attributes” on page 256} or [PL/]
compatible attributes” on page 258 for a table showing compatible attributes for
variables declared in the supported languages.

For more information on creating multilanguage applications, see the OS/390 Lan-
guage Environment Programming Guide.

Debugging an application partially supported by Language

Environment

Sometimes you might find yourself debugging applications that contain compile
units written in languages not supported by either Debug Tool or Language Envi-
ronment. For example, you can run programs containing mixtures of Assembler,
C/C++, COBOL, FORTRAN, and PL/I source code with Debug Tool. You can
invoke Debug Tool and perform testing only for the sections of a multilanguage
program written in a supported language and compiled with a Language
Environment-enabled compiler, or relink-edited to take advantage of Language
Environment library routines. If you are debugging a compile unit written in a sup-
ported language and the compile unit calls another unsupported language, a break-
point set with AT CALL is triggered. Debug Tool determines the name of the
compile unit, but little else. Your compile unit runs unhindered by Debug Tool.
When program execution returns to a compile unit of a known HLL, Debug Tool
once again gains control and execute commands.

18 Debug Tool User's Guide and Reference

data sets used by Debug Tool

Chapter 3. Beginning a debugging session

This chapter explains how to begin a debugging session with Debug Tool. It
covers the run-time TEST option, which gives you several alternatives for beginning
a debugging session when specified during the invocation of your program.

Also covered are Language Environment callable services CEETEST and PLITEST,
and the C library function _ ctest(). These can be inserted into your program to
govern the invocation of Debug Tool. The use of #pragma runopts to specify the
run-time TEST option in C programs is discussed in more detail.

For MVS Only : If your source or listing does not come up in Debug Tool when you
start it, press PF4 (LIST) with the cursor on the command line. This puts you in the
Source ldentification Panel. The Source Identification Panel indicates the name of
the listing or source file that was intended to be used by Debug Tool. With this
name, you can verify if the file exists or if you have authorization to access it. If
your file is stored at a different place, use the SET SOURCE command or type over
the Listing/Source file field with the new name to have Debug Tool search for the
listing or source there. The SET DEFAULT LISTINGS command provides another
method of finding your files provided they are stored to a PDS.

For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for the
source code in a file whose name is the one that was used on the compile step.
For COBOL and PL/I compile units, Debug Tool requires a file containing the com-
piler listing. By default, when Debug Tool encounters a new VS COBOL Il or PL/I
compile unit, it looks for the listing in a file named hlg.cuname.LIST. For
COBOL/370*, COBOL for MVS, and COBOL for OS/390, Debug Tool looks for the
listing in a partitioned data set member named cuname.

When Debug Tool is invoked using one of the methods described in this chapter, it
interrupts the execution of your program to allow you to take appropriate actions.
Debug Tool returns control to your program at the point of its interruption as the
result of a GO or STEP command. You can also specify that control return to some
other point in your program with the GOTO or GO BYPASS command. You can even
specify that control be given to another program with the CALL command or a
C/C++ function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly pre-
vented (see ['GO command” on page 271).

| Data sets used by Debug Tool

| Debug Tool uses the following data sets:

| COBOL Listing

| This data set is output by the compiler and should be retained in a permanent
|
|

file. Debug Tool uses it to show you the program as it is executing. See
[‘COBOL” on page 17|for more information.

© Copyright IBM Corp. 1995, 1999 19

Using TEST

PL/I Listing
This data set is output by the compiler and should be retained in a permanent
file. Debug Tool uses it to show you the program as it is executing. See
[‘PL/I” on page 17|for more information.

C Source
This data is input to the compiler and should be reatined in a permanent file.
Debug Tool uses it to show you the program as it is executing. See ['C/C++]
[on page 17]for more information.

Preferences File
This is a card image data set containing Debug Tool commands that cus-
tomize your session. You can use it, for example, to change the default
screen colors set by Debug Tool. It can be a sequential or PDS data set.

The default DD for the Debug Tool preferences file is INSPPREF.
Preferences files are not used for VisualAge debugging sessions.

Commands File
This is a card image data set containing Debug Tool commands that control
the debugging session. You can use it, for example, to set up breakpoints or
set up monitors for common variables. It can be a sequential or PDS data
set.

The default DD for the Debug Tool preferences file is INSPIN.
Commands files are not used for VisualAge debugging sessions.

Log File
Debug Tool uses this file to record the progress of the debugging session.
We recommend that you define this data set as a card image data set

The default DD for the Debug Tool preferences file is INSPLOG.
Log files are not used for VisualAge debugging sessions.

Save File
Debug Tool uses this file to store preference settings such as screen colors
and panel layouts at the end of each session. These settings are then
restored at the start of subsequent sessions. The file must have a record
format of Fixed and a record length of 80.

The default DD for the Debug Tool save file is INSPSAFE.
Save files are not used for VisualAge debugging sessions.

Save files are not used under CICS.

Using the run-time TEST option

20

You can use the run-time TEST option to invoke Debug Tool and begin testing your
program. The simplest form of the TEST option is TEST with no suboption; however,
suboptions provide you with more flexibility. There are four suboptions available:

e test level (determines what HLL conditions raised by your program will cause
Debug Tool to gain control)

e commands_file (determines which primary commands file is used as the initial
source of commands in the absence of, or as an alternative to, a terminal or
workstation)

Debug Tool User's Guide and Reference

Using TEST

e prompt_Tevel (determines whether an initial commands list is unconditionally
executed during program initialization)

* preferences_file (specifies the session parameter and a file that you can use
to specify default settings for your debugging environment, such as customizing
the settings on the Debug Tool Profile panel)

Run-time TEST option

You can specify any combination of the run-time TEST suboptions, but they must be
specified in the order presented. Any option or suboption referred to as "default" is
the IBM-supplied default, and might have been changed by your system adminis-
trator during installation. For examples of how to use TEST and each of its sub-
options, see page [28,

The syntax for this option is:

NOTEST
»—ETEST | |_ B >
(E] b
l—{ test_Tevel |J |—{ commands_file }J

[_
L{ prompt_level }J | L| preferences_file }J :

test_level:

-—ALL—|
| |

»
>

A\
A

commands_file:

*-

‘—commands_file_designator—

prompt_level:

| —PROMPT |
[|
—NOPROMPT

r: ommand |_I.|j—

Lol
preferences_file:
—MFI:

|—"/oterminal_idJ

—LU2:
I—APPC&

|—%CODEDT—
appc_workstation_id B e
%session_id—

LVADAPPC&—‘ZJ—

S
|—”/08000

LVADTCPIP&——tcpip_workstation_id B
%port_id—

—INSPPREF

—preferences_file_designator—

Notes:
1 Double quotes for MVS; single quotes for VM.

2 Specifies VisualAge remote debug session.

Chapter 3. Beginning a debugging session 21

Using TEST

NOTEST
Specifies that Debug Tool is not invoked at program initialization. However,
invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or the
__ctest() function. In such a case, the suboptions specified with NOTEST are
used when Debug Tool is invoked.

TEST
Specifies that Debug Tool is given control according to its suboptions. The
TEST suboptions supplied will also be used if Debug Tool was invoked with
CEETEST, PLITEST, or _ ctest().

test_level :

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Language
Environment condition of Severity 1 and above causes Debug Tool to gain
control, regardless of whether a breakpoint is defined for that type of condition.
If a condition occurs and a breakpoint exists for the condition, the commands
specified in the breakpoint are executed. If a condition occurs and a breakpoint
does not exist for that condition, or if an attention interrupt occurs, Debug Tool
does the following:

¢ In interactive mode, it reads commands from a commands file (if it exists)
or prompts you for commands

¢ In noninteractive mode, it reads commands from the commands file

For more information about attention interrupts, see [Requesting an attention|
linterrupt during interactive sessions” on page 139|

ERROR
Specifies that only the following conditions cause Debug Tool to gain control
without a user-defined breakpoint.

e For C/C++:

An attention interrupt
Program termination
A predefined Language Environment condition of Severity 2 or above
Any C/C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

e For COBOL:

— An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

e For PL/I:

— An attention interrupt, directed at either PL/I or Debug Tool
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

Language Environment conditions are described in the 0S/390 Language
Environment Debugging Guide and Run-Time Messages.

If a breakpoint exists for one of the above conditions, commands specified in
the breakpoint are executed. If no commands are specified, Debug Tool reads
commands from a commands file or prompts you for them in interactive mode.

22 Debug Tool User's Guide and Reference

Using TEST

NONE
Specifies that Debug Tool gains control from a condition only if a breakpoint is
defined for that condition. If a breakpoint exists for the condition, the com-
mands specified in the breakpoint are executed. An attention interrupt does not
cause Debug Tool to gain control unless Debug Tool has previously been
invoked. For information about how to change the TEST level after you start
your session, see[*SET TEST” on page 330}

commands_file :

* (or blank)
Indicates that no commands file is supplied. The terminal, if available, is used
as the source of Debug Tool commands.

commands_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS) for
the primary commands file which is used instead of the terminal as initial
source of commands after the preferences file finishes running. If the desig-
nator might cause an ambiguity in the list of suboptions, enclose it in single or
double quotation marks to differentiate it from the remainder of the list. If you
are using a single ddname, no quotation marks are required.

The commands_file_designator has a maximum length of 80 characters.

If the specified ddname is longer than eight characters, it is automatically trun-
cated, but no error message is issued.

When the end of the file is reached, Debug Tool interactively prompts you for
commands until a QUIT command or the end of your application is reached.

The use of a primary commands file is required when debugging batch pro-
grams with a noninteracting interface, and this suboption enables you to specify
a source of commands when using Debug Tool in batch mode. It also allows
you to use a log file from one Debug Tool session as a source of commands in
a subsequent Debug Tool session to regression test your application.

When not using an interactive interface (for example, VisualAge COBOL work-

station), the primary commands file is required for batch debugging sessions. It
acts as a surrogate terminal. Debug Tool reads and executes commands from
it until either the file runs out of commands or your program finishes running.

If the end of the file is reached without encountering a QUIT command, Debug
Tool looks to your terminal, if available, for commands. If your terminal is not
available (if you are debugging in batch, for example), Debug Tool forces a GO
until the end of your program is reached.

Note: VisualAge COBOL does not support use of a commands file.

prompt_level :

PROMPT (or , or blank)
Indicates that you want Debug Tool invoked immediately after Language Envi-
ronment initialization. Commands are read from the preferences file and then
any designated primary commands file. If neither file exists, commands are
read from your terminal or workstation.

NOPROMPT (or %)
Indicates that you do not want Debug Tool invoked immediately after Language
Environment initialization. Instead, your application begins running.

Chapter 3. Beginning a debugging session 23

Using TEST

command
One or more valid Debug Tool commands. Debug Tool is invoked immediately
after program initialization, and then the command (or command string) is exe-
cuted. The command string can have a maximum length of 250 characters,
and should be enclosed in double quotation marks (MVS) or single quotation
marks (VM). Multiple commands must be separated by a semicolon.

Note: If you include a STEP or GO in your command string, none of the subse-
guent commands are processed. The command string operates like a
commands file. VisualAge COBOL does not support the use of a com-
mands file.

preferences_file :

MF1I
Specifies Debug Tool should be invoked in MFI mode, that is, you are using a
3270-type terminal for your debugging sessions.

terminal_id (for CICS only)
Specifies up to a four-character-length terminal id that receives Debug Tool
screen output during dual terminal session. The corresponding terminal should
be in service and acquired ready to receive Debug Tool-related 1/O.

INSPPREF (or blank)
Debug Tool-supplied default preferences file ddname. Any preferences file that
is specified to Debug Tool becomes the first source of Debug Tool commands
after the debugger is invoked. It is often used to set up the Debug Tool envi-
ronment.

preferences _file _designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
specifying the preferences file to be used.

This file is read the first time Debug Tool is invoked, and must contain a
sequence of Debug Tool commands to be executed.

* Specifies that no preferences file is supplied.

Note: INSPPREF and preferences_file_designator are not supported when
using VisualAge COBOL workstation interface. * is always assumed.

For Workstation Debugging Only

Workstation debugging provides the advantage of a GUI interface between the
workstation and the host-based Debug Tool. It also provides important additional
function such as the ability to interactively debug batch processes. For example, a
COBOL batch job running in MVS/JES, or a COBOL CICS batch transaction, can
be interactively debugged via a TCP/IP connection to a workstation equipped with
VisualAge COBOL. When you want to debug your host applications from your
workstation, use one of the following protocols to communicate with the host:

* If you have a VisualAge compiler installed on your OS/2 workstation, you can
use either APPC or TCP/IP to communicate with the host.

 If you have a VisualAge compiler installed on your Windows workstation, use
TCP/IP to communicate with the host.

24 Debug Tool User's Guide and Reference

Using TEST

» |If you have CODE/370 installed on your OS/2 workstation, you can use either
APPC or LU2 to communicate with the host.

When this type of debugging is performed, the host application invokes Debug
Tool, which in turn invokes the workstation interface that you've designated in one
of the suboptions. The following suboptions are qualified as to which workstation
product they apply.

LU2
Specifies you want to establish a Debug Tool session with a CODE/370 work-
station using an LU2 session to provide a GUI access.

APPC&
Specifies you want to establish a Debug Tool session with a workstation that
has been set up for APPC communications with the host. This suboption
applies only to workstations equipped with CODE/370 and configured for APPC
communications.

VADAPPC&
Specifies that Debug Tool is interfacing with an OS/2 workstation equipped with
a VisualAge compiler and configured for APPC communications with the host.
This suboption is valid only when you have installed and are using a VisualAge
compiler on your OS/2 workstation.

appc_workstation_id
A 1-to-8 character alphanumeric name defining your workstation at APPC con-
figuration time. This is the APPC name of the workstation that will display your
debug information. An example of this symbolic destination name would be
AJSMITH or DEPT87. If you do not define appc_workstation_id properly when
APPC is configured and your application is running in batch (for example, JES),
Debug Tool is not initiated. The batch program continues to run or terminates,
depending on its state when the debug session is attempted. If
appc_workstation_id is improperly defined and your application is running in the
TSO foreground, or in CICS when the task has a terminal associated with it, an
MFI session is created. This behavior is consistent for APPC sessions
attempted with workstations equipped with either a VisualAge compiler or
CODE/370.

%CODEDT
Default session_id for a CODE/370 workstation.

%session_id
Specifies a unique name of the application you want to debug. If you identify
your session with the same session_id as that of an existing session, an initial-
ization failure for the session being started will occur.

VADTCPIP&
Specifies that Debug Tool is interfacing with either an OS/2 or a Windows NT
workstation equipped with a VisualAge compiler and configured for TCP/IP
communications with the host. This suboption is valid only when you have
installed and are using a VisualAge compiler on your workstation.

tcpip_workstation_id
TCP/IP name of the workstation that will display your debug information.

%8000
Default port id.

Chapter 3. Beginning a debugging session 25

Using TEST

%port_id
Specifies a unique TCP/IP port on your workstation that is used by the daemon
program.

| VisualAge COBOL only

If you are using the VADTCPIP& suboption, consider the following possible errors:

e The tcpip_workstation_id or port_id parameters must be syntactically or
functionally correct. If they are not and you attempt an interactive session, an
MFI session will be allocated. For example, if you attempt a session from TSO
or CICS with incorrect parameters, you will receive an MFI session at your host
window. This error is noted in the MVS SDSF log as an allocation failure.

e If the tcpip_workstation_id or port_id parameters are not syntactically or
functionally correct, and you attempt an interactive batch session with Debug
Tool, Debug Tool will terminate and the batch application will continue to run as
though no debug session was ever attempted. This error occurs when, for
example, you run a JES batch job or CICS batch transaction. If the parameters
are incorrect, your program will continue to run as if you never attempted to
initialize Debug Tool. This error is noted in the MVS SDSF log as an allocation
failure.

e For TCP/IP sessions, the daemon must be started at the workstation before
you initialize Debug Tool. VisualAge COBOL documentation contains informa-
tion on using the daemon program.

| End of VisualAge COBOL only

End of Workstation Parameters

Other run-time TEST option considerations
When using the run-time TEST option, remember that:

e The Language Environment run-time options have the following order of pre-
cedence (from highest to lowest):

1. Installation options in the CEEDOPT file that were specified as
nonoverrideable with the NONOVR attribute.

2. Options specified by the Language Environment assembler user exit.
Debug Tool uses the DTCN transaction in the CICS environment and cus-
tomized Language Environment user exit EQADCCXT that is link-edited with
the application. For additional information see [Preparing DTCN to _invoke]
[Debug Tool under CICS” on page 122|

3. Options specified at the invocation of your application, using the run-time
TEST option, unless accepting run-time options is disabled by Language
Environment (EXECOPS/NOEXECOPS).

26 Debug Tool User's Guide and Reference

Using TEST

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your appli-
cation.*

5. Option defaults specified at installation in CEEDOPT.
6. IBM-supplied defaults.
Suboptions are processed in the following order:

1. Commands entered at the command line override any defaults or sub-
options specified at run time.

2. Commands executed from a preferences file override the command string
and any defaults or suboptions specified at run time.

3. Commands from a commands file override default suboptions, suboptions
specified at run time, commands in a command string, and commands in a
preferences file.

e In C, C++ or PL/I, you can define TEST with suboptions using a #pragma
runopts or PLIXOPT string, then specifying TEST with no suboptions at run time.
This causes the suboptions specified in the #pragma runopts or PLIXOPT string
to take effect.

e Some suboptions are disabled with NOTEST, but are still allowed. This means
you can start your program using the NOTEST option and then specify sub-
options you might want to take effect later in your debugging session. The
program begins to run without Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool during
your program's run time using a library service call such as CEETEST, PLITEST,
or the _ ctest() function.

If the test level in effect causes Debug Tool to gain control at a condition or at
a particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a break-
point for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

e The primary commands file acts as a surrogate terminal. Once it is accessed
as a source of commands, it continues to act in this capacity until all com-
mands have been executed or Debug Tool has ended. This differs from the
USE file in that, if a USE file contains a command that returns control to the
program (such as STEP or G0), all subsequent commands are discarded.
However, USE files invoked from within a primary commands file take on the
characteristics of the primary commands file and can be executed until com-
plete.

¢ In batch mode, when end-of-file is reached in your commands file, a GO
command is forced at each request for a command until the program termi-
nates. If another command is requested after program termination, a QUIT
command is forced.

1 If the object module for the source program is input to the linkage editor before the CEEUOPT object module, then these options
override CEEUOPT defaults. You can force the order in which objects modules are input by using linkage editor control state-
ments.

Chapter 3. Beginning a debugging session 27

Using TEST

If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time, no program blocks are active and
references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static vari-
ables can be made.

If you enter STEP at this point, before entering any other commands, both
program and Language Environment initialization will complete and give you
access to all variables. You can also enter all valid commands.

If Debug Tool is invoked while your program is running (for example, using a
CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active
are not known to Debug Tool, even if they were run prior to Debug Tool's
initialization.

Debug Tool also does not know about compile units that were not compiled
with the compile-time TEST option, even if they are active, nor does it know
about compile units written in unsupported languages.

For example, suppose load module mod1l contains compile units cul and cu2,
both compiled with the TEST option. The compile unit cul calls cux, contained
in load module mod2, which returns after it completes processing. The compile
unit cu2 contains a call to the CEETEST library service. When the call to CEETEST
initializes Debug Tool, only cul and cu2 are known to it. Debug Tool does not
recognize cux.

The results of the execution of the initial commands list or commands file are
logged as comments in the session log. The session log can be used as a
commands file without having to edit out the results from a previous run.

The initial command list, whether it consists of a command string included in
the run-time options or a primary commands file, can contain a USE command
to get commands from a secondary file. If invoked from the primary commands
file, a USE file takes on the characteristics of the primary commands file. See
['USE command” on page 341|for details.

The initial command string is performed only once, when Debug Tool is first
initialized in the process.

Commands in the preferences file are performed only once, when Debug Tool
is first initialized in the process.

You can change the run-time TEST/NOTEST options at any time with the SET TEST
command. See|‘SET TEST” on page 330}

The primary commands file is shared across multiple enclaves.

Run-time TEST option examples

The following examples of using the Run-Time TEST Option are provided to illustrate
run-time options available for your programs. They do not illustrate complete com-
mands. For more information on specifying run-time options, see 0S/390 Lan-
guage Environment Programming Guide.

NOTEST

Debug Tool is not invoked at program initialization. Note that a call to CEETEST,
PLITEST, or _ ctest() causes Debug Tool to be invoked during the program's
execution.

28 Debug Tool User's Guide and Reference

Using TEST

e TEST

Specifying TEST with no suboptions causes a check for other possible defi-
nitions of the suboption. For example, C and C++ allow default suboptions to
be selected at compile time using #pragma runopts. Similarly, PL/I offers the
PLIXOPT string. Language Environment provides the macro CEEXOPT. Using this
macro, you can specify installation and program-specific defaults. For more
information on using CEEXOPT, see OS/390 Language Environment Program-
ming Guide.

If no other definitions for the suboptions exist, the IBM-supplied default test
level is (ALL, *, PROMPT).

o TEST(ALL,*,*,*)

Debug Tool is not invoked initially; however, any condition or an attention in
your program causes Debug Tool to be invoked, as does a call to CEETEST,
PLITEST, or _ ctest(). Neither a primary commands file nor preferences file is
used.

e TEST(NONE,,*,*)

Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program. However,
Debug Tool can be invoked using CEETEST, PLITEST, or _ ctest().

e TEST(ALL,test.scenario,PROMPT,prefer)

Debug Tool is invoked at the end of environment initialization, but before the
main program prolog has completed. The ddname prefer is processed as the
preferences file, and subsequent commands are found in data set
test.scenario. If all commands in the commands file are processed and you
issue a STEP command when prompted, or a STEP command is executed in the
commands file, the main block completes initialization (that is, its AUTOMATIC
storage is obtained and initial values are set). If Debug Tool is reentered later
for any reason, it continues to obtain commands from test.scenario repeating
this process until end-of-file is reached. At this point, commands are obtained
from your terminal.

e TEST(ALL,,,MFI%F000:)

For CICS dual terminal and CICS batch, Debug Tool is invoked on the terminal
FO0O at the end of the environment initialization.

e |f you are working from a cooperative environment, that is, you are debugging
your host application from your workstation, the following examples apply:

TEST(,,,LU2:%) /* Using LU2 suboption */
TEST(,,,0SCAR:*) /* Using APPC suboption */
TEST(,,,APPC&0SCAR: *) /* Using APPC suboption */
TEST(,,,VADAPPC&OSCAR: *) /* Using VADAPPC suboption x/

TEST(,,,VADTCPIP&ERNIE:*) /* Using VADTCPIP suboption =*/
TEST(,,,VADTCPIP&machine.somewhere.something.com:*)
TEST(,,,VADTCPIP&9.24.104.79:%)

where 0SCAR and ERNIE are workstation_ids.

Chapter 3. Beginning a debugging session 29

Invoking your program when starting a session

Invoking your program when starting a debugging session

After you decide what level of testing you want to employ during your debugging
session, you can invoke your program using the proper run-time TEST option for
your language. If you are using Debug Tool, this requires no special procedures,
although there are certain considerations depending on the environment where you
are debugging your program. Before you begin your session, make sure all Debug
Tool and program libraries are available and that all necessary Debug Tool files,
such as the session log file, the primary commands file, the preferences file, and
any desired USE files are defined and created.

Invoking Debug Tool under CICS

To use Debug Tool under CICS, you need to ensure that you have completed all of
the required installation and configuration steps for CICS/ESA*, Language Environ-
ment, and Debug Tool. See[‘Debugging CICS programs” on page 120|and the
appropriate language installation information.

You can invoke Debug Tool in three ways:

¢ Single Terminal Mode . Debug Tool displays its screens on the same terminal
as the application. This can be set up using DTCN, CEETEST, pragma, or
CEEUOPT(TEST).

e Dual Terminal Mode . Debug Tool displays its screens on a different terminal
than the one used by the application. This can be set up with DTCN or CEDF.

e Batch Mode

Debug Tool does not have a terminal, but uses a commands file for input and
writes output to the log. This can be set up using DTCN, CEETEST, pragma, or
CEEUOPT(TEST).

See ['‘Debugging CICS programs” on page 120|for more details.

Invoking Debug Tool under MVS in TSO

30

To begin a debugging session, ensure your program has been compiled with the
compile-time TEST option, and take the following steps:

1. Make sure all Debug Tool data sets are available. This might involve defining
them as part of a STEPLIB library.

Note: High-level qualifiers and load library names will be specific to your
installation. Ask the person who installed Debug Tool what the data
sets are called. The names will probably end in SEQAMOD. These
data sets might already be in the linklist or included in TSO logon pro-
cedure, in which case you don't need to do anything to access them.

The installation options will determine whether or not this step is needed. See
the OS/390 Language Environment Programming Guide for more information.

2. Access all other data sets containing files your program needs.

3. If you want a session log file, allocate one. This is a file that keeps a record of
your debugging session, and can be used as a commands file during subse-
guent sessions. For more information on session log files, see FUsing the]
[session log file to maintain a record of your session” on page 92|

Debug Tool User's Guide and Reference

Invoking your program when starting a session

4. Start your program with the run-time TEST option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or _ ctest() in the pro-
gram's source. For more information about these calls, see [‘Using alternative|
[Debug Tool invocation methods” on page 34}

The following two examples show how you might allocate the Debug Tool load
library data set (SEQAMOD) if it is not in the linklist or TSO logon procedure:

PROC O TEST

ALLOCATE DA('EQAW.V1R2MO.SEQAMOD') FILE(SEQAMOD) SHR REUSE
STEPLIB SET(SEQAMOD)

END

and

PROC O TEST
TSOLIB DEACTIVATE

FREE FILE(SEQAMOD)

ALLOCATE DA('EQAW.V1R2MO.SEQAMOD') FILE(SEQAMOD) SHR REUSE
TSOLIB ACTIVATE FILE(SEQAMOD)

END

To execute a CLIST stored in MYID.CLIST(DTSETUP), enter the following at the TSO
READY prompt:

EXEC 'MYID.CLIST(DTSETUP)'

The CLIST will execute and the appropriate Debug Tool data set will be allocated.

After accessing all necessary data sets, the command line is used to define the
preferences file setup.pref and the session log file session.Tog as shown in the
following example:

ALLOCATE FILE(insppref) DATASET(setup.pref) REUSE
ALLOCATE FILE(insplog) DATASET(session.log) REUSE
CALL tstscrpt3 '/TEST'

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the COBOL program tstscrpt3. Default run-
time suboptions are assumed, as well as the Language Environment default run-
time options for your installation.

The following CLIST fragment shows how to define Debug Tool-related files and
invoke the C program progl with the run-time TEST option:

ALLOC FI(inspsafe) DA(debug.save) REUSE
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +
' TRAP(ON) TEST(,*,;,insppref)/!

Files include the session log file, debug. 1og; the preferences file, debug.preferen;
and the settings file, debug.save, a Debug Tool file that saves Debug Tool settings
for use in future debugging sessions. Its Debug Tool-supplied default ddname is
inspsafe. All necessary data sets must be available prior to invoking this CLIST.

For more information about Language Environment run-time options like TRAP(ON),
see 0S/390 Language Environment Programming Guide.

Chapter 3. Beginning a debugging session 31

Invoking your program when starting a session

Invoking your program from a terminal that works only in line mode results in a
line-mode session of Debug Tool. If you want to debug in line mode and you have
a 3270-compatible terminal that is capable of sustaining a full-screen session, you
must specify SET SCREEN OFF. You can specify this with the run-time TEST option by
including the command in a preferences file, or by specifying it as a command
string (for example, TEST(,*,"SET SCREEN OFF",insppref)). For more information
on line mode debugging, see [‘Using Debug Tool in line mode” on page 112}

Invoking Debug Tool under CMS

32

To begin a debugging session, ensure that you have compiled your program with
the compile-time TEST option and take the following steps:

1. Access the product minidisk where Debug Tool resides.
2. Access any other minidisks containing files your programs need.

3. Load any text decks your programs need. For example, to use PL/I, C,
COBOL and assembler on VM, the following MACLIB, TXTLIB and LOADLIB
definitions would be required:

GLOBAL MACLIB SCEEMAC OSMACRO
GLOBAL TXTLIB SCEELKED CMSLIB
GLOBAL LOADLIB SCEERUN

4. Create and define any Debug Tool commands files you need, such as a prefer-
ences file, a USE file, or a primary commands file.

5. Define the session log file. This is a file that keeps a record of your debugging
session, and can be used as a commands file during subsequent sessions.

6. Start your program with the run-time TEST option, specifying the appropriate
suboption.

Note: You can also include a call to CEETEST, PLITEST, or _ ctest() in the
program'’s source.

After you access all necessary disks and load required text decks, the command
line is used to define the preferences file setup pref a and the session log file
seslog Tog a as shown in the following example:

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
LOAD tstscrpt2
START * TEST/

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the C program tstscrpt2. Default suboptions
are assumed.

If you created a load module with GENMOD, enter:

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
tstscrpt2 TEST/

The REXX EXEC shown below, called startup exec, is created to define all Debug
Tool-related files and invoke the COBOL program progl with the run-time TEST
option. progl must be a load module.

Debug Tool User's Guide and Reference

Invoking Debug

Invoking your program when starting a session

'"FILEDEF insplog DISK dbg log a (LRECL 72 RECFM F'
"FILEDEF insppref DISK dbhg pref a (LRECL 80 RECFM F
'"FILEDEF inspin DISK dbg cmds a (LRECL 72 RECFM F'
'"FILEDEF inspsafe DISK dhg settings a (LRECL 80 RECFM F'
'"GENMOD progl '

'progl = /TEST(,inspin,;,insppref)’

This assumes that the run-time CBLOPTS option was set to ON in the CEEDOPT or
CEEUOPT assembly programs containing defaults and user-defined Language
Environment options. See 0OS/390 Language Environment Programming Guide for
more information.

Files include the session log file, dbg 1og a, and dbg settings a, a Debug Tool file
that saves Debug Tool settings for use in future debugging sessions. Its Debug
Tool-supplied ddname is inspsafe. Also defined are two preallocated files: dbg
pref a (the Debug Tool preferences file) and dbg cmds a (the Debug Tool primary
commands file).

For more information about inspsafe, see [‘Customizing colors” on page 103|and

[‘Customizing settings” on page 104]

Tool in batch

Before running a batch debug session, ensure that you have compiled your
program with the compile-time TEST option. Next, modify the JCL to run your batch
program to include the appropriate Debug Tool data sets and to specify the run-
time TEST option. Finally, run the modified JCL.

Sample JCL for a batch debug session for the COBOL program, EMPLRUN, is pro-
vided below. The job card and data set names need to be modified to suit your
installation.

Chapter 3. Beginning a debugging session 33

Using alternative invocation methods

//DEBUGJCL JOB <appropriate JOB card information>

//* Khkhkkkhhkhkkkhhkhhkdhkhkhhdhhkhhhhhhdhkhhkhhkhhdhhkhhdhkhkhhhkhkhhhkhhhhkhkhhkhkdhkhkikdhkhkk,kx
//* JCL to run a batch Debug Tool session

//* Program EMPLRUN was previously compiled with the COBOL

//* compiler TEST option

//* hkkkkhkhkkhkhkhkhkkhkhhhkhkkhkhhhkhkkhkhhhkhkhkhhhkhkkhkhhhkhkkhkhhkhkhkkhkhkkhkhkkhkhkkhkhkkkx

//STEP1 EXEC PGM=EMPLRUN,

// PARM="'/TEST(,INSPIN,,)"'

//*

//* Include the Debug Tool SEQAMOD data set

//*

//STEPLIB DD DISP=SHR,DSN=userid.TEST.LOAD
// DD DISP=SHR,DSN=EQAW.V1R2MO.SEQAMOD
//*

//* Specify a commands file with DDNAME matching the one

//* specified in the /TEST runtime option above

//* This example shows inline data but a data set could be

//* specified 1ike: //INSPIN DD DISP=SHR,DSN=userid.TEST.INSPIN

//*
//INSPIN DD *
STEP;
AT =
PERFORM
QUERY LOCATION;
GO;
END-PERFORM;
GO;
QUIT;
/*
//*

//* Specify a log file for the debug session

//* Log file can be a data set with LRECL >= 42 and <= 256
//* For COBOL only, use LRECL <= 72 if you are planning to
//* use the Tog file as a commands file in subsequent Debug
//* Tool sessions. You can specify the log file Tike:

/1% //INSPLOG DD DISP=SHR,DSN=userid.TEST.INSPLOG

//*

//INSPLOG DD SYSOUT=+,DCB=(LRECL=72,RECFM=FB,BLKSIZE=7200)
//SYSPRINT DD SYSOUT=+

//SYSUDUMP DD DUMMY

//SYSOUT DD SYSOUT=+

/*

//

Figure 4. Sample JCL for a batch debug session

Using alternative Debug Tool invocation methods

Debug Tool can also be invoked directly from within your program using one of the
following methods:

e Language Environment provides the callable service CEETEST that is invoked
from Language Environment-enabled languages.

e For C or C++ programs, you can use a __ctest() function call or include a
#pragma runopts specification in your program.

Note: The _ ctest() function is not supported in CICS.

34 Debug Tool User's Guide and Reference

Invoking Debug

Using alternative invocation methods

e For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT
string that specifies the correct run-time TEST suboptions to invoke Debug Tool.

To invoke Debug Tool using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings. See
[‘Other run-time TEST option considerations” on page 26| for more information.

Tool with CEETEST

Using CEETEST, you can invoke Debug Tool from within your program and send it a
string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a feed-
back code that tells you whether the invocation procedure was successful.

If you don't want to compile your program with hooks, you can use CEETEST calls to
invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

Usage notes

C/C++ Include Teawi.h header file.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Envi-
ronment SCEESAMP data set. See the example on page

Batch and CICS Nonterminal Processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate Debug Tool from a batch process or a CICS nonter-
minal task; otherwise, results are unpredictable.

The syntax for CEETEST is:

For C/C++

POt CRETES T |—string_of_commandsJ ’ |—ch) A
For COBOL

»»—CALL—"CEETEST"—USING—string_of_commands—,—fc >
For PL/I

P CALLCRRTES T |—:tring_of_commandsJ ’ L}CJ) A

string_of _commands (input)
Halfword-length prefixed string containing a Debug Tool command list,
string_of _commands is optional.

Chapter 3. Beginning a debugging session 35

Using alternative invocation methods

36

If Debug Tool is available, the commands in the list are passed to the debugger
and carried out.

If the string_of commands is omitted, Debug Tool will prompt for commands in
interactive mode.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters. See [‘Continuation (full-screen and line mode)” on|

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service.

CEEO000 Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2 Severity = 3
Msg_No = 2530
Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch
applications or CICS nonterminal tasks getting APPC allocation failures. For
example, either the Debug Tool environment was corrupted or the debug event
handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you
decode the fields in the feedback code. Requesting the return of the feedback
code is recommended. See 0OS/390 Language Environment Programming Guide
for details.

For C/C++ and COBOL, if Debug Tool was invoked through CALL CEETEST the GOTO
command is only allowed after Debug Tool has returned control to your program via
STEP or GO.

The following examples show how to use CEETEST to invoke Debug Tool from each
language:

Example 1 for C: In this example, a Nul1 command string is passed to Debug
Tool and a pointer to the Language Environment feedback code is returned. If no
other TEST run-time options have been compiled into the program, the call to
CEETEST invokes Debug Tool with all defaults in effect. After it gains control, Debug
Tool prompts you for commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);

Debug Tool User's Guide and Reference

Using alternative invocation methods

Example 2 for C: In this example, a string of valid Debug Tool commands is
passed to Debug Tool and a pointer to Language Environment feedback code is
returned. The call to CEETEST invokes Debug Tool and the command string is proc-
essed. At statement 23, the values of x and y are displayed in the Log, and exe-
cution of the program resumes. Barring further interrupts, Debug Tool regains
control at program termination and prompts you for commands. The command
LIST(z) is discarded when the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands after that
are not processed. The command string operates like a commands file.

#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);
1

Example 3 for C: In this example, a string of valid Debug Tool commands is
passed to Debug Tool and a pointer to the feedback code is returned. If the call to
CEETEST fails, an informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command string is
processed. At statement 30, the values of x and y are displayed in the Log, and
execution of the program resumes. Barring further interrupts, Debug Tool regains
control at program termination and prompts you for commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"
int main (void) {

int x,y,z;
VSTRING commands;

_FEEDBACK fc;

strcpy (commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);

CEETEST (&commands,&fc) ;

if (memcmp(&fc,SUCCESS,4) ?= 0) {
printf("CEETEST failed with message number %d\n",fc.tok_msgno);
exit(2999);
}
}

Example 1 for COBOL: A command string is passed to Debug Tool at its invoca-
tion and the feedback code is returned. After it gains control, Debug Tool becomes
active and prompts you for commands or reads them from a commands file.

Chapter 3. Beginning a debugging session 37

Using alternative invocation methods

38

77 FC Picture x(12) Value ZEROES.
77 Debugger Picture x(7) Value 'CEETEST'.
01 Parms.
05 AA Picture 59(4) comp Value 14.
05 BB Picture x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

Example 2 for COBOL: A string of commands is passed to Debug Tool when it is
invoked. After it gains control, Debug Tool sets a breakpoint at statement 23, runs
the LIST commands and returns control to the program by running the GO
command. The command string is already defined and assigned to the variable
COMMAND-STRING by the following declaration in the data division of your program:

01 COMMAND-STRING.

05 AA Picture 99 Value 60.
05 BB Picture x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a variable
defined as:

77 fc Picture x(12).
in the data division of your program. You are not prompted for commands.
CALL "CEETEST" USING COMMAND-STRING fc.

Example 1 for PL/I: Assuming all required declarations have been made, no
command string is passed to Debug Tool at its invocation and the feedback code is
returned. After it gains control, Debug Tool becomes active and prompts you for
commands or reads them from a commands file.

CALL CEETEST(*,%); /* omit arguments */

Example 2 for PL/I: A command string is passed to Debug Tool at its invocation
and the feedback code is returned. After it gains control, Debug Tool becomes
active and executes the command string. Barring any further interruptions, the
program runs to the TERMINATION breakpoint, where Debug Tool prompts for further
commands.

Debug Tool User's Guide and Reference

Using alternative invocation methods

DCL ch char(50)
init('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case hit(2),
8 Sev bit(3),
8 Ctrl bit(3),
5 FaclID Char(3),
5 1S info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,
254 real fixed bin(15), /* MsgSev */
254 real fixed bin(15), /* MSGNUM */

254 /* Flags */,
255 bit(2), /* Flags_Case */
255 bit(3), /* Flags_Severity */
255 bit(3), /* Flags_Control =/

254 char(3), /* Facility ID */

254 fixed bin(31)) /* 1.S_Info %/

options(assembler) ;

CALL CEETEST(ch, fb);

Example 3 for PL/I: This example assumes that you use predefined function pro-
totypes and macros by including CEEIBMAW, and predefined feedback code con-
stants and macros by including CEEIBMCT.

A command string is passed to Debug Tool that sets a breakpoint on every tenth
executed statement. Once a breakpoint is set, Debug Tool displays the current
location information and continues the execution. After the CEETEST call the feed-
back code is checked for proper execution.

Note: The feedback code returned is either CEEOOO or CEE2F2. There is no way
to check the result of the execution of the command passed.

Chapter 3. Beginning a debugging session 39

Using alternative invocation methods

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/* if CEEIBMCT is NOT included, the following DECLARES need to be
provided: = —--------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builting
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);
DECLARE
fbtoken CHAR;
condition CHAR;
RETURN(' (ADDR(' || fbtoken]||')—>CEEIBMCT = '||condition||')");
%END FBCHECK;
%ACT FBCHECK;

Call CEETEST('AT Every 10 STATEMENT = Do; Q Loc; Go; End;'||
"List AT;', FC);

If ~FBCHECK(FC, CEE000)
Then Put Skip List('

> ERROR! in CEETEST call', FC.MsgNo);

Invoking Debug Tool with PLITEST

For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform declara-
tions.

The syntax is:

»»—CALL—PLITEST

\4
A

t

L (—character_string_expression—) il

character_string_expression
Specifies a list of Debug Tool commands. If necessary this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your appli-
cation so that symbolic information is created.

The following examples show how to use PLITEST to invoke Debug Tool for PL/I:

Example 1
CALL PLITEST;

40 Debug Tool User's Guide and Reference

Invoking Debug

Using alternative invocation methods

No argument is passed to Debug Tool when it is invoked. After gaining control,
Debug Tool prompts you for commands.

Example 2
CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

A string of commands is passed to Debug Tool when it is invoked. After gaining
control, Debug Tool sets a breakpoint at statement 23, and returns control to the
program. You are not prompted for commands. In addition, the LIST Y; command
is discarded because of the execution of the G0 command.

Example 3
DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

Variable ch is declared as a character string and initialized as a string of com-
mands. The string of commands is passed to Debug Tool when it is invoked. After
it runs the commands, Debug Tool prompts you for more commands.

Tool with the __ ctest() function

You can also use the C/C++ library routine _ ctest() or ctest() to invoke Debug
Tool. Add:

#include <ctest.h>
to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use _ ctest() function.

The _ ctest() function is not supported in CICS.

When a list of commands is specified with __ctest(), Debug Tool runs the com-
mands in that list. If you specify a null argument, Debug Tool gets commands by
reading from the supplied commands file or by prompting you. If control returns to
your application before all commands in the command list are run, the remainder of
the command list is ignored. Debug Tool will continue reading from the specified
commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use _ ctest()
function calls to invoke Debug Tool at strategic points in your program. If you
decide to use this method, you still need to compile your application so that sym-
bolic information is created.

Using _ ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

\4
A

»»—int—_ ctest——(—char—=*char_str_exp—)

Note:
! The syntax for ctest() and _ ctest() is the same.

Chapter 3. Beginning a debugging session 41

Using alternative invocation methods

42

char_str_exp
Specifies a list of Debug Tool commands.

The following examples show how to use the __ ctest() function for C/C++:

Example 1:
__ctest(NULL);

A null argument is passed to Debug Tool when it is invoked. After it gains control,
Debug Tool prompts you for commands (or reads commands from the primary
commands file, if specified).

Example 2

__ctest("at T1ine 23 {"
" list x;"
" Tist y;"

II}II

|Igo;ll

"Tist z3");

A string of commands is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool sets a breakpoint at statement 23 and returns control to the
program. You are not prompted for commands. In this case, the command, LIST
z; is never executed because of the execution of the command GO.

Example 3

char *ch = "at line 23 Tist x;";
__ctest(ch);

Variable ch is declared as a pointer to character string and initialized as a string of
commands. The string of commands is passed to Debug Tool when it is invoked.
After it runs the string of commands, Debug Tool prompts you for more commands.

Example 4
#include <stdio.h>
#include <string.h>

char *ch = "at line 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy (buffer, "at change x.y;");
__ctest(strcat(buffer, ch));

A string of commands is passed to Debug Tool when it is invoked. After Debug
Tool gains control, you are not prompted for commands. Debug Tool runs the
commands in the command string and returns control to the program by way of the
G0 command.

Debug Tool User's Guide and Reference

Using alternative invocation methods

Specifying run-time TEST option with #pragma runopts in C and C++

The run-time TEST option can be specified either when you invoke your program, or
directly in your source by using this #pragma:

#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:

#pragma runopts (notest(all,x,prompt))

then entered TEST on the command line, the result would be
TEST(ALL,*,PROMPT).

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, *, and PROMPT remain in
effect.

If you specify NOEXECOPS, either by using a #pragma or with the compile-time
EXECOPS option, no command line run-time options take effect.

For more information on #pragma runopts, see 0S/390 C/C++ User's Guide.

Chapter 3. Beginning a debugging session 43

Starting a debug session

Chapter 4. Debugging your programs in full-screen mode

The most common features of Debug Tool are described in this chapter to help you
get started using this tool to debug your programs. Language-specific examples
and explanations of the most common tasks are provided to help you quickly gain a
basic understanding of how to use Debug Tool.

The PF key definitions used in this chapter are the default settings.

Preparing for debugging

Before using Debug Tool, you must compile at least one part of your program with
the compile-time TEST option. This option inserts hooks, which are assembly
instructions that you can see in an assembly listing. The execution of these hooks
enables Debug Tool to gain control during program run time. A detailed description
of the compile-time TEST option for each language is provided in [Chapter 2, “Pre-
[paring to debug your program” on page 5|

The simplest way to compile your program while you are learning to use Debug
Tool is one of the following:

e For C and C++, compile your program with TEST
» For PL/l and COBOL, compile your program with TEST(ALL,SYM)

Link your program as usual, except for programs to be run under CICS where
member EQADCCXT from the Debug Tool library (**. SEQAMOD) must be included.

Starting a debug session

44

Invoking your program with Debug Tool in CICS, DB2, IMS, or TSO, is described in
detail in the appropriate sections in [Chapter 7, “Using Debug Tool in different|
[modes and environments” on page 112 This section includes some helpful hints
to provide a simple path to help you learn how to use Debug Tool and gives you
examples on how to invoke Debug Tool in specific environments.

You can invoke Debug Tool is by using the Language Environment run-time TEST
option in one of the following ways:

e For TSO you need to include the Debug Tool library into your STEPLIB concat-
enation and invoke your program with the run-time TEST option as shown in the
following example for C, C++, and PL/I

MYPROG TEST / prog arg list
For COBOL, invoke your program as follows:
MYPROG prog arg list / TEST

Contact your systems programmer if you do not know the name of the Debug
Tool library on your system.

e For CICS, make sure Debug Tool is installed in your CICS region. Enter DTCN
to start the Debug Tool control transaction. Press PF4 to save the default
debugging profile. Press PF3 to exit from the DTCN transaction. Enter the
name of the transaction you want to debug.

© Copyright IBM Corp. 1995, 1999

Basic tasks of Debug Tool

 If you build your application using the c89 or C++ OS/390 UNIX System Ser-
vices (OS/390 UNIX) Shell Utilities, do the following steps:

1. Compile your source code as usual, but specify the —g option to generate
debugging information. The —g option is equivalent to the compile-time
TEST option under TSO or MVS batch. For example, to compile the C
source file fred.c from the u/mike/app directory, specify:

cd /u/mike/app
c89 —g —o "//PROJ.LOAD(FRED)" fred.c

Note: The double quotes in the command line above are required.
2. Set up your TSO environment, as described above.
3. Debug the program under TSO by entering the following:

FRED TEST ENVAR('PWD=/u/mike/app') /

Note: The single quotes in the command line above are required.

ENVAR('PWS=/u/mike/app"') sets the environment variable PWD to the path
from where the source files were compiled. Debug Tool uses this informa-
tion to determine from where it should read the source files.

If you are working in the OS/390 UNIX environment, you can put Debug Tool
into your STEPLIB and set up the Language Environment run-time TEST option
before invoking your program by writing a simple shell script as shown in the
following example:

rundbg.sh - set up debug environment, and run program.
export STEPLIB=MVSID.TEST.LOAD:\
SYSID.DBGTOOL.SEQAMOD:SYSID.CEE180.SCEERUN

export CEE_RUNTOPS="TEST POSIX(ON)"

myprogram.exe

Ending a debug session

When you have finished debugging your program, you can either press PF3(QUIT)
or enter QUIT on the command line to end your Debug Tool session.

Basic tasks of Debug Tool
This section described how to:

¢ |Interface to Debug Tool

¢ Navigate through the windows provided by Debug Tool.
» Navigate through a debugging session

e Find help if you need it.

Debug Tool interface
Debug Tool has a command line for issuing commands and three windows:

e The Source window views your source code
¢ The Log window records your commands with Debug Tool's response

e The Monitor window continuously displays the value of monitored variables and
other items depending on the command used.

Chapter 4. Debugging your programs in full-screen mode 45

Basic tasks of Debug Tool

Saving your log file for future use

Help

Window control

To get a record of how many times each line of your code was executed, take the
following steps:

1. Allocate the INSPLOG ddname if you want to keep a permanent record of the
results. Under CICS, instead of allocating the INSPLOG ddname, you must
issue the command:

SET LOG ON FILE fileid

where fileid is the data set name where LO0G file output is written.
2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window is
updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.

If you want statement counts for the entire program, issue:

GO ;

LIST FREQUENCY =*

which lists the number of times each statement is run. When you quit, the
results are written to the Log file. You can issue the LIST FREQUENCY * at any

time, but it will only display the frequency count for the currently active compile
unit.

You can find help by either pressing PF1 or entering a question mark (?) on the
command line. This action lists all Debug Tool commands in the Log window.
Putting a question mark after a partial command displays a list of possible subcom-
mands. For example, enter on the command line:

?

WINDOW ?

WINDOW CLOSE ?

WINDOW CLOSE SOURCE

Now reopen the Source window with:
WINDOW OPEN SOURCE

to see the results.

The relative layout of the Source, Monitor, and Log windows can be changed with
the PANEL LAYOUT command. When you are displaying the windows you can resize
them by typing WINDOW SIZE on the command line, moving the cursor to the new
intersection point, and pressing ENTER.

46 Debug Tool User's Guide and Reference

Basic tasks of Debug Tool

Finding text
To find a string within a window:

1. Place the string to be searched for in double quotes (single quotes for a PL/I
string) on the command line without pressing ENTER

2. Move the cursor into the window to be searched, then press PF5(FIND).
Pressing PF5 will do repeat finds of the same string in the window where the
cursor resides.

Scrolling

If the cursor is on the command line, you can page the Source window up by
pressing PF7 and down by pressing PF8. To page through other windows, place
the cursor in the desired window and press PF7(UP) or PF8(DOWN).

You can toggle one of the Source, Log or Monitor windows to full screen (tempo-
rarily not displaying the others) by moving the cursor into the window you want to
zoom and pressing PF10(Z00M). Another PF10 will toggle back. PF11(Z00M LOG)
will toggle the Log window the same way without the cursor needing to be in the
Log window.

You can scroll to an absolute line of the source file displayed in the Source window
by using the SCROLL command. For example, your source file is in the Source
window and you want to see line 188. To get there, enter the following command:

SCROLL TO 188

Changing source files

To change the code being viewed in the Source window, you can overtype the
name after SOURCE: on the top line of the Source window with the desired name.
This only works if the CU is already known to Debug Tool You might want to issue
the LIST NAMES CUS command first to determine which CUs are known.

Alternately you can enter the command:
LIST NAMES CUS

and a list of Compilation Units will be written to the Log window, as shown in the
following example:

USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

You can overtype/insert characters on one of these lines in the Log window and
press enter to display the modified text on the command line, for example:

SET QUALIFY CU "USERID.MFISTART.C(READTOKN)"

and then press ENTER to issue the command. Overtyping of a line in the Log
window and issuing them as commands is a way to save keystrokes and errors in
long commands.

Pressing PF4(LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between source listings or source
files shown in the Source window and their compile units. Overtype the
Listings/Source File field with the new name.

Chapter 4. Debugging your programs in full-screen mode 47

Basic tasks of Debug Tool

For C/C++ Only: For C/C++ compile units, Debug Tool requires a file containing
the source code. By default, when Debug Tool encounters a new C/C++ compile
unit, it looks for the source code in a file whose name is the one that was used in
the compile step.

For COBOL and PL/I Only: ~ For COBOL and PL/I compile units, Debug Tool
requires a file containing the compiler listing. By default, when Debug Tool
encounters a new VS COBOL Il or PL/I compile unit, it looks for the listing in a file
named hlg.cuname.LIST. For COBOL/370, COBOL for MVS, and COBOL for
0S/390, Debug Toollooks for the listing in a partitioned data set member named
cuname.

Displaying the halted location
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:

SET QUALIFY RESET

Setting a line breakpoint
Pressing PF6(AT/CLEAR) when the cursor is over a particular executable line in the
Source window sets or clears a line breakpoint for that line. You can temporarily
turn off the breakpoint with DISABLE and turn it back on with ENABLE.

Stepping through or running your program.

When Debug Tool comes up, none of your program has run yet (including C++
constructors and static object initialization).

Pressing PF2(STEP) runs your program, halting on the next hook encountered. If
you compiled with TEST for C or C++, or TEST(ALL,SYM) for COBOL or PL/I, STEP
performs one statement.

Pressing PF9(G0) runs your program until either a breakpoint is reached, the
program ends, or a condition is raised.

Note: A condition being raised is determined by the setting of the run-time TEST
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command that steps to the return point (just after the call point).

Displaying a variable's value
To LIST the contents of a single variable, move the cursor to the variable name and
press PF4(LIST). The value of the variable is displayed in the Log window.

Continuously displaying a variable's value
To continuously display or monitor a variables value, you can issue most LIST com-
mands preceded by the word MONITOR. For example, enter:

MONITOR LIST num ;

and the output for this command is continuously displayed in the Monitor window.
The MONITOR command makes it easy to watch values while stepping through your
program.

48 Debug Tool User's Guide and Reference

Using a C program for Debug Tool session

Setting a PF key
Suppose you want to set PF1 to be the STEP OVER command with the message
STEPOVER appearing under the PF1 key. You do it by entering:

SET PF1 "STEPOVER" = STEP OVER;

Error numbers for messages in the Log window
When an error message shows up in the Log window, you can also get the
message ID number to show up as

EQA1807E The command element d is ambiguous.
instead of
The command element d is ambiguous.

by modifying your profile. Use the PANEL PROFILE command and set Show
message ID numbers to YES by overtyping.

For error message descriptions see [Appendix E, “Debug Tool Messages” on|

Finding a renamed source or listing file using Debug Tool
At compile time, the source or listing files might have had different names than they
do now.

Pressing PF4(LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between compile listings or
source files shown in the Source window and their compile units. Overtype the
Listing/Source File field with the new name. If you need to do this repeatedly, note
the SET SOURCE ON commands generated in the Log window. You can save these
commands in a file and reissue them with the USE command for future invocations
of Debug Tool.

Using a C program to demonstrate a Debug Tool session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C applications by using an example C
program (CALC) to demonstrate how they're used.

The CALC program is referred to in ['C tasks” on page 54 It is a simple calculator
that reads its input from a character buffer. If integers are read, they are pushed
on a stack. If one of the operators (+ — * /) is read, the top two elements are
popped off the stack, the operation is performed on them, and the result is pushed
on the stack. The = operator writes out the value of the top element of the stack to
a buffer.

Chapter 4. Debugging your programs in full-screen mode 49

Using a C program for Debug Tool session

50

/* Header file for CALC.C PUSHPOP.C READTOKN.C
/* a simple calculator

typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP
} Token;
Token read_token(char buf[]);
typedef struct int_link {
struct int_link * next;
int i;
} IntLink;
typedef struct int_stack {
IntLink * top;
} IntStack;
extern void push(IntStack =, int);
extern int pop(IntStack *);

Debug Tool User's Guide and Reference

*/
*/
*/

Using a C program for Debug Tool session

JAEEEEE FILE CALC.C ===mmmmmmmmm e e oo oo e o e */
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
2y */

#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{
Token tok;
char word[100];
char buf_out[100];
int num;
for(s;)

tok=read_token(word);
switch(tok)
{
case T_STOP:
break;
case T_INTEGER:
num = atoi (word);
push (&stack,num) ; /* statement */
break;
case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;
case T_MINUS:
num = pop (&stack);
push(&stack, num-pop(&stack));
break;
case T_TIMES:
push(&stack, pop(&stack)*pop(&stack));
break;
case T_DIVIDE:
num = pop (&stack);
push(&stack, num/pop(&stack)); /& statement */
break;
case T_EQUALS:
num = pop (&stack);
sprintf(buf_out,"= %d ",num);
push (&stack,num) ;
break;

1
if (tok==T_STOP)
break;
}

return 0;

}

Chapter 4. Debugging your programs in full-screen mode 51

Using a C program for Debug Tool session

52

JAEEEEE FILE PUSHPOP.C ==== === mmmmm oo oo oo e e e */
/* */
/* A push and pop function for a stack of integers */
] */

#include <stdlib.h>
#include "calc.h"

2y */
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/* */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;

ptr = (IntLink *) malloc(sizeof(IntLink)); /* */

ptr—>i = num; e statement */

ptr—>next = stk—>top;

stk—>top = ptr;
1
2y */
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it x/
K m mm e e */
extern int pop(IntStack * stk)
{

IntLink * ptr;

int num;

ptr = stk—>top;

num = ptr—>i;

stk—>top = ptr—>next;

free(ptr);

return num;
1

Debug Tool User's Guide and Reference

Using a C program for Debug Tool session

JAEEEEE FILE READTOKN.C =====mmmmmmmm oo oo e e e e e */
/* */
/* A function to read input and tokenize it for a simple calculator */
] */

#include <ctype.h>
#include <stdio.h>
#include "calc.h"

/2y */
/* action: get next input char, update index for next call */
/* return: next input char */
JHm e e e e e e */
static char nextchar(void)
j* __ */
/* input action: */
/* 2 push 2 on stack x/
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/2y */

char * buf_in ="2 18 +=5/=";

static int index; /* starts at 0 */

char ret;

ret = buf_in[index];

++index;

return ret;
}
/2y */
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
2y */
Token read_token(char buf[])
{

int i;

char c;

/* skip leading white space */
for(c=nextchar();

isspace(c);

c=nextchar())

buf[0] = c; /* get ready to return single char e.g."+" */
buf[1] = 0;
switch(c)

case '+' : return T_PLUS;
case '— : return T_MINUS;
case 'x' : return T_TIMES;
case '/' : return T_DIVIDE;

case '=' : return T_EQUALS;
default:
i=0;

while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i=0)
return T_STOP;
else
return T_INTEGER;

Chapter 4. Debugging your programs in full-screen mode 53

C tasks

C tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your C program and explain how to accomplish these tasks. The
CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
To halt just before read_token is called, issue the command:

AT CALL read_token ;

To halt just after read_token is called, issue the command:
AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Modifying the value of a variable

To LIST the contents of a single variable, move the cursor to the variable name
and press PF4(LIST). The value is displayed in the Log window. This is equivalent
to entering LIST TITLED variable on the command line. For instance, to run the
CALC program to the statement labeled , move the cursor over num and
press PF4(LIST). The following appears in the Log window:

LIST (num) ;
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
ENTER to put it on the command line, and press ENTER again to issue the command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2(STEP) and step until the statement
labeled PUSHPOP?2 is reached. To view the attributes of variable ptr, issue the
Debug Tool command:

DESCRIBE ATTRIBUTES =ptr;

The result in the Log window is:

ATTRIBUTES for * ptr
struct int_link {
struct int_link xnext;
int i;

}

You can use this action to browse structures and unions.

You can list all the values of the members of the structure pointed to by ptr with the
command:

LIST *ptr ;

with results in the Log window appearing something like this:
LIST * ptr ;

(* ptr).next = 0x0

(* ptr).i =0

54 Debug Tool User's Guide and Reference

C tasks

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

(* ptr).i =33 ;;

Stopping on a line only if a condition is true

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in main you want to stop
at T_DIVIDE only if the divisor is O (before the exception occurs). Set the breakpoint
like this:

AT 39 { if(num != 0) GO; }

Line 39 is the statement labeled [¥\Xwj. The command will cause Debug Tool to
stop at line 39. If the value of num is not O, the program will continue. The
command causes Debug Tool to stop on line 39 only if the value of num is 0.

Debugging when only a few parts are compiled with TEST

Suppose you want to set a breakpoint at entry to function push() in file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty Source window. To display the compila-
tion units, enter the command:

LIST NAMES CUS
The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool. Depending on the compiler you are using, or if

"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter;

SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"

AT ENTRY push;

GO ;

or

AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push

GO;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When that happens, you can set
a breakpoint at entry to push() like this:

AT ENTRY push;

Capturing output to stdout
To redirect stdout to the Log window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this SET command, you will capture not only stdout from your program, but
also from interactive function calls. For example, you can interactively call printf
on the command line to display a null-terminated string by entering:

Chapter 4. Debugging your programs in full-screen mode 55

C tasks

printf(sptr);
You might find this easier than using LIST STORAGE.

Invoking interactive function calls

You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line. In the next example, we call push()
interactively to push one more value on the stack just before a value is popped off.

AT CALL pop

GO ;

push(77);

GO ;

The calculator produces different results than before because of the additional
value pushed on the stack.

Displaying raw storage
A char * variable ptr can point to a piece of storage containing printable charac-
ters. To display the first 20 characters enter:

LIST STORAGE (*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line, as in:

puts(ptr) ;

Debugging a DLL

Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and
READTOKN.C as the program that imports push() and pop() from the DLL named
PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not be
known to Debug Tool. Use the AT APPEARANCE breakpoint to gain control in the DLL
the first time code in that compilation unit appears, as shown in the following
example:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Getting a function traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;
For example, if you run the CALC example with the commands:

AT ENTRY read_token ;

GO ;

LIST CALLS ;

the Log window will contain something like:

At ENTRY in C function "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

56 Debug Tool User's Guide and Reference

C tasks

Tracing the run-time path for code compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a data set
USERID.DTUSE(TRACE) that contains the following Debug Tool commands:

int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \
++indent; \
if (indent < 0) indent = 0; \

printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file will be
displayed in the Log window.

int foo(int i, int j) {
return i+j;

}

int main(void) {
return foo(1,2);

}

The following trace in the Log window is displayed after running the sample
program, with the USE file as a source of input for Debug Tool commands:

>main
>fo0
<foo
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happens. Consider this example where
function set_i changes more than the caller expects it to change.

Chapter 4. Debugging your programs in full-screen mode 57

C tasks

struct s

{ 1ntJ}
struct s a

int i;
={0,0};
/* function sets only field i =/
void set_i(struct s * p, int k)
{

p—>i = k;

p—>j k; /* error, it unexpectedly sets field j also */
}
main() {

set_i(&a,123);
}

Find the address of a with the command
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding uninitialized storage errors
To help find your uninitialized storage errors, run you program with the Language
Environment run-time TEST and STORAGE options. In the following example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the heap.
For example, storage allocated through malloc() is filled with the byte OXFD. If you
see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte OxFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely uninitial-
ized auto storage. The values chosen here are odd and large, to maximize early
problem detection. For example, if you attempt to branch to an odd address you
will get an exception immediately.

As an example of uninitialized heap storage, run program CALC with the run-time
STORAGE option as STORAGE(FD,FB,F9) to the line labeled PUSHPOP2 and issue the
command:

LIST =*ptr ;
You will see the byte fill for uninitialized heap storage as the following example
shows:

LIST * ptr ;
(* ptr).next = OxFDFDFDFD
(* ptr).i = -33686019

58 Debug Tool User's Guide and Reference

Using a C++ program for Debug Tool session

Setting a breakpoint to halt before calling a NULL function

Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ©
When Debug Tool stops at this breakpoint, you can bypass the CALL by entering

the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a C++ program to demonstrate a Debug Tool session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C++ applications by using an example C++
program named CALC to demonstrate how they're used.

The CALC program is referred to in ['C++ tasks” on page 63| It is a simple calcu-
lator that reads its input from a character buffer. If integers are read, they are
pushed on a stack. If one of the operators (+ — * /) is read, the top two elements
are popped off the stack, the operation is performed on them, and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

L — FILE CALC.HPP == m oo mmmmmmmm e */
/* */
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP */
/* a simple calculator */
] */
typedef enum toks {

T_INTEGER,

T_PLUS,

T_TIMES,

T_MINUS,

T_DIVIDE,

T_EQUALS,

T_STOP,
} Token;

extern "C" Token read_token(char buf[]);
class IntLink {
private::
int i;
IntLink * next;
public:
IntLink();
“IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();
void set next(IntLink * d);
}s
class IntStack {
private:
IntLink * top;
pubTic:
IntStack();
“IntStack();
void push(int);
int pop();
}s

Chapter 4. Debugging your programs in full-screen mode 59

Using a C++ program for Debug Tool session

60

/* A simple calculator that does operations on integers that
/* are pushed and popped on a stack

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;
int main()
{
Token tok;
char word[100];
char buf_out[100];
int num;
for(s;)
{
tok=read_token(word);
switch(tok)
{
case T_STOP:
break;
case T_INTEGER:
num = atoi (word);

stack.push(num); /% statement */
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num + stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num = stack.pop();
stack.push(num/stack.pop()); /* statement */
break;

case T_EQUALS:
num = stack.pop();
sprintf(buf_out,"= %d ",num);
stack.push(num);
break;

1
if (tok==T_STOP)
break;
}

return 0;

}

Debug Tool User's Guide and Reference

*/
*/
*/

Using a C++ program for Debug Tool session

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"

/* input: num - value to push on the stack
/* action: get a link to hold the pushed value, push link on stack

void IntStack::push(int num) {
IntLink * ptr;
ptr = new IntLink;
ptr—>set_i(num);
ptr—>set_next(top);
top = ptr;

/* return: int value popped from stack (0 if stack is empty)
/* action: pops top element from stack and get return value from it

int IntStack::pop() {
IntLink * ptr;
int num;
ptr = top;
num = ptr—>get_i();
top = ptr—>get_next();
delete ptr;
return num;

1

IntStack::IntStack() {
top = 0;

1

IntStack:: " IntStack() {
while(top)

pop() s

1

IntLink::IntLink() { /* constructor leaves elements unassigned */

1

IntLink::"IntLink() {

1

void IntLink::set_i(int j) {
i=3;

}

int IntLink::get_i() {
return i;

1

void IntLink::set next(IntLink * p) {
next = p;

1

IntLink * IntLink::get_next() {
return next;

}

Chapter 4. Debugging your programs in full-screen mode

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

61

Using a C++ program for Debug Tool session

62

#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"

/* action: get next input char, update index for next call
/* return: next input char

JHm e e e e
static char nextchar(void)
{
/* input action
* | emmm- mm————
* 2 push 2 on stack
* 18 push 18
* + pop 2, pop 18, add, push result (20)
* = output value on the top of the stack (20)
* 5 push 5
* / pop 5, pop 20, divide, push result (4)
* = output value on the top of the stack (4)
*
/
char * buf_in ="2 18 +=5/=";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;
}
K m mm e -

/* output: buf - null terminated token
/* return: token type
/* action: reads chars through nextchar() and tokenizes them

extern "C"
Token read_token(char buf[])
{
int i;
char c;
/* skip leading white space */
for(c=nextchar();
isspace(c);
c=nextchar())

buf[0] =c; /
get ready to return single char e.g. "+" */
buf[1] = 0;
switch(c)
i
case '=' : return T_PLUS;
case '=' : return T_MINUS;
case 'x' : return T_TIMES;
case '/' : return T_DIVIDE;

*

case '=' : return T_EQUALS;
default:
i=0;

while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i=0)
return T_STOP;
else
return T_INTEGER;

Debug Tool User's Guide and Reference

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

C++ tasks

C++ tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your C++ program and explanations on how to accomplish these
tasks. The CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
You need to include the C++ signature along with the function name to set an AT
ENTRY or AT CALL breakpoint for a C++ function.

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the Source
window by overtyping the name of the file on the top line of the Source window.
This makes PUSHPOP.CPP your currently qualified program. You can then issue
the command:

LIST NAMES

which displays the names of all the blocks and variables for the currently qualified
program. Debug Tool displays the following in the Log window:

IntStack:: " IntStack()
IntStack::IntStack()
IntLink::get_i()
IntLink::get_next()
IntLink:: IntLink()
IntLink::set_i(int)
IntLink::set_next(IntLink=)
IntLink::IntLink()

Now you can save some strokes by inserting the command next to the block name.

To halt just before IntStack::push(int) is called, insert AT CALL next to the func-
tion signature and, by pressing the ENTER key, the entire command is placed on the
command line. Now, with AT CALL IntStack::push(int) ; on the command line,
you can enter the command:

AT CALL IntStack::push(int) ;

To halt just after IntStack::push(int) is called, issue the command:
AT ENTRY IntStack::push(int) ;

in the same way as the AT CALL command.

To be able to halt, the file with the calling code must be compiled with the compile-
time TEST option.

Modifying the value of a variable

To list the contents of a single variable, move the cursor to the variable name and
press PF4(LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

For example, run the CALC program and step into the first call of function
IntStack::push(int) until just after the IntLink has been allocated.

LIST TITLED;

will display, in the Log window, all the variables that are valid for the current
context. Below is the output from the command:

Chapter 4. Debugging your programs in full-screen mode 63

C++ tasks

this = 0x7042708
ptr = 0x7042A00
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
ENTER to put it on the command line, and press ENTER again to issue the command.

You can enter most C++ expressions on the command line.

To view the attributes of variable ptrin IntStack::push(int), issue the Debug Tool
command:

DESCRIBE ATTRIBUTES *ptr;
The result in the Log window is:

ATTRIBUTES for * ptr
class IntLink {
signed int i3
struct IntLink *next;

}

So for most classes, structures, and unions, this can act as a browser.

You can list all the values of the data members of the class object pointed to by
ptr with the command:

LIST =*ptr ;

with results in the Log window similar to:
LIST * ptr ;

(* ptr).next = 0x0

(* ptr).i =0

You can change the value of data member of a class object by issuing the assign-
ment as a command, as in this example:

(* ptr).i = 33 ;

Stopping on a line only if a condition is true

Often a particular part of your program works fine for the first few thousand times,
but fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering G0. For example, in main you want to stop
in T_DIVIDE only if the divisor is O (before the exception occurs). Set the breakpoint
like this:

AT 39 { if(num !'= 0) GO; }

Line 39 is the statement labeled [WX®4. The command causes Debug Tool to
stop at line 39. If the value of num is not O, the program will continue. Debug Tool
stops on line 39 only if num is 0.

Viewing and modifying data members of the this pointer
If you step into a class method, for example, one for class IntLink, the command:

LIST TITLED ;
responds with a list that includes this. With the command:
DESCRIBE ATTRIBUTES *this ;

64 Debug Tool User's Guide and Reference

C++ tasks

you will see the types of the data elements pointed to by the this pointer. With the
command:

LIST *this ;

you will list the data member of the object pointed to and see something like:
LIST * this ;

(* this).i =4

(* this).next = 0x0

in the Log window. To modify element i, enter either the command:

i = 2001;

or, if you have ambiguity (for example, you also have an auto variable named 1),

enter:

(* this).i = 2001 ;

Debugging when only a few parts are compiled with TEST

Suppose you want to set a breakpoint at entry to function IntStack::push(int) in
the file PUSHPOP.CPP. PUSHPOP.CPP has been compiled with TEST but the
other files have not. Debug Tool comes up with an empty Source window. To
display the compilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool.

Depending on the compiler you are using, or if USERID.MFISTART.CPP(PUSHPOP) is
fetched later on by the application, this compile unit might or might not be known to
Debug Tool, and the PDS member PUSHPOP might or might not be displayed. If it
is displayed, enter:

SET QUALIFY CU "USERID.MFISTART.CPP(PUSHPOP)"
AT ENTRY IntStack::push(int) ;

GO ;

or

AT ENTRY "USERID.MFISTART.CPP(PUSHPOP)":>push
GO

If it is not displayed, you need to set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" AT ENTRY push; GO;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When that happens you can, for
example, set a breakpoint at entry to IntStack::push(int) as follows:

AT ENTRY IntStack::push(int) ;

Chapter 4. Debugging your programs in full-screen mode 65

C++ tasks

Capturing output to stdout
To redirect stdout to the Log window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this SET command, you will not only capture stdout from your program, but
also from interactive function calls. For example, you can interactively use cout on
the command line to display a null terminated string by entering:

cout << sptr ;
You might find this easier than using LIST STORAGE.
Note: SET INTERCEPT is not supported under CICS.

Invoking interactive function calls

You can invoke a library function (such as strlen) or one of the programs functions
interactively by calling it on the command line. The same is true of C linkage func-
tions such as read_token. You cannot call C++ linkage functions interactively.

In the example below, we call read_token interactively.

AT CALL read_token;

GO;

read_token(word);

The calculator produces different results than before because of the additional
token removed from input.

Displaying raw storage
A char * variable ptr can point to a piece of storage containing printable charac-
ters. To display the first 20 characters, enter;

LIST STORAGE (*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line as shown in this example:

puts(ptr) ;

Debugging a DLL

Build PUSHPOP.CPP as a DLL, exporting IntStack::push(int) and IntStack::pop().
Build CALC.CPP and READTOKN.CPP as the program that imports
IntStack::push(int) and IntStack::pop() from the DLL named PUSHPOP. When the
application CALC starts, the DLL PUSHPORP is not known to Debug Tool. Use the
AT APPEARANCE breakpoint, as shown in the following example, to gain control in the
DLL the first time code in that compile unit appears.

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;
The only purpose of this appearance breakpoint is to gain control the first time a

function in the PUSHPOP compilation unit is run. When this happens, you can set
breakpoints in PUSHPOP.

66 Debug Tool User's Guide and Reference

C++ tasks

Getting a function traceback

Often when you get close to a programming error, you want to know how you got
into that situation, especially what the traceback of calling functions is. To get this
information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the following commands:

AT ENTRY read_token ;

GO ;

LIST CALLS ;

the Log window contains something like:

At ENTRY in C function "USERID.MFISTART.CPP(READTOKN)" :> read token.
From LINE 18 in C function "USERID.MFISTART.CPP(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Getting a run-time frequency count
To get a record of how many times each line of your code is executed, take the
following steps:

1. Allocate the INSPLOG ddname if you want to keep a permanent record of the
results. Under CICS, instead of allocating the INSPLOG ddname, issue the
following command:

SET LOG ON FILE fileid
where fileid is the data set name of where LOG file output is written.

2. Issue the command:
SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window is
updated to show the current frequency count. One thing to keep in mind is that
the command actually starts the statistic gathering to display the actual count.

If your application has already executed a section of code, the data for those
previously executed statements won't be available.

If you want statement counts for the entire program, issue the following
commands:

GO ;

LIST FREQUENCY =* ;

which list the number of times each statement was run. When you quit, the
results are written to the Log file. At any time, you can issue the LIST
FREQUENCY =; but it will only display the frequency count for the currently active
compile unit.

Tracing the run-time path for code compiled with TEST

To trace a program showing the entry and exit of that program without requiring
any changes to it, place the following Debug Tool commands, shown in the
example below, in a file and USE them when Debug Tool initially displays your
program. Assume you have a data set that contains USERID.DTUSE (TRACE) and
contains the following Debug Tool commands:

Chapter 4. Debugging your programs in full-screen mode 67

C++ tasks

int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \
++indent; \
if (indent < 0) indent = 0; \

printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file is dis-
played in the Log window:

int foo(int i, int j) {
return i+j;

}

int main(void) {
return foo(1,2);

}

The following trace in the Log window is displayed after running the sample
program, using the USE file as a source of input for Debug Tool commands:

>main
>foo(int,int)
<foo(int,int)
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect will be achieved.

Finding unexpected storage overwrite errors

During program run time, some storage might unexpectedly change its value and
you would like to find out when and where this happened. Consider this simple
example where function set_i changes more than the caller expects it to change.

struct s { int i; int j;};
struct sa=1{0, 0};

/* function sets only field i */
void set_i(struct s * p, int k)
{
p—>1 = k;
p—>j = k; /* error, it unexpectedly sets field j also */
}
main() {
set i(&a,123);
}

Find the address of a with the command:

68 Debug Tool User's Guide and Reference

C++ tasks

LIST &(a.j)

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values, starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE (0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding uninitialized storage errors
To help find your uninitialized storage errors, run your program with the Language
Environment run-time TEST and STORAGE options. In the following example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the heap.
For example. storage allocated through operator new is filled with the byte 0xFD. If
you see this byte repeated throughout storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by the operator delete might be
filled with the byte 0xFB. If you see this byte repeated throughout storage, it is
likely storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated throughout storage, it is likely that it
is uninitialized auto storage. The values chosen here are odd and large, to maxi-
mize early problem detection. For example, if you attempt to branch to an odd
address, you will get an exception immediately.

As an example of uninitialized heap storage, run program CALC, with the run-time
STORAGE option as STORAGE(FD,FB,F9), to the line labeled PUSHPOP2 and issue
the command:

LIST =*ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:

LIST * ptr ;

(* ptr).next = OxFDFDFDFD
(* ptr).i = -33686019

Setting a breakpoint to halt before calling a NULL function

Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the call by entering the
GO BYPASS command. This command allows you to continue your debugging
session without raising a condition.

Chapter 4. Debugging your programs in full-screen mode 69

Using a COBOL program for Debug Tool session

Using a COBOL program to demonstrate a Debug Tool session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your COBOL applications by using an example
COBOL program named COBCALC to demonstrate how they're used.

The COBCALC program is referred to in[*COBOL tasks” on page 74l Itis a simple
program that calls two subprograms to calculate a loan payment amount and the
future value of a series of cash flows. Several COBOL intrinsic functions are uti-
lized.

B R R S R R R R R R R R R R R R R R R R T R T S T R L

COBCALC

*

*
*
* A simple program that allows financial functions to
* be performed using intrinsic functions.

*

* % X %

ek KRR KRR R R e ek
IDENTIFICATION DIVISION.

PROGRAM-ID. COBCALC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PARM-1.
05 CALL-FEEDBACK PIC XX.
01 FIELDS.
05 INPUT-1 PIC X(10).
01 INPUT-BUFFER-FIELDS.
05 BUFFER-PTR PIC 9.
05 BUFFER-DATA.
10 FILLER PIC X(10) VALUE "LOAN".
10 FILLER PIC X(10) VALUE "PVALUE".
10 FILLER PIC X(10) VALUE "pvalue".
10 FILLER PIC X(10) VALUE "END".

05 BUFFER-ARRAY REDEFINES BUFFER-DATA
OCCURS 4 TIMES
PIC X(10).

PROCEDURE DIVISION.
DISPLAY "CALC Begins." UPON CONSOLE.
MOVE 1 TO BUFFER-PTR.
MOVE SPACES TO INPUT-1.
* Keep processing data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".
* END requested
DISPLAY "CALC Ends." UPON CONSOLE.
GOBACK.
* End of program.

Figure 5 (Part 1 of 2). Sample COBOL Program - Main Program COBCALC

70 Debug Tool User's Guide and Reference

Using a COBOL program for Debug Tool session

*
* Accept input data from buffer
*
ACCEPT-INPUT.
MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.
ADD 1 BUFFER-PTR GIVING BUFFER-PTR.
* Allow input data to be in UPPER or Tower case
EVALUATE FUNCTION UPPER-CASE(INPUT-1)
WHEN "END"
MOVE "END" TO INPUT-1
WHEN "LOAN"
PERFORM CALCULATE-LOAN
WHEN "PVALUE"
PERFORM CALCULATE-VALUE
WHEN OTHER
DISPLAY "Invalid input: " INPUT-1
END-EVALUATE.
*
* Calculate Loan via CALL to subprogram
*
CALCULATE-LOAN.
CALL "COBLOAN" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBLOAN Unsuccessful.".
*
* Calculate Present Value via CALL to subprogram
*
CALCULATE-VALUE.
CALL "COBVALU" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBVALU Unsuccessful.".

Figure 5 (Part 2 of 2). Sample COBOL Program - Main Program COBCALC

B R e R R T T T e s T T L

COBLOAN

A simple subprogram that calculates payment amount
for a Toan.

* %k X X %
* %k X X %

HRARFHRIERFRRHRK AR IR HRK AR KRR IRK AR FERHRK AR IR HR KR IR R KA
IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.

Figure 6 (Part 1 of 2). Sample COBOL Program - Subroutine COBLOAN

Chapter 4. Debugging your programs in full-screen mode

71

Using a COBOL program for Debug Tool session

72

WORKING-STORAGE SECTION.

01 FIELDS.

05 INPUT-1 PIC X(26).

05 PAYMENT PIC S9(9)V99 USAGE COMP.

05 PAYMENT-OUT PIC $$$%,$$$,$$9.99 USAGE DISPLAY.
05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.

05 LOAN-AMOUNT-IN PIC X(16).

05 INTEREST-IN PIC X(5).

05 INTEREST PIC S9(3)V99 USAGE COMP.

05 NO-OF-PERIODS-IN PIC X(3).
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 OUTPUT-LINE PIC X(79).
LINKAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE "30000 .09 24 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ALL " "
INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL (LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
* Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT =*
FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).
* Make it presentable
MOVE SPACES TO OUTPUT-LINE
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBLOAN: Repayment amount for_a " NO-OF-PERIODS-IN
" month_Toan_of_" LOAN-AMOUNT-IN
"_at_" INTEREST-IN "_interest_is:_ "
DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

Figure 6 (Part 2 of 2). Sample COBOL Program - Subroutine COBLOAN

B R R S R S R R

* COBVALU *
* *
* A simple subprogram that calculates present value *
* for a series of cash flows. *
* *

S s e e o o o oo e oo ek o e ke ek
IDENTIFICATION DIVISION.

PROGRAM-ID. COBVALU.

ENVIRONMENT DIVISION.

DATA DIVISION.

Figure 7 (Part 1 of 2). Sample COBOL Program - Subroutine COBVALU

Debug Tool User's Guide and Reference

Using a COBOL program for Debug Tool session

WORKING-STORAGE SECTION.

01 CHAR-DATA.
05 INPUT-1 PIC X(10).
05 PAYMENT-OUT PIC $$$%$,$$$,$$9.99 USAGE DISPLAY.
05 INTEREST-IN PIC X(5).
05 NO-OF-PERIODS-IN PIC X(3).
05 INPUT-BUFFER PIC X(10) VALUE "5069837544".
05 BUFFER-ARRAY REDEFINES INPUT-BUFFER
OCCURS 5 TIMES
PIC XX.
05 OUTPUT-LINE PIC X(79).
01 NUM-DATA.
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 COUNTER PIC 99 USAGE COMP.
05 NO-OF-PERIODS PIC 99 USAGE COMP.

05

VALUE-AMOUNT

0CCURS

99 PIC S9(7)V99 COMP.

LINKAGE SECTION.

01 PARM-1.
05 CALL-FEEDBACK PIC XX.

PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE ".12 5 " TO INPUT-1.

UNSTRING INPUT-1 DELIMITED BY "," OR ALL " "
INTO INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
* Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL
COUNTER IS GREATER THAN NO-OF-PERIODS.
* Calculate present value
COMPUTE PAYMENT =
FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)).

* Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBVALU:_Present_value_for_rate_of_"
INTEREST-IN " _given_amounts_"

BUFFER-ARRAY
BUFFER-ARRAY
BUFFER-ARRAY
BUFFER-ARRAY
BUFFER-ARRAY

(1) n n

(2) "
(3) n

(4) " :
(5) II_'

DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.
*
* Get cash flows for each period
*
GET-AMOUNTS.
MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Figure 7 (Part 2 of 2). Sample COBOL Program - Subroutine COBVALU

Chapter 4. Debugging your programs in full-screen mode

COBOL tasks

COBOL tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your COBOL program and explain how to accomplish these tasks.
The COBCALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain routines are called
To halt just before COBLOAN is called, issue the command:

AT CALL COBLOAN ;

If the CU COBVALU is known to Debug Tool (that is, it has been called previously),
to halt just after COBVALU is called, issue the command:

AT ENTRY COBVALU ;

If the CU COBVALU is not known to Debug Tool (that is, it has not been called
previously), to halt just before COBVALU is entered the first time, issue the
command:

AT APPEARANCE COBVALU ;

You can display a list of all compile units that are known to Debug Tool by entering
the command:

LIST NAMES CUS ;

The Debug Tool Log window displays something similar to:

LIST NAMES CUS ;
The following CUs are known in =*:
COBCALC
COBLOAN
COBVALU

Additionally, you can combine the breakpoints as follows:
AT APPEARANCE COBVALU AT ENTRY COBVALU ; GO ;

The purpose for the appearance breakpoint is to gain control the first time the
COBVALU compile unit is run.

To take advantage of either AT ENTRY or AT APPEARANCE, you must compile
the routine program (COBVALU in the above example) with the compile-time TEST
option.
Note: If you have many breakpoints set in your program, you can issue the
command:
QUERY LOCATION
to indicate where in your program execution has been interrupted. The
Debug Tool Log window displays something similar to:

QUERY LOCATION
You were prompted because STEP ended.
The program is currently entering block COBVALU.

74 Debug Tool User's Guide and Reference

COBOL tasks

Modifying the value of a variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4(LIST). Remember that Debug
Tool starts after program initialization but before symbolic COBOL variables are
initialized, so you cannot view or modify the contents of variables until you have
performed a step or run. The value is displayed in the Log window. This is equiv-
alent to entering LIST TITLED variable on the command line. For instance, to run
the COBCALC program to the statement labeled [fYX§], enter AT 46 ; GO ; on
the Debug Tool command line. Move the cursor over INPUT-1 and press
LIST(PF4). The following appears in the Log window:

LIST (INPUT-1) ;
INPUT-1 = 'LOAN '

To modify the value of INPUT-1, enter on the command line:
MOVE 'pvalue' to INPUT-1 ;

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing PF2(STEP) and step until the state-
ment labeled is reached. To view the attributes of the variable INTEREST,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:

ATTRIBUTES FOR INTEREST
ITS LENGTH IS 4
ITS ADDRESS IS 00011DC8
02 COBVALU:>INTEREST S999v99 COMP

You can use this action as a simple browser for group items and data hierarchies.
For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:

LIST CHAR-DATA ;

with results in the Log window appearing something like this:

LIST CHAR-DATA ;
02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = '.12 5 :
Invalid data for 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA is found.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = '.12
02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = '5 !
02 COBVALU:>INPUT-BUFFER of 01 COBVALU:>CHAR-DATA = '5069837544'
SUB(1) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '50'
SUB(2) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '69'
SUB(3) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '83'
SUB(4) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '75'
SUB(5) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '44'

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, Debug Tool displays INVALID DATA.

Chapter 4. Debugging your programs in full-screen mode 75

COBOL tasks

Stopping on a line only if a condition is true

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to just set a line breakpoint
because you will have to keep entering GO. For example, in COBVALU you want
to stop at the calculation of present value only if the discount rate is less than or
equal to -1 (before the exception occurs). First run COBCALC, step into
COBVALU, and stop at the statement labeled [[YXE}. To accomplish this, issue
these Debug Tool commands at the start of COBCALC:

AT 67 ; GO ;
CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:
AT 44 IF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled [[YXE]. The command causes Debug Tool to
stop at line 44. If the value of INTEREST is greater than -1, the program con-
tinues. The command causes Debug Tool to remain on line 44 only if the value of
INTEREST is less than or equal to -1.

To force the discount rate to be negative, enter the Debug Tool command:
MOVE '-2 5' TO INPUT-1 ;

Run the program by issuing the GO command. Debug Tool halts the program at line
44. Display the contents of INTEREST by issuing the LIST INTEREST command.

To view the effect of this breakpoint when the discount rate is positive, begin a new
debug session and repeat the Debug Tool commands shown in this section.
However, do not issue the MOVE '-2 5' TO INPUT-1 command. The program exe-
cution does not stop at line 44 and the program runs to completion.

Debugging when only a few parts are compiled with TEST

Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been
compiled with TEST but the other programs have not. Debug Tool comes up with
an empty Source window. You can use the LIST NAMES CUS command to determine
if the COBVALU compile unit is known to Debug Tool and then set the appropriate
breakpoint using either the AT APPEARANCE or the AT ENTRY command. See also
[‘'Setting a breakpoint to halt when certain routines are called” on page 74|for more
information on setting breakpoints.

Instead of setting a breakpoint at entry to COBVALU in this example, issue a STEP
command when Debug Tool initially displays the empty Source window. Debug
Tool runs the program until it reaches the entry for the first routine compiled with
TEST, COBVALU in this case.

Capturing 1/0O to the system console
To redirect output normally appearing on the System Console to your Debug Tool
terminal, enter the following command:

SET INTERCEPT ON CONSOLE ;

For example, if you run COBCALC and issue the Debug Tool SET INTERCEPT ON
CONSOLE command, followed by the STEP 3 command, you will see the following
output displayed in the Debug Tool Log window:

SET INTERCEPT ON CONSOLE ;

STEP 3
CONSOLE : CALC Begins.

76 Debug Tool User's Guide and Reference

COBOL tasks

The CALC Begins. phrase is displayed by the statement DISPLAY "CALC Begins."
UPON CONSOLE in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the System
Console, but also allows you to input data from your Debug Tool terminal instead of
the System Console by using the Debug Tool INPUT command. For example, if the
next COBOL statement executed is ACCEPT INPUT-DATA FROM CONSOLE, the following
message appears in the Debug Tool Log window:

CONSOLE : IGZOOOOI AWAITING REPLY.

The program is waiting for input from CONSOLE.

Use the INPUT command to enter 114 characters for the intercepted
fixed-format file.

Continue execution by replying to the input request by entering the following Debug
Tool command:

INPUT some data ;

Note: Whenever Debug Tool intercepts System Console 1/O, and for the duration
of the intercept, the display in the Source window is empty and the Location
field in the Session Panel Header at the top of the screen shows Unknown.

Displaying raw storage

You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 12 characters of BUFFER-DATA
enter:

LIST STORAGE(BUFFER-DATA,12)

Getting a routine traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling routines is. To get
this information, issue the command:

LIST CALLS ;
For example, if you run the COBCALC example with the commands:

AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;

GO;

LIST CALLS;

the Log window contains something like:

AT APPEARANCE COBVALU
AT ENTRY COBVALU ;
GO ;
GO ;
LIST CALLS ;
At ENTRY in COBOL program COBVALU.
From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.

Chapter 4. Debugging your programs in full-screen mode 77

COBOL tasks

Tracing the run-time path for code compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file or data set and USE
them when Debug Tool initially displays your program. Assuming you have a PDS
member, USERID.DT.COMMANDS(COBCALC), that contains the following Debug
Tool commands:

* Commands in a COBOL USE file must be coded in columns 8-72.
* If necessary, commands can be continued by coding a '-' in
* column 7 of the continuation line.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY * PERFORM;
COMPUTE LEVEL = LEVEL + 1;
LIST ("Entry:", LEVEL, %CU);
GO;
END-PERFORM;
AT EXIT = PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS (COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or some-
thing similar) is displayed in the Log window:

ENTRY:

LEVEL = 00002
%CU = COBCALC
ENTRY:

LEVEL = 00003
%CU = COBLOAN
EXIT:

LEVEL = 00003
ENTRY:

LEVEL = 00003
%CU = COBVALU
EXIT:

LEVEL = 00003
ENTRY:

LEVEL = 00003
%CU = COBVALU

EXIT:
LEVEL = 00003
EXIT:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

78 Debug Tool User's Guide and Reference

COBOL tasks

Generating a run-time paragraph trace

To generate a trace showing the names of paragraphs through which execution has

passed, the Debug Tool commands shown in the following example can be used.
You can either enter the commands from the Debug Tool command line or place

the commands in a file or data set as shown in the prior example.

Assume you have a PDS member, USERID.DT.COMMANDS(COBCALC?2), that
contains the following Debug Tool commands.

* COMMANDS IN A COBOL USE FILE MUST BE CODED IN COLUMNS 8-72.
* IF NECESSARY, COMMANDS CAN BE CONTINUED BY CODING A '-' IN
* COLUMN 7 OF THE CONTINUATION LINE.
AT GLOBAL LABEL PERFORM;

LIST LINES %LINE;

GO;
END-PERFORM;

When Debug Tool initially displays your program, enter the following command:
USE USERID.DT.COMMANDS (COBCALC2)

After executing the USE file, you can run COBCALC and the following trace (or
something similar) is displayed in the Log window:

42 ACCEPT-INPUT.
59 CALCULATE-LOAN.
42 ACCEPT-INPUT.
66 CALCULATE-VALUE.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
42 ACCEPT-INPUT.
66 CALCULATE-VALUE.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
42 ACCEPT-INPUT.

Chapter 4. Debugging your programs in full-screen mode

79

Using a PL/I program for Debug Tool session

Finding unexpected storage overwrite errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
the program changes more than the caller expects it to change.

05 FIELD-1 OCCURS 2 TIMES

PIC X(8).
05 FIELD-2 PIC X(8).
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO PTR.
MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint that watches for a change
in storage values starting at that address for the next 8 bytes, issue the command:

AT CHANGE %STORAGE(H'0000F559',8)

When the program runs, Debug Tool halts if the value in this storage changes.

Setting a breakpoint to halt before calling an invalid program

Calling an undefined program is a severe error. If you have developed a main
program that calls a subprogram that doesn't exist, you can cause Debug Tool to
halt just before such a call. For example, if the subprogram NOTYET doesn't exist,
you can set the breakpoint:

AT CALL (NOTYET)

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a PL/I program to demonstrate a Debug Tool session

80

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your PL/I applications by using an example PL/I
program named PLICALC to demonstrate how they're used.

The PLICALC program is referred to in ['‘PL/I tasks” on page 84} It is a simple
calculator that reads its input from a character buffer. If integers are read, they are
pushed on a stack. If one of the operators (+ - * /) is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

Before running PLICALC, you need to allocate SYSPRINT to the terminal by
entering on of the following commands:

e For MVS under TSO, enter the following command:
ALLOC FI(SYSPRINT) DA(*)

e For VM, enter the following command:
FILEDEF SYSPRINT TERMINAL

Debug Tool User's Guide and Reference

Using a PL/I program for Debug Tool session

plicalc: proc options(main);

S */
/% */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/% */
2y */

dcl index builtin;
dcl Tength builting
dcl substr builting
/* */
dcl 1 stack,
2 stkptr fixed bin(15,0) init(0),
2 stknum(50) fixed bin(31,0);
dcl 1 bufin,
2 bufptr fixed bin(15,0) init(0),
2 bufchr char (100) varying;
dc1 1 tok char (100) varying;
dcl 1 tstop char(1l) init ('s');
dcl 1 ndx fixed bin(15,0);
dc1l num fixed bin(31,0);
dcl i fixed bin(31,0);
dcl push entry external;
dcl pop entry returns (fixed bin(31,0)) external;
dc1 readtok entry returns (char (100) varying) external;

/2y */
/* input action: */
/% 2 push 2 on stack */
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
2y */

bufchr = '2 18 + =5 / =';
do while (tok —= tstop);
tok = readtok(bufin); /* get next 'token' */
select (tok);
when (tstop)
leave;
when ('+') do;
num = pop(stack);

call push(stack,num); /* |MIAW} statement */
end;
when ('-') do;

num = pop(stack);
call push(stack,pop(stack)-num);
end;

Figure 8 (Part 1 of 2). Sample PL/I Program - Main Program PLICALC

Chapter 4. Debugging your programs in full-screen mode 81

Using a PL/I program for Debug Tool session

when ('x')

call push(stack,pop(stack)*pop(stack));
when ('/') do;

num = pop(stack);

call push(stack,pop(stack)/num); /+ [d.IKw

end;
when ('=") do;
num = pop(stack);
put Tist ('PLICALC: ', num) skip;
call push(stack,num);
end;
otherwise do;/* must be an integer */
num = atoi(tok);
call push(stack,num);
end;
end;
end;
return;

statement */

Figure 8 (Part 2 of 2). Sample PL/I Program - Main Program PLICALC

atoi: procedure(tok) returns (fixed bin(31,0));

R */
/% */
/* convert character string to number */
/* (note: string validated by readtok) */
/* */
S */

dcl 1 tok char (100) varying;

dc1 1 num fixed bin (31,0);

dcl 1 j fixed bin(15,0);

num = 0;

do j =1 to length(tok);

num = (10 * num) + (index('0123456789',substr(tok,j,1))-1);

end;

return (num);
end atoi;
end plicalc;
Figure 9. Sample PL/I Program - TOK Function
push: procedure(stack,num);
Uy U Sy Sy Sy S S S */
/* */
/* a simple push function for a stack of integers */
/* */
2y */

dcl 1 stack connected,
2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);
dc1 num fixed bin(31,0);
stkptr = stkptr + 1;
stknum(stkptr) = num; /= statement */
return;
end push;

Figure 10. Sample PL/I Program - PUSH Function

Debug Tool User's Guide and Reference

Using a PL/I program for Debug Tool session

pop: procedure(stack) returns (fixed bin(31,0));

S */
/% */
/* a simple pop function for a stack of integers */
/* */
2y */
dcl 1 stack connected,

2 stkptr fixed bin(15,0),

2 stknum(50) fixed bin(31,0);
stkptr = stkptr - 1;
return (stknum(stkptr+l));
end pop;
Figure 11. Sample PL/I Program - POP Function
readtok: procedure(bufin) returns (char (100) varying);
2y */
/% */
/* a function to read input and tokenize it for a simple calculator */
/* */
/* action: get next input char, update index for next call */
/* return: next input char(s) */
R */

dcl Tength builting
dc1 substr builting
dcl verify builting
dcl 1 bufin connected,
2 bufptr fixed bin(15,0),

2 bufchr char (100) varying;

dcl 1 tok char (100) varying;
dcl 1 tstop char(l) init ('s');
dcl 1 j fixed bin(15,0);

/* start of processing */

if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);
end;

bufptr = bufptr + 1;

do while (substr(bufchr,bufptr,1) ="' ');

bufptr = bufptr + 1;

if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);
end;

end;

Figure 12 (Part 1 of 2). Sample PL/I Program - READTOK Function

Chapter 4. Debugging your programs in full-screen mode

83

PL/I tasks

PL/I tasks

tok = substr(bufchr,bufptr,1); /* get ready to return single char */
select (tok);
When (|+|,|_|,|/|,|*|,|=|)
bufptr = bufptr;
otherwise do; /* possibly an integer */
tok = '';
do j = bufptr to length(bufchr);
if verify(substr(bufchr,j,1),'0123456789') -= 0 then

leave;
end;
if j > bufptr then do;
j=i-L
tok = substr(bufchr,bufptr, (j-bufptr+l));
bufptr = j;
end;
else
tok = tstop;
end;
end;

return (tok);
end readtok;

Figure 12 (Part 2 of 2). Sample PL/I Program - READTOK Function

The following sections identify typical tasks you might want to perform while using
Debug Tool with your PL/I program and explain how to accomplish these tasks.
The PLICALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
To halt just before READTOK is called, issue the command:

AT CALL READTOK ;

To halt just after READTOK is called, issue the command:
AT ENTRY READTOK ;

To take advantage of the AT ENTRY command, you must compile your program with
the TEST option.

Note: If you have many breakpoints set in your program, you can issue the
command:
QUERY LOCATION
to indicate where in your program execution has been interrupted. The
Debug Tool Log window displays something similar to:

QUERY LOCATION ;
You are executing commands in the ENTRY READTOK breakpoint.
The program is currently entering block READTOK.

84 Debug Tool User's Guide and Reference

PL/I tasks

Modifying the value of a variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4(LIST). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the PLICALC program to the statement labeled
by entering AT 22 ; GO ; on the Debug Tool command line. Move the
cursor over NUM and press PF4(LIST) The following appears in the Log window:

LIST NUM ;
NUM = 18

To modify the value of NUM to 22, overtype the NUM = 18 line with NUM = 22,
press ENTER to put it on the command line, and press ENTER again to issue the
command.

You can enter most PL/l expressions on the command line.

Now step into the call to PUSH by pressing PF2(STEP) and step until the statement
labeled QI'MFY is reached. To view the attributes of variable STKNUM, issue the
Debug Tool command:

DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:

ATTRIBUTES FOR STKNUM
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 200
PUSH : STACK.STKNUM(50) FIXED BINARY(31,0) REAL PARAMETER
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 4

You can list all the values of the members of the structure pointed to by STACK with
the command:

LIST STACK;
with results in the Log window appearing something like this:

LIST STACK ;
STACK.STKPTR = 2

STACK.STKNUM(1) = 2
STACK.STKNUM(2) = 18
STACK.STKNUM(3) = 233864
STACK.STKNUM(50) = 121604

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

STKNUM(STKPTR) = 33;

Stopping on a line only if a condition is true

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to just set a line breakpoint
because you will have to keep entering GO. For example, in PLICALC you want to
stop at the division selection only if the divisor is 0 (before the exception occurs).
Set the breakpoint like this:

AT 31 DO; IF NUM —-= O THEN GO; END;

Chapter 4. Debugging your programs in full-screen mode 85

PL/I tasks

Line 31 is the statement labeled [W{®4. The command causes Debug Tool to
stop at line 31. If the value of NUM is not O, the program continues. The
command causes Debug Tool to stop on line 31 only if the value of NUM is O.

Debugging when only a few parts are compiled with TEST

Suppose you want to set a breakpoint at entry to subroutine PUSH. PUSH has
been compiled with TEST, but the other files have not. Debug Tool comes up with
an empty Source window. To display the compilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool. If PUSH is fetched later on by the application, this compile unit
might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU PUSH

AT ENTRY PUSH;

GO ;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE PUSH ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSH compilation unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:

AT ENTRY PUSH;

Displaying raw storage
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:

LIST STORAGE (STACK,30)

Getting a function traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;
For example, if you run the PLICALC example with the commands:

AT ENTRY READTOK ;

GO ;

LIST CALLS ;

the Log window will contain something like:

At ENTRY IN PL/I subroutine READTOK.
From LINE 17.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

86 Debug Tool User's Guide and Reference

PL/I tasks

Tracing the run-time path for code compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file or data set and USE
them when Debug Tool initially displays your program. Assuming you have a PDS
member, USERID.DT.COMMANDS(PLICALL), that contains the following Debug
Tool commands:

DCL LVLSTR CHARACTER (50) ;
DCL LVL FIXED BINARY (15) ;
LVL = 0 ;
AT ENTRY =
DO ;
LVLSTR = ' '
LVL = LVL + 1
SUBSTR (LVLSTR, LVL, 1) = '>';
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
GO ;
END ;
AT EXIT =
DO ;
SUBSTR (LVLSTR, LVL, 1) = '<';
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
LVL = LVL - 1
GO ;
END ;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS (PLICALL)

If, after executing the USE file, you run the following program sequence:
PLICALL: PROC OPTIONS(MAIN);

éALL PLISUB ;
END‘ELICALL;
PLISUB: PROCEDURE;

éALL PLISUBI ;
END.ELISUB;
PLISUB1: PROCEDURE;

éALL PLISUBZ ;
END‘ELISUBl;
PLISUBZ: PROCEDURE;
END.éLISUBZ;

the following trace (or something similar) is displayed in the Log window:

Chapter 4. Debugging your programs in full-screen mode 87

PL/I tasks

'>PLICALL '
' >PLISUB '
' >PLISUB1 '
" >PLISUB2 '
' <PLISUB2 '
' <PLISUB1 '
' <PLISUB '
'<PLICALL '

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider the following
example where the program changes more than the caller expects it to change.

2 FIELD1(2) CHAR(8);

2 FIELD2 CHAR(8);

CTR = 3 /* an invalid index value is set =/
FIELD1(CTR) = 'TOO MUCH';

Find the address of FIELD2 with the command:
DESCRIBE ATTRIBUTES FIELD2

Suppose the result is X'00521D42'. To set a breakpoint that watches for a
change in storage values starting at that address for the next 8 bytes, issue the
command:

AT CHANGE %STORAGE('00521D42'px,8)

When the program is run, Debug Tool halts if the value in this storage changes.

Setting a breakpoint to halt before calling an undefined program
Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:

AT CALL ©

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

88 Debug Tool User's Guide and Reference

Customizing Debug Tool

Chapter 5. Using the Debug Tool interfaces

This chapter describes how you interface to Debug Tool and helps you understand
and navigate through the windows provided. It covers customizing your display,
choosing Debug Tool settings to adjust your debugging environment, entering com-
mands on the command line, and getting help.

Customizing Debug Tool for your environment

Debug Tool provides its own full-screen support to supply you with a full-screen,
interactive session for debugging your application. You can configure the screen
into as many as three windows, using all three of them to view simultaneously:

e Source window - Contains either the source file (for C/C++) or the source
listing (for COBOL and PL/I)

¢ Monitor window - Contains the changing values of variables

e Log window - Contains a log of your interactions with Debug Tool

See [Figure 15 on page 91|for an example of a Debug Tool screen containing all
three windows.

Using the Debug Tool Session Panel

After you invoke your program, execution of Debug Tool begins, depending on the
specified suboptions of the run-time TEST option. If Debug Tool gains control (for
example, because of _ ctest() or CALL CEETEST statements, or because TEST(ALL)
is specified) and prompts you for input, the Debug Tool Session panel appears.
This panel is similar to the one shown in|Figure 15 on page 91} and you use it to
accomplish most of your tasks and communications with Debug Tool.

The Debug Tool Session panel contains a header field with information about the
program you are debugging, and can also contain up to three windows: a Monitor
window, a Log window, and a Source window, in any combination. The following
sections explain what these windows are for, how to use them, how to move from
one to another (navigate), and how to arrange their appearance and content.

Session Panel header fields

Figure 13 and [Figure 14 on page 90 show two examples. The first is a header for
a program under MVS/TSO, and the second is a header for a program under CMS.
Descriptions of the specific areas follow the figures.

c A LOCATION: MYID.SOURCE(TSTPGM1):>248 2]
Command ==> SCROLL ==> PAGE Y

Figure 13. Session Panel Header Fields for a C Program under TSO

© Copyright IBM Corp. 1995, 1999 89

Session Panel windows

COBOL LOCATION: XYZPROG: :>SUBR:>188
Command —> SCROLL =—> PAGE J

Figure 14. Session Panel Header Fields for a COBOL Program under CMS

C/C++, COBOL, or PLII:

The name of the current programming language. This is not necessarily the
programming language of what appears in the source window.

Note: Debug Tool does not differentiate between C and C++ programs, so if
there is a C++ program in the source window, only C will be displayed in this
field.

H LOCATION:

The program unit name and statement where execution is suspended. (It is
usually in the form of compilation unit:>nnnnnn.) In the first example, execution
in MYID.SOURCE(TSTPGM1) is suspended at line 248. In the second example,
execution in XYZPROG is suspended at XYZPROG: :>SUBR:>118, or line 118 of
subroutine SUBR.

H COMMAND:

The input area for the next Debug Tool command. You can enter any valid
Debug Tool command here.

B SCROLL:

The number of lines or columns you want to scroll when you enter a scroll
command without an amount specified. You can set the display on or off using
the SET SCROLL DISPLAY command. Modify the scroll amount with the SET
DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL DOWN,
SCROLL LEFT, and SCROLL RIGHT scrolling commands. The scrolling commands
can be used to scroll by increments of n lines, half a page, a full page, to the
top or bottom of the data, to the limit of the data, to the left or right by specified
amounts, or to the position of the cursor.

B Message areas :

Display information and error messages in the space immediately below the
command line.

Session Panel windows

[Figure 15 on page 91|shows the entire Debug Tool session panel, including the
session panel header and the default configuration for the Source window, the Log
window, and the Monitor window.

90 Debug Tool User's Guide and Reference

Session Panel windows

COBOL LOCATION: IBTUFS4 :> 100.1

Command =—> Scroll ==> PAGE
MONITOR --#----l---otome-Pmmmmtomem3mmmetem e oo B +----6 LINE: 1 OF 3
*hkkhrkkkkhrrhrhkrrrrrxhrrcrxkrxx JOP OF MONITOR #****kxkkkkrhhrhrkhhrhhrkhrrhrhrrds
0001 1 77 IBTUFS4:>VARBL2 21

0002 2 77 IBTUFS4:>VARBLL 11

0003 3 77 IBTUFS4:>X 1

hkkhrkkkrkhrrhrhkxrrrkxhkxkrxkx BOTTOM OF MONITOR #**xkkkkrhkkhkhhrhhrkhrhhrhrkrhsr

SOURCE: IBTUFS4 =-l----#=--=2emmtom-3mmoobono-fooot-—--5_-—— LINE: 98 OF 118

98 ADD 1 TO VARBL1
99 H ADD 1 TO VARBL2

100 CALL "SUBPROL" USING BY CONTENT PARAM1
101 ADD 1 TO X

102 END-PERFORM.

LOG Q--==t=mm=lommmdoec e metee e m 3 m et m Bk — LINE: 13 OF 19
0013 The command element MONITOR is invalid.

0014 MONITOR

0015 LIST VARBL? ;

0016 MONITOR

0017 LIST VARBLI ;

0018 MONITOR

0019 LIST X 3

Figure 15. Session Panel with Opened Monitor, Source, and Log Windows

Source window (1)

The Source window displays the source file or source listing. The Source window
has four parts: the header area, the prefix area, the source display area, and the
suffix area.

Header Area: The header area identifies the window and shows the compilation
unit name. It also shows the current position of the source or listing.

Prefix Area: The prefix area appears in the leftmost eight columns of the source
window, and contains statement numbers or line numbers you can use when refer-
ring to the statements in your program. You can use the prefix area to set, display,
and remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW. For more on prefix commands, see ['Using prefix commands” on|

lbage 96|

Source Display Area: The source display area shows the source code (for a C/C++
program), or the source listing (for a COBOL or PL/I program) for the currently
qualified program unit. The source display is usually shown with the current state-
ment highlighted (if the statement can be found).

Suffix Area: The suffix area is a narrow, variable-width column at the right of the
screen. Debug Tool uses the suffix area for displaying frequency counts. It is only
as wide as the largest count it must display.

The suffix area is optional, and you can turn it on with SET SUFFIX ON, while SET
SUFFIX OFF removes it from the screen. You can also set it on or off with the
Source Listing Suffix field in the Profile Settings Panel. More information on the
Profile Settings Panel is included in [‘Customizing settings” on page 104,

Chapter 5. Using the Debug Tool interfaces 91

Session Panel windows

Monitor window (3)

Log window (2)

Use the Monitor window to continuously display output from the MONITOR LIST,
MONITOR QUERY, and MONITOR DESCRIBE commands. This window is first opened
when you enter a monitor command; its contents are refreshed whenever Debug
Tool receives control and after every Debug Tool command that can affect the
display.

When you issue a MONITOR command, it is assigned a reference number between 1
and 99, and added to the monitor list. You can specify the monitor number;
however, you must either replace an existing monitor number, thus redefining the
referenced command, or use the next sequential number.

While the MONITOR command can generate an unlimited amount of output, bounded
only by your storage capacity, the Monitor window can display a maximum of only
1000 scrollable lines of output.

If a window is not wide enough to show all the output it contains, you can either
issue SCROLL RIGHT (to scroll the window to the right) or ZOOM (to make it fill the
screen).

The labeled header line for each window contains a scale and a line counter. If
you scroll a window horizontally, the scale also scrolls so it indicates the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window verti-
cally, the line counter reflects the top line number currently displayed in that
window.

This window records and displays your interactions with Debug Tool. All com-
mands that are valid in line mode, and their responses, are automatically appended
to the Log window except the full-screen commands PANEL, FIND, CURSER, RETRIEVE,
SCROLL, WINDOW, and IMMEDIATE, and the QUERY and SHOW prefix commands. If SET
INTERCEPT ON is in effect for a file, that file's output also appears in the Log window.
You can optionally exclude STEP and GO commands from the log by specifying SET
ECHO OFF. Commands that can be used with IMMEDIATE, such as the SCROLL and
WINDOW commands, are excluded from the Log window. The default for the number
of log lines retained for display is 1000 lines, but you can specify a different value
with SET LOG KEEP n, where n is the number of lines you want to keep.

The maximum length is determined by the amount of storage available.

Using the session log file to maintain a record of your session

Debug Tool can record your commands and their generated output in a session log
file. This allows you to record your session and use the file as a reference to help
you analyze your session strategy. You can also use the log file as a command
input file at a later session by specifying it as your primary commands file. This is
a convenient method of reproducing debugging sessions or resuming interrupted
sessions.

The following appear as comments (preceded by an asterisk {*} in column 7 for
COBOL programs, and enclosed in /* */ for C/C++ or PL/l programs):

¢ All command output

92 Debug Tool User's Guide and Reference

Session Panel windows

e Commands from USE files

e Commands specified on a __ctest() function call

e Commands specified on a CALL CEETEST statement

¢ Commands specified on a CALL PLITEST statement

e Commands specified in the run-time TEST command string suboption

e QUIT commands

e Debug Tool messages about the program execution (intercepted console mes-
sages, exceptions, etc.)

The default ddname associated with the Debug Tool session log file is INSPLOG.
If you do not allocate a file with ddname INSPLOG, no default log file is created.

Creating the log file

To create the log file in Debug Tool, allocate a ddname INSPLOG in the CLIST,
JCL, or exec you use to run your program. This ddname must have a logical
record length greater than or equal to 32 and less than or equal to 256. If the
LRECL is outside these limits, Debug Tool issues a message and does not create
a log file. On MVS, the log file must be a sequential data set. The record format
and blocksize have no restrictions.

For COBOL only , if you want to subsequently use the session log file as a com-
mands file, make the LRECL less than or equal to 72. Debug Tool ignores every-
thing after column 72 for file input during a COBOL debugging session.

Note: Under CICS, SET LOG OFF is the default. To start the log, you must issue:
SET LOG ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG
OFF, output to the log file is suppressed. If Debug Tool is never given control, the
log file is not created.

When the default log file (INSPLOG) is created during initialization, any existing file
with the same name will be overwritten. However, entering the SET L0G ON FILE
xxx command will append the log output to the existing file.

If a log file was not created for your session, you can create one with the SET LOG
command by entering:

SET LOG ON FILE logddn;

This creates the log file LOGDDN, after you allocate a file to ddname LOGDDN.
Note: Do not use MVS partitioned data sets to store session logs.

At any time during your session, you can stop information from being sent to a log
file by entering:

SET LOG OFF;

To resume use of the log file, enter:

SET LOG ON;

The log file is active for the entire Debug Tool session.

Debug Tool keeps a log file in all modes of operation: line mode, full-screen mode
and batch mode.

Chapter 5. Using the Debug Tool interfaces 93

Entering commands

Entering commands in a Debug Tool session

You can enter a command or modify what is on the session panel in seven areas.
These areas are indicated in Figure 16.

C LOCATION: "ICFSSCU1"
Command =—> Scroll =—> PAGE H
MONITOR --+----1-=--4=----2-moot=ue3ommtooe bbb ot-—--6 LINE: 1 OF 2
kkkkkkkkkkkkkhkkxkkxkxkkrkkxkxx [OP OF MONITOR ***kkkkkkkkkhkhkhkkhkkhkhhkkhkhkkk
0001 1 VARBL1 10

0002 2 VARBLZ2 20

kkkkkhkkkkhxkxkkrkxhxkxkxkkxxkx BOTTOM OF MONITOR ***kkkkkkhkhkkhkhkhkkkkhkhkkkk

SOURCE: ICFSSCUL - | --+----2----#-==-3==-—toccfomotouo-5-———+ LINE: 81 OF 96

:> 89

81 main()
82 {
83 int VARBL1 = 10;
A s int VARBL2 = 20;
85 int R =1;
86
87 printf("— IBFSSCCL : BEGIN\n");
88 do {
89 VARBL1++;
90 printf("INSIDE PERFORM\n");
91 VARBL2 = VARBL2 - 2; .
92 R++; .

L06 [--+----T----tmmmo2oootommo3mbomc b boo Bk LINE: 7 OF 15

0009 MONITOR
0010 LIST VARBLI ;

0011 MONITOR

0012 LIST VARBLZ ;

0013 GO ;
0014 STEP ;

0015 STEP ;

Figure 16. Session Panel with Command Areas Indicated

Command line : You can enter any valid Debug Tool command on the
command line.

F Scroll area : You can redefine the default amount you want to scroll by
typing the desired value over the value currently displayed.

El Compile unit name area : You can change the qualification by typing the
desired qualification over the value currently displayed. For example, to
change the current qualification from ICFSSCUL, as shown in the Source window
header, to ICFSSCU2, type ICCFSSCU2 over ICFSSCUL and press ENTER.

I Prefix area : You can enter only Debug Tool prefix commands in the prefix
area, located in the left margin of the Source window.

B Source window : You can modify any lines in the Source window and place
them on the command line.

@ Wwindow id area : You can change your window configuration by typing the
name of the window you want to display over the name of the window that is
currently being displayed.

Log window : You can modify any lines in the log and have Debug Tool
place them on the command line.

94 Debug Tool User's Guide and Reference

Entering commands

For information about retrieving and modifying commands, see [‘Retrieving lines|
[from the Session log and Source windows” on page 97}

Command sequencing

If you enter commands in more than one valid input area on the session panel and
press ENTER, the input areas are processed in the following order of precedence:

1. Prefix area

. Command line

. Compile unit name area
. Scroll area

. Window id area

. Source/Log window

O WDN

Using the command line
You can type any Debug Tool command in this field, as well as any CMS or TSO
command that is prefixed by SYSTEM, CMS, or TSO. Commands can be up to 48
SBCS characters or 23 DBCS characters in length. If you need to enter a lengthy
command, Debug Tool provides a command continuation character, the SBCS
hyphen (-). When the current programming language is C/C++, you can also use
the back slash (\) as a continuation character.

Debug Tool also provides automatic continuation if your command is not complete;
for example, if it was begun with a left brace ({) that has not been matched by a
right brace (}). If you do need to continue your command, Debug Tool provides a
MORE ===> prompt that is equivalent to another command line. You can continue
to request additional command lines with continuation characters until you complete
your command.

Issuing system commands
During your Debug Tool session you can still access your base operating system
using the SYSTEM command. The string following the SYSTEM command is passed on
to your operating system. You can communicate with CMS in a CMS environment,
or TSO in a TSO environment. For example, if you want to see a CMS filelist while
in a debugging session, enter SYSTEM FILELIST;.

For CMS Only : If you enter SYSTEM without a system command, you enter CMS
subset mode. To return to Debug Tool, enter RETURN.

For TSO Only :

e A command is required after the SYSTEM keyword. Do not enter any required
parameters. Debug Tool prompts you.

 If you are debugging in batch and need system services, you can include com-
mands and their requisite parameters in a CLIST and substitute the CLIST
name in place of the command.

e If you want to enter several TSO commands, you can include them in a USE
file, a procedure, or other commands list. Or you can enter:

SYSTEM ISPF;

This invokes ISPF and displays an ISPF panel on your host emulator screen
that you can use to issue commands.

Chapter 5. Using the Debug Tool interfaces 95

Defining PF keys

For CICS Only : The SYSTEM command is not supported.

The SYSTEM command has two synonyms: CMS for the CMS environment, and TSO
for the TSO environment. Truncation of the CMS and TSO commands is not allowed.

Using prefix commands
Certain commands, known as prefix commands, can be typed over the prefix area
in the Source window, and then processed by pressing ENTER. These
commands—AT, CLEAR, DISABLE, ENABLE, QUERY, and SHOW—pertain only to the line
or lines of code before which they are typed. For example, the AT command typed
in the prefix area of a specific line sets a statement breakpoint only at that line.

You can use prefix commands to specify the particular verb or statement in the line
where you want the command to apply. For example, AT typed in the prefix area
before a line sets a statement breakpoint at the first relative statement in that line,
while AT 3 sets a statement breakpoint at the third relative statement in that line.
Typing DISABLE 3 in the prefix area and pressing ENTER disables that breakpoint.

Using cursor commands
Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword
CURSOR (such as AT CURSOR, DESCRIBE CURSOR, LIST CURSOR, SCROLL...CURSOR, and
WINDOW. . .CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to take
effect (for example, at the beginning of a statement or at a verb), and press
ENTER.

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Using Program Function (PF) keys to enter commands
The cursor commands, as well as other full-screen tasks, can be issued more
quickly by assigning PF keys to them than by typing them on the command line.
You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE ATTRIBUTES,
RETRIEVE, FIND, WINDOW SIZE, and the scrolling commands—SCROLL UP, DOWN, LEFT,
and RIGHT this way. Using PF keys makes tasks convenient and easy.

Defining PF keys
To define your PF keys, use the SET PFKEY command. For example, to define PF
key 8 as SCROLL DOWN PAGE, issue SET PF8 'Down' = SCROLL DOWN PAGE ;. The
string set apart by single quotations ('Down' in this instance) is the label that
appears next to PF8 when you SET KEYS ON and your PF key definitions are dis-
played at the bottom of your screen.

96 Debug Tool User's Guide and Reference

Defining PF keys

Abbreviating commands

When you issue Debug Tool commands, you can abbreviate most keywords.
Usually, you need enter only enough characters in a command keyword to uniquely
specify it. You can even use an abbreviation that is the same as a variable in your
program. Debug Tool gives precedence to abbreviations of commands over vari-
able names.

However, you cannot truncate keywords reserved for other programming lan-
guages, system keywords such as CMS and TS0, or special case keywords such as
CALL, COMMENT, END, FILE (in the SET INTERCEPT and SET LOG commands), GOTO,
INPUT, LISTINGS (in the SET DEFAULT LISTINGS command), or USE.

PROCEDURE can be abbreviated only as PROC, and SYSTEM can be abbreviated only as
SYS.

Retrieving commands

You can retrieve the last command you entered by entering RETRIEVE; on the
command line. The retrieved command is displayed on the command line, and can
be issued by pressing ENTER again. You can modify retrieved commands before
you reissue them.

Repeated executions of the RETRIEVE command scrolls through previous commands
in reverse order; that is, the last command entered is displayed first, then the
command previous to that, then the command previous to that, for as long as you
continue to press ENTER.

To make the use of this command more convenient, assign RETRIEVE to a PF key
using the SET PFKEY command. Press the RETRIEVE PF key to display the retrieved
command on the command line. If a retrieved command is too long to fit in the
command line, only its last line is displayed.

Retrieving lines from the Session log and Source windows

You can retrieve lines from your session Log and Source windows and use them as
new commands.

To retrieve a line, move the cursor to the desired line, modify it (for example, delete
any comment characters) and press ENTER. The input line appears on the
command line. You can further modify the command; then press ENTER to issue
it.

Creating EQUATES and using string substitution

You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol. Afterwards,
Debug Tool treats the symbol as though it were the command. The following
examples show various settings for using EQUATES:

e SET EQUATE info = "abc, def(h+1)";
Sets the symbol info to the string, "abc, def(h+1)".
e CLEAR EQUATE (info);

Disassociates the symbol and the string. This example clears info.

Chapter 5. Using the Debug Tool interfaces 97

Navigating through windows

e CLEAR EQUATE;

If you do not specify what symbol to clear, all symbols created by SET EQUATE
are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain com-
mands are for environments other than the standard Debug Tool environment,and
are not scanned for symbol substitution. For a complete list of these operands, see
[[SET EQUATE” on page 315

Navigating through Debug Tool Session Panel windows

You can navigate in any of the windows using the CURSOR command and the
scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You
can also search for character strings using the FIND command, which scrolls you
automatically to the specified string.

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name when entering the command, that
window is acted upon. If the command is cursor-oriented, the window containing
the cursor is acted upon. If you do not specify a window name and the cursor is
not in any of the windows, the window acted upon is determined by the settings of
Default window and Default scroll amount under the Profile Settings Panel. For
more information on these settings, see [‘Customizing settings” on page 104}

Moving the cursor

To move the cursor back and forth quickly from the Monitor, Source, or Log window
to the command line, use the CURSOR command. This command, and several other
cursor-oriented commands, are highly effective when assigned to PF keys. (For
details on how to assign commands to PF keys, see[Using Program Function (PF)
[keys to enter commands” on page 96]) After assigning the CURSOR command to a
PF key, move the cursor by pressing that PF key. If the cursor is not on the
command line when you issue the CURSOR command, it goes there. To return it to
its previous position, press the CURSOR PF key again.

Scrolling the windows

98

You can scroll any of the windows vertically and horizontally by issuing the SCROLL
UP, DOWN, LEFT, and RIGHT commands (the SCROLL keyword is optional). You can
use the command line to specify which window to scroll. For example, to scroll the
monitor window up 5 lines, enter SCROLL UP 5 MONITOR;.

Alternately, you can use the position of the cursor to indicate the window you want
to scroll; if the cursor is in a window, that window is scrolled. If you do not specify
the window, the default window (determined by the setting of the DEFAULT WINDOW
command) is scrolled.

Debug Tool User's Guide and Reference

Navigating through windows

Positioning lines at the top of windows

If you want to display a selected line at the top of a window, issue the SCROLL TO
command. Use the statement numbers shown in the window prefix areas. Type
the line number on the command line, move the cursor to the selected window, and
press the SCROLL TO PF key. Or, type SCROLL TO n (where n is a line number) on
the command line and press ENTER. For example, to bring line 345 to the top of
the window, enter SCROLL TO 345; on the command line. The selected window is
scrolled vertically so that your specified line is displayed at the top of that window.

Searching for a character or character string
To search the Log, Source, or Monitor window for a given character or graphic
string while you are engaged in a full-screen Debug Tool session, issue the FIND
command. The following list provides you with examples of using the FIND
command:

 |If you want to search your listing for the variable varl, and the cursor is already
in the Source window, issue the following command:
FIND "varl";

— If the cursor is not in the Source window, enter:
FIND "varl" SOURCE;

— If varl is in the Log or Monitor window, enter:
FIND "varl" LOG
or
FIND "varl" MONITOR

If varl is found but not visible in the Source window, the window scrolls forward
vertically and horizontally in order to display it. When Debug Tool locates and
displays it, varl is highlighted and the cursor is placed at the variable. The
search wraps around so if the window is positioned past the last occurrence,
the first occurrence in the listing or source file is found.

e If you want to search the Source window for the next occurrence of varl, just
enter:

FIND

You do not need to provide the variable name, because the Debug Tool
remembers the string you last searched for. Again, the Source window is
scrolled forward, varl is highlighted, and the cursor points to the variable.

You can think of the FIND command as a cursor-sensitive command, and you
can conveniently issue it if you first assign it to a PF key.

e Assume you have assigned FIND to a PF key and want to search for the vari-
able varl in the Source window. All you need to do is type "varl" or 'varl'
on the command line, move the cursor to the Source window, and press the
FIND PF key. The window scrolls forward and displays the occurrence of varl.

If you do not place the cursor in a selected window or specify a window on the
command line, the FIND command searches the window specified with the SET
DEFAULT WINDOW command or the Default window entry in your Profile Settings
Panel.

Chapter 5. Using the Debug Tool interfaces 99

Customizing your session

If you are searching for strings with trigraphs in them, the trigraphs or their equiv-
alents can be used as input, and Debug Tool matches them to trigraphs or their
equivalents.

Customizing your session

You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session parame-
ters, and change session panel colors. This section explains how to customize
your session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN MONITOR
to open the Monitor window), that window is acted upon. If the command is cursor-
oriented, such as the WINDOW SIZE command, the window containing the cursor is
acted upon. If you do not specify a window name and the cursor is not in any of
the windows, the window acted upon is determined by the setting of Default
window under the Profile Settings Panel. For information on the settings included
in that panel, see [‘Customizing settings” on page 104}

Changing Session Panel window layout

100

You can change window placements on the session panel during your session by
using the PANEL LAYOUT command. The PANEL keyword is optional. When you
issue this command, you are presented with a configuration panel as shown in
Figure 17. The configuration panel displays six possible ways you can change
your Debug Tool session panel window placements.

Window Layout Selection Panel
Command =—>

1 e e 2 mmmmmmmeee- e . Legend:

___________ L - Log
S N S (R I M - Monitor
___________ S - Source

--------------------------------- To reassign the
Source, Monitor,

b L emmmmmmeeen S - S . b e . and Log windows,
type over the
current settings
__________ or underscores
with L, M, or S.

Enter QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Figure 17. Window Layout Selection Panel. The default configuration is shown as option 1.

Initially, the session panel looks like the default window configuration shown as
H in Figure 17.

Debug Tool User's Guide and Reference

Customizing your session

To change the window placements for your Debug Tool session, select a configura-
tion example and move the cursor to your selected example. Type the desired
window letters—L for LOG, M for MONITOR, and S for SOURCE—over the under-
scores; then press ENTER. In Figure 17, configuration is the chosen config-
uration.

You can select only one configuration at a time. Also, only one of each type of
window can be visible at a time on your session panel. For example, you cannot
assign the session log to be visible in more than one window.

After you reassign the window placements, issue the END command or press the
END PF key to save the changes and return to the session display.

Opening and closing Session Panel windows

To open and close any of the windows on the Debug Tool session panel, issue the
WINDOW OPEN and WINDOW CLOSE commands. For example, if you want to open the
monitor window, enter:

WINDOW OPEN MONITOR;

You can also issue the WINDOW CLOSE command by typing it on the command line,
placing the cursor in the desired window (or by specifying the name of the window
as an operand of the WINDOW CLOSE command), and pressing ENTER. When you
close one or two specified windows, the remaining windows occupy the full area of
the screen. For example, to close the Source window from the command line,
enter:

WINDOW CLOSE SOURCE;

The WINDOW CLOSE command can be assigned to a PF key. For details, see
|Program Function (PF) keys to enter commands” on page 96|

If you want to monitor the values of selected variables as they change during your
Debug Tool session, the Monitor window must be open. If it is closed, open it as
described above. The Monitor window fills in the available space indicated by your
selected configuration.

If at anytime during your session you open a window and the contents assigned to
it are not available, the window is empty.

Sizing Session Panel windows

In addition to configuring, opening, and closing the Debug Tool session panel
windows, you can control the relative sizes of these windows by using the WINDOW
SIZE command. You can either explicitly specify the number of rows or columns
you want the window to contain (as appropriate for the window configuration) or
use the WINDOW SIZE command with the cursor. The WINDOW keyword is optional.
For example, to explicitly change the Source window from 10 rows deep to 12 rows
deep, enter:

WINDOW SIZE 12 SOURCE
By positioning the cursor at the point on the screen where you want the window

boundary and issuing the WINDOW SIZE command, you can adjust the relative sizes
of windows with great flexibility. For instance, assume only the Source and Log

Chapter 5. Using the Debug Tool interfaces 101

Customizing your session

windows are open and you want to enlarge the size of the Source window before
you step through your program. Enter:

WINDOW SIZE SOURCE;

on the command line, move the cursor to the desired row, and press ENTER. The
boundary of the Source window moves to the cursor position.

WINDOW SIZE can be assigned to a PF key. For details, see [Using Program Func-]
[tion (PF) keys to enter commands” on page 96

During your session, if you modify the relative sizes of your windows using the
cursor you can restore them to the default sizes by entering:

PANEL LAYOUT RESET;

Intersecting windows

To change the size of any intersecting windows (in configurations i, ., B . and
. shown in Figure 17) type:

WINDOW SIZE;

on the command line, move the cursor to where you want the windows to intersect,
and press ENTER. The windows are resized according to the new point of inter-
section.

Horizontal windows

To change the size of the upper two horizontal windows (in configuration ,
shown in Figure 17), use the WINDOW SIZE command as above, either moving the
cursor below the window intersection to increase the top window and decrease the
middle one, or moving it above the intersection to increase the middle window and
decrease the top one.

Similarly, you can change the size of the middle and bottom windows.

Vertical windows

To change the size of the left and middle windows (in configuration [[J , shown in
Figure 17), use the WINDOW SIZE command, either moving the cursor to the left of
the window intersection to increase the middle window and decrease the left one,
or moving it to the right of the intersection to increase the left window and decrease
the middle one.

Zooming a window

The WINDOW ZOOM command specifies that the indicated window be expanded to fill
the screen. This function allows you to view more data, reducing the amount of
scrolling needed.

If the specified window is already zoomed and you specify Z00M again, the currently
defined window configuration is restored.

102 Debug Tool User's Guide and Reference

Customizing your session

Customizing colors

You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown in Figure 18 appears.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity attri-
butes to distinguish fields.

Color Selection Panel
Command =—>
Color Highlight Intensity

Title : field headers TURQ NONE HIGH

output fields GREEN NONE LOW Valid Color:
Monitor: contents TURQ REVERSE LOW White Yellow Blue

1ine numbers TURQ REVERSE LOW Turg Green Pink Red
Source : listing area WHITE REVERSE LOW

prefix area TURQ REVERSE LOW Valid Intensity:

suffix area YELLOW REVERSE LOW High Low

current line RED REVERSE HIGH

breakpoints GREEN NONE LOW Valid Highlight:
Log : program output TURQ NONE HIGH None Reverse

test input YELLOW NONE LOW Underline Blink

test output GREEN NONE HIGH

1ine numbers BLUE REVERSE HIGH Color and Highlight
Command Tline WHITE NONE HIGH are valid only with
Window headers GREEN REVERSE HIGH color terminals.
Tofeof delimiter BLUE REVERSE HIGH
Search target RED NONE HIGH
Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

Figure 18. Color Selection Panel with Default Settings

Initially, the session panel areas and fields have the default color and attribute
values shown in Figure 18.

To change the color and attribute settings for your Debug Tool session, enter the
desired colors or attributes over the existing values of the fields you want to
change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the equiv-
alent SET COLOR command from the command line. Either specify the fields explic-
itly, or use the cursor to indicate what you want to change. Changing a color or
highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Settings remain in effect for the entire debug session.

To preserve any changes you make to the default color fields, specify a file before
you begin your session using the ddname inspsafe and the dsname or fileid of

Chapter 5. Using the Debug Tool interfaces 103

Customizing your session

your choice. Debug Tool recognizes any file with this ddname as the file where it
saves session panel settings for use during subsequent sessions. If you do not
allocate this file before your session, Debug Tool begins the next debugging
session with the values shown in Figure 18.

Customizing settings

104

The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way Debug Tool runs. This panel is shown in
Figure 19 with the IBM-supplied initial settings. You can change the settings by
either typing over them with the desired values, or by issuing the appropriate SET
command from the command line or from within a commands file.

Profile Settings Panel
Command =—=>
Current Setting

Change Test Granularity STATEMENT (A11,B1k,Line,Path,Stmt)
DBCS characters NO (Yes or No)

Default Listing PDS name(MVS only)

Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)
Default window SOURCE (Log,Monitor,Source)
Execute commands YES (Yes or No)

History YES (Yes or No)

History size 100 (nonnegative integer)
Logging YES (Yes or No)

Pace of visual trace 2 (steps per second)
Refresh screen NO (Yes or No)

Rewrite interval 50 (number of output Tines)
Session log size 1000 (number of retained lines)
Show Tog 1ine numbers YES (Yes or No)

Show message ID numbers NO (Yes or No)

Show monitor line numbers YES (Yes or No)

Show scroll field YES (Yes or No)

Show source/listing suffix YES (Yes or No)

Show warning messages YES (Yes or No)

Test level ALL (A11,Error,None)

Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

Figure 19. Profile Settings Panel with Default Settings

A list of the profile parameters, their descriptions, and the equivalent SET com-
mands follows.

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET CHANGE.

DBCS characters
Controls whether the shift-in and shift-out characters are recognized. Equiv-
alent to SET DBCS.

Default Listing PDS name
If specified, the data set where Debug Tool looks for the source/listing. This
field appears only if you are debugging on MVS. Equivalent to SET DEFAULT
LISTINGS.

Debug Tool User's Guide and Reference

Customizing your session

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no amount
is specified. Equivalent to SET DEFAULT SCROLL.

Default window
Selects the default window acted upon when WINDOW commands are issued with
the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

History
Controls whether a history (an account of each time Debug Tool is entered) is
maintained. Equivalent to SET HISTORY.

History size
Controls the size of the Debug Tool history table. Equivalent to SET HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is
another application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the appli-
cation before Debug Tool refreshes the screen. Equivalent to SET REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line numbers
Turns line numbers on or off in the log window. Equivalent to SET LOG NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in Debug Tool messages. Equivalent
to SET MSGID.

Show monitor line numbers
Turns line numbers on or off in the monitor window. Equivalent to SET MONITOR
NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C/C++ and PL/I only)
Controls whether warning messages are shown or conditions raised when com-
mands contain evaluation errors. Equivalent to SET WARNING.

Chapter 5. Using the Debug Tool interfaces 105

Customizing your session

Test level
Selects the classes of exceptions to cause automatic entry into Debug Tool.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough to
show all the profile parameters at once. This field is not shown in Figure 19.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the exe-
cution of each statement when you issue the STEP command by modifying the
amount specified in the Pace of visual trace field at any time during your session.

To modify the profile settings for your session, enter a new value over the old value
in the field you want to change. Equivalent SET linemode commands are issued
when you QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
Panel as well.

To preserve any changes you make to the default profile settings, specify a file
before you begin your session using the ddname inspsafe and the dsname or fileid
of your choice. Debug Tool recognizes any file with this ddname as the file where
it saves session panel settings for use during subsequent sessions. All PANEL set-
tings are saved, except the setting for the Listing Panel and the following settings:

COUNTRY

FREQUENCY

INTERCEPT

LOG

NATIONAL LANGUAGE
PROGRAMMING LANGUAGE
QUALIFY

SOURCE

TEST

If you do not allocate this file before your session, Debug Tool begins the next
debugging session with the values shown in Figure 19.

Settings remain in effect for the entire debug session.

Using a Preferences File to customize your session

106

Users can place a set of commands into a data set, called a Preferences File, and
then indicate that file should be used by providing its name in the preferences file
suboption of the TEST run-time string. Debug Tool reads these commands at initial-
ization and sets up the session appropriately.

The following is an example of a Preferences File:

Debug Tool User's Guide and Reference

Getting help

file Edit Confirm Menu Utilities Compilers Test Help

EDIT TSTPINE.USE.PDS(PREF) - 01.15
Command ===>
*kkkkk kkkkkkkkkkkkkkhkkkkkhkkkkkkkrkkxx Top of Data *x*x**x*xx*x*

000001 SET TEST ERROR;

000002 SET DEFAULT SCROLL CSR;
000003 SET HISTORY OFF;
000004 SET MSGID ON;

000005 DESCRIBE CUS;

*hkkkhk Khhkkkkhkkkkhrkkkhrkkkhkrkxkhrxkhxxkx*x Bottom of Date ***xx*x**xx

For more information on specifying a preference_file in the TEST string, see [20]

Getting help during your session

Command syntax help is available with Debug Tool. If you are uncertain as to the
proper syntax or exact keywords required by a command, enter the command, fol-
lowed by a question mark, on the command line:

STEP ?

The following information is displayed in your Log window:

The partially parsed command is:
STEP

The next word can be one of:

* OVER

5 RETURN

unsigned positive integer

INTO

Chapter 5. Using the Debug Tool interfaces 107

Multiple processes and enclaves

Chapter 6. Multiple processes and enclaves

This chapter discusses invocation of Debug Tool with more than one process,
debugging multiple enclaves, and using Debug Tool features with multiple enclaves.

The following topics are covered in this chapter:

Debugging applications within multiple enclaves
Invoking Debug Tool within an enclave

Using the source window and related windows
Retaining a log file of your Debug Tool session
Processing commands from a commands file

Using breakpoints within multiple enclaves

ending a Debug Tool session

Using Debug Tool commands within multiple enclaves

Debugging applications within multiple enclaves

There is a single Debug Tool session across all enclaves in a process. Break-
points set in one process are restored when the new process begins in the new
session.

Invoking Debug Tool within an enclave

Once an enclave in a process activates Debug Tool, it remains active throughout
subsequent enclaves in the process, regardless of whether the run-time options for
the enclave specify TEST or NOTEST. Debug Tool retains the settings specified from
the TEST run-time option for the enclave that activated it, until you modify them with
SET TEST (see ['SET TEST” on page 330). If your Debug Tool session includes
more than one process, the settings for TEST are reset according to those specified
on the run-time TEST option of the first enclave that activates Debug Tool in each
new process.

If Debug Tool is first activated in a nested enclave of a process, and you STEP or GO
back to the parent enclave, you can debug the parent enclave. However, if the
parent enclave contains COBOL but the nested enclave does not, Debug Tool is
not active for the parent enclave, even upon return from the child enclave.

Upon activation of Debug Tool, the initial commands string, primary commands file,
and the preferences file are run. They run only once, and affect the entire Debug
Tool session. A new primary commands file cannot be invoked for a hew enclave.

Using the source window and related windows

108

A particular enclave's Source or Listing windows and their related windows
(Compact Source, Local Breakpoint, and Local Monitor windows) are hidden when
that enclave invokes another enclave. You cannot open a Source or Listing
window for a compile unit unless that compile unit is in the current enclave.

© Copyright IBM Corp. 1995, 1999

Multiple processes and enclaves

Retaining a log file of your Debug Tool session

Ensure that your log file is correctly allocated. See [‘Using the session log file to|
|[maintain a record of your session” on page 92|

Processing commands from a commands file

A commands file continues to process its series of commands regardless of what
level of enclave is entered.

Using breakpoints within multiple enclaves

When any process is initialized, a termination breakpoint is automatically defined for
the process. Unless you clear or disable this breakpoint, it will be triggered when
the process finishes execution. During run time of a termination breakpoint, GO and
STEP are valid commands that cause your program to continue running the next
process in the series.

Ending a Debug Tool session

You cannot specify NOPROMPT as the third suboption in the TEST run-time option for
the next process on the host. This is to ensure that STATEMENT/LINE, ENTRY, EXIT,
and LABEL breakpoints are properly restored when the next process starts. If you

have not used these breakpoint types, you can specify NOPROMPT.

In a single enclave, QUIT closes Debug Tool.

In a nested enclave, however, QUIT causes Debug Tool to signal a severity 3 condi-
tion corresponding to Language Environment message CEE2529S. The system is
attempting to cleanly terminate all enclaves in the process.

Normally, the condition causes the current enclave to terminate. Then, the same

condition will be raised in the parent enclave, which will also terminate. This con-
tinues until all enclaves in the process have been terminated. As a result, you will
see a CEE2529S message for each enclave that is terminated.

There is one case where Debug Tool raises Language Environment severity 3 con-
dition and all enclaves in the process do not terminate: Under CICS, when the
assembler user exit for the application (or the default assembler user exit) does not
perform an EXEC CICS ABEND for unhandled severity 3 conditions. In these
cases, the application continues to run, but Debug Tool becomes inactive.

For CMS Only : Under CMS, an unhandled condition in a nested enclave causes
an Language Environment abend 4094 with reason code 40.

or CICS and MVS Only : Under CICS and MVS, an abend appears on the applica-
tion terminal. For Language Environment 1.3 it is 4038. An abend at termination
of a nested enclave is normal and should be expected.

Chapter 6. Multiple processes and enclaves 109

Multiple processes and enclaves

Using Debug Tool commands within multiple enclaves

Some Debug Tool commands and variables have a specific scope for enclaves and
processes. Table 2 summarizes the behavior of specific Debug Tool commands
and variables when you are debugging an application that consists of multiple
enclaves. For syntax and a full description of each of the Debug Tool commands,
see|Chapter 13, “Debug Tool commands” on page 209|

Table 2 (Page 1 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Affects Affects
Current Entire
Enclave Debug Tool
Debug Tool Command Only Session Comments
%CAAADDRESS X
AT GLOBAL
AT TERMINATION
CLEAR AT X X In addition to clearing breakpoints set in the current
enclave, CLEAR AT can clear global breakpoints.
CLEAR DECLARE X
CLEAR VARIABLES
Declarations Session variables are cleared at the termination of
the process in which they were declared.
DISABLE X X In addition to disabling breakpoints set in the current
enclave, DISABLE can disable global breakpoints.
ENABLE X X In addition to enabling breakpoints set in the current
enclave, ENABLE can enable global breakpoints.
LIST AT X X In addition to listing breakpoints set in the current
enclave, LIST AT can list global breakpoints.
LIST CALLS X Applies to all systems except MVS batch and MVS
with TSO. Under MVS batch and MVS with TSO,
LIST CALLS lists the call chain for the current active
thread in the current active enclave.
For programs containing interlanguage communi-
cation (ILC), routines from previous enclaves are
only listed if they are coded in a language that is
active in the current enclave.
Also lists compile units in parent enclaves under
CMS if the enclave was created using view SVC
LINK. If the enclave was created with the system()
function or the CMSCALL macro, compile units in
parent enclaves will not be listed.
Note: Only compile units in the current thread will
be listed for PL/I multitasking applications.
LIST EXPRESSION X You can only list variables in the currently active
thread.
LIST LAST
LIST NAMES CUS X Applies to compile unit names. In the Debug Frame
window, compile units in parent enclaves are
marked as deactivated.

110 Debug Tool User's Guide and Reference

Multiple processes and enclaves

Table 2 (Page 2 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Debug Tool Command

Affects
Current
Enclave
Only

Affects
Entire
Debug Tool
Session

Comments

LIST NAMES TEST

X

Applies to Debug Tool session variable names.

MONITOR GLOBAL

X

Applies to Global monitors.

PROCEDURE

X

SET COUNTRYL

This setting affects both your application and Debug
Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent's
settings are restored upon return from a child
enclave.

SET EQUATEL

SET INTERCEPT1

For C, intercepted streams or files cannot be part of
any C 1/O redirection during the execution of a
nested enclave. For example, if stdout is inter-
cepted in program A, program A cannot then redi-
rect stdout to stderr when it does a system() call
to program B. Also, not supported for PL/I.

SET NATIONAL LANGUAGEL

This setting affects both your application and Debug
Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent's
settings are restored upon return from a child
enclave.

SET PROGRAMMING
LANGUAGEL

Applies only to programming languages in which
compile units known in the current enclave are
written (a language is "known" the first time it is
entered in the application flow).

SET QUALIFY1

Can only be issued for load modules, compile units,
and blocks that are known in the current enclave.

SET TEST1

TRIGGER condition2

Applies to triggered conditions.2 Conditions can be
either an Language Environment symbolic feedback
code, or a language-oriented keyword or code,
depending on the current programming language
setting.

TRIGGER AT

In addition to triggering breakpoints set in the
current enclave, TRIGGER AT can trigger global
breakpoints.

Note:

1. SET commands other than those listed in this table affect the entire Debug Tool session.
2. If no active condition handler exists for the specified condition, the default condition handler can cause the
program to end prematurely.

Chapter 6. Multiple processes and enclaves 111

Using Debug Tool in different modes and environments

Chapter 7. Using Debug Tool in different modes and

environments

This chapter describes:

¢ Using Debug Tool in line or batch mode

e Running multitasking programs with Debug Tool.

e Debugging ISPF applications

e Programming considerations for DB2, IMS, and CICS programs

¢ Requirements when using Debug Tool with DB2, IMS, and CICS programs
e Suggestions on invoking Debug Tool in DB2, IMS, and CICS environments
e Using Debug Tool CICS Interactive Run-Time Facility (DTCN)

Using Debug Tool in line mode

Commands you

112

If you only have access to a typewriter-like terminal, you need to use Debug Tool in
line mode.

Note: Line mode is not supported in CICS.

To start a line-mode Debug Tool session, make sure the setting of SCREEN is off
by specifying it in either your primary commands file, preferences file, or the initial
command string included in the TEST run-time option. Then follow the steps out-
lined in ['Invoking your program when starting a debugging session” on page 30| to
begin a Debug Tool session in CMS or MVS with TSO. If you are using a terminal
that does not support a full-screen session, Debug Tool defaults to line mode.

Debug Tool issues a message indicating that execution has begun.

After control is given to Debug Tool, it displays the following prompt when it is
ready for a command:

TEST:
or
TEST (qualify:>location):

where qualify:>location is replaced by Debug Tool's current location in the
program. The prompt used depends on the current PROMPT setting (SHORT or LONG).
Enter your commands at the prompt.

If you need to continue a command, use the command continuation character, the
hyphen (-), and the prompt is replaced by the word PENDING.... When you are
finished with Debug Tool in line mode, end your session by entering QUIT.

can use in line mode

You can use most, but not all, Debug Tool commands in line mode. The com-
mands that you cannot use are those designed to control your full-screen session,
such as PANEL commands, WINDOW commands, and cursor-sensitive commands.
For more information on the commands and their appropriate usage, see

[Chapter 12, “Using Debug Tool commands” on page 197|

To help make line-mode debugging more efficient, use the LIST command to list
source statements. See ['LIST command” on page 278|for more information.

© Copyright IBM Corp. 1995, 1999

Running multitasking programs with Debug Tool

Getting HELP during a line-mode session

Online command syntax help is available for each Debug Tool command, similar to
the help described in [‘Getting help during your session” on page 107|

You must issue a separate request for syntax help for each command.

Using Debug Tool in batch mode
Debug Tool can run in batch mode, creating a noninteractive session.
In batch mode, Debug Tool receives its input from either the primary commands

file, the USE file, or the command string specified in the run-time TEST option, and
writes its normal output to a log file.

Note: You must ensure that you speify a log data set.
Commands that require user interaction, such as PANEL, are invalid in batch mode.

You might want to run a Debug Tool session in batch mode if:

e You want to restrict the processor resources used. Batch mode generally uses
fewer processor resources than interactive mode.

* You have a program that might tie up your terminal for long periods of time.
With batch mode, you can use your terminal for other work while the batch job
is running.

e You are debugging an application in its native batch environment, such as
MVS/JES or CICS batch.

When Debug Tool is reading commands from a specified data set or file and no
more commands are available in that data set or file, it forces a GO command until
the end of the program is reached.

When debugging in batch mode, use QUIT to end your session.

For a sample JCL for batch mode, see [Figure 4 on page 34,

Running multitasking programs with Debug Tool

You can run your multitasking programs with Debug Tool. When more than one
task is involved in your program, Debug Tool might be invoked by any or all of
them. Because conflicting use of the terminal or log file, for example, could occur if
Debug Tool is operating on multiple tasks, its use is single-threaded. So, if your
program runs as two tasks (task A and task B) and task A calls Debug Tool, Debug
Tool accepts the request and begins operating on behalf of task A. If, during that
period, task B calls Debug Tool, the request from task B is held until the request
from task A is complete (for example, you issued a STEP or GO command). Debug
Tool is then released and can accept any pending invocation.

See 05/390 Language Environment Programming Guide, for more information.

Chapter 7. Using Debug Tool in different modes and environments 113

Debugging DB2 programs

MVS/ESA* SP V5R1 with OpenEdition R2 requirement

MVS/ESA SP V5R19 (or later) with OpenEdition (OE) R2 is required to run multi-
tasking applications. The OpenEdition R2 must be installed and activated in order
to run multitasking applications.

The OpenEdition R2 is needed so that the POSIX-defined multithreading functions
can be used to support multitasking.

Restrictions when debugging multitasking applications

The following is a list of restrictions when debugging multitasking applications:

¢ Debugging applications that create another process because of conflicting use
of the terminal.

¢ Only variables and symbol information for compile units in the task currently
being debugged are accessible.

e The LIST CALL command only provides a traceback of the compile units in the
current task.

¢ The source file can reside on an HFS file system, but executables that are
stored on an HFS file system cannot be debugged.

Debugging ISPF applications

When debugging ISPF applications or applications using line mode 1/O, issue the
SET REFRESH ON command.

This command is executed and is displayed in the log output area of the
Command/Log window. Note that SET REFRESH ON modifies the Debug Tool envi-
ronment. Consequently, the REFRESH setting is saved in the preferences file
(inspsafe), and it is preserved between Debug Tool invocations. So, you only
need to specify it once; Debug Tool uses the same setting on subsequent invoca-
tions.

For general information about defining the Debug Tool environment and the prefer-
ences file, see|‘Customizing your session” on page 100

When you are debugging ISPF applications, Debug Tool and the application share
the same emulator session. Consequently, it is necessary to press PA2 after each
ISPF panel display. PA2 refreshes the ISPF application panel and removes resi-
dual Debug Tool output from the emulator session. This is necessary only if Debug
Tool sends output to the emulator session between ISPF application panel displays.

Debugging DB2 programs

114

When you are planning to use Debug Tool to debug your DB2 programs, certain
steps need to be taken. These steps are described in detail below.

Debug Tool User's Guide and Reference

Debugging DB2 programs

Programming considerations

There are no special coding techniques for any DB2 programs you might want to
debug using Debug Tool. For details on how to code your program to access a
DB2 database, see the HLL Programming Guides and the /IBM DATABASE 2 Appli-
cation Programming Guide.

To communicate with DB2, you should:

¢ Delimit SQL statements with EXEC SQL and END-EXEC statements
e Declare SQLCA in working storage

e Declare the host variables

e Code the appropriate SQL statements

e Test the DB2 return codes

Program preparation

Program preparation includes the DB2 precompiler, the compiler, the Language
| Environment prelinker, the linkage editor, and DB2 bind. The program listing (for
| COBOL and PL/l) or the program source file (for C/C++) must be retained in a per-
| manent data set for Debug Tool to read when you debug your program.
|
|

Note: For C/C++, it is the input to the compiler, that is, the output from the DB2
precompiler, that needs to be retained.

| Precompile requirements

Before your program can be compiled, the SQL statements must be prepared using
the DB2 precompiler. For details about the precompiler, see IBM DATABASE 2
Application Programming Guide. No special preparations are needed in the pre-
compile step to use Debug Tool.

When debugging a program containing SQL, keep the following in mind:

e The SQL preprocessor replaces all the SQL statements in the program with
host language code. The modified source output from the preprocessor con-
tains the original SQL statements in comment form. For this reason, the source
or listing view displayed during a debugging session can look very different
from the original source.

e The host language code inserted by the SQL preprocessor invokes the SQL
access module for your program. You can halt program execution at each call
to a SQL module and immediately following each call to a SQL module, but the
called modules cannot be debugged.

Compile requirements
The output from the precompiler must be used as input to the compiler. To debug
your program with Debug Tool, use the compile-time TEST option. A description of
TEST is found in one of the following sections:

[‘Compiling a C program with the compile-time TEST option” on page 5
[‘Compiling a C++ program with the compile-time TEST option” on page 9

[FCompiling a COBOL program with the compile-time TEST option” on page 15|

“Compiling a PL/l program with the compile-time TEST option” on page 14 |

The suboptions of the compile-time TEST option control the production of such
debugging aids as dictionary tables and program hooks that Debug Tool needs in

Chapter 7. Using Debug Tool in different modes and environments 115

Debugging DB2 programs

order to debug your program. The choices you make when compiling your program
can affect the amount of Debug Tool function available during your debugging
session. When a program is under development, you should compile it with
TEST(ALL) to get the full capability of Debug Tool.

Important : Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

Link requirements

The output from the compiler must be linked into your program load library. You
can include the user run-time options module, CEEUOPT, by doing the following:

1. Find the user run-time options program CEEUOPT in the Language Environ-
ment SCEESAMP library.

2. Change the NOTEST parameter into a default TEST parameter:

old: NOTEST=(ALL,*,PROMPT,INSPPREF),
new: TEST=(,*,;,*),

3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to invoke Debug Tool.

See [‘Using alternative Debug Tool invocation methods” on page 34|for more infor-
mation.

[Eigure 20 on page 117| shows the modified assembler program, CEEUOPT.

The user run-time options program can be assembled with predefined TEST run-time
options to establish defaults for one or more applications. Link-editing an applica-
tion with this program results in the default options when that application is invoked.

If your system programmer has not already done so, include all the proper libraries
in the SYSLIB concatenation. For example, the ISPLOAD library for ISPLINK calls,
and the DB2 DSNLOAD library for the DB2 interface modules (DSNxxxx).

Bind requirements

Before you can run your DB2 program, you must run a DB2 bind in order to bind
your program with the relevant DBRM output from the precompiler step. No special
requirements are needed for Debug Tool.

Using Debug Tool with DB2 programs

Batch mode

You can debug DB2 programs in either batch or interactive mode. When using
batch mode, you must know the exact Debug Tool commands you want to have
executed during the test and include them in the command input file. In interactive
mode, the debugging commands can be entered interactively.

In order to debug your program with Debug Tool while in batch mode, follow these
steps:

1. Make sure the Debug Tool modules are available, either by STEPLIB or
through the LINKLIB.

116 Debug Tool User's Guide and Reference

Debugging DB2 programs

*/**/

/ LICENSED MATERIALS - PROPERTY OF IBM */
*/% 5688-198 (C) COPYRIGHT IBM CORP. 1994. ALL RIGHTS RESERVED. */
* /% SEE COPYRIGHT INSTRUCTIONS. */

*/**/
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
CEEXOPT ABPERC=(NONE),
AIXBLD= (OFF),
ALL31=(OFF),
ANYHEAP= (32K, 16K, ANYWHERE, FREE) ,
BELOWHEAP= (32K, 16K, FREE) ,
CBLOPTS=(ON),
CBLPSHPOP=(ON),
CBLQDA=(ON) ,
CHECK= (ON) ,
COUNTRY=(US) ,
DEBUG=(ON),
ERRCOUNT=(20) ,
HEAP= (64K, 64K, ANYWHERE, KEEP, 16K, 16K) ,
INTERRUPT= (OFF) ,
LIBSTACK= (32K, 16K, FREE),
MSGFILE=(SYSOUT),
MSGQ=(15),
NATLANG= (ENU) ,
TEST=(,*,3,*),
RPTOPTS=(OFF),
RPTSTG=(OFF),
RTEREUS=(OFF),
SIMVRD=(OFF),
STACK=(512K,512K,BELOW, KEEP) ,
STORAGE= (NONE , NONE,, NONE, 8K) ,
TERMTHDACT=(MSG) ,
TRAP=(ON) ,
UPSI=(00000000),
VCTRSAVE= (OFF)
XUFLOW=(OFF)
DC C'5688-198 (C) COPYRIGHT IBM CORP. 1994'
DC C'LICENSED MATERIAL - PROGRAM PROPERTY OF IBM'
END

DK 3K 3K X XX XX XX X 3K 3K 3 X X XX X X X X X X X X X X X X X X X

Figure 20. Run-time options module CEEUOPT

2. Provide all the data set definitions in the form of DD statements (example: Log,
Preference, list, and so on).

3. Specify your debug commands in the command input file.

4. Run your program through the TSO batch facility.

Interactive mode

In this mode, you can decide at debug time what debugging commands you want
issued during the test.

Using TSO Commands

1. Ensure that either you or your system programmer has allocated all the
required data sets through a CLIST or REXX EXEC.

2. Issue the DSN command to invoke DB2.

Chapter 7. Using Debug Tool in different modes and environments 117

Debugging IMS programs

3. Issue the RUN subcommand to execute your program. The run-time TEST option
can be specified as a parameter on the RUN subcommand. An example for a
COBOL program is:

RUN PROG(progname) PLAN(planname) LIB('user.library')
PARMS (' /TEST(,*,3,*)")

Using TSO/Call Access Facility (CAF)
1. Link-edit the CAF language interface module DSNALI with your program.

2. Ensure that the data sets required by Debug Tool and your program have been
allocated through a CLIST or REXX procedure.

3. Issue the TSO CALL command CALL 'DSN230.RUNLIB.LOAD(name of your
program) ', to start your program. DSN230 is a default high-level qualifier and
DB2 might be installed elsewhere on your system. Include the run-time TEST
option as a parameter in this command.

After your program has been initiated, debug your program by issuing the required
Debug Tool commands.

Note: If your source does not come up in Debug Tool when you launch it, check
that the listing or source file name corresponds to the MVS library name,
and that you have at least read access to that MVS library. For more infor-
mation see FPANEL command (full-screen mode)” on page 295| ['SET|

[DEFAULT LISTINGS (MVS)” on page 313] and ['SET SOURCE” on|
[page 328]

The program listing (for COBOL and PL/I) or program source (for C/C++) that
Debug Tool displays and uses for the debugging session is the output from the
compile step and precompile step respectively, and thus includes all the DB2
expansion code produced by the DB2 precompiler.

For more information on accessing the correct DB2 program library, and on using
the TSO and call attachment facilities, see IBM DATABASE 2 Administration Guide.

Debugging IMS programs

118

When testing IMS online transaction programs, use the Batch Terminal Simulator
(BTS) Full-Screen Image Support (FSS) to display your MFS screen formats on the
TSO terminal. This enables you to enter data on-screen in the same way as it
would be entered in IMS.

FSS is the default option when BTS is started in the TSO foreground, and is only
available when you are running BTS in the TSO foreground. FSS can only be
turned off by specifying TSO=NO on the ./O command. When running in the TSO
foreground, all call traces are displayed on your TSO terminal by default. This can
be turned off by parameters on either the ./0 or ./T commands. For more details
on BTS and the FSS facility, see IMS/VS Batch Terminal Simulator Program Refer-
ence and Operations Manual.

Debug Tool User's Guide and Reference

Debugging IMS programs

Program preparation
Program preparation steps for IMS include compile and link activities.

Compile requirements

Your program must be compiled with the compile-time TEST option. Use the default
options to gain maximum debugging facilities.

Important : Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/l) is stored in a permanent data set
that is available to Debug Tool.

Link requirements

When you link your program, you must include a run-time options module in your
program link. They must be coded and assembled in a user-defined run-time
option module. For instructions on how to create the CEEUOPT run-time options
module using the CEEXOPT macro, follow steps 1 to|4 on page 116|under [‘Link]

requirements.’

Additionally, for COBOL, include the IMS interface module DFSLIO0O from the IMS
RESLIB library.

Using Debug Tool with IMS programs

Debug Tool can be used with the IMS Batch Terminal Simulator (BTS) to debug
IMS programs in one of three ways:

1. To test your IMS program interactively, use Debug Tool while running BTS in
the TSO foreground. The IMS program still executes in batch; however, it
invokes a CLIST that runs interactively. This is the only way to use the interac-
tive mode of Debug Tool.

2. Run BTS as a batch job. Only the batch mode of Debug Tool can be used
with BTS running as a batch job.

3. Test your program as an IMS batch job (without BTS). Only the batch mode of
Debug Tool can be used without BTS.

Interactive mode

The only way to invoke Debug Tool in interactive mode is to run BTS in the TSO
foreground. In interactive mode, Debug Tool commands can be entered as
required.

If you want to debug an IMS batch program using the interactive mode of Debug
Tool, do the following under BTS:

1. Define a dummy transaction code on the ./T command to initiate your program
2. Include a dummy transaction in the BTS input stream
3. Start BTS in the TSO foreground

Note: If your source (C/C++) or listing (COBOL and PL/I) does not come up in
Debug Tool when you launch it, check that the source or listing file name
corresponds to the MVS library name, and that you have at least read
access to that MVS library. For more information see[‘PANEL command|
[(full-screen mode)” on page 295|and|*SET SOURCE” on page 328|

Chapter 7. Using Debug Tool in different modes and environments 119

Debugging CICS programs

Batch mode

Currently, Debug Tool can only be used to debug one iteration of a transaction at a
time. When the program terminates you must close down Debug Tool before you
can view the output of the transaction.

Therefore, if you use an input data set, you can only specify data for one trans-
action in that data set. The data for the next transaction must be entered from your
TSO terminal.

A new debugging session will be started automatically for the next transaction.
When using FSS, you must enter the /* command on your TSO terminal to termi-
nate the BTS session.

You can use Debug Tool to debug IMS programs in batch mode. The debug com-
mands must be predefined and included in one of the Debug Tool command files,
or in a command string. The command string can be specified as a parameter
either in the run-time TEST option, or when CALL CEETEST or __ctest is used.
Although batch mode consumes fewer resources, you must know beforehand
exactly which debug commands you are going to issue. When you run BTS as a
batch job, the batch mode of Debug Tool is the only mode available for use.

For example, you can allocate a data set, userid.CODE.BTSINPUT with individual
members of test input data for IMS transactions under BTS.

Under IMS, you can invoke Debug Tool in the following ways:

e Use the compiler run-time option (#pragma runopts for C and C++)
e Include CSECT CEEUOPT when linking your program (for C/C++)
e Use the Language Environment callable service CEETEST (__ctest() for C/C++)

Using alternative methods of command input under IMS

You can issue Debug Tool commands in different ways, depending on which mode
you are running under.

In TSO/BTS, commands are interactive.

e Run-time TEST options (primary commands file, preferences file, or command
string)

* line mode

e full-screen mode

Outside BTS, run-time TEST options (primary commands file, preferences file, or
command string) are in batch IMS mode.

Under BTS, run-time TEST options (primary commands file, preferences file, or
command string) are in BTS batch mode.

Debugging CICS programs

Before you can debug your programs under CICS, make sure your Systems Pro-
grammer has made the appropriate changes to your CICS region to support Debug
Tool (see your compiler Installation Guide or Program Directory). You also need to
ensure that your program is translated by the CICS translator prior to compilation.
The program listing (for COBOL and PL/I) or the program source file (for C/C++)

120 Debug Tool User's Guide and Reference

Debugging CICS programs

must be retained in a permanent data set for Debug Tool to read when you debug
your program.

Note: For C/C++, it is the input to the compiler (that is, the output from the CICS
translator) that needs to be retained. To enhance performance when using
Debug Tool, use a large blocksize when saving these files.

Debug modes under CICS

Debug Tool can run in several different modes, providing you with the flexibility to
debug your applications in the way that suits you best. These modes include:

¢ Single Terminal Mode:

This is probably the mode you will use the most. A single 3270 session is used
by both Debug Tool and the application, swapping displays on the terminal as
required.

As you step through your application, the terminal shows Debug Tool screens,
but when an EXEC CICS SEND command is issued, that screen will be displayed.
Debug Tool holds that screen on the terminal for you to review—simply press
ENTER to return to a Debug Tool screen. When your application issues EXEC
CICS RECEIVE, the application screen again appears, so you can fill in the
screen detalils.

¢ Dual Terminal Mode:

This mode can be useful if you are debugging screen I/O applications. Debug
Tool displays its screens on a separate 3270 session than the terminal dis-
playing the application.

You step through the application using the Debug Tool terminal and, whenever
the application issues an EXEC CICS SEND, the screen is sent to the application
display terminal. Note that, if you do not code IMMEDIATE on the EXEC CICS
SEND command, the buffer of data might be held within CICS Terminal Control
until an optimum opportunity to send it is encountered--usually the next EXEC
CICS SEND or EXEC CICS RECEIVE. When the application issues an EXEC CICS
RECEIVE, the Debug Tool terminal will wait until you respond to the application
terminal.

¢ |nteractive Batch Mode:

Use this mode if you are debugging a transaction that does not have a terminal
associated with it. The transaction continues to run without a CICS principal
facility, but Debug Tool screens are displayed on a 3270 session that you
name.

¢ Noninteractive Batch Mode:

In this mode, Debug Tool does not have a terminal associated to it at all. It
receives its commands from a command file and writes its results to a log file.
This mode is useful if you want Debug Tool to debug a program automatically.

Invoking Debug Tool under CICS

There are several different mechanisms available to invoke Debug Tool under
CICS. Each mechanism has a different advantage and are listed below:

¢ DTCN, a full-screen CICS transaction that allows you to dynamically modify any
Language Environment run-time TEST/NOTEST option with which your applica-

Chapter 7. Using Debug Tool in different modes and environments 121

Debugging CICS programs

DTCN Overview

tion was originally link-edited. You can also use DTCN to modify other Lan-
guage Environment run-time options that are not specific to Debug Tool.

DTCN is the recommended mechanism for invoking Debug Tool sessions and
supports all the modes outlined in [‘Debug modes under CICS” on page 121|

Language Environment CEEUOPT module link-edited into your application,
containing an appropriate TEST option, which tells Language Environment to
invoke Debug Tool every time the application is run.

This mechanism can be useful during initial testing of new code when you will
want to run Debug Tool frequently. For information on preparing CEEUOPT in
this manner, see [‘Using CEEUOPT to invoke Debug Tool under CICS” on|

A compile-time directive within the application, such as #pragma runopts(test)
(for C/C++) or CALL CEETEST.

These directives can be useful when you need to run multiple debug sessions
for a piece of code that is deep inside a multiple enclave or multiple CU appli-
cation. The application runs without Debug Tool until it encounters the direc-

tive, at which time Debug Tool is invoked at the precise point that you specify.

With CALL CEETEST, you can even make the invocation of Debug Tool condi-
tional, depending on variables that the application can test.

e CICS CEDF utility where you can invoke a debug session in Dual Terminal
mode alongside CEDF, using a special option on the CEDF command.

This mechanism does not require you to change the application link-edit

options or code, so it can be useful if you need to debug programs that have
been compiled with the TEST option, but do not have invocation mechanisms
built into them. For information on using CEDF under CICS, see
[to_invoke Debug Tool under CICS” on page 127

DTCN is a menu-driven tool that allows you to specify when to activate Debug Tool
for CICS programs. You can do this by entering your debugging requirements into
the DTCN panels from your CICS terminal. DTCN then saves these debugging

requirements in its repository. When a CICS program starts, Debug Tool is invoked

if the task environment matches a repository item.

DTCN profiles contain the identifiers (IDs) of CICS resources to debug. These
resource IDs can be Terminal, Transaction, Program, or User.

DTCN not only provides the capability to specify what to debug by specifying
debug resource IDs, DTCN also provides the capability to specify how the debug
session will run, for example, whether a mainframe (MFI) or workstation (VAD)
debug session is desired.

Preparing DTCN to invoke Debug Tool under CICS

In order to use the DTCN utility to invoke Debug Tool, link-edit the DTCN custom-
ized Language Environment user exit, CEEBXITA, into the CICS program you want
to debug, using one of the following methods:

1. If your installation is not using this user exit, link-edit member EQADCCXT,
which contains the CSECT CEEBXITA, from library
EQAW.V1R2MO0.SEQAMOD into your main program.

122 Debug Tool User's Guide and Reference

Debugging CICS programs

2. If your installation is already using CEEBXITA, request the name and location
of the DTCN customized exit from your CICS system administrator and link that
exit with your main program.

Once you have successfully link-edited your program, the application is ready to
run. However, before you begin debugging your application, make sure you use
the DTCN transaction to create a profile that specifies the resource ID combination
that you want to debug. Once the profile has been created, store it in the Debug
Tool repository. You are now ready to run your application.

Creating and storing a DTCN Profile in the DTCN Repository

When you want to start a Debug Tool session under CICS, log on to a CICS ter-
minal and enter the transaction ID DTCN. The DTCN transaction displays the main
DTCN screen, Debug Tool CICS Control - Primary Menu shown in
Some of the entry fields are filled in with default values. These values
have been set to activate Debug Tool for tasks running on the terminal displaying
the DTCN panel. The Debug Tool session is started in MFI single terminal mode,
so debug screens are sent to the terminal that displays the DTCN panel.

Most users don't need to alter the default settings; but, if you want to change the
settings on this panel, simply enter the new values.

DTCN has a secondary options panel, Debug Tool CICS Control - Menu 2 shown
in[Figure 22 on page 125 This panel controls Debug Tool behavior when it is
active. If you want to change the default values set on this panel, switch to the
panel by pressing PF9, enter the your new values, then press PF3 to return to the
primary panel.

As you enter options into the DTCN panels, DTCN displays the TEST string that is
being generated in the display field Generated String. When you are satisfied with
the settings shown on the panel, press PF4 to save the profile in the repository.

DTCN stores one profile for each DTCN terminal. Each profile is retained in the
repository until it is explicitly deleted by the terminal that entered it. After you save
the profile in the repository, DTCN shows the saved TEST string in the display field
Repository String. When you are satisfied with the saved profile, press PF3 to exit
DTCN.

Now, any tasks that run in the CICS system and match the resource IDs that you
specified on the DTCN panel will invoke Debug Tool.

Chapter 7. Using Debug Tool in different modes and environments 123

Debugging CICS programs

124

DTCN

Terminal Id

Program Id
User Id

Transaction Id

Repository Stri

Debug Tool CICS Control - Primary Menu SO7CICPD

Select the combination of resources to debug (see Help for more information)

> 0006

\%

[| | B}
nnonon
\%

\%

Select type and ID of debug display device

Session Type ==> MFI MFI, TCP, APPC, LU2

PWS Type ==> VAD, CODE

Port/Sessionld ==> TCP Port or APPC Session ID
Display Id ==> 0006

Generated String: TEST(ALL,,PROMPT,MFI%0006:*)

ng: No string currently saved in repository

PF1=HELP 2=GHELP 3=EXIT 4=SAVE 6=DELETE 9=0PTIONS

Figure 21. Main DTCN Screen

The definitions for the main DTCN screen are:

Terminal ID

Specifies a CICS terminal to debug. By default, this is set to the
terminal that is currently running DTCN.

Transaction ID Specifies a CICS transaction to debug. If you specify a transaction

Program ID

User ID

Session Type

PWS Type

Debug Tool User's Guide and Reference

ID without any other resource, Debug Tool is invoked for every
execution of that transaction (including executions by other users).

Specifies a CICS program to debug. If you specify a program ID
without any other resource, Debug Tool is invoked for every exe-
cution of that program (including executions by other users).

Specifies a CICS userid to debug, that is, Debug Tool is invoked
for all programs executed by that user.

Select one of the following:

MFI Indicates that Debug Tool will initialize on a 3270 type ter-
minal.

TCP Indicates that you will interface with Debug Tool from your
workstation using the TCP/IP protocol.

APPC Indicates that you will interface with Debug Tool from your
workstation using the APPC protocol.

LU2 Indicates that you will use an LU2 cooperative debugging
session on the workstation with OS/2. LU2 applies only if
you have the Workstation feature of CODE/370 installed
on your OS/2 workstation.

Identifies which one of the following tools you plan to use when
debugging your application program:

CODE You plan to use CODE/370 to debug your application

Debugging CICS programs

VAD You plan to use VisualAge Remote Debugger to debug
your application

Port/Session Id Allows you to have multiple workstation sessions so you can
debug two or more applications at the same time.

Display 1D Identifies target destination for Debug Tool information. Depending
on the Session Type that you've selected, the Display ID is one of
the following:

If you selected MFI, the Display ID is a CICS 3270 terminal ID.
This is set by default to the terminal that is currently running
DTCN, but you can change this to direct MFI screens to a dif-
ferent CICS terminal.

¢ |f you selected TCP, enter either the /P address or Host Name
of the workstation that will display the debug screens. That
workstation needs to have appropriate software installed and
running for the debug session to begin.

¢ If you selected APPC, enter the LU name of the workstation
that will display the debug screens. That workstation needs to
have appropriate software installed and running for the debug
session to begin.
The PF keys used by the Debug Tool CICS Control - Primary Menu screen are:

PF1 Help Context sensitive help. Provides detailed help for each entry field.
Place the cursor on any field and press PF1 for help with that field.

PF2 GHelp General help for DTCN.

PF3 Exit Exits DTCN.

PF4 Save Saves the profile displayed on the screen into the repository.
PF6 Delete Deletes this DTCN terminal's profile from the repository.

PF9 Options Displays the secondary DTCN entry panel.

DTCN Debug Tool CICS Control - Menu 2 SO7CICPD

Select Debug Tool options

Test Option ==> TEST Test/Notest

Test Level ==> ALL A11/Error/None
Commands File ==>

Prompt Level ==> PROMPT Prompt/Noprompt/*/;

Preference File ==> =*

Any other valid Language Environment Options

==>

PF1=HELP 2=GHELP 3=RETURN

Figure 22. DTCN Menu 2 panel:

Chapter 7. Using Debug Tool in different modes and environments 125

Debugging CICS programs

126

The definitions for the DTCN Menu 2 panel are:

TEST Option TEST/NOTEST specifies the conditions under which Debug Tool
assumes control during the initialization of your application.

Test Level ALL/ERROR/NONE specifies what conditions need to be met for
Debug Tool to gain control.

Command File A valid fully qualified data set name specifying the primary
commands file for this run.

Note: Enclosing the name of the data set in single or double
quotes is not allowed.

Prompt Level Specifies whether Debug Tool is invoked at Language Environ-
ment initialization.

Preference File A valid fully qualified data set name specifying the preference
file to be used.

Note: Enclosing the name of the data set in single or double
quotes is not allowed.

Any other valid Language Environment Options
You can dynamically change any other Language Environment
options defined in your CICS installation as overrideable except
the STACK option. For additional information about Language
Environment options, see the various Language Environment
publications or contact your CICS system programmer.

The PF keys used by the Debug Tool CICS Control - Menu 2 screen are:

PF1 Help Context sensitive help. Provides detailed help for each entry field.
Place the cursor on any field and press PF1 for help with that field.

PF2 GHelp General help for DTCN.
PF3 Return Returns you to the main DTCN panel.

Using repository profile items at runtime.

When programs are invoked, Language Environment runs the EQADCCXT user exit
that you used to link-edit into the program. EQADCCXT uses a highly efficient
look-up mechanism to decide if the task's Terminal, Transaction, Program and User
IDs match a repository profile item. EQADCCXT selects the best matching profile,
that is, the one with the greatest number of resource IDs matching the active task.
If there is a conflict between two profile items, that is, two items have an equal
number of matching resource IDs, the oldest item is selected.

For example, consider the following two profile items:
1. First, Item 1 is saved, specifying resource ID program PROG1
2. Later, Item 2 is saved, specifying resource ID userid USER1
When PROGL1 is run by USER1, profile item 1 is used.
If this situation occurs, an error message is sent to the system console, suggesting

that DTCN users should specify additional resource qualification. So, in the above
case, each profile item should be set up with both User ID and Program ID.

Debug Tool User's Guide and Reference

Debugging CICS programs

DTCN data entry verification

DTCN performs data verification on the data you entered in the DTCN panel.
When DTCN discovers an error, it places the cursor in the erroneous field and dis-
plays a message. You can use context sensitive help (PF1) to find what is wrong
with the input.

Once you have entered your debug requirements and saved them, you can activate
Debug Tool. Debug Tool will run according to the options you specified.

After you have finished debugging your program, use DTCN again to turn off your
debug profile by pressing PF3 to exit. You do not need to remove EQADCCXT from
the load module; in fact, it's a good idea to leave it there for the next time you want
to invoke Debug Tool.

Using CEEUOPT to invoke Debug Tool under CICS

To request that Language Environment invoke Debug Tool every time the applica-
tion is run, assemble a CEEUOPT module with an appropriate run-time TEST
option. It is a good idea to link-edit the CEEUOPT module into a library and just
add an INCLUDE LibraryDDname(CEEUOPT-MemberName) statement to the link-edit
options when you link your application. Once the application program has been
placed in the load library (and NEWCOPY 'd if required), whenever it is run Debug
Tool will be invoked.

Debug Tool runs in the mode defined in the run-time TEST option you supplied,
normally Single Terminal mode, although you could provide a primary commands
file and a log file and not use a terminal at all. For information on the run-time
TEST option, see [‘Using the run-time TEST option” on page 20|

To invoke Debug Tool, simply run the application. Don't forget to remove the
CEEUOPT containing your run-time TEST option when you have finished debugging
your program.

Using compile-time directives to invoke Debug Tool under CICS

To request the program itself to invoke Debug Tool, add the appropriate directive to
your application as described in [Invoking Debug Tool with CEETEST” on page 35|
and [‘Specifying run-time TEST option with #pragma runopts in C and C++” on
[page 43, Whenever these directives are processed by your program, Debug Tool
will be invoked in Single Terminal mode (this method supports only Single Terminal
mode).

Using CEDF to invoke Debug Tool under CICS

No specific preparation is required to use CEDF to invoke Debug Tool other than
compiling the application with the appropriate compiler options and saving the
source/listing.

CEDF has an ",I" option that invokes Debug Tool. This option invokes both EDF
and Debug Tool in Dual Terminal mode. In Dual Terminal mode, EDF and Debug
Tool screens are displayed on the terminal where you issue the CEDF command;
application screens are displayed on the application terminal.

Note: You need to know the id of each terminal. One way to get this information
is by using the CEOT transaction. The output will include Ter(xxxx), where
xxxx is the terminal id.

Chapter 7. Using Debug Tool in different modes and environments 127

Debugging CICS programs

To invoke Debug Tool, enter the CEDF transaction as follows:

CEDF xxxx,0N,I

where xxxx is the terminal on which you want to start the transaction to be
debugged. This terminal is where the application is started. It performs 3270 appli-

cation 1/0, while a Debug Tool session is invoked at the terminal where CEDF is
invoked.

CICS will return a message verifying the terminal id of the second terminal. Then,
on the xxxx terminal, enter:

TRAN

where TRAN is the id for the transaction being debugged.

Once the command is entered, Debug Tool will be invoked for all Language
Environment-enabled programs that are running on the terminal where Debug Tool
is started. Debug Tool will continue to be active on this terminal, even if you turn
off EDF.

For example, to begin a Debug Tool session using terminal T304 as the debugging
terminal and T305 as the terminal where you want to run your application, invoke
the CEDF transaction as follows on T304:

CEDF T305,0N,I
Then, on terminal T305, enter the name of the transaction you are debugging:
TRAN

When you run your application on T305, Debug Tool is invoked on T304. Terminal
T305 displays only application output, that is, a specific CICS command to write to
the screen.

Restrictions when debugging under CICS

128

The following restrictions apply when debugging programs with the Debug Tool in a
CICS environment:

e The _ctest() function with CICS does nothing.

e The CDT# transaction is a special Debug Tool service transaction, and is not
intended for activation by direct terminal input. If CDT# is invoked via terminal
entry, it will return to the caller (no function is performed).

e Applications that issue EXEC CICS POST cannot be debugged in Dual Ter-
minal mode.

e CICS does not support Debug Tool line mode.

e Data definition (ddname) is not supported. All files, including the log file, USE
files, and preferences file, must be referred to by their full data set names.

e The TS0, SET INTERCEPT, and SYSTEM commands cannot be used.
e CICS does not support an attention interrupt from the keyboard.

e The log file is not automatically started. You need to use the SET LOG ON
command.

e Ensure that you allocate a log file big enough to hold all the log output from a
debug session, because the log file is truncated after it becomes full. (A
warning message is not issued before the log is truncated.)

Debug Tool User's Guide and Reference

Multiple enclaves and ILC

Chapter 8. Debug Tool Support of programming languages

This chapter discusses the ways Debug Tool makes it possible for you to debug
programs of different languages, structures, conventions, variables, and methods of
evaluating expressions.

As part of the effort to support multiple high-level programming languages, Debug

Tool has adapted its commands to the different HLLs, enabled you to use interpre-
tive subsets of commands from the various HLLs, and mapped common attributes
of data types across the languages. It does the following:

e Maps compatible attributes between HLL data types
e Evaluates HLL expressions
* Treats constants and variables

This chapter also describes the concept of interpretive command subsets,
exceptions and conditions in Debug Tool, and Debug Tool's built-in functions.

A general rule to remember is that Debug Tool tries to let the language itself guide
how Debug Tool works with it. Further information is available in the various HLL
language reference manuals, listed in the bibliography.

Multiple enclaves and interlanguage communication (ILC)

Debugging a multiple-enclave ILC application with Debug Tool is supported.
However, keep the following points in mind:

e The SET PROGRAMMING LANGUAGE command can be used to change the current
programming language setting. However, the programming language setting is
limited to the languages currently known to Debug Tool (that is, languages con-
tained in the current load module).

e Command lists on monitors and breakpoints have an implied programming lan-
guage setting, which is the language that was in effect at the time the monitor
or breakpoint was established. This means that if you change the language
setting, errors might result when the monitor is refreshed or the breakpoint is
triggered.

Debug Tool has an implicit AT TERMINATION breakpoint set by default. This break-
point gives Debug Tool control at the end of each enclave. If you are debugging
multiple-enclave applications and want the application to run (using the GO
command) without stopping at the termination breakpoint, remove the breakpoint
with CLEAR AT TERMINATION. You can set the AT LOAD breakpoint to give Debug
Tool control at the specific program you want to debug.

For example, consider a CICS application that has five programs called PROGL1 to
PROGS5 and uses EXEC CICS LINK or EXEC CICS XCTL to pass control between
them. If you want to run the application until PROG4 begins, enter the following
commands:

CLEAR AT TERMINATION
AT LOAD PROG4
GO

© Copyright IBM Corp. 1995, 1999 129

Interpretation of variables and constants

Compatible attributes mapped between HLL data types

Debug Tool allows you, while working in one language, to declare session variables
you can continue to use after calling in a load module of a different language. See
the Attribute Mapping tables in ['Declarations (C/C++)” on page 251|, ['Declarations|
[([COBOL)” on page 254] or 'DECLARE command (PL/I)” on page 257 [for more
information on how session data attributes are mapped across programming lan-
guages. Attributes not shown in the tables cannot be mapped to other program-
ming languages.

Also remember that variables with incompatible attributes cannot be accessed from
another programming language.

Debug Tool evaluation of HLL expressions

Whenever an expression is entered, Debug Tool will remember the programming
language in effect at that time. When the command is run, the expression will be
passed to the language run time that was in effect when the expression was
entered, which might be different than the one in effect when the expression is run.

When you are entering an expression that will not be run immediately, it is recom-
mended that you fully qualify all program variables. This assures that proper
context information (such as load module, block, etc.) is passed with the expression
to the language run time when the statement is run. If this is not done, the context
might not be the one you intended when you set the breakpoint, and the language
run time might fail to evaluate the expression.

Debug Tool interpretation of HLL variables and constants

HLL variables

Debug Tool also supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using temporary vari-
ables.
Three general types of variables supported by Debug Tool are:

e Program variables defined by the HLL compiler's symbol table

e Debug Tool variables denoted by the percent (%) sign

e Temporary, or session, variables declared for a given Debug Tool session and
existing only for the session

Some variable references require language-specific evaluation, such as pointer ref-
erencing or subscript evaluation. Once again, the Debug Tool interprets each case
in the manner of the HLL in question. Below is a list of some of the areas where
Debug Tool accepts a different form of reference depending on the current pro-
gramming language:

e Structure qualification

C/C++ and PL/I: dot (.) qualification, high-level to low-level
COBOL: IN or OF keyword, low-level to high-level

e Subscripting

130 Debug Tool User's Guide and Reference

Variables/intrinsic functions

C/C++: name [subscriptl][subscript2]...
COBOL and PL/I: name(subscriptl,subscript2,...)

HLL constants

You can use both string constants and numeric constants. Debug Tool accepts
both types of constants in C/C++, COBOL, and PL/I.

Debug Tool variables (or intrinsic functions)

Debug Tool has reserved several variables to contain its own information. These
variables are denoted by the percent sign (%) as a first character, to distinguish
them from program variables, and can be accessed while testing programs in any
supported HLL.

Table 3 shows a list of Debug Tool variables and the languages with which they
can be used. Following the table is a list of their definitions.

Table 3 (Page 1 of 2). Descriptions of Debug Tool Variables and Their Corresponding Languages

Debug Tool C/C++ PL/ COBOL Description

Variable

%GPRn X X Represents general-purpose registers.

%FPRn X X X Represents single-precision floating-point registers.

%LPRn X X Represents double-precision floating-point registers.

%EPRn X X Represents extended-precision floating-point registers.

%ADDRESS X X X Contains the address of the location where your program was
interrupted.

%AMODE X X X Contains the current AMODE of the suspended program (either 24 or
31).

%BLOCK X X X Contains the name of the current block.
Note: The block name provided might not be unique within a compile unit.

%CAAADDRESS X X X Contains the address of the CAA control block associated with the
suspended program.

%CONDITION X X X Contains the name (or number) of the condition identification when
Debug Tool is entered because of an AT 0CCURRENCE.

%COUNTRY X X X Contains the current country code.

%CU X X X Contains the name of the primary entry point of the current
program. Equivalent to %PROGRAM.

%EPA X X X Contains the address of the primary entry point in the currently
interrupted program.

%HARDWARE X X X Identifies the type of hardware where the application is running.

%LINE X X X Contains the current line number.
Equivalent to %STATEMENT.

%LOAD X X X Contains the name of the load module of the current program, or an
asterisk (x).

%NLANGUAGE X X X Contains the national language currently in use.

%PATHCODE X X X Contains an integer value identifying the type of change occurring
when the program flow changes.

%PLANGUAGE X X X Contains the current programming language.

%PROGRAM X X X Contains the name of the primary entry point of the current compile

unit.
Equivalent to %CU.

Chapter 8. Debug Tool Support of programming languages 131

Variables/intrinsic functions

Table 3 (Page 2 of 2). Descriptions of Debug Tool Variables and Their Corresponding Languages

Debug Tool C/C++ PL/ COBOL Description

Variable

%RC X X X Contains a return code whenever a Debug Tool command ends.
%RUNMODE X X X Contains a string identifying the presentation mode of Debug Tool.
%STATEMENT X X X Contains the current statement number.

Equivalent to $LINE.

%SUBSYSTEM X X X Contains the name of the underlying subsystem, if any, where the
program is running.

%SYSTEM X X X Contains the name of the operating system supporting the program.

You can use all Debug Tool variables in expressions. Additionally, the first four
variables, representing the various types of registers, can be used as the targets of
assignments.

Note: Use caution when assigning new values to registers. Important program
information can be lost.

Detailed descriptions of the Debug Tool variables follow.

Modifiable Debug Tool variables

%EPRO, %EPR4
%FPRO, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers.

%GPRO, %GPR1,...,%GPR15
Represent general-purpose registers at the point of interruption in a program.

%LPRO, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers. They are similar to the
single-precision floating-point registers (%FPRS).
Represent the extended-precision floating-point registers.

Nonmodifiable Debug Tool variables

%ADDRESS
Contains the address of the location where the program has been interrupted.

%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK
Contains the name of the current block.

%CAAADDRESS ih1 id=caddres print="%CAAADDRESS variable'. CAAADDRESS

variable
Contains the address of the CAA control block associated with the suspended
program.

%CONDITION

Contains the name (or number) of the condition identification when Debug Tool
is entered due to an AT OCCURRENCE.

132 Debug Tool User's Guide and Reference

Variables/intrinsic functions

%COUNTRY
Contains the current country code.
%CU
Contains the name of the primary entry point of the current compile unit.
%CU is equivalent to %PROGRAM.
%EPA
Contains the address of the primary entry point of the currently interrupted
program.
%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is: 370/ESA.
%LINE
Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.
If the program is at the entry or exit of a block, LINE contains ENTRY or EXIT,
respectively.
If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).
%LINE is equivalent to $STATEMENT.
%LOAD
Contains an asterisk (*) unless the current program is part of a fetched or
called module. If the current program is part of a fetched or called module,
%LOAD contains the name of that load module.
%NLANGUAGE
Indicates the national language currently in use. Possible values are:
ENGLISH
UENGLISH
JAPANESE
%PATHCODE
Contains an integer value that identifies the kind of change occurring when the
path of program execution has reached a point of discontinuity and the path
condition is raised.
The possible values vary according to the language of your program. See
[‘Using Debug Tool variables in C/C++" on page 144 for your C program or
[FUsing Debug Tool variables in COBOL” on page 179 for your COBOL
program.
%PLANGUAGE
Indicates the programming language currently in use.
%PROGRAM

Contains the name of the primary entry point of the current program.

%PROGRAM is equivalent to %CU.

Chapter 8. Debug Tool Support of programming languages 133

Interpretive subsets

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

Note: The %RC return code is a Debug Tool variable. It is not related to the
return code that can be found in Register 15.

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:
LINE
SCREEN
BATCH
%STATEMENT

Contains the current statement number. This value can include a period, since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENTS contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

CICS
IMS
TSO
NONE

Subsystems only occur on MVS, so %SUBSYSTEM is only valid on MVS. Listing
this variable while working with CMS displays NONE.

%SYSTEM
Contains the name of the operating system supporting the program. Possible
values are:
MVS
VM

Interpretive subsets

To allow you to use familiar commands while in a debugging session, Debug Tool
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with Debug Tool or when
writing application programs. You use these commands in Debug Tool as though
you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current programming lan-
guage to the desired language. The current programming language determines

134 Debug Tool User's Guide and Reference

Qualifying variables and changing point of view

how commands are parsed. If you SET PROGRAMMING LANGUAGE to AUTOMATIC, every
time the current qualification changes to a module in a different language, the
current programming language is automatically updated.

The following types of Debug Tool commands have the same syntax (or a subset
of it) as the corresponding statements (if defined) in each supported programming
language:

Assignment These commands allow you to assign a value to a variable or refer-
ence.

Conditional These commands evaluate an expression and control the flow of
execution of Debug Tool commands according to the resulting
value.

Declarations These commands allow you to declare temporary variables.

Looping These commands allow you to program an iterative or logical loop
as a Debug Tool command.

Multiway These commands allow you to program multiway logic in the Debug
Tool command language.

In addition, Debug Tool supports special kinds of commands for some languages.

Qualifying variables and changing the point of view

Qualification

Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you use
the same variable name in two different procedures). Similarly, Debug Tool defines
the concepts of qualifiers and point of view for the run-time environment to allow
you to reference all variables in a program, no matter how many subroutines it con-
tains. The assignment x = 5 does not appear difficult for Debug Tool to process.
However, if you declare x in more than one subroutine, the situation is no longer
obvious. If x is not in the currently executing compile unit, you need a way to tell
Debug Tool how to determine the proper x.

You also need a way to change the Debug Tool's point of view to allow it to refer-
ence variables it cannot currently see (that is, variables that are not within the
scope of the currently executing block or compile unit, depending upon the HLL's
concept of name scoping).

Qualification is a method you can use to specify to what procedure or load module
a particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and load module (or as many of these labels as are necessary), sepa-
rating each label with a colon (or double colon following the load module specifica-
tion) and a greater-than sign (:>), as follows:

LOAD_NAME: :>CU_NAME:>BLOCK_NAME:>object
This procedure, known as explicit qualification, lets Debug Tool know precisely
where the variable is.

If required, LOAD_NAME is the load module name. It is required only when the
program consists of multiple load modules and when you want to change the quali-

Chapter 8. Debug Tool Support of programming languages 135

Qualifying variables and changing point of view

136

fication to other than the current load module. LOAD_NAME can be the Debug Tool
variable %LOAD.

If required, CU_NAME is the compile unit name. The CU_NAME is required only when
you want to change the qualification to other than the currently qualified compile
unit. CU_NAME can be the Debug Tool variable %CU.

If required, BLOCK_NAME is the program block name. The BLOCK NAME is required
only when you want to change the qualification to other than the currently qualified
block. BLOCK_NAME can be the Debug Tool variable %BLOCK.

For PL/I Only :

In PL/I, the primary entry name of the external procedure is the same as the
compile unit name. When qualifying to the external procedure, the procedure
name of the top procedure in a compile unit fully qualifies the block. Specifying
both the compile unit and block name results in an error. For example:

LM: :>PROC1:>variable
is valid.
LM: :>PROC1:>PROC1:>variable

is not valid.

For C++ Only :

You must specify the full function qualification including formal parameters
where they exist. For example:

1. For function (or block) ICCD2263() declared as void ICCD2263(void) within
CU "USERID.SOURCE.LISTING(ICCD226)" the correct block specification
for C++ would include the parenthesis () as follows:

qualify block %load::>"USERID.SOURCE.LISTING(ICCD226)":>ICCD2263()

2. For CU ICCD0320() declared as int ICCD0320(signed long int SVARL1,
signed long int SVAR2) the correct qualification for AT ENTRY is:

AT ENTRY "USERID.SOURCE.LISTING(ICCD0320)":>ICCDO320(1ong,long)

Notes: Use the Debug Tool command DESCRIBE CUS to give you the
correct BLOCK or CU qualification needed.

Use the LIST NAMES command to show all polymorphic functions of
a given name. For the example above, LIST NAMES "ICCD0320=*"
would list all polymorphic functions called 1CCD0320.

You do not have to preface variables in the currently executing compile unit. These
are already known to Debug Tool; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a name.
Blocks that have not received a name are named by Debug Tool, using the form:
%BLOCKnnn, where nnn is a number that relates to the position of the block in the
program. To find out the Debug Tool's name for the current block, use the
DESCRIBE PROGRAMS command.

Debug Tool User's Guide and Reference

Handling conditions and exceptions

Changing the point of view
The point of view is usually the currently executing block. You can get to inacces-

sible data by changing the point of view using the SET QUALIFY command with the
operand

LOAD_NAME: :>CU_NAME : >BLOCK_NAME

Each time you update any of the three Debug Tool variables %CU, %PROGRAM, or
%BLOCK, all four variables (%CU, %PROGRAM, %LOAD, and %BLOCK) are automatically
updated to reflect the new point of view. If you change %LOAD using SET QUALIFY
LOAD, only %LOAD is updated to the new point of view. The other three Debug Tool
variables remain unchanged. For example, suppose your program is currently sus-
pended at loadx::>cux:>blockx. Also, the load module Toadz, containing the
compile unit cuz and the block blockz, is known to Debug Tool. The settings cur-
rently in effect are:

%LOAD = Toadx
%CU = cux
%PROGRAM = cux
%BLOCK = bTlockx

If you enter any of the following commands:
SET QUALIFY BLOCK blockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK Toadz::>cuz:>blockz;
the following settings are in effect:
%LOAD = Toadz

%CU = cuz
%PROGRAM = cuz

%BLOCK = blockz

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or load module.

Debug Tool handling of conditions and exceptions

To suspend program execution just before your application would terminate abnor-
mally, start your application with the following options:

TRAP (ON)
TEST(ALL,* ,NOPROMPT, *)

When a condition is signaled in your application, Debug Tool prompts you and you
can then dynamically code around the problem. For example, you can initialize a
pointer, allocate memory, or change the course of the program with the GOTO
command. You can also indicate to Language Environment's condition handler,
that you have already handled the condition by issuing a GO BYPASS command.
Beware that some of the code that follows the instruction that raised the condition
might be relying in data that was not properly stored or handled.

When debugging with Debug Tool, you have a choice (depending on your host
system) of either instructing the debugger to handle program exceptions and condi-

Chapter 8. Debug Tool Support of programming languages 137

Handling conditions and exceptions

tions, or passing them on to your own exception handler. Programs also have
access to Language Environment services to deal with program exceptions and
conditions.

Condition handling in Debug Tool

138

You can use either or both of the two methods during a debugging session to
ensure that Debug Tool gains control at the occurrence of HLL conditions.

If you specify TEST(ALL) as a run-time option when you begin your debugging
session, Debug Tool gains control at the occurrence of most conditions.

Note: Debug Tool recognizes all Language Environment conditions that are
detected by the Language Environment error handling facility.

You can also direct Debug Tool to respond to the occurrence of conditions by using
the AT OCCURRENCE command to define breakpoints. These breakpoints halt proc-
essing of your program when a condition is raised, after which Debug Tool is given
control. It then processes the commands you specified when you defined the
breakpoints. For more information on OCCURRENCE breakpoints, see['AT]
[OCCURRENCE” on page 229}

For a description of HLL conditions, see the corresponding language references
and OS/390 Language Environment Programming Guide.

There are several ways a condition can occur, and several ways it can be handled.

When a condition can occur
A condition can occur during your Debug Tool session when:

e A C++ application throws an object.

e A C/C++ application program executes a raise statement.
e A PL/I application program executes a SIGNAL statement.
e The Debug Tool command TRIGGER is executed.

* Program execution causes a condition to exist. In this case, conditions are not
raised at consistency points (the operations causing them can consist of
several machine instructions, and consistency points usually occur at the begin-
nings and ends of statements).

e The setting of WARNING is OFF (for C/C++ and PL/I).

When a condition occurs

When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.

e Your program's execution can be terminated with a QUIT command.

e Control of your program's execution can be returned to the HLL exception
handler, so that processing proceeds as if Debug Tool had never been invoked
(even if you have perhaps used it to change some variable values, or taken
some other action).

e Control of your program's execution can be returned to the program itself,
bypassing any further processing of this exception either by the user program
or the environment.

Debug Tool User's Guide and Reference

Requesting an attention interrupt

e PL/l allows GO TO out of block;, so execution control can be passed to some
other point in the program.

» If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO, the condition is raised again in the program (if possible and still appli-
cable). If you use a GOTO to bypass the failing statement, you also bypass your
program's error handling facilities.

Exception handling within expressions (C/C++ and PL/I only)

When an exception such as division by zero is detected in a Debug Tool
expression, you can use the Debug Tool command SET WARNING to control Debug
Tool and program response. During an interactive Debug Tool session, such
exceptions are sometimes due to typing errors and as such are probably not
intended to be passed to the program. If you do not want errors in Debug Tool
expressions to be passed to your program, use SET WARNING ON. Expressions con-
taining such errors are terminated, and a warning message is displayed.

However, you might want to pass an exception on to your program, perhaps to test
an error recovery procedure. In this case, use SET WARNING OFF.

Requesting an attention interrupt during interactive sessions

During an interactive Debug Tool session you can request an attention interrupt, if
necessary. For example, you can stop what appears to be an unending loop, stop
the display of voluminous output at your terminal, or stop the execution of the STEP
command.

An attention interrupt should not be confused with the ATTENTION condition. If you
set an AT OCCURRENCE or ON ATTENTION, the commands associated with that break-
point are not run at an attention interrupt.

Language Environment run-time options TRAP and INTERRUPT should both be set to
ON in order for attention interrupts that are recognized by the host operating system
to be also recognized by Language Environment. The test level suboption of the
run-time TEST option should not be set to NONE. See OS/390 Language Environ-
ment Programming Guide.

For CICS Only :

An attention interrupt key is not supported in CICS.

For MVS Only :

For C, using an attention interrupt, use SET INTERCEPT ON FILE stdout to inter-
cept messages to the terminal. This is required because messages do not go
to the terminal after an attention interrupt.

The correct key might not be marked ATTN on every keyboard. Often the following
keys are used:

e Under TSO: PA1 key
e Under CMS: PAL key twice
e Under IMS: PA1 key

Chapter 8. Debug Tool Support of programming languages 139

Built-in functions

When you request an attention interrupt, control is given to Debug Tool:

¢ At the next hook if Debug Tool has previously gained control or if you specify
either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints

e Ata __ ctest() or CEETEST call

e When an HLL condition is raised in the program, such as SIGINT in C

Debug Tool's built-in functions

Debug Tool provides you with several built-in functions, available while debugging
programs in all supported languages, which allow you to perform variable manipu-
lations. These functions are distinguished by a percent sign (%) as the first char-
acter. Below is a brief description of each built-in function, including its proper
syntax.

For use with C/C++, COBOL, and PL/I
The following Debug Tool built-in functions are for use with C/C++, COBOL, and

PL/I:

%HEX

You can use %HEX with the LIST command to display the hexadecimal value of an
operand.

A\
A

»»—%HEX— (—reference—)

reference
A valid COBOL or PL/I reference, or C/C++ Ivalue.

%STORAGE
You can use %STORAGE to reference storage by address and length. You can use
this function only in conjunction with commands employing AT CHANGE.

\4
A

»»—%STORAGE—(—address B
,—lengthJ

address
The starting address of storage to be monitored for changes. This must be an
0x constant in C/C++ or an H constant in COBOL.

length
The number of bytes of storage to be monitored for changes. This must be a
positive integer constant. The default value is 1.

For use with C/C++ and PL/I

The following Debug Tool built-in functions are for use only with C/C++ and PL/I
programs:

140 Debug Tool User's Guide and Reference

Built-in functions

%INSTANCES
You can use %INSTANCES to provide the maximum value of %RECURSION (the most
recent recursion number) for a given block.

»»>—%INSTANCES— (—reference—)

\ 4
A

reference
An automatic variable or a subroutine parameter. If necessary, you can use
gualification to specify the variable.

%RECURSION

You can use %RECURSION to access an automatic variable or a parameter in a spe-
cific instance of a recursive procedure.

»»—%RECURSION—(—reference—,—expression—)

\4
A

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

expression
The recursion number of the variable or parameter. The oldest recursion is
referenced by %RECURSION(var, 1) and the most recent by %RECURSION(var,
%INSTANCES (var)).

For use with PL/I

The following Debug Tool built-in function is for use only with PL/I programs:
%GENERATION

You can use %GENERATION to access a specific generation of a controlled variable in
your program.

»»—%GENERATION— (—reference—,—expression—)

\4
A

reference
A controlled variable.

expression
The generation number (N) of a controlled variable (X), where:

1 < N =< ALLOCATION(X)

The oldest instance of X is referenced by %GENERATION(X,1), and the most
recent by %GENERATION (X,ALLOCATION(X)).

Chapter 8. Debug Tool Support of programming languages 141

Using Debug Tool with C/C++ programs

Chapter 9. Using Debug Tool with C/C++ programs

This chapter provides information on using C/C++ variables and expressions with
Debug Tool. It covers the Debug Tool subset of C/C++ commands and reserved
words, accessing program variables, declaring temporary variables (also known as
session variables), displaying values of C/C++ variables, assigning values to C/C++
variables, and using Debug Tool variables.

It also covers expressions, including discussions of function calls, operators, and
C/C++ unique statements; and qualification and multiple load modules.

Debug Tool commands

Debug Tool's command language is a subset of C/C++ commands and has the
same syntactical requirements. Debug Tool allows you to work in a language you
are familiar with so learning a new set of commands is not necessary.

The interpretive subset of C/C++ commands recognized by Debug Tool is shown in
[Table 19 on page 352 This subset of commands is valid only when the current
programming language is C or C++.

For specific usage notes concerning each command, see the appropriate section of
[Chapter 13, “Debug Tool commands” on page 209|

In addition to the subset of C/C++ commands that you can use is a list of reserved
keywords used and recognized by C/C++ that you cannot abbreviate, use as vari-
able names, or use as any other type of identifier. This list is shown in[Table 20
[on page 352 These keywords are reserved only when the current programming
language is C or C++.

For explanations of command usage and keyword meaning, see 0OS/390 C/C++
Language Reference.

Using C/C++ variables with Debug Tool

Debug Tool can process all program variables that are valid in C or C++. It allows
you to assign and display the values of variables during your session. It also
allows you to declare temporary variables with the recognized C declarations to suit
your testing needs.

Accessing program variables

142

Debug Tool obtains information about a program variable by name using the
symbol table built by the compiler. If you specify TEST(SYM) at compile time, the
compiler builds a symbol table that allows you to reference any variable in the
program.

See |“Comgi|ing a C program with the compile-time TEST option” on page 5| or
FCompiling a C++ program with the compile-time TEST option” on page 9 for more

details.

Note: There are no suboptions for C++. Symbol information is generated by
default when the compile-time TEST option is specified.

© Copyright IBM Corp. 1995, 1999

Using Debug Tool with C/C++ programs

Displaying values of C/C++ variables or expressions

To display the values of variables or expressions, issue the LIST command. The
LIST command causes Debug Tool to log and display the current values (and
names if requested) of variables, including the evaluated results of expressions.
See['LIST command” on page 278|for more information.

Suppose you want to display the program variables X, row[X], and co1[X], and
their values at line 25. If you issue the following command:

AT 25 LIST (X, row[X], col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (G0),
stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:
AT 25 LIST (X + row[X] + col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (G0),
stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

You can also list variables with the printf function call as follows:
printf ("X=%d, row=%d, col=%d\n", X, row[X], col[X]);

The output from printf, however, does not appear in the Log window and is not
recorded in the log file unless you set INTERCEPT ON FILE stdout.

Declaring temporary variables

You might want to declare temporary variables, also known as session variables,
for use during the course of your session. You cannot initialize temporary variables
in declarations. However, you can use an assignment statement or function call to
initialize a temporary variable.

As in C, keywords can be specified in any order. Variable names up to 255 char-
acters in length can be used. ldentifiers are case-sensitive, but if you want to use
the session variable when the current programming language changes from C to
another HLL, the variable must have an uppercase name and compatible attributes.
For more information see [Table 12 on page 254|

To declare a hexadecimal floating-point variable called maximum, enter the following
C declaration:

double maximum;

You can only declare scalars, arrays of scalars, structures, and unions in Debug
Tool (pointers for the above are allowed as well).

If you declare a temporary variable with the same name as a programming vari-
able, the temporary variable hides the programming variable. To reference the pro-
gramming variable, you must qualify it. For example:

main:>x for the program variable x
x for the session variable x

Chapter 9. Using Debug Tool with C/C++ programs 143

Using Debug Tool with C/C++ programs

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

For more on qualification, see [‘Using gualification for C/C++” on page 162 For

more on declarations, see |“Dec|arations (C/IC++)”" on page 251

Assigning values to C/C++ variables

To assign a value to a C/C++ variable, you use an assignment expression. See
[‘Expression command (C/C++)” on page 268 for syntax information. Assignment
expressions assign a value to the left operand. The left operand must be a modifi-
able Ivalue. An Ivalue is an expression representing a data object that can be
examined and altered.

C contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

Note: Only the assignment operators that work for C will work for C++, that is,
there is no support for overloaded operators.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:

payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of index plus 2 to the variable index:

index += 2

Debug Tool supports all C operators except the tenary operator, as well as any
other full C language assignments and function calls to user or C library functions.
For more on function calls, see [‘Function calls” on page 151}

Using Debug Tool variables in C/C++

144

Debug Tool variables, as shown in Table 4, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, use the LIST command.

Table 4 (Page 1 of 2). C/C++ Attributes for Debug Tool Variables

Debug Tool C/C++

Variable Attributes Description

%GPRn signed int Represents general-purpose registers.

%FPRn float Represents single-precision floating-point regis-
ters.

%LPRn double Represents double-precision floating-point regis-
ters.

%EPRn long double Represents extended-precision floating-point regis-
ters.

%ADDRESS void * Contains the address of the location where your

program was interrupted.

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

Table 4 (Page 2 of 2). C/C++ Attributes for Debug Tool Variables

Debug Tool C/C++

Variable Attributes Description

%AMODE signed short int Contains the current AMODE of the suspended
program (either 24 or 31).

%BLOCK unsigned charf] Contains the name of the current block.

%CAAADDRESS void * Contains the address of the CAA control block
associated with the suspended program.

%CONDITION unsigned charf] Contains the name (or number) of HLL or Lan-
guage Environment condition.

%COUNTRY unsigned charf] Contains the current country code.

%CU unsigned charf] Contains the name of the current compilation unit.
Equivalent to %PROGRAM.

%EPA void * Contains the address of the primary entry point in
the currently interrupted program.

%HARDWARE unsigned charf] Identifies the type of hardware where the applica-
tion is running.

%LINE unsigned charf] Contains the current line number.

Equivalent to %STATEMENT.

%LOAD unsigned charf] Contains the name of the load module of the
current program.

%NLANGUAGE unsigned charf] Contains the national language currently being
used.

%PATHCODE signed short int Contains an integer value identifying the type of
change occurring when Debug Tool is entered
because of a path breakpoint.

%PLANGUAGE unsigned charf] Contains the current programming language.
%PLANGUAGE returns "C" for both C and C++.

%PROGRAM unsigned charf] Contains the name of the primary entry point of
the current program.

Equivalent to %CU.

%RC signed short int Contains a return code whenever a Debug Tool
command ends.

%RUNMODE unsigned charf] Contains a string identifying the presentation mode
of Debug Tool.

%STATEMENT unsigned charf] Contains the current statement number.
Equivalent to %LINE.

%SUBSYSTEM unsigned charf] Contains the name of the underlying subsystem, if
any, where the program is executing.

%SYSTEM unsigned charf] Contains the name of the operating system sup-

porting the program.

You can use all Debug Tool variables in expressions. Additionally, the variables
representing general and floating-point registers are modifiable and can be used as

the targets of assignment commands.

Note: When modifying register values, do not modify the base register.

Chapter 9. Using Debug Tool with C/C++ programs

145

Using Debug Tool with C/C++ programs

Detailed descriptions of the Debug Tool variables follow.

%GPRO, %GPR1,..., %GPR15
Represent general-purpose registers at the point of interruption in a C/C++
program. You can use them in expressions:

Tist (%GPR5 + 10);
and as targets of assignments:
%GPR5 = name_table;

Notes:

* If you change a %GPRn register, the change is reflected when you
resume program execution.

e Only %GPR12 can be used at external entry.

¢ Although assigning new values to variables %GPR12 and %GPR13
does not result in an error, when any subsequent action is taken the
newly set values are reset to their previous values.

» If you change %GPR3 in an expression, the base register in the
program can be lost.

%FPRO, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers and are equivalent to float
variables. You can use them in expressions:

x = %FPR4 / 6.3
and as targets of assignments:
%FPRO = 3.14152

Note: If the application supports the IEEE Binary Floating Point Arithmetic,
you can also use %FPR1, %FPR3, %FPR5, %FPR7,, %FPR15.

%LPRO, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers and are equivalent to
double variables. Similar to the single-precision floating-point registers (%FPRs),
you can use these registers in expressions and as targets of assignments.

Note: If the application supports the IEEE Binary Floating Point Arithmetic,
you can also use %LPR1, %LPR3, %LPR5, %LPR7,, %LPR15.

%EPRO, %EPR4
Represent the extended-precision floating-point registers, and are equivalent to
long double variables. Similar to the single-precision floating-point registers
(%FPRs), you can use these registers in expressions and as targets of assign-
ments.

Note: If the application supports the IEEE Binary Floating Point Arithmetic,
you can also use %EPR1, %EPR5, %EPR8, %EPR9, %EPR12,

%EPR15.
%ADDRESS
Contains the address of the location where the program was interrupted.
%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

146 Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

%BLOCK
Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK by using the SET QUALIFY
command.

%CAAADDRESS
Contains the address of the CAA control block associated with the suspended
program.

%CONDITION
Contains the name (or number) of HLL or Language Environment condition.

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY command.

%CU is equivalent to %PROGRAM.

%EPA
Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE
Contains the current line (statement) number. This value can include a period
since the current line can be a statement other than the first statement on a
source line. For example, if 5LINE = 5.5, the current statement is the fifth
statement on the fifth source line.

If the program is at the entry or exit of a block, $LINE contains ENTRY or EXIT
respectively.

If the line number cannot be determined (for example, if a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).

%LINE is equivalent to $STATEMENT.

%LOAD
Contains the name of the currently qualified load module and is used when an
unqualified reference to a program or variable is made. If the currently quali-
fied load module is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LO0AD is set to the name of the
currently executing load module (or to an asterisk in the initial load module).
You can change or override the value of %LOAD by using the SET QUALIFY
command.

For modules to be recognized by Debug Tool, they must be loaded by a lan-
guage call and not through a direct operating system load command.

Chapter 9. Using Debug Tool with C/C++ programs 147

Using Debug Tool with C/C++ programs

%NLANGUAGE
Indicates the national language currently in use. Its possible values include:
ENGLISH
UENGLISH
JAPANESE
%PATHCODE

Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Possible values are:

-1 Debug Tool is not in control as the result of a path or attention situ-
ation.

Attention function (not ATTENTION condition).
A block has been entered.
A block is about to be exited.

Control has reached a user label.

A W N B O

Control is being transferred as a result of a function reference. The
invoked routine's parameters, if any, have been prepared.

5 Control is returning from a function reference. Any return code con-
tained in register 15 has not yet been stored.

6 Some logic contained by a conditional do/while, for, or while state-
ment is about to be executed. This can be a single or Null state-
ment and not a block statement.

7 The logic following an if(...) is about to be executed.

8 The logic following an else is about to be executed.

9 The logic following a case within an switch is about to be executed.
10 The logic following a default within a switch is about to be executed.
13 The logic following the end of a switch, do, while, if(...), or foris

about to be executed.

17 A goto, break, continue, or return is about to be executed.

Values in the range 3-17 can only be assigned to %PATHCODE if your program
was compiled with an option supporting path hooks.

%PLANGUAGE
Indicates the programming language currently in use. %PLANGUAGE returns C for
both C and C++.

%PROGRAM
The name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC
Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

148 Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:
LINE
SCREEN
BATCH
%STATEMENT

Contains the current statement number. This value can include a period since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

CICs
IMS
TSO
NONE

Subsystems only occur on MVS; if you list this variable while working with VM,
Debug Tool displays NONE.

%SYSTEM
Contains the name of the operating system supporting the program. Possible
values are:
MVS
VM

You can access certain variables that have no intrinsic meaning in your operating
system or language. For example, when debugging in a VM environment,
requesting the value of the variable %SUBSYSTEM does not result in an error.
However, subsystems occur only on MVS, so %SUBSYSTEM requested during a
debugging session under VM always results in NONE.

C/C++ expressions

Debug Tool allows evaluation of expressions in your test program. All expressions
available in C/C++ are also available within Debug Tool except for the conditional
expression (? :). Thatis, all operators such as +, -, %:, and += are fully supported
with the exception of the conditional operator.

C/C++ language expressions are arranged in the following groups based on the
operators they contain and how you use them:

Chapter 9. Using Debug Tool with C/C++ programs 149

Using Debug Tool with C/C++ programs

150

Primary expression
Unary expression
Binary expression
Conditional expression
Assignment expression
Comma expression
Ivalue

Constant

An Ivalue is an expression representing a data object that can be examined and
altered. For a more detailed description of expressions and operators, see the C
and C++ Program Guides.

The semantics for C/C++ operators are the same as in a compiled C or C++
program. Operands can be a mixture of constants (integer, floating-point,
character, string, and enumeration), C/C++ variables, Debug Tool variables, or
session variables declared during a Debug Tool session. Language constants are
specified as described in the C and C++ Language Reference publications.

The Debug Tool command DESCRIBE ATTRIBUTES can be used to display the
resultant type of an expression, without actually evaluating the expression.

The C/C++ language does not specify the order of evaluation for function call argu-
ments. Consequently, it is possible for an expression to have a different execution
sequence in compiled code than within Debug Tool. For example, if you enter the
following in an interactive session:

int x;

int y;

x=y=1;

printf ("%d %d %d%" x, y, x=y=0);

the results can differ from results produced by the same statements located in a C
or C++ program segment. Any expression containing behavior undefined by ANSI
standards can produce different results when evaluated by Debug Tool than when
evaluated by the compiler.

For more information about expressions and operators, refer to OS/390 C/C++ Lan-
guage Reference.

The following examples show you various ways Debug Tool supports the use of
expressions in your programs:

» Debug Tool assigns 12 to a (the result of the printf()) function call, as in:
a = (1,2/3,a++,b++,printf("hello world\n"));

e Debug Tool supports structure and array referencing and pointer dereferencing,
as in:

Teague[num] .team[1] .player[1]++;
Teague[num] .team[1] .total += 1;
++(*pleague);

e Simple and compound assignment is supported, as in:

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

V.X = 3;
a=b=c=d=0;
*(pointer++) — 1;

e C/C++ language constants in expressions can be used, as in:

pointer to c = "abcdef" + 0x2;
*pointer_to_Tlong = 3521L = 0x69al;
float val = 3e-11 + 6.6E-10;
char_val = '7"';

e The comma expression can be used, as in:

intensity <<= 1, shade * increment, rotate(direction);
alpha = (y>>3, omega % 4);

¢ Debug Tool performs all implicit and explicit C conversions when necessary.
Conversion to long double is performed in:

long_double val = unsigned short val;
Tong_double_val = (Tong double) 3;

Function calls
You can perform calls to user and C library functions within Debug Tool.

You can make calls to C library functions at any time. In addition, you can use the
C library variables stdin, stdout, stderr, __ amrc, and errno in expressions
including function calls.

The library function ctd1i cannot be called unless it is referenced in a compilation
unit in the program, either main or a function linked to main.

Calls to user functions can be made, provided Debug Tool is able to locate an
appropriate definition for the function within the symbol information in the user
program. These definitions are created when the program is compiled with
TEST(SYM) for C or TEST for C++. For details, see fCompiling a C program with the]

|compile-time TEST option” on page 5| or FCompiling a C++ program with the]
[compile-time TEST option” on page 9

Debug Tool performs parameter conversions and parameter-mismatch checking
where possible. Parameter checking is performed if:

e The function is a library function
e A prototype for the function exists in the current compilation unit

e Debug Tool is able to locate a prototype for the function in another compilation
unit, or the function itself was compiled with TEST(SYM) for C or with TEST for
C++.

You can turn off this checking by specifying SET WARNING OFF.

Calls can be made to any user functions that have linkage supported by the C or
C++ compiler. However, for C++ calls made to any user function, the function must
be declared as:

extern "C"

For example, use this declaration if you want to debug an application signal
handler. When a condition occurs, control passes to Debug Tool which then
passes control to the signal handler.

Chapter 9. Using Debug Tool with C/C++ programs 151

Using Debug Tool with C/C++ programs

Debug Tool attempts linkage checking, and does not perform the function call if it
determines there is a linkage mismatch. A linkage mismatch occurs when the
target program has one linkage but the source program believes it has a different
linkage.

It is important to note the following regarding function calls:

¢ The evaluation order of function arguments can vary between the C/C++
program and Debug Tool. No discernible difference exists if the evaluation of
arguments does not have side effects.

e Debug Tool knows about the function return value, and all the necessary con-
versions are performed when the return value is used in an expression.

For more information about #pragma linkage and the extern keyword, refer to
0S/390 C/C++ Language Reference.

Using Debug Tool functions with C/C++

152

Debug Tool provides built-in functions for use during a debugging session. These
functions allow greater access to your programming environment and greater
control over your debugging session. Using these functions, you can reference
storage, translate the values of operands to hexadecimal characters, or access a
variable or parameter during a specific instance of a recursive procedure.

Using %HEX

When used with the LIST command, %HEX allows you to display the value of an
operand as a hexadecimal character string. For example, if you want to examine
the internal representation of the packed decimal variable zvarl whose external
representation is 235, you can enter:

LIST %HEX(zvarl);

The hexadecimal value of 235C is displayed in the Log window.

Using %STORAGE

%STORAGE allows you to reference storage by address and length. By using
%STORAGE as the reference when setting a CHANGE breakpoint, you can watch spe-
cific areas of storage for changes. For example, to monitor eight bytes of storage
at the hex address 22222 for changes, enter:

AT CHANGE %STORAGE (0x00022222, 8)
LIST "Storage has changed at Hex address 22222"

Using %RECURSION
%RECURSION allows you to access an automatic variable or a parameter in a specific
instance of a recursive function. When you use %RECURSION, remember that:

 If the expression has a value of 1, the oldest generation is referenced. The
higher the value of the expression, the more recent the generation of the vari-
able Debug Tool references.

e %RECURSION can be used like a Debug Tool variable.

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

Using %INSTANCES

%INSTANCES returns the maximum value of %RECURSION (that is, the most recent
recursion number) for a given block. %INSTANCES can be used like a Debug Tool
variable.

%INSTANCES and %RECURSION can be used together to determine the number of times
a function is recursively called. They can also give you access to an automatic
variable or parameter in a specific instance of a recursive procedure. Assume, for
example, your program contains these statements:

int RecFn(unsigned int i) {
if (i =0) {
__ctest("");

At this point, the _ ctest() call gives control to Debug Tool, and you are prompted
for commands. If you enter:

LIST %INSTANCES(i);

Your Log window displays the number of times RecFn() was interactively called.

If you enter:
%RECURSION(i, 1);

you receive the value of 'i' at the first call of RecFn().

If necessary, you can use qualification to specify the parameter. For example, if
the current point of execution is in %block2, and %b1ock3 is a recursive function
containing the variable x, you can write an expression using x by qualifying the
variable, as follows:

%RECURSION(main:>%block3:>x, %INSTANCES (main:>%block3:>x, y+

For the proper syntax of the functions described above, see ['Debug Tool's built-in|
[functions” on page 140}

The following are examples of command sequences issued to Debug Tool using
C/C++ semantics and library functions:

¢ The following example gets a line of input from stdin using the C library routine
gets.

char 1ine[100];
char *result;
result = gets(line);

* The following example removes a file and checks for an error, issuing a
message if an error occurs.

int result;
result = remove("mayfile.dat");
if (result !=0)
perror("could not delete file");

e Debug Tool performs the necessary conversions when a call to a library func-
tion is made. The cast operator can be used. In the following example, the
integer 2 is converted to a double, which is the required argument type for
sqrt.

double sqrtval;
sqrtval = sqrt(2);

Chapter 9. Using Debug Tool with C/C++ programs 153

Using Debug Tool with C/C++ programs

* Nested function calls can be performed, as in:
printf("absolute value is %d\n", abs(-55));
e C library variables such as errno and stdout can be used, as in:

fprintf(stdout, "value of errno is %d\n", errno);

Debug Tool evaluation of C/C++ expressions

154

Debug Tool interprets most input as a collection of one or more expressions. You
can use expressions to alter a program variable or to extend the program by adding
expressions at points that are governed by AT breakpoints.

Debug Tool evaluates C/C++ expressions following the rules presented in OS/390

C/C++ Language Reference. The result of an expression is equal to the result that
would have been produced if the same expression had been part of your compiled
program.

Implicit string concatenation is supported. For example, "abc" "def" is accepted
for "abcdef" and treated identically. Concatenation of wide string literals to string
literals is not accepted. For example, L"abc"L"def" is valid and equivalent to
L"abcdef", but "abc" L"def" is not valid.

Expressions you use during your session are evaluated with the same sensitivity to
enablement as are compiled expressions. Conditions that are enabled are the
same ones that exist for program statements.

During a Debug Tool session, if the current setting for WARNING is ON, the occur-
rence in your C or C++ program of any one of the conditions listed below causes
the display of a diagnostic message. The messages themselves are displayed on
your terminal, and are explained in[Appendix_E, “Debug Tool Messages” on|

The list below is for reference only.

e Division by zero

¢ Remainder (%) operator for a zero value in the second operand
* Array subscript out of bounds for a defined array
 Bit shifting by a number that is either negative or greater than 32

* Incorrect number of parameters, or parameter type mismatches for a function
call

 Differing linkage calling conventions for a function call

¢ Assignment of an integer value to a variable of enumeration data type where
the integer value does not correspond to an integer value of one of the enu-
meration constants of the enumeration data type

e Assignment to an Ivalue that has the const attribute

e Attempt to take the address of an object with register storage class
* A signed integer constant not in the range -2**31<—>2**31

* A real constant not having an exponent of 3 or fewer digits

* A float constant not larger than
5.39796053469340278908664699142502496E-79 or smaller than
7.2370055773322622139731865630429929E+75

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

* A hex escape sequence that does not contain at least one hexadecimal digit
e An octal escape sequence with an integer value of 256 or greater

¢ An unsigned integer constant greater than the maximum value of 4294967295.

Using SET INTERCEPT with C programs

Several considerations must be kept in mind when using the INTERCEPT command
to intercept files while you are debugging a C application.

For CICS Only : SET INTERCEPT is not supported for CICS.

For C++, there is no specific support for intercepting I0Streams. 10Streams is
implemented using C I/O which implies that:

e If you intercept I/O for a C standard stream, this implicitly intercepts 1/O for the
corresponding 1/0OStreams standard stream.

e If you intercept I/O for a file, by name, and define an 10Stream object associ-
ated with the same file, IOStream I/O to that file will be intercepted.

Note: Although you can intercept IOStreams indirectly via C/370* I/O, the behav-
iors might be different or undefined in C++.

You can use the following names with the SET INTERCEPT command during a
debugging session:

e stdout, stderr, and stdin (lowercase only)

e any valid fopen() file specifier.

The behavior of I/O interception across system() call boundaries is global. This
implies that the setting of INTERCEPT ON for xx in Program A is also in effect for
Program B (when Program A system() calls to Program B). Correspondingly,
setting INTERCEPT OFF for xx in Program B turns off interception in Program A
when Program B returns to A. This is also true if a file is intercepted in Program B
and returns to Program A. This model applies to disk files, memory files, and
standard streams.

When a stream is intercepted, it inherits the text/binary attribute specified on the
fopen statement. The output to and input from the Debug Tool log file behaves like
terminal 1/0O, with the following considerations:

¢ Intercepted input behaves as though the terminal opened for record I/O. Inter-
cepted input is truncated if the data is longer than the record size and the trun-
cated data is not available to subsequent reads.

* Intercepted output is not truncated. Data is split across multiple lines.

e Some situations causing an error with the real file might not cause an error
when the file is intercepted (for example, truncation errors do not occur). Files
expecting specific error conditions do not make good candidates for inter-
ception.

¢ Only sequential I/O can be performed on an intercepted stream, but file posi-
tioning functions are tolerated and the real file position is not changed. fseek,
rewind, ftell, fgetpos, and fsetpos do not cause an error, but have no effect.

Chapter 9. Using Debug Tool with C/C++ programs 155

Using Debug Tool with C/C++ programs

e The "\a' character does not cause a beep when running under VM as it does
for terminal output.

* The logical record length of an intercepted stream reflects the logical record
length of the real file.

e When an unintercepted memory file is opened, the record format is always
fixed and the open mode is always binary. These attributes are reflected in the
intercepted stream.

* Files opened to the terminal for write are flushed before an input operation
occurs from the terminal. This is not supported for intercepted files.

For more information on the behavior of terminal 1/0, see OS/390 C/C++ Program-
ming Guide.

Other characteristics of intercepted files are:

e When an fclose() occurs or INTERCEPT is set OFF for a file that was inter-
cepted, the data is flushed to the session log file before the file is closed or the
SET INTERCEPT OFF command is processed.

e When an fopen() occurs for an intercepted file, an open occurs on the real file
before the interception takes effect. If the fopen() fails, no interception occurs
for that file and any assumptions about the real file, such as the ddname allo-
cation and data set defaults, take effect.

e The behavior of the ASIS suboption on the fopen() statement is not supported
for intercepted files.

e When the clrmemf () function is invoked and memory files have been inter-
cepted, the buffers are flushed to the session log file before the files are
removed.

 If the fldata() function is invoked for an intercepted file, the characteristics of
the real file are returned.

e If stderr is intercepted, the interception overrides the Language Environment
message file (the default destination for stderr). A subsequent SET INTERCEPT
OFF command returns stderr to its MSGFILE destination.

» If a file is opened with a ddname, interception occurs only if the ddname is
specified on the INTERCEPT command. Intercepting the underlying file name
does not cause interception of the stream.

¢ When running under VM, if a file mode of "*" is specified on the INTERCEPT
command, all files opened with the specified file name and type are inter-
cepted. If a file mode is not specified, "*" is assumed.

e User prefix qualifications are included in MVS data set names entered in the
INTERCEPT command, using the same rules as defined for the fopen() function.
For more information, see 0S/390 C/C++ Programming Guide.

e If library functions are invoked when Debug Tool is waiting for input for an inter-
cepted file (for example, if you interactively enter fwrite(..) when Debug Tool
is waiting for input), subsequent behavior is undefined.

¢ |/O intercepts remain in effect for the entire debug session, unless you termi-
nate them by selecting SET INTERCEPT OFF.

Command line redirection of the standard streams is supported under Debug Tool,
as follows:

156 Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

1.
a. 1>&2:
If stderr is the target of the interception command, stdout is also inter-
cepted. If stdout is the target of the INTERCEPT command, stderr is not
intercepted. When INTERCEPT is set OFF for stdout, the stream is redirected
to stderr.
b. 2>&1:
If stdout is the target of the INTERCEPT command, stderr is also inter-
cepted. If stderr is the target of the INTERCEPT command, stdout is not
intercepted. When INTERCEPT is set OFF for stderr, the stream is redirected
to stdout again.
2.
a. 1>file.name :
stdout is redirected to file.name . For interception of stdout to occur,
stdout or file.name can be specified on the interception request. This also
applies to 1>>file.name
b. 2>file.name :
stderr is redirected to file.name. For interception of stderr to occur,
stderr or file.name can be specified on the interception request. This also
applies to 2>>file.name
3.

a. 2>&1 1>file.name :

stderr is redirected to stdout, and both are redirected to file.name . If
file.name is specified on the interception command, both stderr and
stdout are intercepted. If you specify stderr or stdout on the INTERCEPT
command, the behavior follows rule 1b above.

b. 1>&2 2>file.name :

stdout is redirected to stderr, and both are redirected to file.name . If you
specify file.name on the INTERCEPT command, both stderr and stdout are
intercepted. If you specify stdout or stderr on the INTERCEPT command,
the behavior follows rule la above.

4. The same standard stream cannot be redirected twice on the command line.
Interception is undefined if this is violated.

a. 2>&1 2>file.name :
Behavior of stderr is undefined.
b. 1>&2 1>file.name :

Behavior of stdout is undefined.

Objects and scopes

An object is visible in a block or source file if its data type and declared name are
known within the block or source file. The region where an object is visible is
referred to as its scope. In Debug Tool, an object can be a variable or function and
is also used to refer to line numbers.

Chapter 9. Using Debug Tool with C/C++ programs 157

Using Debug Tool with C/C++ programs

158

Note: The use of an object here is not to be confused with a C++ object. Any
reference to C++ will be qualified as such.

In ANSI C, the four kinds of scope are:

Block

File

Function

Function prototype

For C++, in addition to the scopes defined for C, it also has the class scope.

An object has block scope if its declaration is located inside a block. An object with
block scope is visible from the point where it is declared to the closing brace (}) that
terminates the block.

An object has file scope if its definition appears outside of any block. Such an
object is visible from the point where it is declared to the end of the source file. In
Debug Tool, if you are qualified to the compilation unit with the file static variables,
file static and global variables are always visible.

The only type of object with function scope is a label name.

An object has function prototype scope if its declaration appears within the list of
parameters in a function prototype.

A class member has class scope if its declaration is located inside a class.

You cannot reference objects that are visible at function prototype scope, but you
can reference ones that are visible at file or block scope if:

e For C variables and functions, the source file was compiled with TEST(SYM) and
the object was referenced somewhere within the source.

e For C variables declared in a block that is nested in another block, the source
file was compiled with TEST(SYM, BLOCK).

e For line numbers, the source file was compiled with TEST(LINE) GONUMBER.

e For labels, the source file was compiled with TEST(SYM, PATH). In some cases
(for example, when using GOTO0), labels can be referenced if the source file was
compiled with TEST(SYM, NOPATH).

Debug Tool follows the same scoping rules as ANSI, except that it handles objects
at file scope differently. An object at file scope can be referenced from within
Debug Tool at any point in the source file, not just from the point in the source file
where it is declared. Debug Tool temporary variables always have a higher scope
than program variables, and consequently have higher precedence than a program
variable with the same name. The program variable can always be accessed
through qualification.

In addition, Debug Tool supports the referencing of variables in multiple load
modules. Multiple load modules are managed through the C library functions
d1170ad(), d11free(), fetch(), and release(). For example, let's assume the

program shown in [Eigure 23 on page 159 is compiled with TEST(SYM). When
Debug Tool gains control, the file scope variables Tength and table are available

for change, as in:

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

length = 60;

The block scope variables i, j, and temp are not visible in this scope and cannot
be directly referenced from within Debug Tool at this time. You can list the line
numbers in the current scope by entering:

LIST LINE NUMBERS;

Now let's assume the program shown in Figure 23 is compiled with TEST(SYM,
NOBLOCK). Since the program is explicitly-compiled using NOBLOCK, Debug Tool will
never know about the variables j and temp because they are defined in a block that
is nested in another block. Debug Tool does know about the variable i since it is
not in a scope that is nested.

#pragma runopts (EXECOPS)
#include <stdlib.h>

main()
{
>>> Debug Tool is given <<<
>>> control here. <<<
init();
sort();

}

short length = 40;
static Tong *table;
init()
{
table = malloc(sizeof(Tong)*length);

}...

sort ()
{ /* Block sort =/
int i;
for (i =0; i < length-1; i++) { /* Block %BLOCK2 =/
int j;

for (j = i+l; j < length; j++) { /* Block %BLOCK3 */
static int temp;
temp = table[i];
table[i] = table[j];
table[j] = temp;

1

}
}

Figure 23. Program Showing Support for Referencing Variables in Multiple Load Modules

Storage classes

Debug Tool supports the change and reference of all objects declared with the fol-
lowing storage classes:

auto
register
static
extern

Chapter 9. Using Debug Tool with C/C++ programs 159

Using Debug Tool with C/C++ programs

Temporary variables declared during the Debug Tool session are also available for
reference and change.

An object with auto storage class is available for reference or change in Debug
Tool, provided the block where it is defined is active. Once a block finishes exe-
cuting, the auto variables within this block are no longer available for change, but
can still be examined using DESCRIBE ATTRIBUTES.

An object with register storage class might be available for reference or change in
Debug Tool, provided the variable has not been optimized to a register.

An object with static storage class is always available for change or reference in
Debug Tool. Ifitis not located in the currently qualified compile unit, you must
specifically qualify it.

An object with extern storage class is always available for change or reference in
Debug Tool. It might also be possible to reference such a variable in a program
even if it is not defined or referenced from within this source file. This is possible
provided Debug Tool can locate another compile unit (compiled with TEST(SYM))
with the appropriate definition.

Blocks and block identifiers for C

160

It is often necessary to set breakpoints on entry into or exit from a given block or to
reference variables that are not immediately visible from the current block. Debug
Tool can do this, provided that all blocks are named. It uses the following naming
convention:

* The outermost block of a function has the same name as the function.
* Blocks enclosed in this outermost block are sequentially named: %BLOCK2,
%BLOCK3, %BLOCK4, and so on in order of their appearance in the function.

When these block names are used in the Debug Tool commands, you might need
to distinguish between nested blocks in different functions within the same source
file. This can be done by naming the blocks in one of two ways:

e Function_name:>%BLOCKzzz (short form)
e Function_name:>%BLOCKxxx:>%BLOCKyyy: ... :>%BLOCKzzz (long form).

%BLOCKzzz is contained in %BLOCKyyy, which is contained in $BLOCKxxx. The short
form is always allowed; it is never necessary to specify the long form.

The currently active block name can be retrieved from the Debug Tool variable
%BLOCK. You can display the names of blocks by entering:

DESCRIBE CU;

In the program shown in [Figure 23 on page 159 the function sort has three
blocks:

sort
%BLOCK2
%BLOCK3

The following example sets a breakpoint on entry to the second block of sort:
at entry sort:>%BLOCK2;

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

The following example sets a breakpoint on exit of the first block of main and lists
the entries of the sorted table.

at exit main {
for (i = 0; i < length; i++)
printf("table entry %d is %d\n", i, table[i]);
}

The following example lists the variable temp in the third block of sort. This is
possible since temp has the static storage class.

LIST sort:>%BLOCK3:temp;

Blocks and block identifiers for C++
Block Identifiers tend to be longer for C++ than C because C++ functions can be
overloaded. In order to distinguish one function name from the other, each block
identifier is like a prototype. For example, a function named shapes(int,int) in C
would have a block hamed shapes; however, in C++ the block would be called
shapes(int,int).

You must always refer to a C++ block identifier in its entirety, even if the function is
not overloaded. That is, you cannot refer to shapes(int,int) as shapes only.

Note: The block name for main() is always main (without the qualifying parame-
ters after it) even when compiled with C++ because main() has extern C
linkage.

Since block names can be quite long, it is not unusual to see the name truncated in
the LOCATION field on the first line of the screen. If you want to find out where you
are, enter:

QUERY LOCATION
and the name will be shown in its entirety (wrapped) in the session log.

Block identifiers are restricted to a length of 255 characters. Any name longer than
255 characters is truncated.

Displaying environmental information

You can also use the DESCRIBE command to display a list of attributes applicable to
the current run-time environment. The type of information displayed varies from
language to language.

Issuing DESCRIBE ENVIRONMENT opens a list of open files and conditions being moni-
tored by the run-time environment. For example, if you enter DESCRIBE
ENVIRONMENT while debugging a C or C++ program, you might get the following
output:

Chapter 9. Using Debug Tool with C/C++ programs 161

Using Debug Tool with C/C++ programs

Currently open files
stdout
sysprint
The following conditions are enabled:
SIGFPE
SIGILL
SIGSEGV
SIGTERM
SIGINT
SIGABRT
SIGUSR1
SIGUSR2
SIGABND

Using qualification for C/C++

162

Qualification is a method of:

e Specifying an object through the use of qualifiers
e Changing the point of view.

Qualification is often necessary due to name conflicts, or when a program consists
of multiple load modules, compile units, and/or functions.

When program execution is suspended and Debug Tool receives control, the
default, or implicit qualification is the active block at the point of program suspen-
sion. All objects visible to the C or C++ program in this block are also visible to
Debug Tool. Such objects can be specified in commands without the use of qual-
ifiers. All others must be specified using explicit qualification.

Qualifiers depend, of course, upon the naming convention of the system where you
are working. For instance, |Figure 24 on page 163} shows a block of code from a
C program under VM, and [Figure 25 on page 164] shows a block of code from a C
program under MVS.

In both examples, when Debug Tool receives control, variables 1, j, temp, table,
and length can be specified without qualifiers in a command. If variable sn is
referenced, Debug Tool uses the variable that is a float. However, the names of
the blocks and compile units differ, maintaining compatibility with the operating
system.

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

LOAD MODULE NAME: MAINMOD
SOURCE FILE NAME: SORTMAIN C A

short length = 40;
main ()

{

long *table;
void (*pf)();
table = malloc(sizeof(long)=*length);

pf = fetch("SORTMOD");
(*pf) (table);

release(pf);
1

LOAD MODULE NAME: SORTMOD
SOURCE FILE NAME: SORTSUB C A

short length = 40;
short sn = 3;

void sort(long table[])
{

short i;
for (i = 0; i < length-1; i++) {
short j;

for (j = i+l; j < length; j++) {
float sn = 3.0;
short temp;
temp = table[i];

>>> Debug Tool is given <<<

>>> control here. <<<
table[i] = table[j];
table[j] = temp;

1

}
}

Figure 24. Qualification in VM

Chapter 9. Using Debug Tool with C/C++ programs 163

Using Debug Tool with C/C++ programs

Using qualifiers

LOAD MODULE NAME: MAINMOD
SOURCE FILE NAME: MVSID.SORTMAIN.C

short length = 40;
main ()

{

long *table;
void (*pf)();
table = malloc(sizeof(long)=*length);

pf = fetch("SORTMOD");
(*pf) (table);

release(pf);
1

LOAD MODULE NAME: SORTMOD
SOURCE FILE NAME: MVSID.SORTSUB.C

short length = 40;
short sn = 3;

void (long table[])
{

short i;
for (i = 0; i < length-1; i++) {
short j;

for (j = i+l; j < length; j++) {
float sn = 3.0;
short temp;
temp = table[i];

>>> Debug Tool is given <<<

>>> control here. <<<
table[i] = table[j];
table[j] = temp;

}
}
}

Figure 25. Qualification in MVS

You can precisely specify an object, provided you know the following:

e Load module or DLL name
e Source file (compilation unit) name
* Block name (must include function prototype for C++ block qualification).

These are known as qualifiers and some, or all, might be required when referencing
an object in a command. Qualifiers are separated by a combination of greater than
signs (>) and colons and precede the object they qualify. For example, the fol-
lowing is a fully qualified object:

LOAD_NAME: :>CU_NAME:>BLOCK _NAME:>object

If required, LOAD_NAME is the name of the load module. It is required only when the
program consists of multiple load modules and when you want to change the quali-

164 Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

fication to other than the current load module. LOAD_NAME is enclosed in double
guotation marks. If it is not, it must be a valid identifier in the C or C++ program-
ming language. LOAD _NAME can also be the Debug Tool variable %LOAD.

If required, CU_NAME is the name of the compilation unit or source file. The CU_NAME
must be the fully qualified source file name or an absolute pathname. It is required
only when you want to change the qualification to other than the currently qualified
compilation unit. It can be the Debug Tool variable %CU. If there appears to be an
ambiguity between the compilation unit name, and (for example), a block name,
you must enclose the compilation unit name in double quotation marks (").

If required, BLOCK_NAME is the name of the block. This has the same syntax as
described in the section on|“Blocks and block identifiers for C” on page 160}
BLOCK_NAME can be the Debug Tool variable %BLOCK.

For VM Only : The following examples are based on |[Figure 24 on page 163

e Change the file scope variable 1ength defined in the compilation unit SORTSUB:
"SORTMOD" : : >"SORTSUB" :>Tength = 20;

* Assume Debug Tool gained control from main(). The following changes the
variable Tength:

%LOAD: :>"SORTMAIN":>1ength = 20;

Because length is in the current load module and compilation unit, it can also
be changed by:

length = 20;

» Assume Debug Tool gained control as shown in [Figure 24 on page 163, You
can break whenever the variable temp in load module SORTMOD changes in
any of the following ways:

AT CHANGE temp;

AT CHANGE %BLOCK3:>temp;

AT CHANGE sort:>%BLOCK3:>temp;

AT CHANGE %BLOCK:>temp;

AT CHANGE %CU:>sort:>%BLOCK3:>temp;

AT CHANGE "SORTSUB":>sort:>%BLOCK3:>temp;

AT CHANGE "SORTMOD"::>"SORTSUB":>sort:>%BLOCK3:>temp;

For MVS Only : The following examples are based on [Figure 25 on page 164}

e Change the file scope variable Tength defined in the compilation unit
MVSID.SORTSUB.C in the load module SORTMOD:

"SORTMOD" : : >"MVSID.SORTSUB.C":>1ength = 20;

¢ Assume Debug Tool gained control from main(). The following changes the
variable Tength:

%LOAD: :>"MVSID.SORTMAIN.C":>Tength = 20;

Because length is in the current load module and compilation unit, it can also
be changed by:

length = 20;

» Assume Debug Tool gained control as shown in [Figure 25 on page 164, You
can break whenever the variable temp in load module SORTMOD changes in
any of the following ways:

Chapter 9. Using Debug Tool with C/C++ programs 165

Using Debug Tool with C/C++ programs

AT CHANGE temp;

AT CHANGE %BLOCK3:>temp;

AT CHANGE sort:%BLOCK3:>temp;

AT CHANGE %BLOCK:>temp;

AT CHANGE %CU:>sort:>%BLOCK3:>temp;

AT CHANGE "MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

AT CHANGE "SORTMOD"::>"MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

Changing the point of view

166

To change the point of view from the command line or a command file, use qual-
ifiers in conjunction with the SET QUALIFY command. This can be necessary to get
to data that is inaccessible from the current point of view, or can simplify debugging
when a number of objects are being referenced.

It is possible to change the point of view to another load module or DLL, to another
compilation unit, to a nested block, or to a block that is not nested. The SET
keyword is optional.

The following examples of changing the point of view are based on

¢ Qualify to the second nested block in the function sort () while in sort.

SET QUALIFY BLOCK %BLOCK2;
You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, Debug Tool has access to objects accessible
from this point of view. You can specify these objects in commands without
qualifiers, as in:

J=3;

temp = 4;

Qualify to the function main in the load module MAINMOD in the compilation
unit SORTMAIN and list the entries of table.

QUALIFY BLOCK "MAINMOD"::>"SORTMAIN":>main();
LIST table[i];

The following examples of changing the point of view are based on

e Qualify to the second nested block in the function sort() in sort.

SET QUALIFY BLOCK %BLOCK2;
You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, Debug Tool has access to objects accessible
from this point of view. You can specify these objects in commands without
qualifiers, as in:

j =3

temp = 4;

Qualify to the function main in the load module MAINMOD in the compilation
unit MVSID.SORTMAIN.C and list the entries of table.

Debug Tool User's Guide and Reference

Using Debug Tool with C/C++ programs

QUALIFY BLOCK "MAINMOD"::>"MVSID.SORTMAIN.C":>main;
LIST table[i];

Stepping through C++ programs

You can step through methods as objects are constructed and destructed. In addi-
tion, you can step through static constructors and destructors. These are methods
of objects that are executed before and after main() respectively.

If you are debugging a program that calls a function that resides in a header file,
the cursor moves to the applicable header file. You can then view the function
source as you step through it. Once the function returns, debugging continues at
the line following the original function call.

You can step around a header file function by issuing the STEP OVER command.
This is useful in stepping over Library functions (e.g., string functions defined in
string.h) that you cannot debug anyway.

Setting breakpoints in C++

Setting AT ENTRY/EXIT and AT CALL breakpoints in C++ differs from C. The fol-
lowing sections describe the differences and provides you with examples of these
differences:

AT ENTRY/EXIT

AT ENTRY/EXIT sets a breakpoint in the specified block. You can set a breakpoint
on methods, methods within nested classes, templates, and overloaded operators.
An example is given for each below.

A block identifier can be quite long, especially with templates, nested classes, or
class with many levels of inheritance. In fact, it might not even be obvious at first
as to the block name for a particular function. To set a breakpoint for these non-
trivial blocks can be quite cumbersome. Therefore, it is recommended that you
make use of DESCRIBE CU and retrieve the block identifier from the session log as
described in Retrieving commands from the log and source windows” on|

When you do a DESCRIBE CU, the methods are always shown qualified by their
class. If a method is unique, you can set a breakpoint by using just the method
name. Otherwise, you must qualify the method with its class name. The following
two examples are equivalent:

AT ENTRY method ()

AT ENTRY classname: :method()

The following examples are valid:

Chapter 9. Using Debug Tool with C/C++ programs 167

Using Debug Tool with C/C++ programs

AT CALL

AT ENTRY square(int,int) 'simple' method square

AT ENTRY shapes::square(int) Method square qualified by its class
shapes.

AT EXIT outer::inner::func() Nested classes. Outer and inner are
classes. func() is within class inner.

AT EXIT Stack<int,5>::Stack() Templates.

AT ENTRY Plus::operator++(int) Overloaded operator.

AT ENTRY ::fail() Functions defined at file scope must be

referenced by the global scope operator ::

The following examples are invalid:

AT ENTRY shapes Where shapes is a class. Cannot set
breakpoint on a class. (There is no block
identifier for a class.)

AT ENTRY shapes::square Invalid since method square must be fol-
lowed by its parameter list.

AT ENTRY shapes:>square(int) Invalid since shapes is a class name, not
a block name.

AT CALL gives Debug Tool control when the application code attempts to call the
specified entry point. The entry name must be a fully qualified name. That is, the
name shown in DESCRIBE CU must be used. Using the example

AT ENTRY shapes::square(int)
to set a breakpoint on the method square, you must enter:
AT CALL shapes::square(int)

even if square is uniquely identified.

Examining C++ objects

When displaying an object, only the local member variables are shown. Access
types (public, private, protected) are not distinguished among the variables. The
member functions are not displayed. If you want to see their attributes, you can
display them individually, but not in the context of a class. When displaying a
derived class, the base class within it is shown as type class and will not be
expanded as the Objects example shows. Here are examples of displaying C++
objects:

168 Debug Tool User's Guide and Reference

Objects

Classes

Static data

Using Debug Tool with C/C++ programs

<< Sample program source >>
class shape {
bs

class line : public shape {
member variables of class Tine...
}

line edge;

<< End >>

To describe attributes for the object EDGE, enter DESCRIBE ATTRIBUTES edge and
you get:
DESCRIBE ATTRIBUTES edge;
ATTRIBUTES for edge
Its address is yyyyyyyy and its length is xx
class line
class shape
member variables of class shape....

Note that the base class is shown as class shape _shape.

To display the attributes of class shape, enter DESCRIBE ATTRIBUTES class shape
and you get:

DESCRIBE ATTRIBUTES class shape ;
ATTRIBUTES for class shape
const class shape

If a class contains static data, the static data will be shown as part of the class
when displayed. For example:

class A {
int x;
static int y;

}

A obj;

You can also display the static member by referencing it as A::y since each object
of class A has the same value.

Chapter 9. Using Debug Tool with C/C++ programs 169

Low-level debugging

Global data

To avoid ambiguity, variables declared at file scope can be referenced using the
global scope operator ::. For example:

int x;
class A {
int x;

}

If you are within a member function of A and want to display the value of x at file
scope, enter LIST ::x. If you do not use ::, entering LIST x will display the value of
x for the current object (i.e., this—>x).

Low-level debugging

Debug Tool is not an assembly-level debugger, but you might find it useful to
monitor registers (general-purpose and floating-point) while stepping through your
code and assembly listing by using the LIST REGISTERS command. The compiler
listing displays the pseudo assembly code, including Debug Tool hooks. You can
watch the hooks that you stop on and watch expected changes in register values
step by step in accordance with the pseudo assembly instructions between the
hooks. You can also modify the value of machine registers while stepping through
your code.

For example, here is a C program that you can run:

int db1(int j) /* line 1 */
{ /* line 2 =/
return 2*j; /* line 3 x/
} /* line 4 %/
int main(void)
{
int i;
i=10;

return db1(i);
}

With the compile-time options TEST(ALL),LIST, your pseudo assembly listing will
contain something like:

170 Debug Tool User's Guide and Reference

Low-level debugging

* int dbl(int j)

ST r1,152(,r13)
*

EX r0,HOOK. .PGM-ENTRY
* return 2+*j;

EX ro,HOOK. .STMT

L r15,152(,r13)

L rl5,0(,rl15)

SLL rl15,1
B @5L2
DC A@5L2-ep)
NOPR
@5L1 DS oD
*
@5L2 DS oD

EX r0,HOOK. . PGM-EXIT

Issue the command:
MONITOR LIST REGISTERS

to continuously monitor the registers. After a few steps, Debug Tool halts on line 1
and you have halted on the program entry hook seen above. Another STEP takes
you to line 3 and you have halted on the statement hook. The next STEP takes you
to line 4 and you have halted on the program exit hook. In accord with the pseudo
assembly listing, only Register 15 has changed during this STEP, and it contains the
return value of the function. In the MONITOR window, Register 15 now has the value
0x00000014 (decimal 20) as expected.

You can change the value from 20 to 8 just before returning from db1() by issuing
the command:

%GPR15 = 8 ;
You can list the contents of storage in various ways. Using the LIST REGISTERS

command, you can receive a list of the contents of the general-purpose registers or
the floating-point registers.

You can also monitor the contents of storage by specifying a dump-format display

of storage. To accomplish this, use the LIST STORAGE command. You can specify
the address of the storage that you want to view, as well as the number of bytes.

Chapter 9. Using Debug Tool with C/C++ programs 171

Using Debug Tool with COBOL programs

Chapter 10. Using Debug Tool with COBOL Programs

This chapter provides information on the way Debug Tool interacts with COBOL.

It covers such areas as the debugging environment provided by Debug Tool, the
Debug Tool subset of COBOL commands and reserved words, Debug Tool evalu-
ation of COBOL expressions, methods of program qualification, and changing the
point of view among several load modules.

This chapter also discusses variables: accessing program variables, declaring tem-
porary variables, displaying values of COBOL variables, assigning values to
COBOL variables, using Debug Tool variables in COBOL, and using DBCS charac-
ters in COBOL when testing with the Debug Tool.

Debugging environment provided for COBOL programs

While Debug Tool allows you to use many commands that are either very similar or
equivalent to COBOL commands, Debug Tool does not necessarily interpret these
commands as required by the compiler options you chose when compiling your
program. This is due to the fact that, in the Debug Tool environment, the following
settings are in effect:

DYNAM

NOCMPR2
NODBCS

NOWORD

NUMPROC (NOPFD)
QUOTE

TRUNC (BIN)

ZWB

For more information on these compile-time options, see the COBOL Language
Reference publications.

Debug Tool Subset of COBOL commands

172

To make testing COBOL programs easier, Debug Tool allows you to write debug-
ging commands that resemble COBOL commands. It does this by providing an
interpretive subset of COBOL language commands that is recognized by Debug
Tool and either closely resembles or duplicates the syntax and action of the appro-
priate COBOL commands. This not only allows you to work with familiar com-
mands, but also simplifies the insertion into your source code of program patches
developed while in your Debug Tool session.

The interpretive subset of COBOL commands recognized by Debug Tool is shown
in[Table 23 on page 355/ This subset of commands is valid only when the current
programming language is COBOL.

For explanations of command usage and keyword meaning, see the COBOL for
MVS & VM Language Reference.

© Copyright IBM Corp. 1995, 1999

Using Debug Tool with COBOL programs

Restrictions on COBOL-like commands

Some restrictions apply to the use of the COBOL commands COMPUTE, MOVE, and
SET; the conditional execution command, IF; the multiway switch, EVALUATE; the
iterative looping command, PERFORM; and the subroutine call, CALL. The restrictions
listed below for each command are in addition to restrictions found in COBOL Lan-
guage Reference publications.

COMPUTE
When using COMPUTE to assign the value of an arithmetic expression to a variable,
keep the following restrictions in mind:

e COMPUTE can assign a value to only one identifier.

e |f Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

e The following phrases are not supported: ROUNDED, SIZE ERROR, and
END-COMPUTE.

e The keyword EQUAL is not supported (= must be used).

e COMPUTE cannot be used to perform a computation with a windowed date field if
the arithmetic expression consists of more than one operand.

¢ Any expanded date field specified as an operand in the arithmetic expression is
treated as a nondate field.

¢ The result of the evaluation of the arithmetic expression is always considered to
be a nondate field.

 If the arithmetic expression in the COMPUTE operation consists of only one
numeric operand, the command is treated as a MOVE command. Therefore, the
same restrictions that apply to the MOVE command also apply to the COMPUTE
command.

For more information, see|[*"COMPUTE command (COBOL)” on page 249|and
COBOL Language Reference publications.

MOVE

When using MOVE to assign the value of one program, session, or Debug Tool vari-
able, or literal to another program, session, or Debug Tool variable, keep in mind
the following restrictions:

e MOVE can assign a value to only one identifier.

e |If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements, as
opposed to their values at statement boundaries.

e The CORRESPONDING phrase is not supported.

e MOVE does not support date windowing. Therefore, you cannot use the MOVE
command to assign the value of a windowed date field to an expanded date
field or to a nondate field.

e You cannot use the MOVE command to assign the value of one expanded date
field to another expanded date field with a different DATE FORMAT clause, or

Chapter 10. Using Debug Tool with COBOL Programs 173

Using Debug Tool with COBOL programs

174

to assign the value of one windowed date field to another windowed date field
with a different DATE FORMAT clause.

[Table 25 on page 358| shows the permissible moves for the MOVE command.

For more information, see 'MOVE command (COBOL)” on page 292|and COBOL

Language Reference publications.

SET
While using the SET command, keep the following restrictions in mind:

¢ Only a single receiver is allowed.

« Only the sender-receiver combinations listed in [Table 26 on page 359|are sup-
ported.

 If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

e Only Formats 1, 5, and 7 of the COBOL SET command are supported.

Additionally, Debug Tool provides a hexadecimal constant that can be used with
the SET command, where the hexadecimal value is denoted by an "H" and delim-
ited by quotation marks or apostrophes. For more information on this constant, see
[‘Using constants in expressions” on page 186}

For more information, see|[*SET command (COBOL)” on page 332|and COBOL
Language Reference publications.

IF
When using the IF command, keep in mind the following restrictions:

e Only simple relation conditions are supported.

e The NEXT SENTENCE phrase is not supported.

e Comparison combinations with windowed date fields are not supported.

e Comparisons between expanded date fields with different DATE FORMAT
clauses are not supported.

* Only the comparisons shown in[Table 24 on page 356| are supported.

For more information, see[‘IF command (COBOL)” on page 275/and COBOL Lan-
guage Reference publications.

EVALUATE
When using the EVALUATE command, keep in mind the following restrictions:

e Only a single subject is supported.

e Consecutive WHENs without associated commands are not supported.

e THROUGH/THRU ranges must be specified as literal constants.

e Only simple relation conditions are supported.

e Debug Tool implements the EVALUATE command as a series of IF commands.
As a result, only the comparisons shown in[Table 24 on page 356|are sup-
ported.

For more information, see ["EVALUATE command (COBOL)” on page 266 and
COBOL Language Reference publications.

Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

PERFORM
When using the PERFORM command, keep in mind the following restrictions:

e Only inline PERFORM commands are supported (but the PERFORM command can
be a Debug Tool procedure invocation).

e Only simple relation conditions are supported.
e The AFTER phrase is not supported.

¢ Index names and floating-point variables cannot be used as the varying identi-
fiers.

¢ Index names are not supported in the BY phrase.

¢ Windowed date fields are not supported in the VARYING, FROM, or BY phrases.

For more information, see [*PERFORM command (COBOL)” on page 297|and
COBOL Language Reference publications.

CALL
When using the CALL command, keep in mind the following restrictions:

e The ON OVERFLOW and ON EXCEPTION phrases are not supported. Consequently,
END-CALL is not supported.

¢ Only CALL commands to separately compiled programs are supported. You
cannot CALL nested programs, although they can be invoked by GOTO or STEP to
a compiled-in CALL command.

e All CALLs are dynamic. The called program is loaded when it is called.

¢ A windowed date field cannot be specified as the identifier containing the entry
name.

For more information, see[*CALL command” on page 238 and COBOL Language
Reference publications.

COBOL command format

When you are entering commands directly at your terminal or workstation, the
format is free-form, because you can begin your commands in column 1 and con-
tinue long commands using the appropriate method. You can continue on the next
line during your Debug Tool session by using an SBCS hyphen (-) as a continua-
tion character.

However, when you use a file as the source of command input, the format for your
commands is similar to the source format for the COBOL compiler. The first six
positions are ignored, and an SBCS hyphen in column 7 indicates continuation from
the previous line. You must start the command text in column 8 or later, and end it
in column 72.

The continuation line (with a hyphen in column 7) optionally has one or more
blanks following the hyphen, followed by the continuing characters. In the case of
the continuation of a literal string, an additional quote is required. When the token
being continued is not a literal string, blanks following the last nonblank character
on the previous line are ignored, as are blanks following the hyphen.

Chapter 10. Using Debug Tool with COBOL Programs 175

Using Debug Tool with COBOL programs

When Debug Tool copies commands to the log file, they are formatted according to
the rules above so that you can use the log file during subsequent Debug Tool
sessions.

Continuation is not allowed within a DBCS name or literal string. This restriction
applies to both interactive and command file input.

Using COBOL variables with Debug Tool

Debug Tool can process all variable types valid in the COBOL language.

In addition to being allowed to assign values to variables and display the values of
variables during your session, you can declare temporary variables to suit your
testing needs. The following sections describe these tasks.

Accessing program variables

Debug Tool obtains information about a program variable by name, using informa-
tion that is contained in the symbol table built by the compiler. You make the
symbol table available to Debug Tool by compiling with the compile-time TEST (SYM)
option. (See [‘Compiling a COBOL program with the compile-time TEST option” on|
for details about the compile-time TEST option.)

Assigning values to COBOL variables

Debug Tool provides three COBOL-like commands to use when assigning values to
variables—SET, MOVE, and COMPUTE.

Note: All examples concerning SET, MOVE, and COMPUTE refer to the declarations in
the COBOL program segment shown in Figure 26. The examples con-
cerning LIST, found in ['Displaying values of COBOL variables” onf
also refer to this program segment.

01 GRP.
02 ITM-1 OCCURS 3 TIMES INDEXED BY INXL.
03 ITM-2 PIC 9(3) OCCURS 3 TIMES INDEXED BY INX2.

01 B.
02 A PIC 9(10).
01 D.
02 ¢ PIC 9(10).
01 F.
02. E PIC 9(10) OCCURS 5 TIMES.
77 AA PIC X(5) VALUE 'ABCDE'.
77 BB PIC X(5).
77 XX PIC 9(9) COMP.
77 ONE PIC 99 VALUE 1.
77 WO PIC 99 VALUE 2.
77 PTR POINTER

Figure 26. Sample COBOL Variable Declarations

While reading the examples of variable manipulation, refer to these declarations.

176 Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

SET

SET allows you to assign values to indexes associated with index names. inxl,
defined in[Figure 26 on page 176 as the index to itm-1, can be given the following
value:

SET inx1 TO 3;

This assigns inx1 a value of three.

You can also set index values as equal to each other, as in the following example:
SET inx2 TO inx1;

This assigns the value of inx1 to inx2.

With SET, you can set pointers. The following example:

SET ptr TO NULL;

assigns the value of an invalid address (nonnumeric 0) to ptr and:
SET ptr TO ADDRESS OF one;

assigns the address of one to ptr.

You can also use H-literals to set pointers. The following example:
SET ptr TO H'200000';

assigns the hexadecimal value of '20000' to ptr.

MOVE
MOVE allows you to assign the value of one program, session, or Debug Tool vari-
able or literal to another. The following example:

MOVE a OF b TO ¢ OF d;

assigns to the program variable c, found in structure d, the value of the program
variable a, found in structure b. Note the qualification used in this example.

The following example:

MOVE 123 TO itm-2(1,1);

assigns the value of 123 to the first table element of itm-2.

You can also use reference modification to assign values to variables as shown in
the following two examples:

MOVE aa(2:3) TO bb;

and
MOVE aa TO bb(1:4);

COMPUTE
COMPUTE allows you to assign the value of an arithmetic expression to a variable.
The following example:

COMPUTE xx = (a + e(1)) / c = 2;

assigns to variable xx the result of the expression (a + e(1)) / ¢ * 2.

You can also use table elements in such assignments as shown in the following
example:

Chapter 10. Using Debug Tool with COBOL Programs 177

Using Debug Tool with COBOL programs

COMPUTE itm-2(1,2) = (a + 10) / e(2);

The value assigned to a variable is always assigned to the storage for that variable.
In an optimized program, a variable can be temporarily assigned to a register, and
a new value assigned to that variable does not necessarily alter the value used by
the program.

To assign a value to a temporary variable named CMS, TSO, or SYSTEM, abut the
"=" to the reference as shown in the following example:

COMPUTE cms= 5;

Declaring temporary variables

You might want or need to declare temporary variables, also known as session var-
iables, during your Debug Tool session. The relevant variable assignment com-
mands are similar to their counterparts in the COBOL language. The rules used for
forming variable names in COBOL also apply to the declaration of temporary vari-
ables during a Debug Tool session. For more information on COBOL variable
names, see COBOL Language Reference publications. Only elementary variables
with the attributes shown in[Table 13 on page 256 tan be declared as session
variables. They are accessible to other HLLs.

The following declarations are for a string variable, a decimal variable, a pointer
variable, and a floating-point variable. To declare a string named description,
enter:

77 description PIC X(25)

To declare a variable named numbers, enter:

77 numbers PIC 9(4) COMP

To declare a pointer variable named pinkie, enter:

77 pinkie POINTER

To declare a floating-point variable named shortfp, enter:
77 shortfp CoMP-1

Session variables remain in effect for the entire debug session.

Displaying values of COBOL variables

178

To display the values of variables, issue the LIST command. The LIST command
causes Debug Tool to log and display the current values (and names, if requested)
of variables. For example, if you want to display the variables aa, bb, one, and
their respective values at statement 52 of your program, issue the following
command:

AT 52 LIST TITLED (aa, bb, one); GO;

Debug Tool sets a breakpoint at statement 52 (AT), begins execution of the
program (GO), stops at statement 52, and displays the variable names (TITLED) and
their values.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, issue LIST
UNTITLED instead of LIST TITLED.

Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

The value displayed for a variable is always the value that was saved in storage for
that variable. In an optimized program, a variable can be temporarily assigned to a
register, and the value shown for that variable might differ from the value being
used by the program.

Using DBCS characters

Programs you run with Debug Tool can contain variables and character strings
written using the double-byte character set (DBCS). Debug Tool also allows you to
issue commands containing DBCS variables and strings. For example, you can
display the value of a DBCS variable (LIST), assign it a new value, monitor it in the
monitor window (MONITOR), or search for it in a window (FIND).

To use DBCS with Debug Tool, enter:

SET DBCS ON;

The DBCS default for COBOL is OFF.

The DBCS syntax and continuation rules you must follow to use DBCS variables in
Debug Tool commands are the same as those for the COBOL language.

For COBOL you must type a DBCS literal, such as G, in front of a DBCS value in a
Monitor or Data pop-up window if you want to update the value.

See COBOL Language Reference publications for discussions of DBCS usage with

COBOL.

Using Debug Tool variables in COBOL

Debug Tool variables, as shown in Table 5, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, issue the LIST command.

Table 5 (Page 1 of 2). Descriptions of Debug Tool Variables

Debug Tool COBOL Description
Variable Attributes
%GPRn PICTURE Represents general-purpose registers.
S9(9) USAGE
comp
%FPRn USAGE COMP-1 Represents single-precision floating-point registers.
%LPRn USAGE COMP-2 Represents double-precision floating-point registers.
%EPRn n/a Represents extended-precision floating-point registers; not
valid in COBOL programs.
%ADDRESS USAGE Contains the address of the location where your program
POINTER was interrupted.
%AMODE PICTURE Contains the current AMODE of the suspended program
S9(4) USAGE (31).
comp
%BLOCK PICTURE X(j) Contains the name of the current block.

Chapter 10. Using Debug Tool with COBOL Programs 179

Using Debug Tool with COBOL programs

180

Table 5 (Page 2 of 2). Descriptions of Debug Tool Variables

Debug Tool COBOL Description
Variable Attributes
%CAAADDRESS USAGE Contains the address of the CAA control block associated
POINTER with the suspended program.
%CONDITION PICTURE X(j) Contains the name (or number) of the condition identifica-
tion when Debug Tool is entered because of an HLL or
Language Environment condition.
%COUNTRY PICTURE X(j) Contains the current country code.
%CU PICTURE X(j) Contains the name of the primary entry point of the
current compilation unit.
Equivalent to %PROGRAM.
%EPA USAGE Contains the address of the primary entry point in the cur-
POINTER rently interrupted program.
%HARDWARE PICTURE X(j) Identifies the type of hardware where the application is
running.
%LINE PICTURE X(j) Contains the current line number. For COBOL, %LINE
does not return a relative verb (within the line) for labels.
Equivalent to %STATEMENT.
%LOAD PICTURE X(j) Contains the name of the load module of the current
program.
%NLANGUAGE PICTURE X(J) Contains the national language currently being used.
%PATHCODE PICTURE Contains an integer value identifying the type of change
S9(4) USAGE occurring when the program flow changes.
comp
%PLANGUAGE PICTURE X(J) Contains the current programming language.
%PROGRAM PICTURE X(j) Contains the name of the primary entry point of the
current program.
Equivalent to %CU.
%RC PICTURE Contains a return code whenever a Debug Tool command
S9(4) USAGE ends.
comp
%RUNMODE PICTURE X(j) Contains a string identifying the presentation mode of
Debug Tool.
%STATEMENT PICTURE X(j) Equivalent to %LINE.
%SUBSYSTEM PICTURE X(J) Contains the name of the underlying subsystem, if any,
where the program is executing.
%SYSTEM PICTURE X(J) Contains the name of the operating system supporting the

program.

Debug Tool variables representing general and floating-point registers can be used
as the targets of assignment commands. Detailed descriptions of the Debug Tool
variables follow.

%GPRO, %GPR1,...

»%GPR15

Variables that represent general purpose registers at the point of interruption in
a COBOL program. You can use them as targets of assignments:

MOVE name_table TO %GPR5;

Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

When modifying register values, use care that you do not change the base reg-
ister.

Notes:

1. If you change a %GPRn register, the change is reflected when you resume
program execution.

2. Although assigning new values to variables %GPR12 and %GPR13 does not
result in an error, when any subsequent action is taken the newly set
values are reset to their previous values.

%FPRO, %FPR2, %FPR4, %FPR6
Represent short-precision floating-point registers. These variables are defined
as USAGE COMP-1. You can use them as targets of assignments:

MOVE 3.14152 TO %FPRO;

Note: If the application supports the IEEE Binary Floating Point Arithmetic,
you and also use %FPR1, %FPR3, %FPR5, %FPR?7,..., %FPR15.

%LPRO, %LPR2, %LPR4, %LPR6
Represent long-precision floating-point registers. These variables are defined
as USAGE COMP-2. Similar to the short-precision floating-point registers (%FPRs),
you can use these registers as targets of assignments.

Note: If the application supports the IEEE Binary Floating Point Arithmetic,
you and also use %LPR1, %LPR3, %LPR5, %LPR7,..., %LPR15.

%EPRO, %EPR1, %EPR4, %EPRS5, %EPRS, %EPR9, %EPR12, %EPR13
Represent the extended-precision floating-point registers. These variables are
not defined for COBOL programs.

%ADDRESS
Contains the address of the location where the COBOL program was inter-

rupted.

You can use the OFFSET table in the compiler listing to determine statement
numbers. To determine the offset, you can issue the following commands:

LIST %ADDRESS - %EPA

%ADDRESS might not locate a statement in your COBOL program in all instances.
When an error occurs outside of the program, in some instances, %ADDRESS con-
tains the actual interrupt address. This occurs only if Debug Tool is unable to
locate the last statement that was executed before control left the program.

%AMODE
Contains the current AMODE of the suspended program. The only possible

value is 31.

%BLOCK
Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of $BLOCK using the QUALIFY command.

%CAAADDRESS
Contains the CAA control block associated with the suspended program.

Chapter 10. Using Debug Tool with COBOL Programs 181

Using Debug Tool with COBOL programs

%CONDITION
Contains the name (or number) of the condition identification when Debug Tool
is entered due to an HLL or Language Environment condition.

%COUNTRY
Contains the current country code.
%CU
Contains the name of the primary entry point of the current program.
You can change or override the value of %CU by using the QUALIFY command.
%CU is equivalent to %PROGRAM.
%EPA
Contains the address of the primary entry point of the currently interrupted
COBOL program.
%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.
%LINE
Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.
If the program is at the entry or exit of a block, LINE contains ENTRY or EXIT,
respectively.
If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*). Also, for COBOL, %LINE does not
return a relative verb (within the line) for labels.
%LINE is equivalent to %STATEMENT.
%LOAD
Contains the name of the current qualifying load module and is used when an
unqualified reference to a program or variable is made. If the currently quali-
fied load module is the one initially loaded, %LOAD contains a single asterisk (*).
Whenever control is transferred to Debug Tool, %L0AD is set to the name of the
currently executing load module (or to an asterisk in the initial load module).
You can change or override the value of %L0AD by using the QUALIFY command.
Note: For modules to be recognized by Debug Tool, they must be loaded
using Language Environment services.
%NLANGUAGE
Indicates the national language currently being used. It is treated as a string in
COBOL. Its possible values are:
ENGLISH
UENGLISH
JAPANESE
%PATHCODE

Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Its possible values are:

182 Debug Tool User's Guide and Reference

w N O

10

11
12

13

14

15

16

Using Debug Tool with COBOL programs

Debug Tool is not in control as the result of a path or attention situ-
ation.

Attention function (not ATTENTION condition).
A block has been entered.
A block is about to be exited.

Control has reached a label coded in the program (a paragraph
name or section name).

Control is being transferred as a result of a CALL or INVOKE. The
invoked routine's parameters, if any, have been prepared.

Control is returning from a CALL or INVOKE. If GPR 15 contains a
return code, it has already been stored.

Some logic contained by an inline PERFORM is about to be executed.
(Out-of-line PERFORM ranges must start with a paragraph or section
name, and are identified by $PATHCODE = 3.)

The logic following an IF...THEN is about to be executed.
The logic following an ELSE is about to be executed.

The logic following a WHEN within an EVALUATE is about to be exe-
cuted.

The logic following a WHEN OTHER within an EVALUATE is about to be
executed.

The logic following a WHEN within a SEARCH is about to be executed.

The logic following an AT END within a SEARCH is about to be exe-
cuted.

The logic following the end of one of the following structures is
about to be executed:

e An IF statement (with or without an ELSE clause)
e An EVALUATE or SEARCH
e A PERFORM.

Control is about to return from a declarative procedure such as USE
AFTER ERROR. (Declarative procedures must start with section
names, and are identified by %$PATHCODE = 3.)

The logic associated with one of the following phrases is about to be
run:

e [NOT] ON SIZE ERROR

e [NOT] ON EXCEPTION

e [NOT] ON OVERFLOW

e [NOT] AT END (other than SEARCH AT END)
e [NOT] AT END-OF-PAGE

e [NOT] INVALID KEY.

The logic following the end of a statement containing one of the fol-
lowing phrases is about to be run:

[NOT] ON SIZE ERROR

[NOT] ON EXCEPTION

[NOT] ON OVERFLOW

[NOT] AT END (other than SEARCH AT END)

Chapter 10. Using Debug Tool with COBOL Programs 183

Using Debug Tool with COBOL programs

 [NOT] AT END-OF-PAGE
o [NOT] INVALID KEY.

Note: Values in the range 3-16 can be assigned to %PATHCODE only if your
program was compiled with an option supporting path hooks.

%PLANGUAGE
Indicates the programming language currently being used.

%PROGRAM
Contains the name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC
Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:
LINE
SCREEN
BATCH
%STATEMENT

Contains the current statement number. This value can include a period, as
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, $STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
running. Possible values are:

CICS
IMS
TSO
NONE

Subsystems occur only on MVS; a request for %SUBSYSTEM from a VM host
returns NONE.

%SYSTEM
Contains the name of the operating system supporting the program. Possible
values are:

184 Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

MVS
VM

Debug Tool evaluation of COBOL expressions

Debug Tool interprets COBOL expressions according to COBOL rules. Some
restrictions do apply. For example, the following restrictions apply when arithmetic
expressions are specified:

* Floating-point operands are not supported (COMP-1, COMP-2, external floating
point, floating-point literals).

e Only integer exponents are supported.
* |Intrinsic functions are not supported.

¢ Windowed date-field operands are not supported in arithmetic expressions in
combination with any other operands.

When arithmetic expressions are used in relation conditions, both comparand attri-
butes are considered. Relation conditions follow the IF rules rather than the
EVALUATE rules.

Only simple relation conditions are supported. Sign conditions, class conditions,
condition-name conditions, switch-status conditions, complex conditions, and abbre-
viated conditions are not supported. When either of the comparands in a relation
condition is stated in the form of an arithmetic expression (using operators such as
plus and minus), the restriction concerning floating-point operands applies to both
comparands.

When both comparands are stated as simple references, all combinations listed in
[Table 24 on page 356|are supported.

Windowed date fields are not supported in relation conditions.

Displaying the results of expression evaluation
Use the LIST command to display the results of your expressions. For example, to
evaluate the expression and displays the result in the Log window, enter:

LIST a + (a - 10) + one;

You can also use structure elements in expressions. If e is an array, the following
two examples are valid:

LIST a + e(1) / ¢ * two;
LIST xx / e(two + 3);

See the COBOL Language Reference publications for discussions of COBOL
expression evaluation.

Expressions are evaluated according to COBOL rules applying to the options speci-
fied in 'Debugging environment provided for COBOL programs” on page 172
Conditions are the same ones that exist for program statements.

Chapter 10. Using Debug Tool with COBOL Programs 185

Using Debug Tool with COBOL programs

Using constants in expressions

During your Debug Tool session you can use expressions that use string constants
as one operand, as well as expressions that include variable names or number
constants as single operands. All COBOL string constant types discussed in
COBOL Language Reference publications are valid in Debug Tool, with the fol-
lowing restrictions:

¢ When you specify a hexadecimal (X'n') constant, no padding takes place. If
you need a fullword value, you must specify a full word.

¢ The following COBOL figurative constants are supported:

ZERO, ZEROS, ZEROES

SPACE, SPACES

HIGH-VALUE, HIGH-VALUES

LOW-VALUE, LOW-VALUES

QUOTE, QUOTES

NULL, NULLS

Any of the above preceded by ALL
Symbolic-character (whether or not preceded by ALL).

Additionally, Debug Tool allows the use of a hexadecimal constant. This
H-constant is a fullword value that can be specified in hex using numeric-hex-literal
format (hexadecimal characters only, delimited by either quotation marks (") or
apostrophes (') and preceded by H). The value is right-justified and padded on the
left with zeros. The following example:

LIST STORAGE (H'20cd0');

displays the contents at a given address in hexadecimal format. You can use this
type of constant with the SET command. The following example:

SET ptr TO H'124bf';

assigns a hexadecimal value of 124bf to the variable ptr.

Using Debug Tool functions with COBOL

Debug Tool provides certain functions you can use to find out more information
about program variables and storage.

Using %HEX

You can use the %HEX function with the LIST command to display the hexadecimal
value of an operand. For example, to display the external representation of the
packed decimal pvar3, defined as PIC 9(9), from 1234 as its hexadecimal (or
internal) equivalent, enter:

LIST %HEX (pvar3);
The Log window displays the hexadecimal string 01234F.

Using the %STORAGE function
This Debug Tool function allows you to reference storage by address and length.
By using the %STORAGE function as the reference when setting a CHANGE breakpoint,
you can watch specific areas of storage for changes. For example, to monitor eight
bytes of storage at the hex address 22222 for changes, enter:

186 Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

AT CHANGE %STORAGE (H'00022222', 8)
LIST 'Storage has changed at Hex address 22222'

For more information about the functions described above, including the proper
syntax, see ['Debug Tool's built-in functions” on page 140]

Using qualification for COBOL

Using qualifiers

Qualification is a method of specifying an object through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment MOVE 5
TO x; does not appear to be difficult for Debug Tool to process. However, you
might have more than one variable named x. You must tell Debug Tool which vari-
able x to assign the value of five.

You can use qualification to specify to what compile unit or block a particular vari-
able belongs. When Debug Tool is invoked, there is a default qualification estab-
lished for the currently executing block—it is implicitly qualified. Thus, you must
explicitly qualify your references to all statement numbers and variable names in
any other block. It is necessary to do this when you are testing a compile unit that
calls one or more blocks or compile units. You might need to specify what block
contains a particular statement number or variable name when issuing commands.

Qualifiers are combinations of load modules, compile units, blocks, section names,
or paragraph names punctuated by a combination of greater-than signs (>), colons,
and the COBOL data qualification notation, OF or IN, that precede referenced state-
ment numbers or variable names.

When qualifying objects on a block level, use only the COBOL form of data quali-
fication. If data names are unique, or defined as GLOBAL, they do not need to be
qualified to the block level.

The following is a fully qualified object:
LOAD_NAME: :>CU_NAME:>BLOCK NAME:>object;

If required, LOAD_NAME is the name of the load module. It is required only when the
program consists of multiple load modules and you want to change the qualification
to other than the current load module. LOAD_NAME can also be the Debug Tool
variable %LOAD.

If required, CU_NAME is the name of the compilation unit. The CU_NAME must be the
fully qualified compilation unit name. It is required only when you want to change
the qualification to other than the currently qualified compilation unit. It can be the
Debug Tool variable %CU.

If required, BLOCK_NAME is the name of the block. The BLOCK_NAME is required only
when you want to change the qualification to other than the currently qualified
block. It can be the Debug Tool variable %BLOCK. Remember to enclose the block
name in double (") or single (') quotes if case sensitive. If the name is not inside
quotes, Debug Tool converts the name to upper case.

The following two screens are samples of two similar COBOL programs (blocks):

Chapter 10. Using Debug Tool with COBOL Programs 187

Using Debug Tool with COBOL programs

MAIN

01 VARIL.
02 VARZ.
03 VAR3 PIC XX.
01 VAR4 PIC 99..

*xkxkkxkkkxkxxx**MOVE commands entered herex*xxxkkxxkkxxkkx

SUBPROG

01 VARL.
02 VARZ.
03 VAR3 PIC XX.
01 VAR4 PIC 99.
01 VAR5 PIC 99.

*xkkkxkkrkxkkxkxx% IST commands entered herex*xxxkxkxxkkxxkkx

You can distinguish between the main and subprog blocks using qualification. If
you enter the following MOVE commands when main is the currently executing block:
MOVE 8 TO varé4;

MOVE 9 TO subprog:>var4;

MOVE 'A' TO var3 OF var2 OF varl;
MOVE 'B' TO subprog:>var3 OF var2 OF varl;

and the following LIST commands when subprog is the currently executing block:

LIST TITLED vard;

LIST TITLED main:>vard;

LIST TITLED var3 OF var2 OF varl;

LIST TITLED main:>var3 OF var2 OF varl;

each LIST command results in the following output (without the commentary) in
your Log window:

VAR4 = 9; /* vard with no qualification refers to a variable */
/* in the currently executing block (subprog). */

/* Therefore, the LIST command displays the value of 9.x%/

MAIN:>VAR4 = 8 /* vard is qualified to main. */
/* Therefore, the LIST command displays 8, */

/* the value of the variable declared in main. =*/

VAR3 OF VAR2 OF VARL = 'B';
/* In this example, although the data qualification =*/
/* of var3 is OF var2 OF varl, the */
/* program qualification defaults to the currently */
/* executing block and the LIST command displays */

/* 'B', the value declared in subprog. */
VAR3 OF VAR2 OF VARL = 'A'

/* var3 is again qualified to var2 OF varl */

/* but further qualified to main. */

/* Therefore, the LIST command displays */

/* 'A', the value declared in main. */

The above method of qualifying variables is necessary for command files.

188 Debug Tool User's Guide and Reference

Using Debug Tool with COBOL programs

Changing the point of view
The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution) is
in main and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:

QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. Debug Tool does not see the variables declared in procedure
main. For example, the following assignment commands are valid with the subprog
point of view:

MOVE 10 TO varb;

However, if you want to display the value of a variable in main while the point of
view is still in subprog, you must use a qualifier, as shown in the following example:

LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

Chapter 10. Using Debug Tool with COBOL Programs 189

Using Debug Tool with PL/I programs

Chapter 11. Using Debug Tool with PL/I programs

This chapter provides information about the Debug Tool subset of commands for
PL/I. It also covers PL/I language statements, conditions, expressions, and func-
tions. Debug Tool also supports PL/I freeform DBCS input, which is covered in this
chapter as well.

Debug Tool Subset of PL/I commands

Table 6 lists the Debug Tool interpretive subset of PL/l commands. This subset is
a list of commands recognized by Debug Tool that either closely resemble or dupli-
cate the syntax and action of the corresponding PL/I| command. This subset of
commands is valid only when the current programming language is PL/I.

Table 6. Debug Tool Subset of PL/I Commands

Command Description

Assignment Scalar and vector assignment

BEGIN Composite command grouping

CALL Debug Tool procedure call

DECLARE or DCL Declaration of session variables

DO Iterative looping and composite command grouping
IF Conditional execution

ON Define an exception handler

SELECT Conditional execution

PL/I language statements

190

PL/I statements are entered as Debug Tool commands. Debug Tool makes it pos-
sible to issue commands in a manner similar to each language.

The following types of Debug Tool commands will support the syntax of the PL/I
statements:

Expression
This command evaluates an expression.
Block
BEGIN/END, DO/END, PROCEDURE/END
These commands provide a means of grouping any number of Debug
Tool commands into "one" command.
Conditional
IF/THEN, SELECT/WHEN/END
These commands evaluate an expression and control the flow of exe-
cution of Debug Tool commands according to the resulting value.
Declaration

DECLARE or DCL

These commands provide a means for declaring session variables.

© Copyright IBM Corp. 1995, 1999

Using Debug Tool with PL/l programs

Looping
DO/WHILE/UNTIL/END

These commands provide a means to program an iterative or conditional
loop as a Debug Tool command.

Transfer of Control
GOTO, ON

These commands provide a means to unconditionally alter the flow of
execution of a group of commands.

Table 7 shows the commands that are new or changed for this release of Debug
Tool when the current programming language is PL/I.

Table 7. PL/I Language-Oriented Commands

Command Description or Changes

ANALYZE Displays the PL/I style of evaluating an expression, and the precision and
scale of the final and intermediate results.

ON Performs as the AT OCCURRENCE command except it takes PL/I conditions
as operands.

BEGIN BEGIN/END blocks of logic.

DECLARE Session variables can now include COMPLEX (CPLX), POINTER, BIT,

BASED, ALIGNED, UNALIGNED, etc. Arrays can be declared to have upper
and lower bounds. Variables can have precisions and scales.

DO The three forms of DO are added; one is an extension of C's do.

1. DO; command(s); END;
2. DO WHILE | UNTIL expression; command(s); END;
3. DO reference=specifications; command(s); END;

IF The IF / ELSE does not require the ENDIF.
SELECT The SELECT / WHEN / OTHERWISE / END programming structure is added.

Using Debug Tool variables in PL/I
%PATHCODE Contains an integer value identifying the kind of path change taking
place when Debug Tool is entered because of a path breakpoint. Its
possible values are:

0 An attention interrupt occurred.

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label constant.

4 Control is being sent somewhere else as the result of a CALL

or a function reference.

5 Control is returning from a CALL invocation or a function refer-
ence. Register 15, if it contains a return code, has not yet
been stored.

6 Some logic contained in a complex DO statement is about to
be executed.

7 The logic following an IF..THEN is about to be executed.

Chapter 11. Using Debug Tool with PL/I programs 191

Using Debug Tool with PL/I programs

10

Conditions and condition handling

The logic following an ELSE is about to be executed.

The logic following a WHEN within a select-group is about to be

The logic following an OTHERWISE within a select-group is
about to be executed.

All PL/I conditions are recognized by Debug Tool. They are used with the AT
OCCURRENCE and ON commands. See['AT OCCURRENCE” on page 229 and ['ON|

|lcommand (PL/I)" on page 293|

When an 0CCURRENCE breakpoint is triggered, the Debug Tool %CONDITION variable

holds the following values:

Table 8. PL/I Conditions and %CONDITION Values(1)

Triggered Condition

%CONDITION Value

AREA AREA
ATTENTION CEE35J

COND (CC#1) CONDITION
CONVERSION CONVERSION
ENDFILE (MF) ENDFILE
ENDPAGE (MF) ENDPAGE

ERROR ERROR

FINISH CEE066

FOFL CEE348

KEY (MF) KEY

NAME (MF) NAME

OVERFLOW CEE34C
PENDING (MF) PENDING
RECORD (MF) RECORD

SIZE SIZE

STRG STRINGRANGE
STRINGSIZE STRINGSIZE
SUBRG SUBSCRIPTRANGE
TRANSMIT (MF) TRANSMIT
UNDEFINEDFILE (MF) UNDEFINEDFILE
UNDERFLOW CEE34D
ZERODIVIDE CEE349

(1): The Debug Tool condition ALLOCATE raises the ON ALLOCATE condition when a PL/I
program encounters an ALLOCATE statement for a controlled variable.

These PL/I language-oriented commands are only a subset of all the commands

that are supported by Debug Tool.

192 Debug Tool User's Guide and Reference

Freeform input

TEST(ERROR, ..

LIST STORAGE

Using Debug Tool with PL/l programs

Statements can be entered in PL/I's DBCS freeform. This means that statements
can freely use shift codes as long as the statement is not ambiguous.

This will change the description or characteristics of LIST NAMES in that:
LIST NAMES db<.c.skk.w>ord

will search for

<.D.B.C.Skk.W.0.R.D>

This will result in different behavior depending upon the language. For example,
the following will find a<kk>b in C and <.Akk.b> in PL/I.

LIST NAMES a<kk>=*
where <kk> is shiftout-kaniji-shiftin.

Freeform will be added to the parser and will be in effect while the current program-
ming language is PL/I.

With the run-time option, TEST(ERROR, ...) only the following can initialize Debug
Tool:

e The ERROR condition
e Attention recognition
e CALL PLITEST
e CALL CEETEST

LIST STORAGE address has been enhanced so that the address can be a POINTER, a
Px constant, or the ADDR built-in function.

Session variables

PL/I will support all Debug Tool scalar session variables. In addition, arrays and
structures can be declared.

Refer to[Table 14 on page 259 for variables whose attributes will let them be prop-
erly used by other programming languages.

Accessing program variables

Debug Tool obtains information about a program variable by name using informa-
tion that is contained in the symbol table built by the compiler. The symbol table is
made available to the compiler by compiling with TEST(SYM) (see [‘Compiling a PL/I|
[orogram _with the compile-time TEST option” on page 14| for more information).

Debug Tool uses the symbol table to obtain information about program variables,
controlled variables, automatic variables, and program control constants such as file
and entry constants and also CONDITION condition names. Based variables, con-
trolled variables, automatic variables and parameters can be used with Debug Tool
only after storage has been allocated for them in the program. An exception to this
is DESCRIBE ATTRIBUTES, which can be used to display attributes of a variable.

Chapter 11. Using Debug Tool with PL/I programs 193

Using Debug Tool with PL/I programs

Structures

Variable that are based on:
e An OFFSET variable,
e An expression, or

* A pointer that either is based or defined, a parameter, or member of either an
array or a structure

must be explicitly qualified when used in expressions. For example, assume you
made the following declaration:

DECLARE P1 POINTER;
DECLARE P2 POINTER;
DECLARE DX FIXED BIN(31) BASED(P2);

You would not be able to reference the variable directly by name. You can only
reference it by specifying either:

P2->DX
or

P1->p2->DX

The following types of program variables cannot be used with Debug Tool:
* iSUB defined variables
» Variables defined:

— On a controlled variable
— On an array with one or more adjustable bounds
— With a POSITION attributed that specifies something other than a constant

e Variables that are members of a based structure declared with the REFER
options.

You cannot reference elements of arrays of structures. For example, suppose a
structure called PAYROLL is declared as follows:

Declare 1 Payrol1(100),

2 Name,
4 Last char(20),
4 First char(15),
2 Hours,

4 Regular Fixed Decimal(5,2),
4 Overtime Fixed Decimal(5,2);

Given the way PAYROLL is declared, the following examples of commands are
valid in Debug Tool:

LIST (PAYROLL(1).NAME.LAST, PAYROLL(1).HOURS.REGULAR);
LIST (ADDR (PAYROLL)) ;
LIST STORAGE (PAYROLL.HOURS, 128);

Given the way PAYROLL is declared, the following examples of commands are
invalid in Debug Tool:

194 Debug Tool User's Guide and Reference

Using Debug Tool with PL/l programs

LIST (PAYROLL(1));
LIST (ADDR (PAYROLL(5))):

LIST STORAGE (PAYROLL(15).HOURS, 128));

PL/l expressions

When the current programming language is PL/I, expression interpretation is similar

to that defined in the PL/I language, except for restrictions as noted in[{Unsup]
[ported PL/I language elements” on page 196}

The Debug Tool expression is similar to the PL/I expression. If the source of the

command is a variable-length record source (such as your terminal) and if the

expression extends across more than one line, a continuation character (an SBCS

hyphen) must be specified at the end of all but the last line.

All PL/I constant types are supported, plus the Debug Tool PX constant.

PL/I built-in functions
The Debug Tool supports the following PL/I built-in functions:

Table 9. PL/I Built-In Functions

ABS CSTG2 LOG1 REAL
ACOS CURRENTSTORAGE LOG2 REPEAT
ADDR DATAFIELD LOW SAMEKEY
ALL DATE MPSTR SIN
ALLOCATION DATETIME NULL SIND
ANY DIM OFFSET SINH
ASIN EMPTY ONCHAR SQRT
ATAN ENTRYADDR ONCODE STATUS
ATAND ERF ONCOUNT STORAGE
ATANH ERFC ONFILE STRING
BINARYVALUE EXP ONKEY SUBSTR
BINVALUEL GRAPHIC ONLOC SYSNULL
BIT HBOUND ONSOURCE TAN
BOOL HEX PLIRETV TAND
CHAR HIGH POINTER TANH
COMPLETION IMAG POINTERADD TIME
CosS LBOUND POINTERVALUE TRANSLATE
COSD LENGTH PTRADD3 UNSPEC
COSH LINENO PTRVALUE4 VERIFY
COUNT LOG

Notes:

1Abbreviation for BINARYVALUE.
2Abbreviation for CURRENTSTORAGE.
3Abbreviation for POINTERADD.
4Abbreviation for POINTERVALUE.

Chapter 11. Using Debug Tool with PL/I programs

195

Using Debug Tool with PL/I programs

Using SET WARNING command with built-ins

Certain checks are performed when the Debug Tool SET WARNING command setting
is ON and a built-in function (BIF) is evaluated:

Division by zero

The remainder (%) operator for a zero value in the second operand

Array subscript out of bounds for defined arrays

Bit shifting by a number that is negative or greater than 32

On a built-in function call for an incorrect number of parameters or for param-
eter type mismatches

On a built-in function call for differing linkage calling conventions

These checks are restrictions that can be removed by issuing SET WARNING OFF.

Unsupported PL/I language elements

The following list summarizes PL/I functions not available:

Use of iSUB

Interactive declaration or use of user-defined functions

All preprocessor directives

Multiple assignments

BY NAME assignments

LIKE attribute

FILE, PICTURE, and ENTRY data attributes

All I/O statements, including DISPLAY

INIT attribute

Structures with the built-in functions CSTG, CURRENTSTORAGE, and STORAGE

The repetition factor is not supported for string constants

GRAPHIC string constants are not supported for expressions involving other data
types

Declarations cannot be made as sub-commands (for example in a BEGIN, DO, or
SELECT command group)

Positive identification of a compile unit (CU)

196

Debug Tool determines if a CU is Language Environment-enabled. If it is, the pro-
gramming language can be determined. If it is not, the Language Environment
utility exit is used to identify the programming language. If the programming lan-
guage of a CU cannot be identified, Debug Tool ignores the CU.

Debug Tool User's Guide and Reference

Using Debug Tool commands

Chapter 12. Using Debug Tool commands

This chapter describes Debug Tool's windowed interfaces, command usage modes,
alternate methods of command input, variables, and common syntax elements. It
also gives you task-oriented information such as interpreting checklist boxes,
entering commands, getting help, qualifying variables, and changing the point of
view.

Command modes and language support

Commands can be issued in three modes: full-screen, line, and batch. In addition,
some commands are valid only in certain programming languages or operation
modes. Unless otherwise noted, Debug Tool commands are valid in all modes,
and for all supported languages.

Entering commands

This section provides information for entering commands in Debug Tool. The fol-
lowing topics are discussed:

Command format Character set and case Abbreviating or truncating keywords
Continuing multiline commands Significance of blanks Using comments or con-
stants Retrieving commands from the log or source windows.

Command format

For input typed directly at the terminal, input is free-form, optionally starting in
column 1. Separate multiple commands on a line with semicolons. The termi-
nating semicolon (;) is optional for a single command, or the last command in a
sequence of commands.

For input that comes from a primary commands or USE file, all of the Debug Tool
commands must be terminated with a semicolon except for the C block command.

Character set and case

The character set and case vary with the double-byte character set (DBCS) or the
current programming language setting in a Debug Tool session.

Using DBCS
When the DBCS setting is ON, you can specify DBCS characters in the following
portions of all the Debug Tool commands:

e Commentary text
e Character data valid in the current programming language

e Symbolic identifiers such as variable names (for COBOL, this includes session
variables), entry names, block names, and so forth (if the names contain DBCS
characters in the application program).

When the DBCS setting is OFF, double-byte data is not correctly interpreted or dis-

played. However, if you use the shift-in and shift-out codes as data instead of
DBCS indicators, you should issue SET DBCS OFF.

© Copyright IBM Corp. 1995, 1999 197

Using Debug Tool commands

For more details on using DBCS characters, see FSET DBCS” on page 312|

Using C/C++
For both C and C++, Debug Tool set the programming language to C. When the
current programming language setting is C:

e All keywords and identifiers must be the correct case. Debug Tool does not do
conversion to uppercase.

e DBCS characters are allowed only within comments and literals.

e Either trigraphs or the equivalent special characters can be used. Trigraphs
are treated as their equivalents at all times. For example, FIND "??<" would
find not only "??<" but also "{".

e The vertical bar (|) can be entered for the following C/C++ operations: bitwise
or (), logical or (||), and bitwise assignment or (|=).

e There are alternate code points for the following C/C++ characters: vertical bar
(D, left brace ({), right brace (}), left bracket ([), and right bracket (])
Although alternate code points will be accepted as input for the braces and
brackets, the primary code points will always be logged. See 0S/390 C/C++
User's Guide for an explanation of the alternate and primary code points in
C/C++

Using COBOL and PL/I

When the current programming language setting is not C, commands can generally
be either uppercase, lowercase, or mixed. Characters in the range a through z are
automatically converted to uppercase except within comments and quoted literals.
Also, in PL/I, only "|" and "=" can be used as the boolean operators for OR and
NOT.

Abbreviating keywords

198

When you issue the Debug Tool commands, you can truncate most command
keywords. You cannot truncate reserved keywords for the different programming
languages, system keywords (that is, CMS, SYS, SYSTEM, or TSO) or special case
keywords such as BEGIN, CALL, COMMENT, COMPUTE, END, FILE (in the SET INTERCEPT
and SET LOG commands), GOTO, INPUT, LISTINGS (in the SET DEFAULT LISTINGS
command), or USE. In addition, PROCEDURE can only be abbreviated as PROC.

The system keywords, and COMMENT, INPUT, and USE keywords, take precedence
over other keywords and identifiers. If one of these keywords is followed by a
blank, it is always parsed as the corresponding command. Hence, if you want to
assign the value 2 to a variable named CMS and the current programming lan-
guage setting is C, the "=" must be abutted to the reference, as in "CMS<no
space>= 2;" not "CMS<space>= 2;". If you want to define a procedure named USE,
you must enter "USE<no space>: procedure;" not "USE<space>:: procedure;".

When you truncate, you need only enter enough characters of the command to dis-
tinguish the command from all other valid Debug Tool commands. You should not
use truncations in a commands file or compile them into programs because they
might become ambiguous in a subsequent release. The following shows examples
of Debug Tool command truncations:

Debug Tool User's Guide and Reference

Using Debug Tool commands

If you enter It will be

the following command... interpreted as...
A3 AT 3

G GO

QBB QUALIFY BLOCK B
QQ QUERY QUALIFY
Q QUIT

If you specify a truncation that is also a variable in your program, the keyword is
chosen if this is the only ambiguity. For example, LIST A does not display the
value of variable A, but executes the LIST AT command, listing your current AT
breakpoints. To display the value of A, issue LIST (A).

In addition, ambiguous commands that cannot be resolved cause an error message
and are not performed. That is, there are two commands that could be interpreted
by the truncation specified. For example, D A A; is an ambiguous truncation since
it could either be DESCRIBE ATTRIBUTES a; or DISABLE AT APPEARANCE;. Instead,
you would have to enter DE A A; if you wanted DESCRIBE ATTRIBUTES a; or DI A A;
if you wanted DISABLE AT APPEARANCE;. There are, of course, other variations that
would work as well (for example, D ATT A;).

Continuation (full-screen and line mode)

If you need to use more than one line when entering a command, you must use a
continuation character.

When you are entering a command in interactive mode, the continuation character
must be the last nonblank character in each line that is to be continued. In the
following example:

LIST (" this is a very very very VVVVVVVVVVVVVVVVVVVVVVVVVVVVV —
very long string");

the continuation character is the single-byte character set (SBCS) hyphen (-).

If you want to end a line with a character that would be interpreted as a continua-
tion character, follow that character with another valid nonblank character. For
example, in C/C++, if you want to enter "i—", you could enter "(i—)" or "i—;".
When the current programming language setting is C/C++, the back slash character
(\) can also be used.

When Debug Tool is awaiting the continuation of a command in full-screen mode,
you receive a continuation prompt of "MORE..." until the command is completely
entered and processed. When continuation is indicated in line mode, you receive a
continuation prompt of "PENDING..." until the command is completely entered and
processed.

Using file input
The rules for line continuation when input comes from a commands file are
language-specific:

* When the current programming language setting is C/C++, identifiers,
keywords, and literals can be continued from one line to the next if the back

Chapter 12. Using Debug Tool commands 199

Using Debug Tool commands

slash continuation character is used. The following is an example of the contin-
uation character for C:

LIST (" this is a very very very VVVVVVVVVVVVVVVVVVVVVVVVVVVVV\

very long string");

e When the current programming language setting is COBOL, columns 1-6 are
ignored by Debug Tool and input can be continued from one line to the next if
the SBCS hyphen (-) is used in column 7 of the next line. Command text must
begin in column 8 or later and end in or before column 72.

In literal string continuation, an additional double (") or single (') quote is
required in the continuation line, and the character following the quote is con-
sidered to follow immediately after the last character in the continued line. The
following is an example of line continuation for COBOL.:

123456 LIST (" this is a very very very vVvVVVVVVVVVVVVVVVVVVVVY"
123456-"very long string");

Continuation is not allowed within a DBCS name or literal string when the
current programming language setting is COBOL.

Entering multiline commands without continuation
You can enter the following command parts on separate lines without using the
SBCS hyphen (-) continuation character:

e Subcommands and the END keyword in the PROCEDURE command

¢ When the current programming language setting is C, statements that are part
of a compound or block statement

¢ When the current programming language setting is COBOL.:
— EVALUATE

- Subcommands in WHEN and OTHER clauses
- END-EVALUATE keyword

~ IF

- Subcommands in THEN and ELSE clauses
- END-IF keyword

— PERFORM

- Subcommands
- Subcommands in UNTIL clause
- END-PERFORM keyword

Significance of blanks
Blanks cannot occur within keywords, identifiers, and numeric constants; however,
they can occur within character strings. Blanks between keywords, identifiers, or
constants are ignored except as delimiters. Blanks are required when no other
delimiter exists and ambiguity is possible.

200 Debug Tool User's Guide and Reference

Comments

Constants

Using Debug Tool commands

Debug Tool lets you insert descriptive comments into the command stream (except
within constants and other comments); however, the comment format depends on
the current programming language.

For C++ only : Comments in the form "//" are not processed by Debug Tool in
C++.

e For all supported programming languages, comments can be entered by:

— Enclosing the text in comment brackets "/*" and "*/". Comments can
occur anywhere a blank can occur between keywords, identifiers, and
numeric constants. Comments entered in this manner do not appear in the
session log.

— Using the COMMENT command to insert commentary text in the session log.
Comments entered in this manner cannot contain embedded semicolons.

e When the current programming language setting is COBOL, comments can
also be entered by using an asterisk (*) in column 7. This is valid for file input
only.

Comments are most helpful in file input. For example, you can insert comments in
a USE file to explain and describe the actions of the commands.

Constants are entered as required by the current programming language setting.
Most constants defined for each of the supported HLLs are also supported by
Debug Tool. See ['C/C++ expressions” on page 149|or[‘Using constants in|
[expressions” on page 186 for more information.

Additionally, Debug Tool allows the use of hexadecimal constants in COBOL and
PL/I.

The COBOL H constant is a fullword value that can be specified in hex using
numeric-hex-literal format (hexadecimal characters only, delimited by either double
(") or single (') quotes and preceded by H). The value is right-justified and padded
on the left with zeros.

Note: The H constant can only be used where an address or POINTER variable
can be used. The COBOL hexadecimal notation for nonnumeric literals,
such as MOVE X'C1C2C3C4' TO NON-PTR-VAR, should be used for all other
situations where a hexadecimal value is needed.

The PL/I PX constant is a hexadecimal value, delimited by single quotes (') and
followed by PX. The value is right-justified and can be used in any context in which
a pointer value is allowed. For example, to display the contents at a given address
in hexadecimal format, specify:

LIST STORAGE (H'20CDO');

For COBOL only : You can use this type of constant with the SET command. For
example, to assign a hexadecimal value of 124BF to the variable ptr, specify:

SET ptr TO H"124BF";

Chapter 12. Using Debug Tool commands 201

Using Debug Tool commands

Retrieving commands from the log and source windows

When the SCREEN setting is ON, you can retrieve commands from your log and
source windows and have Debug Tool insert them on the command line.

To retrieve a line, move the cursor to the desired line in the log or source window,
modify it (delete the leading blank, for example), and press ENTER. The input line
appears on the command line so you can further modify it as necessary. Press
ENTER to issue the command.

When retrieving long or multiple Debug Tool commands, a full-screen pop-up
window is displayed, with the command as typed in so far. However, trailing blanks
on the last line are removed. The window can be expanded by placing the cursor
below the pop-up window and pressing ENTER. See also FRETRIEVE command]
|(full-screen mode)” on page 304,

Online command syntax help

202

Command syntax help is available to you. That is, if you are uncertain about the
proper syntax or exact keywords required by a command, type a question mark (?)
on the command line and press ENTER. For example, in COBOL, if you issue ?,
Debug Tool displays the output in the following format:

The next word can be one of:

; DECLARE IF SCROLL
reference DESCRIBE INPUT SELECT
register DISABLE LIST SET
ANALYZE DO MONITOR STEP
AT ENABLE PANEL SYSTEM
BEGIN END PROCEDURE name TRIGGER
CALL END QUALIFY TS0
CLEAR FIND QUERY USE
COMMENT GO QUIT WINDOW
CURSOR GO TO RETRIEVE

DCL GOTO RUN

The above output sample is meant to illustrate a point and might not appear exactly
as shown.

Note: DECLARE is not a command but a method of making an interactive variable or
tag declaration.

Also, if you are in the process of entering a command and want to verify what the
next command element should be, you can enter as much of the command as you
know followed by a question mark. For example, let's assume you are issuing a
form of the SCROLL command (Full-Screen Mode only) and you want to know the
possible command elements, enter:

SCROLL ?

Debug Tool displays the output in the following format:

Debug Tool User's Guide and Reference

Using Debug Tool commands

The partially parsed command is:

SCROLL
The next word can be one of:
BOTTOM RIGHT
DOWN TO
LEFT TOP
NEXT up

The Debug Tool CMS, SYSTEM, and TSO commands followed by ? do not invoke the
syntax help; instead the ? is sent to the host as part of the system command. The
COMMENT command followed by ? also does not invoke the syntax help.

Common syntax elements

Several syntax elements are used in many Debug Tool commands. To reduce the
size of this document, they are described in this subsection. Some of the following
syntax elements are generic and do not include a syntax diagram.

Block_Name
A block _name identifies:
e A C/C++ function or a block statement
e A COBOL nested program or method contained within a complete COBOL
program
e A PL/I block
The current block qualification can be changed using the SET QUALIFY BLOCK
command.
For C++ Only :
Include full declaration in block qualification.
For COBOL Only :
Enclose the block name in double (") or single (') quotes if it is case sensi-
tive. If the name is not inside quotes, Debug Tool will convert the name to
upper case.
If a name contains an internal double quote, you should enclose the name
in single quotes. Similarly, if the name contains an internal single quote,
you should enclose the name in double quotes.
You can only use block _name for blocks known in the current enclave.
Block Spec

A block spec identifies a block in the program being debugged.

\4
A

»>— block_name v
—E%BLOCK—I |—:>—bZock_name—l
—Lcu_spec—: >—bl ock_nameJ—

Chapter 12. Using Debug Tool commands 203

Using Debug Tool commands

block _name
A valid block name; see|‘Block Name.’
%BLOCK

Represents the currently qualified block. See [Table 3 on page 131l

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 205|

You can only use block_name for blocks known in the current enclave.
For C++ Only :

Block spec must include the formal parameters for the function. The
correct block qualification is:

int function(int, int) is function(int, int)

Use Describe CUS to determine correct block _spec for blocks known in the
current enclave.

Compile_Unit_Name
A compile_unit_name identifies:

e A C/C++ source file
e A COBOL program or class
e The external procedure name of a PL/l program.

For C/C++ Only :

The compile unit name must be enclosed in double quotes (") when there
is any chance of ambiguity between a block nhame and a compile unit
name. For example:

LIST CU2:>CU2:>varl

is ambiguous because the compile unit and a function in that compile unit
has same name.

To avoid the ambiguity, use:
LIST "CU2":>CU2:>varl
to correctly list the value of the variable varl scoped to the function CU2.

Escape sequences in compile unit names that are specified as strings are
not processed if the string is part of a qualification statement.

For COBOL Only :

Enclose the compile unit name in double (") or single (') quotes if it is case
sensitive. If the name is not inside quotes, Debug Tool will convert the
name to upper case.

For PL/I only :
For consistency, the compile unit name can optionally be enclosed in single
quotes (').

If the compile unit name is not a valid identifier in the current programming lan-
guage, it must be entered as a character string constant in the current program-
ming language.

204 Debug Tool User's Guide and Reference

CU_Spec

Expression

Using Debug Tool commands

The current compile unit qualification can be changed using the SET QUALIFY CU
command.

A cu_spec identifies a compile unit in the application being debugged. In PL/I, the
compile unit name is the same as the outer-most procedure name in the program.

\4
A

compile_unit_name
|—Zoad_spec—: :>J
%CU
%PROGRAM

load_spec
A valid load module specification; see [‘Load Spec” on page 206] If omitted,
the current load module qualification is used.

compile_unit_name
A valid compile unit name; see [‘Compile Unit Name” on page 204,

%CU

Represents the currently qualified compile unit. See|[Table 3 on page 131}
%CU is equivalent to %PROGRAM.

%PROGRAM
Is equivalent to %CU. See[Table 3 on page 131}

You can only use cu_spec to specify compile units in an enclave that is currently
running. You can, therefore, only qualify variable names, function names, labels,
and statement_ids to blocks within compile units in the current enclave.

An expression is a combination of references (see ['‘References” on page 206 for
more information) and operators that result in a value. For example, it can be a
single constant, a program, session, or Debug Tool variable, a built-in function ref-
erence, or a combination of constants, variables, and built-in function references, or
operators and punctuation (such as parentheses).

Particular rules for forming an expression depend on the current programming lan-
guage setting and what release level of the language run-time library under which
Debug Tool is running. For example, if you upgrade your version of the HLL com-
piler without upgrading your version of Debug Tool, certain application programming
interface inconsistencies might exist.

For more about expressions with each particular HLL, see [Chapter 9, “Using|

[Debug Tool with C/C++ programs” on page 142 [‘Debug Tool evaluation of COBOL
|expressions” on page 18_5|, or ['PL/l expressions” on page 195

You can only use expressions for variables contained in the current enclave.

Chapter 12. Using Debug Tool commands 205

Using Debug Tool commands

Load_Module_Name

Load_Spec

References

A load_module_name is the name of a file, object, or Dynamic Link Library (DLL)
that has been loaded by a supported HLL load service, or a subsystem. For
example, an enclave can contain load modules, which in turn contain compile units.

For C, escape sequences in load module names that are specified as strings are
not processed if the string is part of a qualification statement.

If omitted from a name that allows it as a qualifier, the current load module quali-
fication is assumed. It can be changed using the SET QUALIFY LOAD command.

If two enclaves contain duplicate modules, references to compile units in the
modules will be ambiguous, and will be flagged as errors. However, if the compile
unit is in the currently executing load module, that load module is assumed and no
check for ambiguity will be performed. Therefore, for Debug Tool, load module
names must be unique.

A load_spec identifies a load module in the program being debugged.

\ 4
A

load_module_name
%LOAD—I

load_module_name
A valid load module name; see fLoad Module_Name.”| This can be specified as
a string constant in the current programming language, for example, a string
literal in C or a character literal in COBOL. If not specified as such, it must be
a valid identifier in the current programming language.

%LOAD
Represents the currently qualified load module. See [Table 3 on page 131}

A reference is a subset of an expression that resolves to an area of storage, that is,
a possible target of an assignment statement. For example, it can be a program,
session, or Debug Tool variable, an array or array element, or a structure or struc-
ture element, and any of these can be pointer-qualified (in programming languages
that allow it). Any identifying name in a reference can be optionally qualified by
containing structure names and names of blocks where the item is visible. It is
optionally followed by subscript and substring modifiers, following the rules of the
current programming language.

The specification of a qualified reference includes all containing structures and
blocks as qualifiers, and can optionally begin with a load module name qualifier.
For example, when the current programming language setting is C,

mod: :>cu:>proc:>strucl.struc2.array[23].

When the current programming language setting is C/C++, the term 1value is used
in place of reference.

COBOL uses structure qualification (IN or OF keyword) and can have optional sub-
scripting and substringing of the form:

206 Debug Tool User's Guide and Reference

Statement_Id

Using Debug Tool commands

array OF struc2 OF strucl(subscript)(starting position:length)

Particular rules for forming a reference depend on the current programming lan-
guage setting and what release level of the language run-time library Debug Tool is
running under. For example, if you upgrade your version of the HLL compiler
without upgrading your version of Debug Tool, certain application programming
interface inconsistencies might exist.

A statement _id identifies an executable statement in a manner appropriate for the
current programming language. This can be a statement number, sequence
number, or source line number. The statement id is an integer or integer.integer
(where the first integer is the line number and the second integer is the relative
statement number). For example, you can specify 3, 3.0, or 3.1 to signify the first
relative statement on line 3. C/C++, COBOL, and PL/I allow multiple statements or
verbs within a source line.

You can only use statement identifiers for statements that are known in the current
enclave.

Statement_Id_Range and Stmt_Id_Spec

A statement_id_range identifies a source statement id or range of statement ids.
Stmt_id _spec identifies a statement id specification.

\4
A

»—| stmt_id_spec |
L. st‘atement_id—J
E‘%LINE—
SSTATEMENT—
stmt_id_spec:
|
|

] statement_id
block_spec >

cu_spec
%LINE
%STATEMENT

block _spec
A valid block specification; see [‘Block _Spec” on page 203 The default is the
currently qualified block.

Note: For the currently supported programming languages, block qualification
is extraneous and will be ignored. This is because statement identifiers
are unique within a compile unit.

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 205/ The default is
the currently qualified compile unit.

statement_id

A valid statement identifier number; see ['Statement 1d.”

%LINE
Represents the currently suspended source statement or line. See
%LINE is equivalent to %STATEMENT.

Chapter 12. Using Debug Tool commands 207

Using Debug Tool commands

%STATEMENT
Is equivalent to 5LINE. See|Table 3 on page 131}

Specifying a range of statements: A range of statements can be identified by
specifying a beginning and ending statement id, separated by a hyphen (-). When
the current programming language setting is COBOL, blanks are required around
the hyphen (-). Blanks are optional for C/C++ and PL/I. Both statement ids must
be in the same block, the second statement cannot occur before the first in the
source program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to
begin and end at the same statement. This consists of only one statement or verb
even in a multistatement line.

Statement_Label

208

A statement_label identifies a statement using its source label. The specification of
a qualified statement label includes all containing compile unit names or block
names, and can optionally begin with a load module name qualifier. For example:

mod: :>procl:>proc2:>blockl:>start

The form of a label depends on the current programming language:
e In C/C++, labels must be valid identifiers.

¢ In COBOL, labels must be valid identifiers and can be qualified with the section
name.

¢ In PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

Debug Tool User's Guide and Reference

ANALYZE

Chapter 13. Debug Tool commands

This chapter describes the syntax and usage of each Debug Tool command.

See [*How to read the syntax diagrams” on page xiii for an explanation of the

syntax notation used to define the commands.

ANALYZE command (PL/I)

The ANALYZE command displays the process of evaluating an expression and the
data attributes of any intermediate results. To display the results of the expression,
use the LIST command.

»>—ANALYZE—EXPRESSION—(—expression—)—;

EXPRESSION

\ 4
A

Requests that the accompanying expression be evaluated from the following
points of view:

expression

e What are the attributes of each element during the evaluation of the
expression?

e What are the dimensions and bounds of the elements of the expression, if
applicable?

e What are the attributes of any intermediate results that will be created
during the processing of the expression?

A valid Debug Tool PL/I expression.

Usage Notes:

Examples:

© Copyright IBM Corp. 1995, 1999

If SET SCREEN ON is in effect, and you want to issue ANALYZE EXPRESSION
for an expression in your program, you can bring the expression from
the source window up to the command line by typing over any character
in the line that contains the expression. Then, edit the command line to
form the desired ANALYZE EXPRESSION command.

If SET WARNING ON is in effect, Debug Tool displays messages about PL/I
computational conditions that might be raised when evaluating the
expression. See ['SET WARNING (C/C++ and PL/I)” on page 331| for
specific information.

Although the PL/I compiler supports the concatenation of GRAPHIC
strings, Debug Tool does not.

This example is based on the following program segment:

DECLARE 1o_point FIXED BINARY(31,5);

DECLARE hi_point FIXED BINARY(31,3);

DECLARE offset FIXED DECIMAL(12,2);

DECLARE percent CHARACTER(12);

lo_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

209

Assignment

The following is an example of the information prepared by issuing
ANALYZE EXPRESSION. Specifically, the following shows the effect that
mixed precisions and scales have on intermediate and final results of an
expression:

ANALYZE EXPRESSION ((hi_point - To_point) + offset / percent)
>>> Expression Analysis <<<
(HI_POINT - LO_POINT) + OFFSET / PERCENT
HI_POINT - LO_POINT
HI_POINT
FIXED BINARY(31,3) REAL
LO_POINT
FIXED BINARY(31,5) REAL
FIXED BINARY(31,5) REAL
OFFSET / PERCENT
OFFSET
FIXED DECIMAL(12,2) REAL
PERCENT
CHARACTER(12)
FIXED DECIMAL(15,5) REAL
FIXED BINARY(31,17) REAL

Assignment command (PL/1)

The Assignment command assigns the value of an expression to a specified refer-

ence.

»>—reference—=—expression—;

reference

\ 4
A

A valid Debug Tool PL/I reference. See|‘References” on page 206]

expression

A valid Debug Tool PL/I expression.

Usage Notes:

Examples:

The PL/I repetition factor is not supported by Debug Tool.
For example, the following is not valid: rx = (16)'01'B;

If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
the expected results. This is because Debug Tool cannot determine
variable values within statements, only at statement boundaries.

The PL/I assignment statement option BY NAME is not valid in the
Debug Tool.

Assign the value 6 to variable x.

X = 6;

Assign to the Debug Tool variable %GPR5 the address of name_table.
%GPR5 = ADDR (name_table);

210 Debug Tool User's Guide and Reference

AT

e Assign to the prg_name variable the value of Debug Tool variable
%PROGRAM.

prg_name = %PROGRAM;

AT command

The AT command defines a breakpoint or a set of breakpoints. By defining break-
points, you can temporarily suspend program execution and use Debug Tool to
perform other tasks. By specifying an AT-condition in the AT command, you instruct
Debug Tool when to gain control. You can also specify in the AT command what
action Debug Tool should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another
AT command establishes a new action for the same AT-condition or a CLEAR
command removes the established breakpoint. An informational message is issued
when the first case occurs. Some breakpoints might become obsolete during a
debug session and will be cleared automatically by Debug Tool. See the usage
notes for more details.

The various forms of the AT command are summarized in Table 10.

Table 10 (Page 1 of 2). Summary of AT Commands

AT ALLOCATE Gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.
AT APPEARANCE Gives Debug Tool control:

e For C and PL/I, when the specified compile unit is found in
storage

e For COBOL, the first time the specified compile unit is called

AT CALL Gives Debug Tool control on an attempt to call the specified entry
point.

AT CHANGE Gives Debug Tool control when either the specified variable value
or storage location is changed.

AT CURSOR Defines a statement breakpoint by cursor pointing.

AT DATE For COBOL, gives Debug Tool control for each date processing
statement within the specified block.

AT DELETE Gives Debug Tool control when a load module is deleted.

AT ENTRY/EXIT Defines a breakpoint at the specified entry point or exit.

AT GLOBAL Gives Debug Tool control for every instance of the specified
AT-condition.

AT LABEL Gives Debug Tool control at the specified statement label.

AT LINE Gives Debug Tool control at the specified line.

AT LOAD Gives Debug Tool control when the specified load module is
loaded.

AT OCCURRENCE Gives Debug Tool control on a language or Language Environ-
ment condition or exception.

AT PATH Gives Debug Tool control at a path point.

AT Prefix Defines a statement breakpoint via the source window prefix
area.

Chapter 13. Debug Tool commands 211

AT

Table 10 (Page 2 of 2). Summary of AT Commands

AT STATEMENT Gives Debug Tool control at the specified statement.
AT TERMINATION Gives Debug Tool control when the application program is termi-
nated.

Usage Notes:

Every clause

212

Most forms

To set breakpoints at specific locations in a program, Debug Tool
depends on that program being loaded into storage. If you issue an AT
command for a specific ENTRY, EXIT, LABEL, LINE, or STATEMENT
breakpoint and the program is not known by Debug Tool, a warning
message is issued and the breakpoint is not set.

To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command. For example, if
you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY =;
or
AT GLOBAL ENTRY;

AT CHANGE, AT ENTRY, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT
breakpoints (when entered for a specific block, label, line, or statement)
are automatically cleared when the containing compile unit is removed
from storage.

AT CHANGE breakpoints are automatically cleared when the containing
blocks are no longer active or if the relevant variables are in dynamic
storage that is freed by a language construct in the program (for
example, a C call to free()).

Clearing of a breakpoint is independent of whether the breakpoint is
ENABLESd or DISABLEd.

When multiple AT conditions are raised at the same statement or line,
Debug Tool processes them in a predetermined order.

If you want breakpoints to only stop your program under certain condi-
tions, you can use a combination of the AT command and the IF
command to establish a conditional breakpoint. For more information,
see the following sections titled {Stopping on a line only if a condition is|
ftruel’ : for C programs, page[55; for C++ programs, page [64} for COBOL
programs, page and for PL/I programs, page .

of the AT command contain an optional every clause that controls

whether the specified action is taken based on the number of times a situation has
occurred. For example, you might want an action to occur only every 10th time a

breakpoint

The syntax

is reached.

for every clause is:

" L'—EVE

EVERY

v

RY—integer—] |—FROM—int‘eger‘J I—TO—integer—]

Debug Tool User's Guide and Reference

AT

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means
that Debug Tool is invoked every fifth time the AT-condition is met. The default
is EVERY 1.

FROM integer
Specifies when Debug Tool invocations are to begin. For example, FROM 8
means that Debug Tool is not invoked until the eighth time the AT-condition is
met. If the FROM value is not specified, its value is equal to the EVERY value.

TO integer
Specifies when Debug Tool invocations are to end. For example, T0 20 means
that after the 20th time this AT-condition is met, it should no longer invoke
Debug Tool. If the TO value is not specified, the every clause continues indefi-
nitely.

Usage Notes:

* FROM integer cannot exceed TO integer and all integers must be = 1.
e EVERY by itself is the same as EVERY 1 FROM 1.
e The EVERY, FROM, and TO clauses can be specified in any order.

Examples:

e Break every third time statement 50 is reached, beginning with the 48th
time and ending after the 59th time. The breakpoint action is performed
the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

¢ At the fifth change of structure field member of the structure named
mystruct, print a message saying that it has changed and list its new
value. In addition, clear the CHANGE breakpoint. The current program-
ming language setting is C.
AT FROM 5 CHANGE mystruct.member {
LIST ("mystruct.member has changed.

It is now", mystruct.member);
CLEAR AT CHANGE mystruct.member;

}

AT ALLOCATE (PL/)

AT ALLOCATE gives Debug Tool control when storage for a named controlled vari-
able or aggregate is dynamically allocated by PL/l. When the AT ALLOCATE break-
point occurs, the allocated storage has not yet been initialized; initialization, if any,
occurs when control is returned to the program.

»—AT B 7 ALLOCATE identifier command——»<
every_clause

(—[Edentifier]—)—

every clause
As described under ['Every clause” on page 212|

identifier
The name of a PL/I controlled variable whose allocation causes an invocation
of Debug Tool. If the variable is the name of a structure, only the major struc-
ture name can be specified.

Chapter 13. Debug Tool commands 213

AT

* Sets a breakpoint at every ALLOCATE.

command
A valid Debug Tool command.

Examples:

e When the major structure area_name is allocated, display the address of
the storage that was obtained.

AT ALLOCATE area_name LIST ADDR (area_name);

e List the changes to temp where the storage for temp has been allocated.
DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');

AT ALLOCATE temp;
BEGIN;
AT CHANGE temp;
BEGIN;
LIST (temp);
GO;
END;
GO;
END;
GO;

temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized.
When it is initialized to 'abc' by the INITIAL phrase, the first AT CHANGE
is recognized and 'abc' is listed. The three assignments to temp cause
the value to be set again but the third assignment doesn't change the
value. This example results in one ALLOCATE breakpoint and three
CHANGE breakpoints.

AT APPEARANCE

Gives Debug Tool control when the specified compile unit is found in storage. This
is usually the result of a new load module being loaded. However, for modules
with the main compile unit in COBOL, the breakpoint does not occur until the
compile unit is first entered after being loaded.

»»—AT B 7 APPEARANCE Cu_spec————————command——»<
every_clause

(—-2u_spec—1—)]

every clause
As described under [Every clause” on page 212|

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 205|

* Sets a breakpoint at every APPEARANCE of any compile unit.

214 Debug Tool User's Guide and Reference

AT

command
A valid Debug Tool command.

Usage Notes:

¢ In a CICS environment, if an AT APPEARANCE breakpoint is set for a
program that is loaded via XCTL or LINK, the breakpoint will not be
raised.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

 |f this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

 If the compile unit is qualified with a load module name, the AT
APPEARANCE breakpoint will only be recognized for the compile unit that
is contained in the specified load module. For example, if a compile
unit cux that is in load module Toady appears, the breakpoint AT
APPEARANCE Toadx::>cux will not be TRIGGERed.

* If the compile unit is not qualified with a load module name, the current
load module qualification is not used.

* Debug Tool gains control when the specified compile unit is first recog-
nized by Debug Tool. This can occur when a program is reached that
contains a reference to that compile unit. This occurs late enough that
the program can be operated on (setting breakpoints, for example), but
early enough that the program has not yet been executed. In addition,
for C, static variables can also be referenced.

e AT APPEARANCE is helpful when setting breakpoints in unknown compile
units. You can set breakpoints at locations currently unknown to Debug
Tool by using the proper qualification and embedding the breakpoints in
the command list associated with an APPEARANCE breakpoint. However,
there can be only one APPEARANCE breakpoint set at any time for a given
compile unit and you must include all breakpoints for that unknown
compile unit in a single APPEARANCE breakpoint.

e For C/C++, AT APPEARANCE is not triggered for compile units that reside
in a loaded module since the compile units are known at the time of the
load.

e For C/C++ and PL/I, an APPEARANCE breakpoint is triggered when Debug
Tool finds the specified compile unit in storage. To be triggered,
however, the APPEARANCE breakpoint must be set before the compile unit
is loaded.

At the time the APPEARANCE breakpoint is triggered, the compile unit you
are monitoring has not become the currently-running compile unit. The
compile unit that is current when the new compile unit appears in
storage, triggering the APPEARANCE breakpoint, remains the current
compile unit until execution passes to the new compile unit.

e For COBOL, an APPEARANCE breakpoint is triggered when Debug Tool
finds the specified compile unit in storage. To be triggered, however,
the APPEARANCE breakpoint must be set before the compile unit is called.

Chapter 13. Debug Tool commands 215

AT

At the time the APPEARANCE breakpoint is triggered, the compile unit you
are monitoring has not become the currently-running compile unit. The
compile unit that is current when the new compile unit appears in
storage, triggering the APPEARANCE breakpoint, remains the current
compile unit until execution passes to the new compile unit.

Examples:

e Establish an entry breakpoint when compile unit cu is found in storage.
The current programming language setting is C.

AT APPEARANCE cu {
AT ENTRY a;
GO;

}

e Defer the AT EXIT and AT LABEL breakpoints until compile unit cuy is
first entered after being loaded into storage. The current programming
language setting is COBOL.

AT APPEARANCE cuy PERFORM
AT EXIT cuy:>blocky LIST ('Exiting blocky.');
AT LABEL cuy:>1abl QUERY LOCATION;
END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent
on cuy are automatically cleared. However, if cuy is then loaded again,
the APPEARANCE breakpoint for cuy is triggered and the AT EXIT and AT

LABEL breakpoints are redefined.

AT CALL

Gives Debug Tool control when the application code attempts to call the specified
entry point. Using CALL breakpoints, you can simulate the execution of unfinished
subroutines, create dummy or stub programs, or set variables to mimic resultant
values, allowing you to test sections of code before the whole is complete.

»»—AT B 7 CALL entry_name command————— >«
every_clause |:

(—Eén try_name]—) —

every clause
As described under ['Every clause” on page 212|

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be
specified if the current programming language setting is C or PL/I.

* Sets a breakpoint at every CALL of any entry point.

command
A valid Debug Tool command.

Usage Notes:

e AT CALL intercepts the call itself, not the subroutine entry point. C,
COBOL, and PL/I programs compiled with the compile-time TEST (PATH)
option identify call targets even if they are unresolved. For more infor-

mation on the compile-time TEST option, see [‘Compiling a C program|

216 Debug Tool User's Guide and Reference

Examples:

AT

with the compile-time TEST option” on page 5| |“Comgi|ing a COBOL|

[program with the compile-time TEST option” on page 10} or fCompiling]

a PL/l program with the compile-time TEST option” on page 14

A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in
function is never triggered.

CALL statements within an INITIAL attribute on a PL/I variable declara-
tion will not trigger AT CALL breakpoints.

AT CALL generally intercepts only calls to entry points known to Debug
Tool at compile time. Calls to entry variables are not intercepted,
except when the current programming language setting is either C or
COBOL (compiled with the run-time TEST option).

AT CALL 0 intercepts calls to unresolved entry points when the current
programming language setting is C or PL/I (compiled with the run-time
TEST option).

AT CALL allows you to intercept or bypass the target program by using
GO BYPASS or GOTO. If resumed by a normal GO or STEP, execution
resumes by performing the call.

If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

For COBOL, entry_name can refer to a method as well as a procedure.

For COBOL, Remember to enclose the entry_name in double (") or
single (') quotes if it is case sensitive.

To be able to set CALL breakpoints in C, you must compile your program
with either the PATH or ALL suboption of the compile-time TEST option.
The default is PATH.

If your C/C++ program has unresolved entry points or entry variables,
issue AT CALL o.

To be able to set CALL breakpoints in C++, you must compile your
program with the compile-time TEST option.

To be able to set CALL breakpoints in COBOL, you must compile your
program with either the PATH or ALL suboption of the compile-time TEST
option.

AT CALL 0 is not supported for use with COBOL programs. However,
COBOL is able to identify CALL targets even if they are unresolved, and
also identify entry variables and intercept them. Therefore, not all
external references need be resolved for COBOL programs.

To be able to set CALL breakpoints in PL/I, you must compile your
program with either the PATH or ALL suboptions of the compile-time TEST
option. AT CALL 0 is supported and is invoked for unresolved external
references.

Intercept all calls and request input from the terminal.

Chapter 13. Debug Tool commands 217

AT

AT CALL =*;

¢ |f the program invokes function badsubr, intercept the call, set variable
varbl to 50, and then bypass the target function. The current program-
ming language setting is C.
AT CALL badsubr {
varbl = 50;
GO BYPASS;
}

AT CHANGE

Gives Debug Tool control when either the application program or Debug Tool
command changes the specified variable value or storage location.

»»—AT CHANGE

v

|—e very_cl auseJ

reference N command————»<
%STORAGE—(—address B])
,—length

(A%referencc] |)
%STORAGE— (—uaddress B B (
,—length

every_clause
As described under [‘Every clause” on page 212|

reference
A valid Debug Tool reference in the current programming language; see
[‘References” on page 206

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE
subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant:

e OxinC
e Hin COBOL (using either double (") or single (') quotes)
e A PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be
a positive integer constant. The default value is 1.

command
A valid Debug Tool command.

Usage Notes:

e Data is watched only in storage; hence a value that is being kept in a
register due to compiler optimization cannot be watched. In addition,
the Debug Tool variables %GPRn, %FPRn, %LPRn, and %EPRn cannot be
watched.

218 Debug Tool User's Guide and Reference

AT

Only entire bytes are watched; bits or bit strings within a byte cannot be
singled out.

Since AT CHANGE breakpoints are identified by storage address and
length, it is not possible to have two AT CHANGE breakpoints for the same
area (address and length) of storage. That is, an AT CHANGE command
replaces a previous AT CHANGE command if the storage address and
length are the same. However, any other overlap is ignored and the
breakpoints are considered to be for two separate variables. For
example, if the storage address is the same, but the length is different,
the AT CHANGE command will not replace the previous AT CHANGE.

When more than one AT CHANGE breakpoint is TRIGGERed at a time, AT
CHANGE breakpoints will be TRIGGERed in the order that they were
entered. However, if the TRIGGERIng of one breakpoint causes a vari-
able watched by a different breakpoint to change, the ordering of the
TRIGGERs will not necessarily be according to when they were originally
entered. For example,

AT CHANGE y LIST y;

AT CHANGE x y = 4;

GO;

If the next statement to be executed in your program causes the value
of x to change, the CHANGE x breakpoint will be TRIGGERed when Debug
Tool gains control. Processing of CHANGE x causes the value of y to
change. If you type GO; after being informed that CHANGE x was
TRIGGERed, Debug Tool will TRIGGER the CHANGE y breakpoint (before
returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x
breakpoint was TRIGGERed first (because it caused the CHANGE y break-
point to be TRIGGERed).

%STORAGE is a Debug Tool built-in function that is available only in the
CHANGE breakpoint commands.

For a CICS application on Debug Tool, the CHANGE %STORAGE breakpoint
is cleared at the end of the last process in the application. For a
non-CICS application on Debug Tool, it is cleared at the end of a
process.

The referenced variables must exist when the AT CHANGE breakpoint is
defined. One way to ensure this is to embed the AT CHANGE in an AT
ENTRY.

An AT CHANGE breakpoint gets removed automatically when the specified
variable is no longer defined. AT CHANGEs for C static variables are
removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc() or calloc(),
this occurs when the dynamic storage is freed using free().

Changes are not detected immediately, but only at the completion of
any command that has the potential of changing storage or variable
values. If you issue a Debug Tool command that modifies a variable
being watched, the CHANGE condition is raised immediately. You can
force more or less frequent checking by using the SET CHANGE
command.

C/C++ AT CHANGE breakpoint requirements

Chapter 13. Debug Tool commands 219

AT

220

The variable must be an lvalue or an array.

The variable must be declared in an active block if the variable is a
parameter or has a storage class of auto.

If you specify the address of the storage containing the variable, it
must be specified with a hexadecimal constant.

A CHANGE breakpoint defined for a static variable is automatically
removed when the file in which the variable was declared is no
longer active. A CHANGE breakpoint defined for an external variable
is automatically removed when the module where the variable was
declared is no longer active.

e COBOL AT CHANGE breakpoint requirements

— AT CHANGE using a storage address should not reference a data item

that follows a variable-size element or subgroup within a group.
COBOL dynamically remaps the group when a variable-size
element changes size.

If you specify the address of the storage containing the variable, it
must be with an H constant, delimited by either quotation marks or
apostrophes. The H constant can only be used where an address
or POINTER variable can be used. The COBOL hexadecimal
notations for nonnumeric literals should be used for all other situ-
ations. For details on the H constant, see [‘Using constants in|
lexpressions” on page 186

Be careful when examining a variable whose allocated storage
follows that of a variable-size element. COBOL dynamically remaps
the storage for the element any time it changes size. This could
alter the address of the variable you want to examine.

You cannot set a CHANGE breakpoint for a COBOL file record before
the file is opened.

The variable, when in the local storage section, must be declared in
an active block.

e PL/I AT CHANGE breakpoint requirements

CHANGE breakpoint is removed for based or controlled variables
when they are FREEd and for parameters and AUTOMATIC variables
when the block in which they are declared is no longer active.

CHANGE monitors only structures with single scalar elements. Struc-
tures containing more than one scalar element are not supported.

The variable must be a valid reference for the current block.

The breakpoint is automatically removed after the referenced vari-
able ceases to exist. The CHANGE breakpoint is removed for based
or controlled variables when they are FREEd and for parameters and
AUTOMATIC variables when the block in which they were declared is
no longer active.

A CHANGE breakpoint monitors the storage allocated to the current
generation of a controlled variable. If you subsequently allocate
new generations, they are not automatically monitored.

Debug Tool User's Guide and Reference

AT

— If you specify the address of storage containing the variable, you
must do so with a PX constant, delimited by single or double quota-
tion marks. The PX constant can only be used where an address or
pointer variable can be used.

Examples:

 |dentify the current location each time variable varb11 or varb12 is found
to have a changed value. The current programming language setting is
COBOL.

AT CHANGE (varbll, varb12) PERFORM
QUERY LOCATION;
GO;
END-PERFORM;
¢ When storage at the hex address 22222 changes, print a message in
the log. Eight bytes of storage are to be watched. The current pro-
gramming language setting is C.
AT CHANGE %STORAGE (0x00022222, 8)
LIST "Storage has changed at hex address 22222";

e Set two breakpoints when storage at the hex address 1000 changes.
The variable x is defined at hex address 1000 and is 20 bytes in length.
In the first breakpoint, 20 bytes of storage are to be watched. In the
second breakpoint, 50 bytes of storage are to be watched. The current
programming language setting is C.

AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set */
AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set */

AT CHANGE x /* Replaces breakpoint 1, since x is at =*/
/* hex address 1000 and is 20 bytes long */

AT CURSOR (full-screen mode)

Provides a cursor controlled method for setting a statement breakpoint. It is most
useful when assigned to a PF key.

’—CURSOR—‘

\ 4
A

»»—AT
I—TOG.G LE—l

TOGGLE
Specifies that if the cursor-selected statement already has an associated state-
ment breakpoint then the breakpoint is removed rather than replaced.

Usage Notes:

e AT CURSOR does not allow specification of an every clause or a
command, and must not have a semicolon coded.

e The cursor must be in the source window and positioned on a line
where an executable statement begins. An AT STATEMENT command for
the first executable statement in the line is generated and executed (or
cleared if one is already defined and TOGGLE is specified).

Example:

Define a PF key to toggle the breakpoint setting at the cursor position.
SET PF10 = AT TOGGLE CURSOR;

Chapter 13. Debug Tool commands 221

AT

AT DATE (COBOL)

AT DELETE

Gives Debug Tool control for each date processing statement within the specified
block. A date processing statement is a statement that references a date field, or
an EVALUATE or SEARCH statement WHEN phrase that references a date field.

»»—AT

T N DATE block_spec————command——— >«
every_clause |:

(—£B l ock_specj—) —

every clause
As described under [‘Every clause” on page 212|

block spec
A valid block specification; see [‘Block Spec” on page 203

* Sets a breakpoint at every date processing statement.

command
A valid Debug Tool command.

Usage Note:

When AT DATE is set, execution is halted only for COBOL compile units
compiled with the DATEPROC compiler option.

Examples:

e Each time a date processing statement is encountered in the nested
subprogram subrx, display the location of the statement.

AT DATE subrx QUERY LOCATION;

e Each time a date processing statement is encountered in the compile
unit, display the name of the compile unit.

AT DATE = LIST %CU;

e Each time a date processing statement is encountered in the compile
unit, display the location of the statement, list a specific variable, and
resume running the program.

AT DATE * PERFORM
QUERY LOCATION;
LIST DATE-FIELD
GO;

END-PERFORM;

Gives Debug Tool control when a load module is removed from storage by a Lan-
guage Environment delete service, such as on completion of a successful C
release(), COBOL CANCEL, or PL/l RELEASE.

»»—AT B 7 DELETE load_spec—————command———— >«
every_clause k

(—Ezoad_spec]—)—

222 Debug Tool User's Guide and Reference

AT

every clause
As described under [Every clause” on page 212|

load_spec
A valid load module specification; see FLoad_Spec” on page 206]

* Sets a breakpoint at every DELETE of any load module.

command
A valid Debug Tool command.

Usage Notes:

e Debug Tool gains control for deletes that are affected by the Language
Environment delete service. If a load module is deleted using the 0S
DELETE macro, Debug Tool is not informed. This can cause errors if
Debug Tool attempts to operate on any part of the deleted load module.

e AT DELETE cannot specify the initial load module.

 |f this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

Examples:

e Each time a load module is deleted, request input from the terminal.
AT DELETE =*;

e Stop watching variable varl:>x when load module mymod is deleted.
AT DELETE mymod CLEAR AT CHANGE (varl:>x);

AT ENTRY/EXIT

Defines a breakpoint at the specified entry point or exit in the specified block.

»»—AT ENTRY block_spec—————command—»<
|—e ver‘y_clause—| L]

EXIT ’—_l
—(—Eblock_spec)—

every_clause
As described under [Every clause” on page 212}

block spec
A valid block specification; see [‘Block_Spec” on page 203

* Sets a breakpoint at every ENTRY or EXIT of any block.

command
A valid Debug Tool command.

Usage Notes:

e AT ENTRY/EXIT can only be set for programs that are currently fetched
or loaded. If you want to set an entry or exit breakpoint for a currently
unknown compile unit, see ['AT APPEARANCE” on page 214}

Chapter 13. Debug Tool commands 223

AT

AT GLOBAL

Examples:

An ENTRY or EXIT breakpoint set for a compile unit that becomes nonac-
tive (one that is not in the current enclave), is suspended until the
compile unit becomes active. An ENTRY/EXIT breakpoint set for a
compile unit that is deleted from storage is suspended until the compile
unit is restored. A suspended breakpoint cannot be triggered or oper-
ated on with breakpoint commands.

For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

Both ENTRY and EXIT breakpoints for blocks in a fetched or loaded
program are removed when that program is released.

At the entry of program subrx, initialize variable ix and continue
program execution. The current programming language setting is
COBOL.

AT ENTRY subrx PERFORM
SET ix TO 5;
GO;

END-PERFORM;

At exit of main, print a message and TRIGGER the SIGUSR1 condition.
The current programming language setting is C.

AT EXIT main {
puts("At exit of the program");
TRIGGER SIGUSR1;
GO;

}

Gives Debug Tool control for every instance of the specified AT-condition. These
breakpoints are independent of their nonglobal counterparts (except for AT PATH,
which is identical to AT GLOBAL PATH). Global breakpoints are always performed
before their specific counterparts.

»»—AT

GLOBAL ALLOCATE————command

I—every_clause—] —APPEARANCE—

v
A

—CALL———
—DATE——
—DELETE——
—ENTRY
—EXIT——
—LABEL
—LINE——
—LOAD———
—PATH——
—STATEMENT—

every clause
As described under ['Every clause” on page 212|

224 Debug Tool User's Guide and Reference

command

AT

A valid Debug Tool command.

You should use GLOBAL breakpoints where you don't have specific information of
where to set your breakpoint. For example, you want to halt at entry to block
Abcdefg_Unknwn but cannot remember the name, you can issue AT GLOBAL ENTRY
and Debug Tool will halt every time a block is being entered. If you want to halt at
every function call, you can issue AT GLOBAL CALL.

Usage Notes:

Examples:

To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command.

Although you can define GLOBAL breakpoints to coexist with singular
breakpoints of the same type at the same location or event, COBOL
does not allow you to define two or more single breakpoints of the
same type for the same location or event. The last breakpoint you
define replaces any previous breakpoint.

If you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY =;
or
AT GLOBAL ENTRY;

At every statement or line, display a message identifying the statement
or line. The current programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);
If you enter (for COBOL):

AT EXIT tablel PERFORM
LIST TITLED (age, pay);
GO;

END-PERFORM;

then enter:

AT EXIT tablel PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

only benefits and scale are listed when your program reaches the exit
point of block tablel. The second AT EXIT replaces the first because
the breakpoints are defined for the same location. However, if you
define the following GLOBAL breakpoint:

AT GLOBAL EXIT PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

in conjunction with the first EXIT breakpoint, when your program reaches
the exit from tablel, all four variables (age, pay, benefits, and scale)
are listed with their values, because the GLOBAL EXIT breakpoint can
coexist with the EXIT breakpoint set for tablel.

To set a GLOBAL DATE breakpoint, specify:

Chapter 13. Debug Tool commands 225

AT

AT LABEL

AT DATE =;

or
AT GLOBAL DATE;

e To combine a global breakpoint with other Debug Tool commands,
specify:
AT GLOBAL DATE QUERY LOCATION;

Gives Debug Tool control when execution has reached the specified statement
label or group of labels. For C and PL/I, if there are multiple labels associated with
a single statement, you can specify several labels and Debug Tool gains control at
each label. For COBOL, AT LABEL lets you specify several labels, but for any group
of labels that are associated with a single statement, Debug Tool gains control for
that statement only once.

»»—AT |_] LABEL statement_labe | ——— ——command—»><«
every_clause l:

(—E;tatement_labeZJ—)—
*

every clause
As described under ['Every clause” on page 212|

statement_label
A valid source label constant; see [‘Statement Label” on page 208

* Sets a breakpoint at every LABEL.

command
A valid Debug Tool command.

Usage Notes:
e A COBOL statement_label can have either of the following forms:
— name

This form can be used in COBOL for reference to a section name
or for a COBOL paragraph name that is not within a section or is in
only one section of the block.

— namel OF name?2 or namel IN nhame2

This form must be used for any reference to a COBOL paragraph
(namel) that is within a section (name2), if the same name also
exists in other sections in the same block. You can specify either
OF or IN, but Debug Tool always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load
module qualifiers.

e For C/C++ or PL/I, you can set a LABEL breakpoint at each label located
at a statement. This is the only circumstance where you can set more
than one breakpoint at the same location.

e A LABEL breakpoint set for a nonactive compile unit (one that is not in
the current enclave), is suspended until the compile unit becomes

226 Debug Tool User's Guide and Reference

Examples:

AT

active. A LABEL breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is restored. A suspended
breakpoint cannot be triggered or operated on with breakpoint com-
mands.

For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

You cannot set LABEL breakpoints at, for example, PL/I label variables.

LABEL breakpoints for label constants in a fetched, loaded program or
DLL are removed when that program is released.

To be able to set LABEL breakpoints in C or PL/I, you must compile your
program with either the PATH and SYM suboptions or the ALL suboption of
the compile-time TEST option.

You can set breakpoints for more than one label at the same location.
Debug Tool is entered for each specified label.

To be able to set LABEL breakpoints in COBOL, you must compile your
program with either the STMT, PATH, or ALL suboption and the SYM sub-
option of the compile-time TEST option.

When defining specific LABEL breakpoints Debug Tool sets a breakpoint
for each label specified, unless there are several labels on the same
statement. In this case, only the last LABEL breakpoint defined is set.

For COBOL, a reference to a label or a label constant can take either of
the following forms:

— name

This form is used to refer to a section name or the name of a para-
graph contained in not more than one section of the block.

— namel OF name2 or namel IN nhame2

This form is used to refer to a paragraph contained within a section
if the paragraph name exists in other sections in the same block.
You can use either OF or IN, but Debug Tool only uses OF for output
to the log file.

Set a breakpoint at label create in the currently qualified block.
AT LABEL create;

At program label para OF sectl display variable names x and y and
their values, and continue program execution. The current program-
ming language setting is COBOL.

AT LABEL para OF sectl PERFORM
LIST TITLED (x, y);
GO;
END-PERFORM;
Set a breakpoint at labels 1abell and 1abel2, even though both labels
are associated to the same statement. The current programming lan-
guage setting is C.
AT LABEL Tabell LIST 'Stopped at labell'; /* Labell is first =/
AT LABEL Tabel2 LIST 'Stopped at label2'; /* Label2 is second */

Chapter 13. Debug Tool commands 227

AT

AT LINE

AT LOAD

Gives Debug Tool control at the specified line.

Gives Debug Tool control when the specified load module is brought into storage.
For example, Debug Tool gains control on completion of a successful C fetch(), a
PL/I FETCH, or during a COBOL dynamic CALL. To stop at a compile unit or
program in a COBOL DLL, use AT APPEARANCE. Once the breakpoint is raised
for the specified load module, it is not raised again unless either the load module is
released and fetched again or another load module with the specified name is
fetched.

You can set LOAD breakpoints regardless of what compile-time options are in effect.

»»—AT B] LOAD load_spec—————command———— >«
every_clause \:

(—Eioad_spec]—)—

every clause
As described under [Every clause” on page 212

load_spec
A valid load module specification; see [‘Load Spec” on page 206}

* Sets a breakpoint at every LOAD of any load module.

command
A valid Debug Tool command.

Usage Notes:

e Debug Tool gains control for loads that are affected by the Language
Environment load service. If a load module is loaded using the 0S LOAD
macro or EXEC CICS LOAD, Debug Tool is not informed.

e AT LOAD can be used to detect the loading of specific language library
load modules; however, the loading of language library load modules
does not TRIGGER an AT GLOBAL LOAD or AT LOAD =.

e AT LOAD cannot specify the initial load module because it is already
loaded when Debug Tool is invoked.

e A LOAD breakpoint is triggered when a new enclave is entered.

 |f this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

e AT LOAD on an implicitly or explicitly loaded DLL is not supported by
Debug Tool.

e Debug Tool recognizes an implicitly loaded DLL only after a compile
unit in that DLL is called. For example, if LIST NAMES CUS is issued after

228 Debug Tool User's Guide and Reference

Examples:

AT OCCURRENCE

AT

an implicit load of a DLL, there will be no entry in the output of the
command of the DLL.

Depending on the version of the C/C++ compiler used, Debug Tool
might recognize a compile unit in a DLL only after it has had a function
in it called. For example, if a DLL contains a function fnl in CU filel
and it contains a function fn2 in CU file2, a call to fnl will not enable
Debug Tool to recognize file2, only filel. Similarly, a call to fn2 will
not enable Debug Tool to recognize filel.

At the triggering of a LOAD breakpoint for C/C++ and PL/l, Debug Tool
has enough information about the loaded module to set breakpoints and
examine variables of static and extern storage classes.

At the triggering of a LOAD breakpoint for COBOL and C/C++ DLL's,
Debug Tool does not have enough information about the loaded module
to set breakpoints in blocks contained within the module. At the trig-
gering of an APPEARANCE breakpoint, however, you can set such break-
points.

Print a message when load module mymod is loaded. The current pro-
gramming language setting is either C/C++ or COBOL.

AT LOAD mymod LIST ("Load module mymod has been loaded");

Establish an entry breakpoint when load module a is fetched and then
resume execution. The current programming language setting is C.

AT LOAD a {
AT ENTRY a;
GO;

}

Gives Debug Tool control on a language or Language Environment condition or

exception.
»»—AT B N OCCURRENCE condition command—<
every_clause ,—_‘_ J
(—Econdition)

every_clause
As described under [Every clause” on page 212}

condition
A valid

condition or exception. This can be either an Language Environment

symbolic feedback code, or a language-oriented keyword or code, depending
on the current programming language setting.

Following are the C/C++ condition constants; they must be uppercase and not
abbreviated:

SIGABND SIGILL SIGTERM

SIGABRT SIGINT SIGUSR1

SIGFPE SIGIOERR SIGUSR2
SIGSEGV THROWOBJ

Chapter 13. Debug Tool commands 229

AT

230

When a C++ user specifies AT CONDITION THROWOBJ, Debug Tool transfers
control to the user at the point of the throw in C++ code.

PL/I condition constants can be used as well. See[‘ON command (PL/I)” on|
for information about valid condition names.

There are no COBOL condition constants. Instead, an Language Environment
symbolic feedback code must be used, for example, CEE347. For symbolic
feedback codes for Language Environment callable services, see 0S/390 Lan-
guage Environment Programming Guide.

command
A valid Debug Tool command.

Program conditions and condition handling vary from language to language. The
methods the 0CCURRENCE breakpoint uses to adapt to each language are described
below.

For C/C++:

When a C/C++ or an Language Environment condition occurs during your session,
the following series of events takes place:

1. Debug Tool is invoked before any C/C++ signal handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool processes
that breakpoint and executes any commands you have specified. If you did not
set an OCCURRENCE breakpoint for that condition, and:

 |f the current test-level setting is ALL, Debug Tool prompts you for com-
mands or reads them from a commands file.

» |f the current test-level setting is ERROR, and the condition has an error
severity level (that is, anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM),
Debug Tool gets commands by prompting you or by reading from a com-
mands file.

* If the current test-level setting is NONE, Debug Tool ignores the condition
and returns control to the program.

You can set 0CCURRENCE breakpoints for equivalent C/C++ signals and Language
Environment conditions. For example, you can set AT OCCURRENCE CEE345 and AT
OCCURRENCE SIGSEGV during the same debugging session. Both indicate an
addressing exception and, if you set both breakpoints, no error occurs. However, if
you set OCCURRENCE breakpoints for a condition using both its C/C++ and Language
Environment designations, the Language Environment breakpoint is the only break-
point triggered. Any command list associated with the C condition is not executed.
[Table 22 on page 353|lists the Language Environment conditions and their C/C++
equivalents. Also see 0S/390 Language Environment Programming Guide.

You can use 0CCURRENCE breakpoints to control your program'’s response to errors.
Usage Notes:

 If the application program also has established an exception handler for
the condition then that handler is entered when Debug Tool releases
control, unless return is by use of GO BYPASS or GOTO or a specific state-
ment.

Debug Tool User's Guide and Reference

AT

¢ OCCURRENCE breakpoints for COBOL IGZ conditions can only be set
after a COBOL run-time module has been initialized.

e For C/C++ and PL/I, certain Language Environment conditions map to
C/C++ SIGxxx values and PL/I condition constants. It is possible to
enter two AT OCCURRENCE breakpoints for the same condition. For
example, one could be entered with the Language Environment condi-
tion name and the other could be entered with the C/C++ SIGxxx condi-
tion constant. In this case, the AT 0CCURRENCE breakpoint for the
Language Environment condition name is TRIGGERed and the AT
OCCURRENCE breakpoint for the C/C++ condition constant is not.
However, if an AT OCCURRENCE breakpoint for the Language Environment
condition name is not defined, the corresponding mapped C/C++ or PL/I
condition constant is TRIGGERed.

 |f this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

e For COBOL, Debug Tool detects Language Environment conditions. If
a Language Environment condition occurs during your session, the fol-
lowing series of events takes place:

1. Debug Tool is invoked before any condition handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool
processes that breakpoint and executes any commands you have
specified. If you have not set an 0CCURRENCE breakpoint for that
condition, and:

— If the current test-level setting is ALL, Debug Tool prompts you
for commands or reads them from a commands file.

— If the current test-level setting is ERROR, and the condition has a
severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

— If the current test-level setting is NONE, Debug Tool ignores the
condition and returns control to the program.

You can use 0CCURRENCE breakpoints to control your program's response
to errors.

See 0S/390 Language Environment Debugging Guide and Run-Time
Messages for a list of Language Environment conditions.

e For PL/I, Debug Tool detects Language Environment and PL/I condi-
tions. If a condition occurs, Debug Tool is invoked before any condition
handler. If you have issued an ON command or set an 0CCURRENCE
breakpoint for the specified condition, Debug Tool runs the associated
commands. See['ON command (PL/)” on page 293

¢ |f there is no AT OCCURRENCE or ON set, then:

— If the current test-level setting is ALL, Debug Tool prompts you for
commands or reads them from a commands file.

Chapter 13. Debug Tool commands 231

AT

— If the current test-level setting is ERROR, and the condition has an
error severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

— If the current test-level setting is NONE, Debug Tool ignores the con-
dition and returns control to the program.

e Once Debug Tool returns control to the program, any relevant PL/I
ON-unit is run. PL/I condition handling is described in PL/I for MVS &
VM Language Reference. Also see OS/390 Language Environment
Programming Guide.

Examples:

¢ When a data exception occurs, query the current location. The current
programming language setting is either C or COBOL.

AT OCCURRENCE CEE347 QUERY LOCATION;

* When the SIGSEGV condition is raised, set an error flag and call a user
termination routine. The current programming language setting is C.

AT OCCURRENCE SIGSEGV {
error = 1;
terminate (error);

}

e Suppose SIGFPE maps to CEE347 and the following breakpoints are
defined. The current programming language setting is C.

AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the Language Environment condition CEE347 is raised, the CEE347
breakpoint is TRIGGERed.

However, if a breakpoint had not been defined for CEE347 and the
CEE347 condition is raised, the SIGFPE breakpoint is TRIGGERed (since it
is mapped to CEE347).

AT PATH
Gives Debug Tool control when the flow of control changes (at a path point). AT
PATH is identical to AT GLOBAL PATH.
»»—AT PATH—command >
|-—ever‘y_clc‘/use—-|
every_clause
As described under ['Every_clause” on page 212|
command
A valid Debug Tool command.
Usage Notes:
e For an explanation of path points and possible values for %PATHCODE,
which vary according to the language of your program, see [‘Using]
Debug Tool variables in C/C++" on page 144||"Using Debug Tool vari
[ables in COBOL” on page 179 or FUsing Debug Tool variables in PL/I’
lon page 191]
232 Debug Tool User's Guide and Reference

Examples:

AT

For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

For C, COBOL and PL/I, you can set PATH breakpoints if you compiled
with the PATH suboption. For more information, see:

— [‘Compiling a C program with the compile-time TEST option” on|
age 5
— FCompiling a COBOL program with the compile-time TEST option’]

[on page 10|

- I“Compilinq a PL/l program_with the compile-time TEST option” on|
For C++, you can set PATH breakpoints at any time. For more informa-

tion, see [‘Compiling a C++ program with the compile-time TEST option’]

on page 9

For COBOL and PL/I, you can set PATH breakpoints at any time (default
is PATH), but setting of other breakpoints is different for each suboption
of the compile-time TEST option. For more information, see FCompiling &

COBOL program with the compile-time TEST option” on page 10|or

[‘Compiling a PL/I program _with the compile-time TEST option” on|

page 14|

Whenever a path point has been reached, display the five most recently
processed breakpoints and conditions.

AT PATH LIST LAST 5 HISTORY;

Whenever a path point has been reached, display a message and
query the current location. The current programming language setting
is COBOL.

AT PATH PERFORM

LIST "Path point reached";

QUERY LOCATION;

GO;
END-PERFORM;
Whenever a path point has been reached, the value of %PATHCODE con-
tains the code representing the type of path point stopped at. If the
program is stopped at the entry to a block, display the %PATHCODE.

AT PATH LIST %PATHCODE;

AT Prefix (full-screen mode)
Sets a statement breakpoint when you issue this command via the source window
prefix area. When one or more breakpoints have been set on a line, the prefix
area for that line is highlighted.

»>—AT
|—integer—J

integer

\ 4
A

Selects a relative statement (for C/C++ and PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Chapter 13. Debug Tool commands 233

AT

Example:

Set a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

AT 3

No space is needed as a delimiter between the keyword and the integer;
hence, AT 3 is equivalent to AT3.

AT STATEMENT

234

Gives Debug Tool control at each specified statement or line within the given set of
ranges.

v

»>—AT
|—ever'y_clause——‘ i:LINE
STATEMENT—

statement_id_range command
l;(—Es tatemen t_id_range—l—) —

*

\4
A

every clause
As described under ['Every_clause” on page 212|

statement_id_range
A valid statement id or statement id range; see [‘Statement |d_Range and|

[Stmt_Id_Spec” on page 207}
* Sets a breakpoint at every STATEMENT or LINE.

command
A valid Debug Tool command.

Usage Notes:

e A STATEMENT breakpoint set for a nonactive compile unit (one that is not
in the current enclave), is suspended until the compile unit becomes
active. A STATEMENT breakpoint set for a compile unit that is deleted
from storage is suspended until the compile unit is restored. A sus-
pended breakpoint cannot be triggered or operated on with breakpoint
commands.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

¢ You can specify the first relative statement on each line in any one of
three ways. If, for example, you want to set a STATEMENT breakpoint at
the first relative statement on line three, you can enter AT 3, AT 3.0, or
AT 3.1. However, Debug Tool logs them differently according to the
current programming language as follows:

— For C/C++

The first relative statement on a line is specified with "0". All of the
above breakpoints are logged as AT 3.0.

— For COBOL or PL/I

Debug Tool User's Guide and Reference

AT

The first relative statement on a line is specified with "1". All of the
above breakpoints are logged as AT 3.1.

Examples:

e Set a breakpoint at statement or line number 23. The current program-
ming language setting is COBOL.

AT 23 LIST 'About to close the file';

* Set breakpoints at statements 5 through 9 of compile unit mycu. The
current programming language setting is C.

AT STATEMENT "mycu":>5 - 9;
e Set breakpoints at lines 19 through 23 and at statements 27 and 31.
AT LINE (19 - 23, 27, 31);
or
AT LINE (27, 31, 19 - 23);

AT TERMINATION

Gives Debug Tool control when the application program is terminated.

v
A

»»—AT—TERMINATION—command-

command
A valid Debug Tool command.

Usage Notes:

e AT TERMINATION does not allow specification of an every_clause
because termination can only occur once.

* |f Debug Tool has been initialized for any reason, the following default
form of this command is automatically in effect:

AT TERMINATION;

This definition causes control to be given to your terminal (or primary
commands file) when the program ends. This termination breakpoint
can be replaced or cleared at any time with the AT TERMINATION or
CLEAR AT TERMINATION command.

 |f this breakpoint is set in a parent enclave, it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

e When Debug Tool gains control, normal execution of the program is
complete; however, a CALL or function invocation from Debug Tool can
continue to perform program code. When the AT TERMINATION break-
point gives control to Debug Tool:

— Fetched load modules have not been released

— Files have not been closed

— Language-specific termination has been invoked yet no action has
been taken

In C, the user atexit() lists have already been called.

In PL/I, the FINISH condition was already raised.

Chapter 13. Debug Tool commands 235

BEGIN

* You are allowed to enter any command with AT TERMINATION. However,
normal error messages are issued for any command that cannot be
completed successfully because of lack of information about your
program.

e The TERMINATION breakpoint is set automatically at Debug Tool initializa-
tion. It remains in effect for the entire Debug Tool session. Changes
made to this breakpoint in one enclave will remain in effect when control
is passed to another enclave.

e You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at
any time to disable or clear the breakpoint. It remains disabled or
cleared until you reenable or reset it.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

Examples:

e When the program ends, check the Debug Tool environment to see
what files have not been closed.

AT TERMINATION DESCRIBE ENVIRONMENT;

¢ When the program ends, display the message "Program has ended"
and end the Debug Tool session. The current programming language
setting is C.
AT TERMINATION {
LIST "Program has ended";
QUIT;
}

BEGIN command (PL/I)

BEGIN and END delimit a sequence of one or more commands to form one longer
command. The BEGIN and END keywords cannot be abbreviated.

»—BEGIN—;—Ecommand END—;

v
A

command
A valid Debug Tool command.

Usage Notes:

e The BEGIN command is most helpful when used in AT, IF, or ON com-
mands.

e The BEGIN command does not imply a new block or name scope. Itis
equivalent to a PL/I simple DO.

Examples:

e Set a breakpoint at statement 320 listing the value of variable x and
assigning the value of 2 to variable a.

236 Debug Tool User's Guide and Reference

break

AT 320 BEGIN;

LIST (x);
a=2;
END;

e When the PL/I condition FIXEDOVERFLOW is raised—that is, when the
length of the result of a fixed-point arithmetic operation exceeds the
maximum length allowed—Iist the value of variable x and assign the
value of 2 to variable a. The current programming language setting is
PL/I.

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C/C++)

The block command allows you to group any number of Debug Tool commands
into one command. When you enclose Debug Tool commands within a single set
of braces ({}), everything within the braces is treated as a single command. You
can place a block anywhere a command is allowed.

»»—{ }

command

\ 4
A

command
A valid Debug Tool command.

Usage Notes:
¢ Declarations are not allowed within a nested block.

e The C block command does not end with a semicolon. A semicolon
after the closing brace is treated as a Null command.

Example:

Establish an entry breakpoint when load module a is fetched.

AT LOAD a {
AT ENTRY a;
GO;

}

break command (C/C++)

The break command allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the logical end. You can
place a break command only in the body of a looping command or in the body of a
switch command. The break keyword must be lowercase and cannot be abbrevi-
ated.

»»—break—;

\4
A

In a looping statement, the break command ends the loop and moves control to the
next command outside the loop. Within nested statements, the break command
ends only the smallest enclosing do, for, switch, or while commands.

Chapter 13. Debug Tool commands 237

CALL

In a switch body, the break command ends the execution of the switch body and
gives control to the next command outside the switch body.

Examples:

¢ The following example shows a break command in the action part of a
for command. If the i-th element of the array string is equal to '\0",
the break command causes the for command to end.

for (i = 0; i < 53 i++) {
if (string[i] = '\0")
break;
length++;
}

¢ The following switch command contains several case clauses and one
default clause. Each clause contains a function call and a break
command. The break commands prevent control from passing down
through subsequent commands in the switch body.

char key;
key = '-';
AT LINE 15 switch (key)
{
case '+':
add() ;
break;
case '-':
subtract();
break;
default:
printf("Invalid key\n");
break;

CALL command

The CALL command invokes either a procedure, entry name, or program name, or it
requests that an Language Environment run-time dump be produced. The C/C++
equivalent for CALL is a function reference. PL/I subroutines or functions cannot be
called dynamically during a Debug Tool session. The CALL keyword cannot be
abbreviated.

In C++, calls can be made to any user function as long as the function is declared
as:

extern "C"

In COBOL, the CALL command cannot be issued when Debug Tool is at initializa-
tion.

The various forms of the CALL command are summarized in Table 11.

Table 11 (Page 1 of 2). Summary of CALL Commands

CALL %DUMP Invokes the Language Environment dump service to obtain
a formatted dump.

238 Debug Tool User's Guide and Reference

CALL %DUMP

CALL

Table 11 (Page 2 of 2). Summary of CALL Commands

CALL entry name (COBOL) Invokes an entry name in the application program
(COBOL).
CALL procedure Invokes a procedure that has been defined with the

PROCEDURE command.

Invokes the Language Environment dump service to obtain a formatted dump.

\ 4
A

»»—CALL—%DUMP

-

|_(; .
—options_string [7
,—title

title
Specifies the identification printed at the top of each page of the dump. It must
be a fixed-length character string, conforming to the current programming lan-
guage syntax for a character string constant (that is, enclosed in quotes
according to the rules of that programming language). The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string, conforming to the current programming lan-
guage syntax for a character string constant, which specifies the type, format,
and destination of dump information. The string length cannot exceed 247
bytes.

Options are declared as a string of keywords separated by blanks or commas.
Some options have suboptions that follow the option keyword and are con-
tained in parentheses. The options can be specified in any order, but the last
option declaration is honored if there is a conflict between it and any preceding
options.

The options_string can include the following:

THREAD(ALL|CURRENT)
Dumps the current thread or all threads associated with the current
enclave. The default is to dump only the current thread. Only one thread

is supported in Language Environment. For enclaves that consist of a
single thread, THREAD(ALL) and THREAD(CURRENT) are equivalent.

THREAD can be abbreviated as THR.
CURRENT can be abbreviated as CUR.

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and
library modules on the call chain. The traceback shows transfers of control
from either calls or exceptions. The traceback extends backwards to the
main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

Chapter 13. Debug Tool commands 239

CALL

FILES
Requests a complete set of attributes of all files that are open and the con-
tents of the buffers used by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES
Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved
in the stack frame at the time of call. There is no way to print a subset of
this information.

Variables and arguments are printed only if the symbol tables are avail-
able. A symbol table is generated if a program is compiled using the
compile options shown below for each language:

Language Compile Option

C TEST(SYM)

C++ TEST

COBOL TEST or TEST (h,SYM)
PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with Debug
Tool. The dump proceeds up the chain for the number of routines speci-
fied by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES
Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

BLOCKS
Produces a separate hexadecimal dump of control blocks used in Lan-
guage Environment and member language libraries.

Global control blocks and control blocks associated with routines on the
call chain are printed. Control blocks are printed for Debug Tool. The
dump proceeds up the call chain for the number of routines specified by
the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump
of control blocks used in the file analysis.

BLOCKS can be abbreviated as BLOCK.

NOBLOCKS
Suppresses the hexadecimal dump of control blocks.

NOBLOCKS can be abbreviated as NOBLOCK.

240 Debug Tool User's Guide and Reference

CALL

STORAGE
Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global
storage and storage associated with each routine on the call chain is
printed. Storage is dumped for Debug Tool. The dump proceeds up the
call chain for the number of routines specified by the STACKFRAME option.
Storage for all file buffers is also dumped if the FILES option is specified.

STORAGE can be abbreviated as STOR.

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME (n|ALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME (ALL) is specified, all stack frames are dumped. No stack
frame storage is dumped if STACKFRAME (0) is specified.

The particular information dumped for each stack frame depends on the
VARIABLE, BLOCK, and STORAGE option declarations specified. The first stack
frame dumped is the one associated with Debug Tool, followed by its
caller, and proceeding backwards up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE(n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there
should be no page breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME (s)
Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

CONDITION
Specifies that for each condition active on the call chain, the following
information is dumped from the Condition Information Block (CIB):

e The address of the CIB
¢ The message associated with the current condition token

¢ The message associated with the original condition token, if different
from the current one

e The location of the error
¢ The machine state at the time the condition manager was invoked

e The ABEND code and REASON code, if the condition occurred
because of an ABEND.

The particular information that is dumped depends on the condition that
caused the condition manager to be invoked. The machine state is
included only if a hardware condition or ABEND occurred. The ABEND
and REASON codes are included only if an ABEND occurred.

Chapter 13. Debug Tool commands 241

CALL

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call
chain.

NOCONDITION can be abbreviated as NOCOND.

ENTRY
Includes in the dump a description of the Debug Tool routine that called
the Language Environment dump service and the contents of the registers
at the point of the call. For the currently supported programming lan-
guages, ENTRY is extraneous and will be ignored.

NOENTRY
Suppresses the description of the Debug Tool routine that called the Lan-
guage Environment dump service and the contents of the registers at the
point of the call.

The defaults for the preceding options are:

CONDITION

FILES

FNAME (CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE(60)
STACKFRAME (ALL)
THREAD (CURRENT)
TRACEBACK
VARIABLES

Usage Notes:
¢ |f incorrect options are used, a default dump is written.

e Debug Tool does not analyze any of the CALL %DUMP options, but just
passes them along to the Language Environment dump service. Some
of these options might not be very appropriate, because the call is
being made from Debug Tool rather than from your program.

See 0S/390 Language Environment Programming Guide for additional
details on the CEE3DMP dump options.

e When you use CALL %DUMP, one of the following ddnames must be allo-
cated for you to receive a formatted dump:

— CEEDUMP (default)
— SYSPRINT.

Control might not be returned to Debug Tool after the dump is
produced, depending on the option string specified.

e COBOL does not do anything if the FILES option is specified; the BLOCKS
option gives the file information instead.

For detailed descriptions of dump output for the different HLLs, see
0S/390 Language Environment Debugging Guide and Run-Time Mes-
sages.

242 Debug Tool User's Guide and Reference

CALL

e Using a small n (like 1 or 2) with the STACKFRAME option will not produce
useful results because only the Debug Tool stack frames appear in your
dump. Larger values of n or ALL should be used to ensure that applica-
tion stack frames are shown.

Examples:

¢ Request a formatted dump that traces active procedures, blocks, condi-
tion handlers, and library modules. Identify the dump as "Dump after
read".

CALL %DUMP ("TRACEBACK", "Dump after read");

e Call the Language Environment dump service to obtain a formatted
dump including traceback information, file attributes, and buffers.

CALL %DUMP ("TRACEBACK FILES");

CALL entry_name (COBOL)

Invokes an entry name in the application program. The entry name must be a valid
external entry point name (that is, CALLable from other compile units).

»—CALL—Eidentifier ; ><
literal4 L
USING—‘——{ identifier_clause

identifier_clause:
| v P i |
f identifier |
\—i‘fREFERENCEJ |—ADDRESS—OFJ
BY

{ . s
CONTENT identifier
|—BYJ L ADDRESS—OF

LENGTH—OF
literal

identifier
A valid Debug Tool COBOL identifier.

literal
A valid COBOL literal.

Usage Notes:

e |f you have a COBOL entry point name that is the same as a Debug
Tool procedure name, the procedure name takes precedence when
using the CALL command. If you want the entry name to take preced-
ence over the Debug Tool procedure name, you must qualify the entry
name when using the CALL command.

e You can use the CALL entry_name command to change program flow
dynamically. You can pass parameters to the called module.

e The CALL follows the same rules as CALLs within the COBOL language.

e The COBOL ON OVERFLOW and ON EXCEPTION phrases are not supported,
S0 END-CALL is not supported.

e Only CALLs to separately compiled programs are supported; nested pro-
grams are not CALLable by this Debug Tool command (they can of
course be invoked by GOTO or STEP to a compiled-in CALL).

Chapter 13. Debug Tool commands 243

CLEAR

CALL procedure

Example:

All CALLs are dynamic, that is, the CALLed program (whether specified as
a literal or as an identifier) is loaded when it is CALLed.

See COBOL Language Reference publications for an explanation of the
following COBOL keywords: ADDRESS, BY, CONTENT, LENGTH, OF,
REFERENCE, USING.

An entry_name cannot refer to a method.

A windowed date field cannot be specified as the identifier containing
the entry name.

Call the entry name subl passing the variables a, b, and c.
CALL "subl" USING a b c;

Invokes a procedure that has been defined with the PROCEDURE command.

»»—CALL—procedure_name—;

\4
A

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command.

Usage Notes:

¢ Since the Debug Tool procedure names are always uppercase, the pro-

cedure name is converted to uppercase even for programming lan-
guages that have mixed-case symbols.

e The CALL keyword is required even for programming languages that do

not use CALL for subroutine invocations.

e The CALL command is restricted to calling procedures in the currently

Example:

executing enclave.

Create and call the procedure named procl.

procl: PROCEDURE;

LIST (r, c);

END;
AT 54 CALL procl;

CLEAR command

The CLEAR command removes the actions of previously issued Debug Tool com-
mands. Some breakpoints are removed automatically when Debug Tool deter-
mines that they are no longer meaningful. For example, if you set a breakpoint in a
fetched or loaded compile unit, the breakpoint is discarded when the compile unit is

released.

244 Debug Tool User's Guide and Reference

CLEAR

»»—CLEAR AT ;
AT_command
generic_AT_command—

—DECLARE
tidentifier
(—E;dentifierj—)—

—EQUATE
t:identifier
(—EédentifierL)—

\4
A

—LOG
—MONITOR

l:number‘

(—pumber—L—)]

—ON
tpl i_condition
(—[;;Z i_condit ionj—)—

—PROCEDURE
—procedure_name
—(—E;Jrocedure_name—J—)—
—VARIABLES
—identifier
—(—E;dentifierj—)—

AT Removes all breakpoints from previously issued AT commands (including
GLOBAL breakpoints).

AT _command
A valid AT command that includes at least one operand. See|[Table 10 o
for a list of valid AT commands. The AT command must be com-
plete except that the every clause and command are omitted.

generic_AT_command
A valid AT command without operands. It can be one of the following:
ALLOCATE, APPEARANCE, CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT,
LABEL, LOAD, OCCURRENCE, PATH, STATEMENT (the LINE keyword can be used in
place of STATEMENTS), or TERMINATION.

DECLARE
Removes previously defined variables and tags. If no identifier follows DECLARE,
all session variables and tags are cleared. DECLARE is equivalent to VARIABLES.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

EQUATE
Removes previously defined symbolic references. If no identifier follows
EQUATE, all existing SET EQUATE synonyms are cleared.

identifier
The name of a previously defined reference synonym declared during the

Debug Tool session using SET EQUATE. This operand must follow the rules
for the current programming language.

Chapter 13. Debug Tool commands 245

CLEAR

LOG
Erases the log file and clears out the data being retained for scrolling. In line
mode, CLEAR LOG clears only the log file.

For MVS Only : If the log file is directed to a SYSOUT type file, CLEAR LOG will
not clear the log contents in the file.

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR, the
entire list of commands affecting the monitor window is cleared; the monitor
window is empty.

number
A positive integer that refers to a monitored command. If a list of integers
is specified, all commands represented by the specified list are cleared.

ON (PL/T)
Removes the effect of an earlier ON command. If no pli_condition follows ON,
all existing ON commands are cleared.

pli_condition
Identifies an exception condition for which there is an ON command defined.

PROCEDURE
Clears previously defined Debug Tool procedures. If no procedure _name
follows PROCEDURE, all inactive procedures are cleared.

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command. The procedure
must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows
VARIABLES, all session variables and tags are cleared. VARIABLES is equivalent
to DECLARE.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.
Usage Notes:

e Only an AT LINE or AT STATEMENT breakpoint can be cleared with a
CLEAR AT CURSOR command.

e To clear every single breakpoint in the Debug Tool session, issue CLEAR
AT followed by CLEAR AT TERMINATION.

e To clear a global breakpoint, you can specify an asterisk (*) with the
CLEAR AT command or you can specify a CLEAR AT GLOBAL command.

If you have only a global breakpoint set and you specify CLEAR AT
ENTRY without the asterisk (*) or GLOBAL keyword, you get a message
saying there are no such breakpoints.

Examples:
e Remove the LABEL breakpoint set in the program at label create.
CLEAR AT LABEL create;

246 Debug Tool User's Guide and Reference

CLEAR

e Remove previously defined variables x, y, and z.
CLEAR DECLARE (x, y, z);

e Remove the effect of the ninth command defined for MONITOR.
CLEAR MONITOR 9;

Remove the structure type definition tagone (assuming all variables
declared interactively using the structure tag have been cleared). The
current programming language setting is C.

CLEAR VARIABLES struct tagone;

e Establish some breakpoints with the AT command and then remove
them with the CLEAR command (checking the results with the LIST
command).

AT 50;

AT 56;

AT 55 LIST (r, c);
LIST AT;

CLEAR AT 50;

LIST AT;

CLEAR AT;

LIST AT;

e If you want to clear an AT ENTRY * breakpoint, specify:

CLEAR AT ENTRY =;
or
CLEAR AT GLOBAL ENTRY;

* If you want to remove the DATE breakpoint for block MYBLOCK,
specify:
CLEAR AT DATE MYBLOCK;

¢ |f you want to remove a generic DATE breakpoint, specify:
CLEAR AT DATE =*;

CLEAR prefix (full-screen mode)

Clears a breakpoint when you issue this command via the source window prefix
area.

Chapter 13. Debug Tool commands 247

CMS

»»—CLEAR AT
AT_command
generic_AT_command—

—DECLARE
tidentifier
(—E;dentifierj—)—
—EQUATE
t:ident ifier
(—EédentifierL)—

A

—L0G
—MONITOR:
l:number‘

(—¥number——)

—ON
tpl i_condition
(—E;;Z i_condit ionj—)—

—PROCEDURE
—procedure_name
—(—E;Jrocedure_name—J—)—
—VARIABLES
—identifier
—(—[;dentifierj—)—

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL)
within the line to remove the breakpoint if there are multiple statements on that
line. The default value is 1.

Example:
Clear a breakpoint at the third statement or verb in the line (typed in the

prefix area of the line where the statement is found).
CLEAR 3

No space is needed as a delimiter between the keyword and the integer;
hence, CLEAR 3 is equivalent to CLEAR3.

CMS command (VM)

The CMS command lets you issue certain CMS subset commands during a Debug
Tool session. The CMS keyword cannot be abbreviated.

»>—CMS

\ 4
A

l—cms_comman dJ

cms_command
A CMS system command that can be issued while in the CMS editor. If omitted,
CMS subset mode is entered.

Usage Notes:

¢ When not operating interactively, a cms_command must be supplied.

248 Debug Tool User's Guide and Reference

COMPUTE

e When operating interactively, if no cms_command is specified, CMS
subset mode is entered. While in CMS subset mode, a subset of CMS
commands (that is, CMS system commands that can be issued while in
the CMS editor) can be performed repeatedly. To return to Debug Tool,
type RETURN.

e See also ['SYSTEM command” on page 338

Example:
e List all the files that are named free on the a disk.
CMS LIST free * a;
e Copy the contents of myprog script a into ourprog script a.
CMS COPYFILE myprog script a ourprog script a;

COMMENT command

The COMMENT command can be used to insert commentary in to the session log.
The COMMENT keyword cannot be abbreviated.

»—COMMENT

\4
A

|-—commentcrr‘y—-|

commentary
Commentary text not including a semicolon. An embedded semicolon is not
allowed; text after a semicolon is treated as another Debug Tool command.
DBCS characters can be used within the commentary.

The COMMENT command can be used as an executable command, that is it can be
the subject of a conditional command, but it is treated as a Null command.
Examples:

e Comment that varblxx seems to have the wrong value.
COMMENT At this point varblxx seems to have the wrong value;

e Combine a commentary with valid Debug Tool commands.
COMMENT Entering subroutine testrun; LIST (x); GO;

COMPUTE command (COBOL)

The COMPUTE command assigns the value of an arithmetic expression to a specified
reference. The COMPUTE keyword cannot be abbreviated.

»»—COMPUTE—reference—=—expression—;

\ 4
A

reference
A valid Debug Tool COBOL numeric reference.

expression
A valid Debug Tool COBOL numeric expression.

Chapter 13. Debug Tool commands 249

CURSOR

Usage Notes:

Examples:

If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

COMPUTE assigns a value only to a single receiver; unlike COBOL, mul-
tiple receiver variables are not supported.

Floating-point receivers are not supported; however, floating-point
values can be set by using the MOVE command (see [‘MOVE command|
[(COBOL)” on page 292).

The COBOL EQUAL keyword is not supported ("=" must be used).

The COBOL ROUNDED and SIZE ERROR phrases are not supported, so
END-COMPUTE is not supported.

COMPUTE cannot be used to perform a computation with a windowed date
field if the expression consists of more than one operand.

Any expanded date field specified as an operand in the expression is
treated as a nondate field.

The result of the evaluation of the expression is always considered to
be a nondate field.

If the expression consists of a single numeric operand, the COMPUTE will
be treated as a MOVE and therefore subject to the same rules as the
MOVE command.

Assign to variable x the value of a + 6.
COMPUTE x = a + 63

Assign to the variable mycode the value of the Debug Tool variable
%PATHCODE + 1.

COMPUTE mycode = %PATHCODE + 1;

CURSOR command (full-screen mode)

The CURSOR command moves the cursor between the last saved position on the

Debug Tool session panel (excluding the header fields) and the command line.

»»—CURSOR—;

A\
A

Usage Notes:

The cursor position can be saved by typing the CURSOR command on the
command line and moving the cursor before pressing ENTER, or by
moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

If the CURSOR command precedes any command on the command line,

the cursor is moved before the other command is performed. This can
be useful in saving cursor movement for commands that are performed
repeatedly in one of the windows.

250 Debug Tool User's Guide and Reference

Declarations

e The CURSOR command is not logged.

Example:

Move the cursor between the last saved position on the Debug Tool session
panel and the command line.

CURSOR;

Declarations (C/C++)

Use declarations to declare temporary variables and tags effective during a Debug
Tool session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables and tags declared with
declarations can be used in other Debug Tool commands as if they were declared
to the compiler. Declared variables and tags are removed when your Debug Tool
session ends or when the CLEAR command is used to remove them. The keywords
must be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical
to C except that enum members can only be initialized to an optionally signed
integer constant.

Chapter 13. Debug Tool commands 251

Declarations

| dectarator |1
> scalar_def declarator
enum_def
struct_i def
union_def dec]arator
scalar_def:
F——char: |
i:signed
unsigned
—double
|—1ongJ
—float

—int
i:signedi‘ Tong
unsigned short

—Tlong
L signed |—1ntJ

unsigned
double———-
—short
t:signed |—1’ntJ
unsigned
—signed
long l—intJ
short
char——m ™
—unsigned
long |»1’ntJ
short
char——
—void—=*
declarator:
identifier |
(—identifier—)———
%
identifier—[[—integer—]j—
enum_def:
}—enum—L—J—{—[%dentifier r Jl } !
identifier =—constant_expr
struct_def:

T . struct O . rzdeni.‘zfzer' |
_Packed identifier L

enum_def
scalar_def
struct_def
union_def

union_def:

r . union r . rldentlfler |
_Packed identifier L

enum_def
scalar_def
struct_def
union_def

* A C indirect operator.
identifier
A valid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

Usage Notes:

¢ As in C/C++, the keywords can be specified in any order. For example,
unsigned long int is equivalent to int unsigned long. Some permutations
are shown in the syntax diagram to make sure that every keyword is
shown at least once in the initial position.

e As in ccx., the identifiers are case-sensitive; that is, "X" and "x" are
different names.

252 Debug Tool User's Guide and Reference

Declarations

e A structure definition must have either an identifier, a declarator, or
both specified.

¢ Initialization is not supported.

¢ A declaration cannot be used in a command list; for example, as the
subject of an if command or case clause.

e Declarations of the form struct tag identifier must have the tag pre-
viously declared interactively.

» Only variables with attributes listed in the [Table 12 on page 254 table
can be declared.

e See the C and C++ Language References for an explanation the fol-
lowing keywords:

char short
double signed
enum struct
float union
int unsigned
long void
_Packed(1)

(1) _Packed is not supported in C++.

C/C++ compatible attributes

Debug Tool allows you, while working in one language, to declare session variables
you can continue to use after calling in a load module of a different language.
[Table 12 on page 254]shows how session data attributes are mapped across pro-
gramming languages. Attributes not shown in the table cannot be mapped to other
programming languages.

Remember that, when declaring session variables, C variables are case-sensitive.
This means that only C session variables whose names are all uppercase can con-
tinue to be accessed when the programming language setting is changed to
COBOL or PL/I. Those declared when the programming language setting is
COBOL or PL/I are converted to uppercase and are accessible when the program-
ming language is C.

Variables with incompatible attributes cannot be accessed from the other program-
ming languages, but replace variables with the same names in the other languages
(if uppercase). For example, COBOL has no equivalent to C's long double. If a
COBOL session variable x is declared, it is converted to X; if the current program-
ming language setting is changed to C and a C session variable X is declared as a
long double, C's variable X replaces COBOL's variable X. If x is declared instead of
X when the programming language setting is changed to C, COBOL's variable X will
not be replaced. There exists no COBOL counterpart to the C variable.

Chapter 13. Debug Tool commands 253

Declarations

Table 12. C/C++ Attribute Mappings

Machine Value C/C++ Value COBOL Value PL/I Value
byte unsigned char PICTURE X CHAR(1)
byte string unsigned char[j] PICTURE X(j) CHAR(j)
halfword signed short int PICTURE S9(j<=4) FIXED BIN(15,0)
USAGE BINARY
fullword signed long int PICTURE S9(4<j<=9) FIXED BIN(31,0)
USAGE BINARY
floating point float USAGE COMP-1 FLOAT BIN(21) or
FLOAT DEC(6)
long floating point double USAGE COMP-2 FLOAT BIN(53) or
FLOAT DEC(16)
extended floated point Tong double n/a FLOAT BIN(109) or
FLOAT DEC(33)
fullword pointer void * USAGE POINTER POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For

example, if C declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT

BIN(21).

Examples:

¢ Define two C integers.

int myvar, hisvar;

» Define an enumeration variable status that represents the following

values:

Enumeration Constant

run
create
delete

suspend

Integer Representation

enum statustag {run, create, delete=5, suspend} status;

¢ Define a variable in a struct declaration.

struct atag {
char foo;
int varl;

} avar;

* |Interactively declare variables using structure tags.

struct tagone {int a; int b;} c;

then specify:

struct tagone d;

Declarations (COBOL)

Use declarations to declare temporary variables effective during a Debug Tool
session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables declared with declarations can be
used in other Debug Tool commands as if they were declared to the compiler.
Declared variables are removed when your Debug Tool session ends or when the
CLEAR command is used to remove them. The keywords cannot be abbreviated.

254

Debug Tool User's Guide and Reference

Declarations

\ 4
A

»—[Zevel—identifier | 5
attribute:

—*—{ attribute }J—
|

PIC picture
| |
|—PICTURE—J |—IS——|

[POINTER
USAG Eﬁ —BINARY——
IS —COMP

—COMPUTATIONAL——
—COMP-1———————
—COMPUTATIONAL-1—
—COMP-2———————
LCOMPUTATIONAL-2—

level
1or77.

identifier
A valid COBOL data name (including DBCS data names).

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(*), the COBOL USAGE clause is required.

Usage Notes:

¢ A declaration cannot be used in a command list; for example, as the
subject of an IF command or WHEN clause.

e BINARY and COMP are equivalent.

e Use BINARY or COMP for COMPUTATIONAL-4.

e COMP-1 is short floating point (4 bytes).

e COMP-2 is long floating point (8 bytes).

e Only COBOL PICTURE and USAGE clauses are supported.
e Short forms of COMPUTATIONAL (COMP) are supported.

 Only variables with attributes listed in[Table 13 on page 256| can be
declared.

e See COBOL Language Reference publications for an explanation of the
following COBOL keywords:

BINARY

comp
COMPUTATIONAL
IS

PIC

PICTURE
POINTER

USAGE

Chapter 13. Debug Tool commands 255

Declarations

COBOL compatible attributes

You can declare session variables, while working in one language, that you can
continue to use after calling in a load module of a different language. Table 13
shows how session data attributes are mapped across programming languages.
Attributes not shown in the table cannot be mapped to other programming lan-
guages.

Remember when declaring session variables that C/C++ variables are case-
sensitive. This means that only C/C++ session variables whose names are all
uppercase can continue to be accessed when the programming language setting is
changed to COBOL. Session variables declared when the programming language
setting is COBOL are converted to uppercase and are accessible when the pro-
gramming language is C/C++.

Variables with incompatible attributes cannot be accessed from the other program-
ming languages, but replace variables with the same names in the other languages
(if uppercase). For example, COBOL has no equivalent to C's long double. If a
COBOL session variable x is declared, it is converted to X; if the current program-
ming language setting is changed to C and a C session variable X is declared as a
long double, C's variable X replaces COBOL's variable X. If x is declared instead of
X when the programming language setting is changed to C, COBOL's variable X will

not be replaced. There exists no COBOL counterpart to the C variable.

Table 13. COBOL Attribute Mappings

Machine Value COBOL Value C/C++ Value PL/I Value

byte PICTURE X unsigned char CHAR(1)

byte string PICTURE X(J) unsigned char[j] CHAR(j)

halfword PICTURE S9(j<=4) signed short int FIXED BIN(15,0)
USAGE BINARY

fullword PICTURE S9(4<j<=9) signed long int FIXED BIN(31,0)

PICTURE S9(j<=4)

USAGE BINARY

floating point USAGE COMP-1 float FLOAT BIN(21) or
FLOAT DEC(6)
long floating point USAGE COMP-2 double FLOAT BIN(53) or

FLOAT DEC(16)

extended floating point

n/a

long double

FLOAT BIN(109) or
FLOAT DEC(33)

fullword pointer

USAGE POINTER

void *

POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For example, if C
declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT BIN(21).

Examples:

¢ Define a variable named floattmp to hold a floating-point number.

01 floattmp USAGE COMP-1;

e Define an integer variable name temp.
77 temp PIC S9(9) USAGE COMP;

256 Debug Tool User's Guide and Reference

DECLARE

DECLARE command (PL/I)

The DECLARE command declares temporary variables effective during a Debug Tool
session. Variables declared this way can be used in other Debug Tool commands
as if they were declared to the compiler. They are removed with the CLEAR
command or when your Debug Tool session ends. The keywords cannot be abbre-
viated.

DCL major_structure , ;
DECLARE scalar

major_structure:

}—Elevel—name | |
attribute

\4
A

scalar:

{ J'_Lname J | |
(—name1) Ugreribute 1

level
An unsigned positive integer. Level 1 must be specified for major structure
names.

name
A valid PL/I identifier. The name must be unique within a particular structure
level.

When name conflicts occur, Debug Tool uses session variables before using
other variables of the same name that appear in the running programs. Use
qualification to refer to the program variable during a Debug Tool session. For
example, to display the variable a declared with the DECLARE command as well
as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);

If a name conflict occurs because the variable was declared earlier with a
DECLARE command, the new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:

BINARY CPLX FIXED LABEL PTR

BIT DECIMAL FLOAT OFFSET REAL
CHARACTERS EVENT GRAPHIC POINTER VARYING
COMPLEX

Acceptable PL/I storage attributes include:
BASED ALIGNED UNALIGNED
Pointers cannot be specified with the BASED option.

Only simple factoring of attributes is allowed. DECLARES such as the following
are not allowed:

Chapter 13. Debug Tool commands 257

DECLARE

DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a dimen-
sion can be specified. If a temporary variable has dimensions and bounds,
these must be declared following PL/I Language rules. See PL/I Language
Reference for more details.

Usage Notes:

e DECLARE is not valid as a subcommand. That is, it cannot be used as
part of a DO/END or BEGIN/END block.

¢ [nitialization is not supported.

e Program DEFAULT statements do not affect the DECLARE command.

 Only variables with attributes listed in|Table 14 on page 259 [can be
shared.

e See PL/I Language Reference for an explanation of the following PL/I
data and storage attributes:

ALIGNED CHARACTER EVENT LABEL REAL
BASED COMPLEX FIXED OFFSET UNALIGNED
BINARY CPLX FLOAT POINTER VARYING
BIT DECIMAL GRAPHIC PTR

PL/I compatible attributes

While working in one language, you can declare session variables that you can
continue to use after calling in a load module of a different language[Table 14 on]
[page 259 shows how session data attributes are mapped across programming lan-
guages. Attributes not shown in the table cannot be mapped to other programming
languages.

Remember when declaring session variables that C/C++ variable names are case-
sensitive. When the current programming language is C/C++, only variables that
are declared with uppercase names can be shared with COBOL or PL/l. When the
current programming language is COBOL or PL/I, variable names in mixed or low-
ercase are mapped to uppercase. These COBOL or PL/I variables can be declared
or referenced using any mixture of lowercase and uppercase characters and it
makes no difference. However, if the variable is shared with C/C++, within C/C++,
it can only be referred to with all uppercase characters (since a variable name com-
posed of the same characters, but with one or more characters in lowercase, is a
different variable name in C/C++).

Variables with incompatible attributes cannot be shared between other program-
ming languages, but they do cause variables with the same names to be deleted.
For example, COBOL has no equivalent to PL/I's FLOAT DEC(33) or C's long
double. With the current programming language COBOL, if a session variable X is
declared PICTURE S9(4), it will exist when the current programming language
setting is PL/I with the attributes FIXED BIN(15,0) and when the current program-
ming language setting is C with the attributes signed short int. If the current
programming language setting is changed to PL/I and a session variable X is
declared FLOAT DEC(33), the X declared by COBOL will no longer exist. The vari-
able X declared by PL/I will exist when the current programming language setting is
C with the attributes Tong double.

258 Debug Tool User's Guide and Reference

DESCRIBE

Table 14. PL/I Attribute Mappings

Machine Value PL/I Value C/C++ Value COBOL Value

byte CHAR(1) unsigned char PICTURE X

byte string CHAR(J) unsigned char[j] PICTURE X(j)

halfword FIXED BIN(15,0) signed short int PICTURE S9(j=<4)
USAGE BINARY

fullword FIXED BIN(31,0) signed long int PICTURE S9(4<j<9)

USAGE BINARY

floating point FLOAT BIN(21) or float USAGE COMP-1
FLOAT DEC(6)

long floating point FLOAT BIN(53) or double USAGE COMP-2
FLOAT DEC(16)

extended floating point FLOAT BIN(109) or long double n/a
FLOAT DEC(33)

fullword pointer POINTER * USAGE POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For example, if C
declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT BIN(21).

Examples:
e Declare x, y, and z as variables that can be used as pointers.
DECLARE (x, y, z) POINTER;

» Declare a as a variable that can represent binary, fixed-point data items
of 15 bits.

DECLARE a FIXED BIN(15);

e Declare d03 as a variable that can represent binary, floating-point,
complex data items.

DECLARE dO03 FLOAT BIN COMPLEX;
This d03 will have the attribute of FLOAT BINARY(21).

e Declare x as a pointer, and setx as a major structure with structure ele-
ments a and b as fixed-point data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;
This a and b will have the attributes of FIXED DECIMAL(5).

DESCRIBE command

The DESCRIBE command displays the attributes of references, compile units, and the
execution environment.

Chapter 13. Debug Tool commands 259

DESCRIBE

»»—DESCRIBE

—CURSOR

\ 4
A

ATTRIBUTES 3—
reference

(—[;e fe rencej—) —

CUS
|—PROGRAMS—I cu_spec

(—-¢u_spec—1—)

—ENVIRONMENT

CURSOR (Full-Screen Mode only)

Provides a cursor-controlled method for describing variables, structures, and
arrays. If you have assigned DESCRIBE to a PF key, you can display the attri-
butes of a selected variable by positioning the cursor at that variable and
pressing the assigned PF key.

ATTRIBUTES

CUS

Displays the attributes of a specified variable or, in C/C++, an expression. The
attributes are ordinarily those that appeared in the declaration of a variable or
are assumed because of the defaulting rules. DESCRIBE ATTRIBUTES works only
for variables accessible to the current programming language. All variables in
the currently qualified block are described if no operand is specified.

reference
A valid Debug Tool reference in the current programming language. Note
the following points:

In C/C++, this can be a valid expression. For a C/C++ expression, the type
is the only attribute displayed. For a C/C++ structure or class, DESCRIBE
ATTRIBUTES displays only the attributes of the structure or class. To display
the attributes of a data object within a structure or data member in a class,
use DESCRIBE ATTRIBUTES for the specific data object or member.

In COBOL, this can be any user-defined name appearing in the DATA
DIVISION. Names can be subscripted or substringed per their definitions
(that is, if they are defined as alphanumeric data or as arrays).

In PL/I, if the variable is in a structure, it can have inherited dimensions
from a higher level parent. The inherited dimensions appear as if they
have been part of the declaration of the variable.

For more information, see [‘References” on page 206}

Describes all variables in the compile unit.

Describes the attributes of compile units, including such things as the compile-
time options and list of internal blocks. The information returned is dependent
on the HLL that the compile unit was compiled under. CUS is equivalent to
PROGRAMS.

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 205l The
default is the currently qualified compile unit.

260 Debug Tool User's Guide and Reference

DISABLE

* Describes all compile units.

PROGRAMS

Is equivalent to CUS.

ENVIRONMENT
The information returned includes a list of the currently opened files. Names of
files that have been opened but are not currently closed are excluded from the
list. COBOL does not provide any information for DESCRIBE ENVIRONMENT.

Usage Notes:

Examples:

Cursor pointing can be used by typing the DESCRIBE CURSOR command

on the command line and moving the cursor to a variable in the source
window before pressing ENTER, or by moving the cursor and pressing
a PF key with the DESCRIBE CURSOR command assigned to it.

When using the DESCRIBE CURSOR command for a variable that is located
by the cursor position, the variable's name cannot be split across dif-
ferent lines of the source listing.

In C/C++ and COBOL, expressions containing parentheses () must be
enclosed in another set of parentheses when used with the DESCRIBE
ATTRIBUTES command. For example, DESCRIBE ATTRIBUTES ((x + y) /
z);.

For COBOL, if DESCRIBE ATTRIBUTES = is specified and your compile
unit is large, you might receive an out of storage error message.

For PL/I, DESCRIBE ATTRIBUTES will return only the top-level names for
structures. DESCRIBE ATTRIBUTES = is not supported for PL/l. To get
more detail, specify the structure name as the reference.

Describe the attributes of argc, argv, boolean, i, 1d, and structure.
DESCRIBE ATTRIBUTES (argc, argv, boolean, i, 1d, structure);
Describe the current environment.

DESCRIBE ENVIRONMENT;

Display information describing program myprog.

DESCRIBE PROGRAMS myprog;

DISABLE command

The DISABLE command makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command again.

»»—DISABLE—AT_command

\4
A

AT_command
An enabled AT command. The AT command must be complete except that the
every _clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

Usage Notes:

To reenable a disabled AT command, use the ENABLE command.

Chapter 13. Debug Tool commands 261

do/while

e Disabling an AT command does not affect its replacement by a new
(enabled) version if an overlapping AT command is later specified. It
also does not prevent removal by a CLEAR AT command.

e Breakpoints already disabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no enabled breakpoints.

Examples:

e Disable the breakpoint that was set by the command AT ENTRY myprog
CALL procl;.

DISABLE AT ENTRY myprog;
e |f statement 25 is in a loop and you set the following breakpoint:
AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;
to disable it, enter:
DISABLE AT STATEMENT 25;

You do not need to reenter the every_clause or the command list. To
restore the breakpoint, enter:

ENABLE AT STATEMENT 25;

DISABLE prefix (full-screen mode)

Disables a statement breakpoint when you issue this command via the source
window prefix area.

\ 4
A

»»—DISABLE
|_. J
integer

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example:

Disable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

DIS 3

For an example of the prefix area, see [Figure 16 on page 94|

No space is needed as a delimiter between the keyword and the integer;
hence, DIS 3 is equivalent to DIS3.

do/while command (C/C++)

The do/while command performs a command before evaluating the test
expression. Due to this order of execution, the command is performed at least
once. The do and while keywords must be lowercase and cannot be abbreviated.

\4
A

»»—do—command—while—(—expression—)—;

262 Debug Tool User's Guide and Reference

DO

command
A valid Debug Tool command.

expression
A valid Debug Tool C/C++ expression.

The body of the loop is performed before the while clause (the controlling part) is
evaluated. Further execution of the do/while command depends on the value of
the while clause. If the while clause does not evaluate to false, the command is
performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do/while command to end, even
when the while clause does not evaluate to false.

Example:

The following command prompts you to enter a 1. If you enter a 1, the
command ends execution. Otherwise, the command displays another
prompt.

int replyl;

do {
printf("Enter a 1.\n");
scanf("%d", &replyl);

} while (replyl !=1);

DO command (PL/I)

The DO command allows one or more commands to be collected into a group that
can (optionally) be repeatedly executed. The DO and END keywords delimit a group
of commands collectively called a DO group. The keywords cannot be abbreviated.

Simple

»»>—D0—; END—; ><
! command

command

A valid Debug Tool command.

Repeating

v

»»—D0 WHILE—(—expression—)
|—UNTI L—(—e)(pr'ession—)J

UNTIL—(—expression—
(P) |—WHILE—(—expression—)J

END—;

\
\4
A

—Ecommandj—

WHILE
Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO group
ends.

Chapter 13. Debug Tool commands 263

DO

expression
A valid Debug Tool PL/I Boolean expression.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Iterative
? . .
»—DO—reference—=4£{ iteration } ; END—;——>«
R ——
iteration:
F—expression >

BY—expression
P l—TO—exp ress ionJ

TO—expression
l—BY—express ionJ
REPEAT—expression

> |

> |
WHILE—(—expression—
|: (P) |—UNTI L—(—e)(pression—)J

UNTIL—(—expression—
(P) |—WHILE—(—expr‘ession—)J

reference
A valid Debug Tool PL/I reference.

expression
A valid Debug Tool PL/I expression.

BY Specifies that expression is evaluated at entry to the DO specification and
saved. This saved value specifies the increment to be added to the control
variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is speci-
fied, expression defaults to the value of 1.

If BY 0 is specified, the execution of the DO group continues indefinitely unless it
is halted by a WHILE or UNTIL option, or control is transferred to a point outside
the DO group.

The BY option allows you to vary the control variable in fixed positive or nega-
tive increments.

TO Specifies that expression is evaluated at entry of the DO specification and
saved. This saved value specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is speci-
fied, repetitive execution continues until it is terminated by the WHILE or UNTIL
option, or until some statement transfers control to a point outside the DO group.

The T0 option allows you to vary the control variable in fixed positive or nega-
tive increments.

264 Debug Tool User's Guide and Reference

ENABLE

REPEAT
Specifies that expression is evaluated and assigned to the control variable after
each execution of the DO group. Repetitive execution continues until it is termi-
nated by the WHILE or UNTIL option, or until some statement transfers control to
a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This
option can also be used for nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO group
ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.
Examples:

e At statement 25, initialize variable a and display the values of variables
X, y, and z.

AT 25 DO; %BLOCK:>a = 0; LIST (x, y, z); END;
e Execute the DO group until ctr is greater than 4 or less than 0.
DO UNTIL (ctr > 4) WHILE (ctr >= 0); END;

e Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64,
128, and 256.

DO i = 1 REPEAT 2%i UNTIL (i = 256); END;

¢ Repeat execution of the DO group with j having values 1 through 20, but
only if k has the value 1.

DO j =1 TO 20 BY 1 WHILE (k = 1); END;

ENABLE command

The ENABLE command makes the AT breakpoints operative after they have been
DISABLEd.

»»—ENABLE—AT_command

\ 4
A

AT_command
A disabled AT command. The AT command must be complete except that the
every_clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

Usage Notes:

e To disable an AT command, use the DISABLE command.

Chapter 13. Debug Tool commands 265

EVALUATE

» Breakpoints already enabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no disabled breakpoints.

Example:

Reenable the previously disabled command AT ENTRY mysub CALL procl;.
ENABLE AT ENTRY mysub;

ENABLE prefix (full-screen mode)

Enables a disabled statement breakpoint when you issue this command via the
source window prefix area.

v
A

»»—ENABLE
|—int‘eger‘——l

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example:
Enable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).
ENABLE 3

No space is needed as a delimiter between the keyword and the integer;
hence, ENABLE 3 is equivalent to ENABLE3.

EVALUATE command (COBOL)

The EVALUATE command provides a shorthand notation for a series of nested IF
statements. The keywords cannot be abbreviated.

»»—EVALUATE——constant WHEN— any_clause | ¥ command >
expression—
reference—
TRUE
FALSE
> END-EVALUATE—; >«
—WHEN—OTHER command-
any_clause:
l ANY |
condition—
TRUE:
FALSE

|

—l_—_l—ECOHS tant J
NOT reference L[TH RO

UGH constant
THRU4 |—referen(:e—l

constant
A valid Debug Tool COBOL constant.

266 Debug Tool User's Guide and Reference

EVALUATE

expression
A valid Debug Tool COBOL arithmetic expression.

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage Notes:
¢ Only a single subject is supported.
e Consecutive WHENs without associated commands are not supported.
* THROUGH/THRU ranges can be specified as constants or references.

e See COBOL Language Reference publications for an explanation of the
following COBOL keywords:

ANY
FALSE
NOT
O0THER
THROUGH
THRU
TRUE
WHEN

Example:

The following example shows an EVALUATE command and the equivalent
coding for an IF command:

EVALUATE menu-input
WHEN "0"
CALL init-proc
WHEN "1" THRU "9"
CALL process-proc
WHEN "R"
CALL read-parms
WHEN "X"
CALL cleanup-proc
WHEN OTHER
CALL error-proc
END-EVALUATE;

The equivalent IF command:

Chapter 13. Debug Tool commands 267

FIND

IF (menu-input = "0") THEN
CALL init-proc
ELSE
IF (menu-input >= "1") AND (menu-input <= "9") THEN
CALL process-proc
ELSE
IF (menu-input = "R") THEN
CALL read-parms
ELSE
IF (menu-input = "X") THEN
CALL cleanup-proc
ELSE
CALL error-proc
END-IF;
END-IF;
END-IF;
END-IF;

Expression command (C/C++)

The Expression command evaluates the given expression. The expression can be
used to either assign a value to a variable or to call a function.

v
A

»>—expression—s;

expression
A valid Debug Tool C/C++ expression. Assignment is affected by including one
of the C/C++ assignment operators in the expression. No use is made of the
value resulting from a stand-alone expression.

Usage Note:

Function invocations in expressions are restricted to functions contained in
the currently executing enclave.

Examples:

 |nitialize the variables x, y, z and note that function invocations are sup-
ported.
x =3 + 4/5;
y=17;
z = 8 * func(x, y);

e Increment y and assign the remainder of the integer division of omega by
4 to alpha.

alpha = (y++, omega % 4);

FIND command

The FIND command provides full-screen, line, and batch mode search capability in
source and listing files, and full-screen searching of log and monitor objects as well.

268 Debug Tool User's Guide and Reference

FIND

\4
A

|—stringJ CURSOR—
LOG—
MONITOR—
SOURCE—

string
The string searched for, conforming to the current programming language
syntax for a character string constant. The string length cannot exceed 128
bytes, excluding the quotes.

If string is not specified, the string from the previous FIND command is used.

Some examples of possible strings follow:

c CH++ COBOL
"ABC" "IntLink::*" "A5"
IA5I

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the window searched.

LOG (Full-Screen Mode)
Selects the session log window.

MONITOR (Full-Screen Mode)
Selects the monitor window.

SOURCE (Full-Screen Mode)
Selects the source listing window.

Usage Notes:

e Window defaulting can be controlled by the SET DEFAULT WINDOW
command.

 |f the current programming language setting is C/C++, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

 In full-screen mode, the search begins at the top line displayed in the
window or at the location of the last found search argument if a pre-
vious FIND was issued for any search string. If the end of the object is
reached without finding the search argument, FIND wraps to