..ll!

0S/390

C/CH++
IBM Open Class Library Reference

000000000000

..ll!

0S/390

C/CH++
IBM Open Class Library Reference

000000000000

Note!

Before using this information and the product it supports, be sure to read the general information under [Notices” on page xlvil.

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of 0S/390 C/C++ (5647-A01) and to all subsequent releases and modifications until
otherwise indicated in new editions or other updated documentation. Make sure that you use the correct edition for the level of the
program listed above. Also, ensure that you apply all necessary PTFs for the program.

Technical changes in the text since the last release of this book are indicated by a vertical line (]) to the left of the change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are not stocked at the
address below. The OS/390 C/C++ publications are available through the OS/390 Library page on the World Wide Web
(http://www.s390.1ibm.com/0s390/bkserv).

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure to include your
entire network address if you wish a reply.

¢ Internet: torrcf@ca.ibm.com
¢ |IBMLink: toribm(torrcf)

¢ IBM/PROFS: torolab4(torrcf)
¢ IBMMAIL: ibmmail(caibmwt9)

You can also send your comments by facsimile (attention: RCF coordinator) or you can use the Reader's Comment Form that is
provided at the back of this publication. Refer to “Communicating Your Comments to IBM” for a description of the methods. This
information immediately precedes the Reader's Comment Form at the back of this publication. You can also address your comments
to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xlvii
About This Book li
About IBM OS/390 C/C ++ IXi
Part 1. Complex Mathematics Library, 1
Chapter 1. complex Class 3
Derivation 3
Header File 3
Members 3
Constants Defined in complex.h 3
Constructors for complex 4
Initializing complex Arrays 4
Mathematical Operators for complex, 5
Addition 5
Subtraction 5
Negation 5
Multiplication 5
DIVISION 5
Equality 5
Inequality 6
Mathematical Assignment Operators 6
Input and Output Operators for complex, 6
Input Operator 6
Output Operator 6
Mathematical Functions for complex 7
EXD . 7

00 . . . 7

POW . . . 7

0 | 7
Trigonometric Functions for complex L. 8
COS o 8
COSN . . . 8

SIN . . 8

Sinh . 8
Magnitude Functions for complex 8
abs .. 8
NOMM o e 8
Conversion Functions for complex oo 8
Arg . e 9

CONJ . L 9
polar 9

real 9
IMag e 9
Chapter 2. c_exception Class 11
Derivation 11

© Copyright IBM Corp. 1996, 1998 ili

Header File 11

Members 11
Constructor for c_exception 11
Data Members of c_exception 11

argl, arg2 . .. 11

NAME 11

retval 12

tYPe . 12
Errors Handled by the Complex Mathematics Library 12

COMPpleX_EIror 12

Default Error-Handling Procedures 12

Part 2. I/O Stream Library 15
Chapter 3. filebuf Class 17

Derivation 17

Header File 17

Members 17
Public Members of filebuf 18

Constructors for filebuf 18

Destructor for filebuf 18

attach 18

detach 18

close, 18

fd 19

1 19

IS_OPEN . . . 19

OPEN . . o e 19

seekoff, 19

SeekpoS . . . 20

setbuf, 20

SYNC . . o e 20
Chapter 4. fstream, ifstream, and ofstream Classes 23

Derivation 23

Header File 23

Members 23
Public Members of fstreambase 23

attach 24

close, 24

detach, 24

setbuf 24
Public Members of fstream 24

Constructors for fstream 24

OPEN . . o e 25

rdbuf . .. 26
Public Members of ifstream 26

Constructors forifstream 26

OPEN . . o e 27

rdbuf . .. 27
Public Members of ofstream 28

Constructors for ofstream 28

OPEN . . o e 28

iV 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Chapter 5. iosClass 31
Derivation 31
Header File 31
Members 31

Constructors and Assignment Operator forios 32

Format State Variables 32
X il 32
X_Precision 32
X width ... 33

Format State Flags 33

White Space and Padding 33
SKIPWS . . 33
left . . 33
right . . . 34
internal 34

Base Conversion 34
dec . .. 34
OCL . . . 34
hex . . . 34
showbase 34

Integral Formatting 34
showpos 34

Floating-Point Formatting 34
showpoint 34
scientific 34
fixed 35
Default Representation of Floating-Point Values 35

Uppercase and Lowercase e 35
UPPEICASE o o o e e 35

Buffer Flushing 35
unitbuf . . 35
stdio 35

Mutually Exclusive Format Flags 35

Public Members of ios for the Format State 36
fill . 36
flags 36
Precision 36
setf . . 37
SKip . . 37
unsetf . . . 37
width . . . 37

Public Members of ios for User-Defined Format Flags 38
bitalloc 38
iword . . L 38
pword, 38
xalloc 39

Public Members of ios for the Error State 39
bad 39
clear . .. 39
eof . 39
fail . . 40
good . .. 40

Contents V

rdstate
operator void*
operatorl
Other Members ofios
rdbuf . ..
sync_with_stdio
tie
Built-In Manipulators forios

Chapter 6. iostream and iostream_withassign Classes
Derivation
Header File
Members

Public Members of iostream and iostream_withassign
Constructor for iostream
Constructor for iostream_withassign
Assignment Operator for iostream_withassign

Chapter 7. istream and istream_withassign Classes
Derivation
Header File
Members

Constructors for istream
Constructor foristream

Input Prefix Function

Public Members of istream for Formatted Input
Input Operator for Arrays of Characters
Input Operator forchar
Input Operator for Other Integral Values
Input Operator for float and double Values
Input Operator for streambuf Objects

Public Members of istream for Unformatted Input
get .

gel .
getine
IgNOre
read
Public Members of istream for Positioning
seekg
tellg . . .
Other Public Members of istream
gCOUNE . . . L o
peek . .o
putback
SYNC . o
Built-In Manipulators foristream
Public Members of istream_withassign
Constructor for istream_withassign
Assignment Operator for istream_withassign

Chapter 8. Manipulators
Derivation

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Header File 55

Members 55
Parameterized Manipulators for the Format State 55
resetiosflags, 56
sethase 56
setfill 56
setiosflags 56
Setprecision 57
SEIW . . 57
Chapter 9. ostream and ostream_withassign Classes 59
Derivation 59
Header File 59
Members 59
Constructors for ostream 59
Constructor for ostream 59
Output Prefix and Suffix Functions 60
OPfX . o 60
OSEX . . 60
Public Members of ostream for Formatted Output 60
Output Operator for Arrays of Characters and char Values 61
Output Operator for Other Integral Values 62
Output Operator for float and double Values 62
Output Operator for Pointerstovoid 63
Output Operator for streambuf Objects 63
Public Members of ostream for Unformatted Output 63
PUL . e 63
WIILE . . . o 63
Public Members of ostream for Positioning 64
Seekp . .. 64
tellp 64
Other Public Members of ostream 64
flush 64
Built-In Manipulators for ostream L 64
Public Members of ostream_withassign 65
Constructor for ostream_withassign 65
Assignment Operator for ostream_withassign 65
Chapter 10. stdiobuf and stdiostream Classes 67
Derivation 67
Header File 67
Members 67
Public Members of stdiobuf 67
Constructor for stdiobuf 67
Destructor for stdiobuf 68
stdiofile 68
Public Members of stdiostream 68
Constructor for stdiostream 68
rdbuf . . . 68
Example of Using stdiostream 68
Chapter 11. streambuf Class 71
Derivation 71
Header File 71

Contents Vi

Members 71

streambuf Public and Protected Interfaces 71
What is the streambuf Public Interface? 72
What is the streambuf Protected Inteface? 72

Public Members of the streambuf Public Interface 72

Constructors for streambuf 73
Destructor for streambuf 73
in_avail 73
out waiting 73
sbumpe . .. 73
SQEIC . . . 73
SQetN . . e 74
SNEXIC 74
sputbackc 74
SPUIC o e 74
SPULN . . o e 74
SIOSSC 74
Protected Functions That Return Pointers 75
base 75
eback, 75
ebuf . .. 75
EOPIr . e 75
CPPIr . e 75
OPtr e 75
pbase 75
PP . e 76
Protected Functions That Set Pointers 76
seth 76
Selg . . . 76
SEIP . L 76
Other Nonvirtual Protected Member Functions 77
allocate 77
blen 77
dbp . . 77
ghump . .. 78
pbump .. 78
unbuffered 78
Protected Virtual Member Functions 78
doallocate 79
overflow . . . L 79
pbackfail 79
seekoff . . . 80
SeekposS 80
setbuf 81
SYNC . . . o 81
underflow 81
Chapter 12. strstream, istrstream, and ostrstream Classes 83
Derivation 83
Header File 83
Members 83
Public Members of strstreambase 83
rdbuf . . 83
Public Members of strstream 84

Viii 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Constructor for strstream 84
Destructor for strstream 84

St 84
Public Members of istrstream 84
Constructors foristrstream 84
Destructor for istrstream 85
Public Members of ostrstream 85
Constructors for ostrstream 85
Destructor for ostrstream 85

St 86
pcount 86
Chapter 13. strstreambuf Class 87
Derivation 87
Header File 87
Members 87
Public Members of strstreambuf 87
Constructors for strstreambuf oo 87
Destructor for strstreambuf 88
doallocate, 88
freeze 88
overflow 89

SUr 89
seekoff, 89
setbuf 90
underflow 90
Part 3. Flat Collection Classes 91
Chapter 14. Introduction to Flat Collections 93
Terms Used 93
Format of Class Descriptions 94
Required Functions 94
Types Defined for the Collection Class Library 95
Chapter 15. Flat Collection Member Functions 97
Constructor 97
Copy Constructor 97
Destructor 97
operatorl=" 97
operator= 98
operator== 98

add . .. 98
addAllFrom 99
addAsFirst, 100
addAsLast 100
addAsNext 101
addAsPrevious 101
addAtPosition, 101
addDifference 102
addintersection 103
addOrReplaceElementWithKey 103
addunion, 104

Contents X

allElementsDo 105

allElementsDo, 105
ANY . e 106
COMPAIE o e e 106
CONtAINS 106
containsAllFrom, 106
containsAllKeysFrom 107
containsElementWithKey 107
COPY - o o o o e 107
deque 108
differenceWith 108
disableNotification 108
elementAt 108
elementAtPosition 109
elementWithKey 109
enableNotification 109
ENQUEUE o 109
first . 110
intersectionWith 110
isBounded 110
ISEmpty 110
isEnabledForNotification 111
iISFIrstAt 111
isFull . . . 111
iIsLastAt 111
Key . 111
last . . . 111
locate 112
locateElementWithKey 112
locateFirst 112
locateLast 112
locateNext 113
locateNextElementWithKey 113
locateOrAdd 113
locateOrAddElementWithKey 114
locatePrevious 115
maxNumberOfElements 115
NEWCUISOr e 115
notifier L 115
notifyObservers, 116
numberOfDifferentElements 116
numberOfDifferentKeys 116
numberOfElements 116
numberOfElementsWithKey 116
numberOfOccurrences 116
POP . . . e 116
POSItIONAL 117
push . . . 117
FEMOVE e 117
removeAll 118
removeAll 118
removeAllElementsWithKey 118
removeAllOccurrences 118
removeAt 119

X 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

removeAtPosition 119

removeElementWithKey Lo 119
removeFirst 120
removelLast 120
replaceAt 120
replaceElementWithKey Lo 121
FTEVEISE 121
setToFirst 121
setToLast 121
setTONext 122
setToNextDifferentElement 122
setToNextWithDifferentkey 122
setToPosition 123
setTOPrevious 123

SOt . . 123

OP . 124
unionWith L 124
Chapter 16. Bag 125
Derivation 125
Variants and Header Files, 125
Members 126
Template Arguments and Required Functions 126
Bag e 126
BagasHash Table 127
Bag as List 127
Bagas Table 127
Bag as Diluted Table 128
Abstract Class 128
Coding ExampleforBag 128
Chapter 17. Deque e 131
Derivation 131
Variants and Header Files 131
Members 132
Template Arguments and Required Functions 132
Deque 132
Deque as List 133
Deque as Table 133
Deque as Diluted Table 133
Abstract Class 133
Coding Example for Deque 134
Chapter 18. Equality Sequence 137
Derivation 137
Variants and Header Files 137
Members 138
Template Arguments and Required Functions 139
Equality Sequence 139
Equality Sequence as List 139
Equality Sequence as Table 139
Equality Sequence as Diluted Table 139
Abstract Class 140

Contents Xi

Xii

Chapter 19. Heap 141

Derivation 141
Variants and Header Files 141
Members 142
Template Arguments and Required Functions 142
Heap e 142
Heap as List 142
Heapas Table 143
Heap as Diluted Table 143
Abstract Class 143
Coding Example forHeap 143
Chapter 20. KeyBag 145
Derivation 145
Variants and Header Files 145
Members 146
Template Arguments and Required Functions 146
KeyBag 146
KeyBagasHash Table 147
Abstract Class 147
Coding Example forKeyBag 147
Chapter 21. Key Set 151
Derivation 151
Variants and Header Files 151
Members 152
Template Arguments and Required Functions 152
Key Set e 152
Key Setas AVL Tree 153
Key Setas B*Tree 153
Key SetasHash Table 153
Key Setas List 154
Key Setas Table 154
Key Set as Diluted Table 154
Abstract Class 155
Coding Example for Key Set 155
Chapter 22. Key Sorted Bag 157
Derivation 157
Variants and Header Files 157
Members 158
Template Arguments and Required Functions 158
Key Sorted Bag 158
Key Sorted Bag as List 159
Key Sorted Bagas Table, 159
Key Sorted Bag as Diluted Table 159
Abstract Class 160
Coding Example for Key SortedBag 160
Chapter 23. Key Sorted Set 163
Derivation 163
Variants and Header Files 163
Members 164
Template Arguments and Required Functions 164

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Set 164

Key Sorted Setas AVL Tree 165
Key Sorted Setas B* Tree 165
Key Sorted Setas List 165
Key Sorted Setas Table 166
Key Sorted Set as Diluted Table 166
Abstract Class 166
Coding Example for Key Sorted Set 167
Chapter 24. Map 171
Derivation 171
Variants and Header Files 171
Members 172
Template Arguments and Required Functions 173
Map . . 173
Map as AVL Tree e 173
Map as B* Tree 173
Map as List 174
Mapas Table 174
Map as Diluted Table 174
Map as Hash Table 175
Abstract Class e 175
Coding Example forMap 176
Chapter 25. Priority Queue 179
Derivation 179
Variants and Header Files 179
Members 180
Template Arguments and Required Functions 180
Priority Queue 180
Priority Queue as List 181
Priority Queue as Table 181
Priority Queue as Diluted Table 182
Abstract Class 182
Chapter 26. Queue L 183
Derivation 183
Variants and Header Files 183
Members 184
Template Arguments and Required Functions 184
Queue . . . e 184
Queue as List 185
Queue as Table 185
Queue as Diluted Table 185
Abstract Class 186
Chapter 27. Relation 187
Derivation 187
Variants and Header Files 187
Members 188
Template Arguments and Required Functions 188
Abstract Class 189
Chapter 28. Sequence 191

Contents Xii

Xiv

Derivation 191

Variants and Header Files 191
Members 192
Template Arguments and Required Functions 192
Sequence 192
Sequence as List 193
Sequenceas Table 193
Sequence as Diluted Table 193
Abstract Class 193
Coding Example for Sequence 194
Chapter 29. Set 197
Derivation 197
Variants and Header Files 197
Members 198
Template Arguments and Required Functions 199
Set . . 199
Setas AVL Tree e 199
SetasB*Tree 199
SetasList 199
SetasTable 200
Setas Diluted Table 200
SetasHash Table 200
Abstract Class 201
Coding Example for Set 201
Chapter 30. Sorted Bag 203
Derivation 203
Variants and Header Files 203
Members 204
Template Arguments and Required Functions 204
Sorted Bag, 204
Sorted Bag as List 205
Sorted Bagas Table 205
Sorted Bag as Diluted Table 205
Abstract Class 205
Chapter 31. Sorted Map 207
Derivation 207
Variants and Header Files 207
Members 208
Template Arguments and Required Functions 209
Sorted Map, 209
Sorted Map as AVL Tree 209
Sorted Map as B* Tree 209
Sorted Map as List 210
Sorted Map as Table 210
Sorted Map as Diluted Table 210
Abstract Class 211
Coding Example for Sorted Map 211
Chapter 32. Sorted Relation 219
Derivation 219
Variants and Header Files 219

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Members 220

Template Arguments and Required Functions 221
Sorted Relation 221
Sorted Relation as List 221
Sorted Relationas Table 221
Sorted Relation as Diluted Table 222

Abstract Class 222

Coding Example for Sorted Relation, 222

Chapter 33. Sorted Set 223

Derivation 223
Variants and Header Files 223
Members 224

Template Arguments and Required Functions 225
Sorted Set, 225
Sorted Setas AVL Tree 225
Sorted Setas B* Tree 225
Sorted Setas List 225
Sorted Setas Table 226
Sorted Set as Diluted Table 226

Abstract Class 226

Coding Example for Sorted Set 226

Chapter 34. Stack 229

Derivation 229
Variants and Header Files 229
Members 230

Template Arguments and Required Functions 230
Stack 230
Stack as List 231
Stackas Table 231
Stack as Diluted Table 231

Abstract Class 231

Coding Example for Stack 232

Part 4. Tree Collection Classes 235

Chapter 35. Introduction to Trees 237

Defining the Traversal Order of Tree Elements 237

IPreorder 237
IPostorder 238
Chapter 36. Multiway Tree 239
Derivation 239
Variants and Header Files 239
Members 239

Template Arguments and Required Functions 239

Terms Used 240

Coding Example for Multiway Tree 240

Tree Functions 244

Constructor 244
Copy Constructor 244
Destructor 244

Contents XV

operator= 244

addAsChild, 245
addAsRoOt, 245
allElementsDo, allSubtreeElementsDo 245
allElementsDo, allSubtreeElementsDo 246
attachAsChild, attachSubtreeAsChild 247
attachAsRoot, attachSubtreeAsRoot 247
childPositionAt, 248
copy, copySubtree 248
elementAt 248
hasChild 249
ISEMpty . . . 249
isLeaf 249
ISROOt 249
NEWCUISOr 249
numberOfChildren 250
numberOfElements, numberOfSubtreeElements 250
numberOfLeaves, numberOfSubtreeLeaves 250
removeAll, removeSubtree 250
replaceAt 251
setToChild 251
setToFirst 251
setToFirstExistingChild 251
setToLasto 252
setToLastExistingChild 252
setToNext 252
setToNextExistingChild 252
setToParent 253
setToPrevious 253
setToPreviousExistingChild, . 253
setTOROOt 253
Part 5. Auxiliary Collection Classes 255
Chapter 37. Cursor 257
Header File 257
Members 257
Public Member Functions 258
Constructor 258
COPY . o o o o e 258
isValid 258
invalidate 258
element 258
operatorl=" 258
Operator== 258
setToFirst 259
setTolLast 259
setTONext 259
SetTOPIrevious e, 259
Chapter 38. Tree Cursor 261
Header Files 261
Members 261

XVi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Public Members of Tree Cursor 261

Constructor 261
operatorl=" . . . L 261
Operator== 261
element 262
isValid 262
invalidate 262
setToChild 262
setToFirstExistingChild 262
setToLastExistingChild 262
setToNextExistingChild 263
setToParent 263
setToPreviousExistingChild 263
setTOROOt 263
Chapter 39. Applicator and Constant Applicator Classes 265
Derivation 265
Header File 265
Members 265
applyTo e 265
Chapter 40. Pointer Classes 267
Members 267
Constructors 267
Constructors from a Given C++ Pointer 267
Copy Constructors from a Given Collection Class Pointer 268
Destructors 268
operators 268
Conversion operator 268
operator-> . . . L 268
Operator= 268
operator== 268
Coding Example for Managed Element Pointer 269
Chapter 41. Collection EventData 273
Derivation 273
Inherited By 273
Header File 273
Class Name 273
Members 273
Members 273
CUISOI o s e 273
element 273
Chapter 42. Collection Guard 275
Derivation 275
Inherited By 275
Header File 275
Class Name e 275
Members 275
Members 275
Constructor 275
Destructor 275

Contents XVii

Chapter 43. Restricted Access Collection Guard 277

Derivation 277
Inherited By 277
Header File 277
Class Name 277
Members 277
Members 277
Constructoro 277
Destructor 277
Chapter 44. Tree Collection Guard 279
Derivation 279
Inherited By 279
Header File 279
Class Name, 279
Members 279
Members 279
Constructor 279
Destructor 279
Part 6. Abstract Collection Classes 281
Chapter 45. Collection 283
Derivation 283
Header File 283
Members 283
Chapter 46. Equality Collection 285
Derivation 285
Header File 285
Members 285
Chapter 47. Equality Key Collection 287
Derivation 287
Header File 287
Members 287
Chapter 48. Equality Key Sorted Collection 289
Derivation 289
Header File 289
Members 289
Chapter 49. Equality Sorted Collection 291
Derivation 291
Header File 291
Members 291
Chapter 50. Key Collection 293
Derivation 293
Header File 293
Members 293
Chapter 51. Key Sorted Collection 295

XVili 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Derivation 295

Header File 295
Members 295
Chapter 52. Ordered Collection 297
Derivation 297
Header File 297
Members 297
Chapter 53. Sequential Collection 299
Derivation 299
Header File 299
Members 299
Chapter 54. Sorted Collection 301
Derivation 301
Header File 301
Members 301
Chapter 55. Restricted Access Collection 303
Derivation 303
Inherited By 303
Header File 303
Class Name 303
Members 303
Part 7. Application Support Class Library 305
Chapter 56. Base Classes 311
IBase 311
Derivation 311
Inherited By 311
Header File 311
Nested Classes 311
Public Members 311
asDebuginfo 311
asString 311
messageFile 312
messageText 312
Operator<< 312
setMessageFile 313
VEISION 313
Enumerations 313
BooleanConstants 313
IVBase 313
Derivation 313
Header File 313
Public Members 314
asDebuginfo 314
asString 314
operator<< 314
Inherited Public Members 314

Contents XiX

XX

Chapter 57. Buffer Classes 315

IBuffer 315
Derivation 315
Header File 315

Constructors 315
Public Members 315
addRef 315
asDebuginfo 315
Center 315
change 315
charType 316
checkAddition 316
checkMultiplication 316
COMPAIE ottt e 316
CONtents 316
COPY . o o e e 316
defaultBuffer 316
fromContents, 317
includesDBCS 317
includesMBCS 317
includesSBCS 317
indexOf 317
indexOfAnyBut 317
indexOfANyOf, 317
INSErt . . . 318
isAlphabetic 318
isAlphanumeric 318
ISASCIL 318
isControl 318
ISDBCS 318
isDIgits 318
isGraphics, 318
isHexDIigits 319
isLowerCase 319
ISMBCS 319
isPrintable 319
isPunctuation 319
ISSBCS, 319
isUpperCase 319
isValidDBCS 320
isValidMBCS 320
isWhiteSpace 320
lastindexOf 320
lastindexOfAnyBut 320
lastindexOfAnyOf 321
leftdustify 321
length 321
lowerCase 321
newBuffer 321
next e 322
null . . e 322
overflow . . . L 322
overlayWith 322
FEMOVE 322

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

removeRef 322

FTEVEISE 323
rightustify 323
setDefaultBuffer 323
SUIP .« . 323
SUbString 323
translate 324
upperCase 324
useCount 324
Inherited Public Members 324
Protected Members 324
allocate, 324
className 324
initialize 324
operatordelete 324
operator NEW e 324
startBackwardsSearch 325
startSearch, 325
Nested Type Definitions 325
Comparison 325
IDBCSBuUffer 325
Derivation 325
Header File 326
Constructors 326
Public Members 326
allocate 326
CENTEr 326
charType e 326
includesDBCS 326
includesMBCS 326
includesSBCS 326
indexOf L 327
indexOfAnyBut 327
indexOfAnyOf 327
iNsert 327
iISDBCS 327
ISMBCS 327
ISSBCS, 327
isValidDBCS 327
isValidMBCS e 328
lastindexOf 328
lastindexOfAnyBut 328
lastindexOfAnyOf 328
leftdustify 328
lowerCase 329
next e 329
overlayWith 329
FEMOVE e 329
FTEVEISE e 329
rightdustify 329
Stp . . 329
subString 330
translate 330
UpPerCase 330

Contents XXi

Inherited Public Members 330

Protected Members 331
charLength 331
className 331
isCharValid 331
iISDBCS1 332
iSPrevDBCS 332
ISSBC . . . e 332
maxCharLength 332
prevCharLength 332
startBackwardsSearch 333
startSearch 333

Inherited Protected Members 333

Chapter 58. IDate Class 335
Derivation 335
Header File 335

Constructors L 335

Public Members 336
asCDATE 336
asString 336
dayName 337
dayOfMonth 337
dayOfWeek e 337
dayOfYear 337
daysinMonth 337
daysinYear 337
isLeapYear, 337
isValid 337
julianDate 338
monthName 338
monthOfYear 338
operatorl= 338
operator+ 338
operator+= 338
operator- 338
operator-= 339
operator< 339
Operator<< e 339
operator<= 339
Operator== 339
operator> 339
Operator>= e 339
today 339
VEAI . . . e 339

Inherited Public Members 340

Protected Members 340
initialize 340

Enumerations 340
DayOfWeek 340
Month 340
YearFormat 340

Chapter 59. Exception Classes 341

XXil 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

[Exception 341

Derivation 341
Header File 341
Nested Classes 343
Constructors 343
Error Code 343
errorCodeGroup 343
setErrorCodeGroup 343
Public Members 343
addLocation 343
appendText 344
assertParameter 344
errorld 344
isRecoverable 344
locationAtindex 344
locationCount 345
logExceptionData 345
NAME s 345
setErrorld 345
setSeverity 345
setText 345
setTraceFunction 345
terminate, 346

teXt ., 346
textCount 346
Enumerations 346
Severity 346
Public Data 347
Error Code e 347
baseLibrary 347
ClLibrary 347
operatingSystem 347
other . . . e 347
presentationSystem 347
Nested Classes 347
Nested Type Definitions 348
Severity 348
ErrorCodeGroup 348
Protected Members 348
Constructors 348
TraceFn 348
Tracing 348
exceptionLogged 348
IAccessError 349
Derivation 349
Header File 349
Constructors 349
Public Members 349
NAME e 349
Inherited Public Members 350
IAssertionFailure 350
Derivation 350
Header File 350
Constructors 350

Contents XXili

Public Members 350

NAME s 350
Inherited Public Members 351
ICLibErrorinfo 351
Derivation 351
Header File 351
Constructors 351
Public Members 352
errorld 352
isAvailable 352
operator constchar* 352

texXt ., 352
throwCLIibError, 352
Inherited Public Members 353
IDeviceError 353
Derivation 353
Header File 353
Constructors 353
Public Members 353
NAME e 353
Inherited Public Members 354
IBaseErrorIinfo 354
Derivation 354
Header File 354
Public Members 355
errorld . . . 355
isAvailable 355
operator constchar* 355

text L, 355
throwError, 356
Inherited Public Members 356
Enumerations 356
ExceptionType L 356
IException::TraceFn 357
Derivation 357
Header File 357
Public Members 357
WITE 357
IExceptionLocation 358
Derivation 358
Header File 358
Constructors 358
Public Members 358
fileName, 358
functionName 359
lineNumber 359
IGUIErrorInfo 359
Derivation 359
Header File 359
Constructors 360
Public Members 360
errorld . . . L 360
isAvailable 361
operator constchar* 361

XXiV 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

text . .o 361

throwError, 361
throwGUIError 361
Inherited Public Members 362
linvalidParameter 362
Derivation 362
Header File 362
Constructors 362
Public Members 363
NAME s 363
Inherited Public Members 363
lInvalidRequest 363
Derivation 363
Header File 363
Constructors 363
Public Members 364
NAME e 364
Inherited Public Members 364
IMessageText 364
Derivation 364
Header File 364
Constructors 364
Public Members 366
operator= 366
operator constchar * 366
setDefaultText, 366

text . . 366
IOQutOfMemory 366
Derivation 366
Header File 366
Constructors L 367
Public Members 367
NAME e 367
Inherited Public Members 367
IOutOfSystemResource 367
Derivation 367
Header File 367
Constructors 368
Public Members 368
NAME e 368
Inherited Public Members 368
IOutOfWindowResource 368
Derivation 368
Header File 369
Constructors 369
Public Members 369
NAME 369
Inherited Public Members 369
IResourceExhausted 369
Derivation 370
Header File 370
Constructors 370
Public Members 370
NAME s 370

Contents XXV

Inherited Public Members 371

ISystemErrorinfo 371
Derivation 371
Header File 371

Constructors 372
Public Members 372
errorld, 372
isAvailable 372
operator constchar * 372
text . 372
throwSystemError 372
Inherited Public Members 373

IXLibErrorinfo 373
Derivation 373
Header File 373

Constructors 374
Public Members 374
errorld . . . 374
isAvailable 374
operator constchar* 375
text L, 375
throwXLibError, 375
Inherited Public Members 375

Chapter 60. String Classes 377

IString 377
Derivation 377
Header File 377

Constructors 378
Public Members 379
asDebuginfo 379
asDouble, 379
asint . . . 379
asLonglong 380
asString 380
asUnsigned 380
asUnsignedLonglong 380
b2c . . 380
b2d 380
b2X . 380
C2b ., 380
C2d . . 381
C2X o o e, 381
Center, 381
change 381
charType 382
COPY . o o o o e e 382
d2b 382
d2c . ., 382
d2X . 383
disablelnternationalization 383
enablelnternationalization 383
includes 383
includesDBCS 383

XXVi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

includesMBCS 383

includesSBCS 383
indexOf 383
indexOfAnyBuUt, 384
indexOfANyOf 384
indexOfPhrase 384
indexOfWord 384
iNsert e 384
isAbbreviationFor 385
isAlphabetic 385
isAlphanumeric 385
ISASCII . . . e 385
isBinaryDigits 385
isControl 386
ISDBCS 386
iIsSDIgQIts 386
isGraphics 386
isHexDigits 386
isinternationalized 386
isLike 386
isLowerCase 387
ISMBCS 387
isPrintable 387
isPunctuation 387
ISSBCS 387
isUpperCase 388
isValidDBCS 388
isValidMBCS 388
isWhiteSpace 388
lastindexOf 388
lastindexOfAnyBut 389
lastindexOfAnyOf 389
leftdustify 389
length 389
lengthOfWord 390
lineFrom 390
lowerCase 390
numwords 390
occurrencesOf 390
operatorl= 390
operator& 391
operator&= 391
operator+ L. e 391
operator+= 392
operator< 392
operator<< 392
Operator<= 392
operator= 393
operator== 393
operator> 393
Operator>= 394
operator>> 394
operator char * 394
operator signed char * 394

Contents XXVii

operator unsigned char *o 394

operatorf] 395
operator™ e 395
operator™= 395
operator] 395
Operator|= 396
operator™ 396
overlayWith 396
FEMOVE e 396
removeWords 397
FTEVEISE o 397
rightustify, 397
SIZE . 397
SPACE 397
Stp . . 397
stripBlanks 398
stripLeading 398
stripLeadingBlanks 398
stripTrailing 398
stripTrailingBlanks 399
SubString L. 399
translate, 399
upperCase e 400
word .o 400
wordindexOfPhrase 400
WOrdS 400
X2b e, 400
X2C 400
X2d 401
Inherited Public Members 401
Protected Members 401
applyBitOp 401
buffer . . . 401
change 401
data, 402
defaultBuffer 402
findPhrase, 402
indexOfWord 402
initBuffer 402
INSert 403
iISAbbrevFor 403
isLike 403
lengthOf 404
occurrencesOf 404
overlayWith 404
setBuffer, 404
Stp . . 404
translate, 405
I0String e 405
Derivation 405
Header File 405
Constructors 406
Public Members 407
change 407

XXVili 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

charType e 408

indexOf 408
indexOfAnyBut 408
indexOfANyOf, 408
indexOfPhrase 408
indexOfWord 408
iNsert 408
lastindexOf 409
lastindexOfAnyBut 409
lastindexOfAnyOf 409
occurrencesOf L, 410
operator[] 410
overlayWith 410
FEMOVE 410
subString 411
Inherited Public Members 411
Protected Members 411
adjustArg 411
adjustResult 411
IStringEnum 412
Derivation 412
Header File 412
Enumerations 412
CharType e 412
StripMode 413
IStringParser 413
Derivation 413
Header File 413
Nested Classes 414
Constructors 414
Public Members 415
operator<< 415
operator>> . . . L. 415
Inherited Public Members 416
Enumerations 416
Command, 416
IStringParser::SkipWords 416
Derivation 416
Header File 416
Constructors 416
Public Members 417
numberOfWords 417
Inherited Public Members 417
IStringTest 417
Derivation 417
Header File 417
Constructors 417
Public Members 418
tesSt . ., 418
Inherited Public Members 418
Enumerations 418
FnType e 418
IStringTestMemberFn 418
Derivation 418

Contents XXIX

Header File 418

Constructors 419
Public Members 419
test . . 419
Inherited Public Members 419
Chapter 61. IApplication 421
Derivation 421
Inherited By 421
Header File 421
Members 421
Public Functions 421
Diagnostics 421
asDebuginfo 422
asString 422
Priority e 422
adjustPriority 422
setPriority 423
Process Information 423
CUMTENt 423
currentPID 424

id 424
Inherited Public Functions 424
Protected Functions 424
Constructors 424
IApplication 424
“IApplication 424
Setting Process Information 424
setld 425
Inherited Protected Data 425
PriorityClass 425
Chapter 62. Decimal Classes 427
IBinaryCodedDecimal 427
Derivation 427
Inherited By 427
Header File 427
Members 427
CoNnstructors 427
IBinaryCodedDecimal 427
Public Members 430
Comparisons 430
operator '= . . . L 430
operator < . .. 430
operator <= . . L 431
operator == 431
operator > . . . L 431
operator >= 431
Manipulations 431
operator ! 431
operator *= . . . L 431
operator + . .. 431
operator ++ . . L L 431
operator += . . . L. 432

XXX 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

operator - 432

operator -- 432
Operator -= e 432
operator /= 433
operator = 433
Queries . . . 434
cData 434
digitsOf 434
isNegative 434
isPositive 434
precisionOf, 435
Type Conversions 435
asDouble 435
aslong 435
asLonglLong 435
asString 435
Protected Functions 435
Streaming L 435
readFromStream 435
writeToStream 436
Decimal e 436
Derivation 436
Inherited By 436
Header File 436
Constructors 436
Decimal 436
Public Members 438
Comparisons, 438
operator != . . . L 438
operator < . .. 438
operator <= . . L e 438
operator == 438
operator > . .. 438
operator >= 438
Manipulations 438
operator ! 438
operator * . .. L 439
operator *= 439
operator + . .. L. 439
operator ++ . . . L 439
operator += L 439
operator - 439
operator -- . . . L e 439
operator -= 439
operator / 439
operator /= . . . L 440
operator = 440
Streaming, 440
operator << L L 440
operator >> . . L 440
QUErieS 440
cData 440
digitsOf 440
isNegative 441

Contents XXXi

ISPOSItive 441

precisionOf 441
Type Conversions 441
asBCD 441
asString 441
Chapter 63. ICurrentApplication, 443
Derivation 443
Inherited By 443
Header File 443
Members 443
Public Functions 443
Arguments L 443
ArgC . . . 443
ArgV . . e 444
SELAIgS e 444
Diagnostics 444
asDebuginfo 444
Starting and Stopping 444
eXIt . 444

TUN L 445
Inherited Public Functions 445
Protected Functions 445
Constructors e 445
ICurrentApplication 445
“ICurrentApplication 445
Process Information 445
pib . . 446
Inherited Protected Functions, 446
Inherited Protected Data 446
Chapter 64. ICurrentThread 447
Derivation 447
Inherited By 447
Header File 447
Members 447
Public Functions 448
Current Thread Information 448
handle 448

Id 448
Current Thread Support 448
EXit e, 448
isTopLevelShell 448
isXerrorCodeAvailable, 449
remainingStack 449
sleep . . 449
waitFor 449
waitForAllThreads 450
waitForAnyThread 450
Graphical User Interface (GUI) Support 450
anchorBlock 450
appContext 451
appShell 451
initializeGUI 451

XXXl 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

isGUIInitialized 452

messageQUEUE 452
ProcessMsgs 452
terminateGUl 452
Implementation 453
setTopLevelShell 453
setXerrorCode, 453
XerrorCode 454
Suspending Threads 454
suspend ... L 454
Inherited Public Functions 454
Protected Functions 455
Constructors 455
ICurrentThread 455
Implementation 455
startedThread 455
Inherited Protected Functions 455
Inherited Protected Data 456
Chapter 65. IEnumHandle 457
Derivation 457
Inherited By 457
Header File 457
Members 457
Public Functions 457
Constructors 457
IEnumHandle 457
Diagnostics e 457
asDebuginfo 457
asString 458
asUnsigned 458
Operators e 458
operator Value 458
Nested Type Definitions 458
Value 458
Value 458
Chapter 66. IEventData 459
Derivation 459
Inherited By 459
Header File 459
Members 459
Public Functions 460
Constructors 460
IEventData 460
Contents 460
charl, 461
char2, 461
char3 . . . 461
chard . . . 461
highHighByte 461
highLowByte, 461
highNumber 461
lowHighByte 461

Contents XXXili

lowLowByte 462

lowNumber 462
numberl 462
number2 462
Conversion 462
aslong 462
asUnsignedLong 462
operator char* 462
operator unsigned long 462
Inherited Public Functions 463
Inherited Protected Data 463
Chapter 67. IEventParameterl 465
Derivation 465
Inherited By 465
Header File 465
Inherited Public Functions 465
Inherited Protected Data 465
Chapter 68. IEventParameter2 467
Derivation 467
Inherited By 467
Header File 467
Inherited Public Functions 467
Inherited Protected Data 467
Chapter 69. IEventResult 469
Derivation 469
Inherited By 469
Header File 469
Inherited Public Functions 469
Inherited Protected Data 469
Chapter 70. IHandle 471
Derivation 471
Header File 471
Members 471
Public Functions 471
Constructors 471
IHandle 472
Diagnostics e 472
asDebuginfo 472
asString 472
asUnsigned 472
Operators 472
operator Value 472
Inherited Public Functions 472
Protected Data 472
Value 473
handle 473
Inherited Protected Data 473
Nested Type Definitions 473
Value 473

XXXIV 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Chapter 71. IHighEventParameter 475

Derivation 475
Inherited By 475
Header File 475
Inherited Public Functions 475
Inherited Protected Data 475
Chapter 72. ILowEventParameter 477
Derivation 477
Inherited By 477
Header File 477
Inherited Public Functions 477
Inherited Protected Data 477
Chapter 73. INotificationEvent 479
Derivation 479
Inherited By 479
Header File 479
Members 479
Public Functions 479
Constructors 479
INotificationEvent 479
Operator = 480
“INotificationEvent 480
Event Attributes 480
eventData 480
hasNotifierAttrChanged 480
notificationld 480
notifier 481
observerData 481
setEventData 481
setNotifierAttrChanged 481
setObserverData 481
Inherited Public Functions 481
Inherited Protected Data 482
Chapter 74. INotifier 483
Derivation 483
Inherited By 483
Header File 483
Members 483
Public Functions 484
Constructors 484
INotifier 484
“INotifier 484
Notification Members 484
disableNotification 484
enableNotification 484
isEnabledForNotification 484
Observer Notification 485
notifyObservers 485
Inherited Public Functions 485
Protected Functions 485
Observer Addition and Removal 485

Contents XXXV

addObserver 485

observerList 486
removeAllObservers 486
removeObserver 486
Observer Notification 486
notifyObservers 486
Inherited Protected Data 486
Chapter 75. IObserver 487
Derivation 487
Inherited By 487
Header File 487
Members 487
Public Functions 487
Constructors L 487
TIObserver ... 487
Event Dispatching 487
handleNotificationsFor 488
stopHandlingNotificationsFor 488
Inherited Public Functions 488
Protected Functions 488
Constructors 488
IObserver 488
Event Dispatching 489
dispatchNotificationEvent 489
Inherited Protected Data 489
Chapter 76. IObserverList 491
Derivation 491
Inherited By 491
Header File 491
Members 491
Public Functions 491
Constructors 491
IObserverList 491
“IObserverList 492
Observer Addition and Removal 492
add . ., 492
elementAt, 492
ISEmMpty . . . 492
numberOfElements 492
FEMOVE 492
removeAll 493
removeAt 493
Observer Notification 493
notifyObservers 493
Inherited Public Functions 493
Inherited Protected Data 493
Nested Classes 494
Chapter 77. IObserverList::Cursor 495
Derivation 495
Inherited By 495
Header File 495

XXXVi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Members 495

Public Functions 495
Constructors L 495
CUIsOr 495
TCUISOr 495
Cursor Movement 496
invalidate 496
isValid 496
setToFirst 496
setTolLast 496
setTONext 496
SetTOPIrevious e 496
Inherited Public Functions 497
Inherited Protected Data 497
Chapter 78. IPrivateResource 499
Derivation 499
Inherited By 499
Header File 499
Members 499
Public Functions 500
Constructors 500
IPrivateResource 500
“IPrivateResource 500
Inherited Public Functions 500
Inherited Protected Functions 501
Inherited Protected Data 501
Chapter 79. IPrivateSemaphoreHandle 503
Derivation 503
Inherited By 503
Header File 503
Members 503
Public Functions 503
Constructors 503
IPrivateSemaphoreHandle 503
“IPrivateSemaphoreHandle 503
Diagnostics 503
asDebuginfo 504
asString 504
asUnsigned 504
Operators 504
Operator = 504
operatorValue 504
Nested Type Definitions 504
Value, 504
Value 504
Value 504
Chapter 80. IProcessld 505
Derivation 505
Inherited By 505
Header File 505
Members 505

Contents XXXVii

Public Functions 505

Constructors 505
IProcessld 505
Diagnostics 505
asDebuginfo 505
asString 506
asUnsigned 506
Operators e 506
operator Value 506
Nested Type Definitions 506
Value 506
Value 506
Chapter 81. IRefCounted 507
Derivation 507
Inherited By 507
Header File 507
Members 507
Public Functions 507
Reference Counting 507
addRef 508
removeRef 508
useCount 508
Inherited Public Functions 508
Protected Functions 508
Constructors 508
IRefCounted 508
“IRefCounted 509
Inherited Protected Data 509
Chapter 82. IReference 511
Derivation 511
Inherited By 511
Header File 511
Members 511
Public Functions 512
Constructors 512
IReference 512
Operator = 512
“IReference 512
Operators 512
operator * . .. 513
operator -> . . . L. e 513
operator T * 513
Inherited Public Functions 513
Inherited Protected Data 513
Chapter 83. IResource 515
Derivation 515
Inherited By 515
Header File 515
Members 515
Public Functions 515
Constructors 515

XXXViil 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

IResource
"IResource
Resource Locking

lock

unlock
Inherited Public Functions
Inherited Protected Data

Chapter 84. IResourcelLock
Derivation
Inherited By
Header File
Members

Public Functions

Constructors
IResourcelLock
“IResourcelLock

Inherited Public Functions

Protected Functions

Resource Locking

clearLock
setbock L.

Inherited Protected Data

Chapter 85. ISharedResource
Derivation
Inherited By
Header File
Members

Public Functions

Constructors
ISharedResource

“ISharedResource

Resource Information

keyName

Inherited Public Functions
Inherited Protected Functions
Inherited Protected Data

Chapter 86. ISharedSemaphoreHandle
Derivation
Inherited By
Header File
Members

Public Functions

Constructors

ISharedSemaphoreHandle

Diagnostics
asDebuglnfo
asString
asUnsigned

Operators

operator Value

Nested Type Definitions

Contents XXXiX

Value 528
Chapter 87. IStandardNotifier 529
Derivation 529
Inherited By 529
Header File 529
Members 529
Public Functions 529
Constructors 529
IStandardNotifier 530
operator = 530
“IStandardNotifier 530
Notification Members 530
disableNotification 530
enableNotification 530
isEnabledForNotification 531
Observer Notification 531
notifyObservers, 531
Inherited Public Functions 531
Protected Functions 531
Observer Addition and Removal 531
addObserver, 532
observerList 532
removeAllObservers 532
removeObserver 532
Observer Notification 532
notifyObservers, 532
Inherited Protected Functions 533
Public Data 533
Notification Event Descriptions 533
deleteld 533
Inherited Protected Data 533
Chapter 88. IThread 535
Derivation 535
Inherited By 535
Header File 535
Members 535
Public Functions 537
Constructors 537
IThread 537
“IThread 539
Diagnostics 539
asDebuginfo 539
asString 540
Graphical User Interface (GUI) Support 540
autolnitGUI, 540
defaultAutolnitGUI 540
setAutolnitGUI 540
setDefaultAutolnitGUI 541
stopProcessingMsgs 541
Implementation 541
dialogControls 541

Xl 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

relatedHandlesList 541

setRelatedHandlesList 541
setWindowlList, 542
windowlList 542
Message Queue 542
defaultQueueSize 542
messageQuUEeUE 542
QUEUESIZE 543
setDefaultQueueSize 543
setQueuesSize 543
Stack Size 544
defaultStackSize 544
setDefaultStackSize 544
setStackSize, 545
stackSize, 545
Starting and Stopping Threads 546
FESUME e 546
start . .. 546

SIOP . . e 548
SUSpeENd L 548
Thread Information 548
CUMTENt e 548
currentHandle 549
currentld L 549
handle 549

d 549
isStarted 549
setVariable, 549
variable 550
Thread Priority 550
adjustPriority 550
priorityClass 550
priorityLevel 551
setPriority 551
Inherited Public Functions 551
Protected Functions 552
Constructors 552
operator = 552
Implementation 552
newStartedThread 552
startedThread 552
Inherited Protected Data 552
Nested Classes 552
Nested Type Definitions 553
(void *) . . 553
(unsignedlong) 553
Chapter 89. IThread::Cursor 555
Derivation 555
Inherited By 555
Header File 555
Members 555
Public Functions 555
Constructors 555

contents Xl

CUISOr . . . 556

TCUISOr . . . L 556
Thread Iteration 556
invalidate 556
isValid 556
setToFirst 556
setTONext 556
threadld 556
Inherited Public Functions 557
Inherited Protected Data 557
Chapter 90. IThreadFn 559
Derivation 559
Inherited By 559
Header File 559
Members 559
Public Functions 559
Constructors 559
IThreadFn 559
“IThreadFn 560

Run Function 560
FTUN 560
Inherited Public Functions 560
Inherited Protected Data 560
Chapter 91. IThreadHandle 561
Derivation 561
Inherited By 561
Header File 561
Members 561
Public Functions 561
Constructors 561
IThreadHandle 561
Diagnostics 561
asDebuginfo 562
asString 562
asUnsigned 562
Public Data 562
Thread Handle Specifics 562
noHandle 562
Nested Type Definitions 562
Value, 562
Chapter 92. IThreadld 563
Derivation 563
Inherited By 563
Header File 563
Members 563
Public Functions 563
Constructors 563
IThreadld 563
Diagnostics 563
asDebuginfo 564
asString 564

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

asUnsigned 564

isvValid 564
Operators 564
operator = 564
operator pthread_t 564
Chapter 93. IThreadMemberFn 565
Derivation 565
Inherited By 565
Header File 565
Members 565
Public Functions 565
Constructors 565
IThreadMemberFn 566
“IThreadMemberFn 566

Run Function 566
FUN L e 566
Inherited Public Functions 566
Inherited Protected Data 567
Chapter 94. ITime Class 569
Derivation 569
Header File 569
Constructors 569
Public Members 570
asCTIME 570
asSeconds L, 570
asString 570
hours 570
MINULES 570

NOW o 570
operatorl= 571
operator+ 571
operator+= 571
operator- 571
operator-= 571
operator< 571
operator<< 571
operator<= 571
operator== e 571
operator> 571
Operator>= 572
SECONdS, 572
Inherited Public Members 572
Protected Members 572
initialize 572
Chapter 95. ITimeStamp 573
Derivation 573
Inherited By 573
Header File 573
Members 573
Public Functions 573
Comparisons 573

contents Xliii

operator != . . . L 574

operator < . .. 574
operator <= 574
operator == 574
operator > . .. L 574
operator >= 574
Constructors 575
ITimeStamp 575
Current Date and Time 575
currentTimeStamp L 575
Diagnostics 576
asString 576
Manipulations 576
operator + . .. L 576
operator += . . . L e 576
operator - 576
Operator -= 577
Queries . . . 577
asSeconds L, 577
Type Conversions 577
operator IDate 577
operator ITime 577
Public Data 577
Constants 578
secondsinDay 578
Chapter 96. ITrace Class 579
Derivation 579
Header File 579
Constructors 580
Public Members 581
disableTraceo, 581
disableWriteLineNumber 581
disableWritePrefix 581
enableTrace, 581
enableWriteLineNumber 581
enableWritePrefix 581
isTraceEnabled 581
isWriteLineNumberEnabled, . 581
isWritePrefixEnabled 582
traceDestination 582
WITE 582
writeToQUEeUE 582
writeToStandardError 582
writeToStandardOutput 582
Inherited Public Members 582
Protected Members 583
threadld 583
writeFormattedString 583
writeString 583
Enumerations 583
Destination 583

Xliv 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Part 8. Appendixes, Glossary, Bibliography and Index 585

Appendix A. Header Files for Collection Class Library Coding Examples 587
animal.h e 587
circle.h . . 588
curve.h . 589
demoelem.h 591
dsur.h . 592
graph.h . . . 594
line.h . . . 595
parcel.h 596
planeth 598
toyword.h 599
transelm.h 600
trmapops.h . . . 601
xebc2asc.h 602
Appendix B. OS/390 C/C ++ Class Library Runtime Messages 603

Messages for I/O Stream and Complex Mathematics Class Libraries 603

Messages for Application Support Class Library 603

Messages for Collection Class Library 605
Glossary 609
Bibliography 639
OS/390, 639
VS COBOLIIRelease 4 639
COBOL FORMVS & VM Release 2 639
COBOL for OS/390 & VM Version 2 Release 1 639
PL/I for MVS & VM Release 1 Modification1 639
OS PL/IVersion 2 Release 3 640
VS FORTRAN Version 2 Release 6 640
CICS/ESA Version 4 Release 1, 640
CICS Transaction Server for OS/390 Release 2 640
DB2 Version 3 Release 1 640
DB2 Version 4 Release 1 640
DB2 Version 5 Release 1 640
IMS/ESA Version 4 Release 1 640
IMS/ESA Version5Release 1 640
IMS/ESA Version 6 Release 1 641
QMF Version 3 Release 2 641
VSAM . e 641
Index 643

Contents XIv

XIVi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM'’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build any
dependencies on these interfaces, as IBM can change or remove interfaces at any
time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites. IBM
accepts no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:

© Copyright IBM Corp. 1996, 1998 xIvii

System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open

Company Ltd, UK.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks

of International Business Machines Corporation in the United States or other

countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400
BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN 0s/2 0S/390
0S/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application VisualAge
Architecture
VM/ESA VSE/ESA VTAM
3090 3890 400

xlviii 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices XIlix

| 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Who Should Use This Book

About This Book

This book provides reference information for the IBM Open Class Library, the
comprehensive library of C++ classes that are provided with OS/390 C/C++. IBM
Open Class Library consists of the following groups of classes, described
individually as “class libraries” in this book:

e The Complex Mathematics Class Library
e The I/O Stream Class Library

e The Collection Class Library

e The Application Support Class Library

The book is divided into parts, with one part for each of the class libraries listed
above.

Who Should Use This Book

This book was written for an audience of skilled C++ programmers, who understand
the concept of classes. For individual class libraries you may also need to be
familiar with using C++ templates. You should use this book if you want to do any
of the following in your C++ programs:

¢ Manipulate complex numbers (numbers with both a real and an imaginary part)

e Perform input and output to console or files using a typesafe, object-oriented
programming approach

e Implement commonly used abstract data types, including sets, maps,
sequences, trees, stacks, queues, and sorted or keyed collections

e Manipulate strings with greater ease and flexibility than the standard C++
method of using character pointers and the string functions of the C string.h
library

¢ Use date and time information and apply member functions to date and time
objects

© Copyright IBM Corp. 1996, 1998 li

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1 (Page 1 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book
0S/390 C/C++ Programming Guide, Guidance information for:
SC09-2362

e C/C++ input and output

¢ Debugging OS/390 C programs that use input/output

¢ Using linkage specifications in C++

e Combining C and assembler

¢ Creating and using DLLs

¢ Using threads in an OS/390 UNIX® application

e Reentrancy

¢ Using the decimal data type in C

¢ Handling exceptions, error conditions, and signals

e Optimizing code

e Optimizing your C/C++ code with Interprocedural Analysis

¢ Network communications under OS/390 OpenEdition

¢ Interprocess communications using OS/390 UNIX services

e Structuring a program that uses C++ templates

¢ Using environment variables

¢ Using System Programming C facilities

¢ Library functions for the System Programming C facilities

e Using runtime user exits

¢ Using the OS/390 C multitasking facility

e Using other IBM products with OS/390 C/C++ (CICS*, CSP,
DWS, DB2*, GDDM*, IMS*, ISPF, QMF*)

e Direct-to-SOM support under OS/390 C/C++

¢ Internationalization: locales and character sets, code set
conversion utilities, mapping variant characters

e POSIX character set

e Code point mappings

e Locales supplied with OS/390 C/C++

e Charmap files supplied with OS/390 C/C++

e Examples of charmap and locale definition source files

e Converting code from code character set IBM-1047

¢ Using built-in functions

e Programming considerations for 0S/390 UNIX C/C++

0S5/390 C/C++ User's Guide, Guidance information for:

SC09-2361 « 0S/390 C/C++ examples

e Compiler options

¢ Binder options and control statements

¢ Specifying OS/390 Language Environment runtime options

e Compiling, IPA Linking, binding, and running OS/390 C/C++
programs

e Using precompiled headers

e Utilities (Object Library, DLL Rename, CXXFILT, DSECT
Conversion, Code Set and Locale, ar and make, BPXBATCH)

¢ Diagnosing problems

e Cataloged procedures and REXX EXECs supplied by IBM

e Error messages and return codes

lii 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Table 1 (Page 2 of 3). OS/390 C/C++ Publications

Book Title and Number

Key Sections/Chapters in the Book

0S/390 C/C++ Language Reference,
SC09-2360

Reference information for:

e The C and C++ Languages

e Lexical elements of OS/390 C and OS/390 C++

¢ Declarations, expressions and operators

¢ Implicit type conversions

¢ Functions and statements

¢ Preprocessor directives

e C++ classes, class members, and friends

e C++ overloading, special member functions, and inheritance
e C++ templates and exception handling

¢ 0S/390 C and 0OS/390 C++ compatibility

0S/390 C/C++ Run-Time Library Reference,
SC28-1663

Reference information for:

e C header files
e C Library functions

0S/390 C Curses,
SC28-1907

Reference information for:

e Curses concepts

e Key data types

e General rules for characters, renditions, and window properties
¢ General rules of operations and operating modes

e Use of macros

¢ Restrictions on block-mode terminals

¢ Curses functional interface

e Contents of headers

¢ The terminfo database

0S/390 C/C++ Compiler and Run-Time
Migration Guide,
SC09-2359

Guidance and reference information for:

e Common migration questions

¢ Application executable program compatibility
e Source program compatibility

¢ Input and output operations compatibility

e Class library migration considerations

e Changes between releases of 0S/390

e C/370* V1 to V2 compiler changes

e Other migration considerations

0S/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:

e Character set, trigraphs, digraphs, and keywords
e Escape sequences, storage classes

e Predefined and derived types, type qualifiers

e Operator precedence, redirection symbols

« fprintf format, type characters, and flag characters
e fscanf format and type characters

e __amrc structure

e Hardware exceptions and signals

e Compiler return codes

e Compiler options

e #pragma directives

e Library functions

e Utilities

About This Book liii

Table 1 (Page 3 of 3). OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book
0S/390 C/C++ IBM Open Class Library Guidance information for:
User’s Guide,

¢ Using the Complex Mathematics Class Library: Review of
complex numbers, header files, constructing complex objects,
mathematical operators for complex, friend functions for
complex, handling complex mathematical errors

¢ Using the I/O Stream Class Library:
Introduction, getting started, advanced topics, and manipulators

¢ Using the Collection Class Library:
Overview, instantiating and using, Element and Key functions,
tailoring collection implementation, polymorphic use of
collections, support for notifications, exception handling, tutorials,
problem solving, compatibility with previous releases, thread
safety

¢ Using the Application Support Class Library:
Introduction, String classes, Exception and Trace classes, Date
and Time classes, controlling threads and protecting data, the
IBM Open Class* notification framework, Binary Coded Decimal
classes

SC09-2363

0S/390 C/C++ IBM Open Class Library Reference information for:
Reference,

SC09-2364 ¢ Complex Mathematics Class Library

¢ 1/O Stream Class Library
Collection Class Library
e Application Support Class Library

0S/390 C/C++ SOM-Enabled Class Library Guidance and reference information for:

User's Guide and Reference, « C++ SOM (RRBC-enabled) versions of Collection and Application

SC09-2366 Support Class Libraries
e Cross-language SOM version of the Collection Class Library
Debug Tool User’'s Guide and Reference, Guidance and reference information for:
SC09-2137 .
¢ Preparing to debug programs
¢ Debugging programs
e Using Debug Tool in different environments
¢ Language-specific information
e Debug Tool reference
APAR and BOOKS files Partitioned data set CBC.SCBCDOC on the product tape contains
(Shipped with Program materials) the members, APAR and BOOKS, which provide additional
information for using the IBM OS/390 C/C++ licensed program,
including:

¢ |solating reportable problems

¢ Keywords

e Preparing an Authorized Program Analysis Report (APAR)
¢ Problem identification worksheet

¢ Maintenance on OS/390

e Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to 0S/390 Language
Environment Writing Interlanguage Applications, SC28-1943.

liv 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

The following table lists the OS/390 C/C++ and related publications that you are
most likely to need. Publications are grouped according to the tasks they describe.

Table 2 (Page 1 of 4). Publications by Task

Tasks

Books

Planning, preparing, and migrating to OS/390 C/C++

0S/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

0S/390 Language Environment Concepts Guide,
GC28-1945

0S/390 Language Environment Customization,
SC28-1941

0S/390 Planning for Installation, GC28-1726
0S/390 Task Atlas, available on the OS/390 Library
page on the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Installing

0S/390 Program Directory
0S/390 Planning for Installation, GC28-1726

0S/390 Language Environment Customization,
SC28-1941

Coding programs

0S/390 C/C++ Run-Time Library Reference, SC28-1663
0S/390 C/C++ Language Reference, SC09-2360
0S/390 C/C++ Reference Summary, SX09-1313

0S/390 C/C++ Programming Guide, SC09-2362

0S/390 Language Environment Concepts Guide,
GC28-1945

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Programming
Reference, SC28-1940

0S/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

0S/390 C/C++ IBM Open Class Library Reference,
SC09-2364

0S/390 C/C++ SOM-Enabled Class Library User’s
Guide and Reference, SC09-2366

About This Book v

Table 2 (Page 2 of 4). Publications by Task

Tasks

Books

Coding and binding programs with interlanguage calls

0S/390 C/C++ Programming Guide, SC09-2362
0S/390 C/C++ Language Reference, SC09-2360

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Writing Interlanguage
Applications, SC28-1943

DFSMS/MVS Program Management, SC28-1943

Compiling, binding, and running programs

0S5/390 C/C++ User’s Guide, SC09-2361

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

DFSMS/MVS Program Management, SC26-4916
0S/390 Messages Database, available from the OS/390

Library page in the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Compiling and binding applications in the OS/390
OpenEdition environment

0S5/390 C/C++ User’s Guide, SC09-2361

0S/390 UNIX System Services User's Guide,
SC28-1891

0S/390 UNIX System Services Command Reference,
SC28-1892

DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

0S/390 SOMobjects Programmer's Guide, GC28-1859
0S/390 C/C++ Programming Guide, SC09-2362

0S/390 C/C++ User’s Guide, SC09-2361

Ivi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Table 2 (Page 3 of 4). Publications by Task

Tasks

Books

Debugging programs

README file

Debug Tool User’'s Guide and Reference, SC09-2137
0S/390 C/C++ User’'s Guide, SC09-2361

0S/390 C/C++ Programming Guide, SC09-2362

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

0S/390 UNIX System Services Messages and Codes,
SC28-1908

0S/390 UNIX System Services User's Guide,
SC28-1891

0S/390 UNIX System Services Command Reference,
SC28-1892

0S/390 UNIX System Services Programming Tools,
SC28-1904

Using shells and utilities in the OS/390 OpenEdition
environment

0S/390 C/C++ User’s Guide, SC09-2361

0S/390 UNIX System Services Command Reference,
SC28-1892

0S/390 UNIX System Services Messages and Codes,
SC28-1908

Using sockets library functions in the OS/390
OpenEdition environment

0S/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390

0S/390 UNIX System Services Porting Guide

This guide contains useful information about supported
header files and C functions, sockets in an OS/390 UNIX
environment, process management, compiler
optimization tips, and suggestions for improving the
application’s performance after it has been ported. The
Porting Guide is available as a PDF file which you can
download, or as web pages which you can browse, at
the following URL:
http://www.s390.1ibm.com/unix/bpxalpor.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

0S/390 C/C++ User’s Guide, SC09-2361

CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Quick reference

0S/390 C/C++ Reference Summary, SX09-1313

About This Book [Vii

Table 2 (Page 4 of 4). Publications by Task

Tasks Books

Multimedia Tutorial For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs in
the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the 0S/390 C/C++ Programming Guide.

Hardcopy Books

You can purchase OS/390 C/C++ books one at a time, or in a set. The following
0S/390 C/C++ books are available in hardcopy:

e 0S/390 C/C++ Run-Time Library Reference, SC28-1663
e 0S5/390 C/C++ User’s Guide, SC09-2361
e (0S5/390 C/C++ Programming Guide, SC09-2362
e 0S/390 C/C++ Reference Summary, SX09-1313
e 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
e (0S5/390 C Curses, SC28-1907
e (0S5/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
e Debug Tool User’s Guide and Reference, SC09-2137
These books can be purchased singly or as part of a set. The 0S5/390 C/C++

Compiler and Run-Time Migration Guide, SC09-2359 is provided at no charge.
The remaining books are included in feature code 8009.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on a
tape accompanying the OS/390 product, and also on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062,
5695-046) licensed program must be available on your operating system.
BookManager Read provides access to online information as an alternative to hard
copy documents. You can read, search, make notes, and select sections of text to
print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

Iviii 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

With BookManager Read installed on your system, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web, through "The Library" link
on the OS/390 home page. The URL for this page is:

http://www.s390.1ibm.com/0s390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:

e (0S5/390 C/C++ Language Reference, SC09-2360

e 0S/390 C/C++ User’s Guide, SC09-2361

e (0S5/390 C/C++ Programming Guide, SC09-2362

e (0S/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

e (0S5/390 C/C++ IBM Open Class Library Reference, SC09-2364

e (0S5/390 C/C++ SOM-Enabled Class Library User’'s Guide and Reference,
SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data ses
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
X refers to a publication:

* R and X refer to the 0OS/390 C/C++ Language Reference, SC09-2360

e G refers to the OS/390 C/C++ Programming Guide, SC09-2362

e U refers to the 0OS/390 C/C++ User’s Guide, SC09-2361

* A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

Examples labelled as CBCxyyy appear in the 0S/390 C/C++ Language Reference,
the OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide.
Examples labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class
Library User’s Guide.

An exception applies to the example names for the Collection Class Library, which
do not follow a naming convention. These examples are in this book and in the
0S/390 C/C++ SOM-Enabled Class Library User's Guide and Reference.

0S/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web. The
URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c390/
This page contains late-breaking information about the OS/390 C/C++ product,

including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,

About This Book liX

such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The 0OS/390 C/C++ home page also
contains information on active Beta programs, code samples that you can
download, the C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps

subscribers up to date on the latest product releases, provides coding hints and
tips, questions and answers, and news about C/370 products and IBM OS/390

C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, in one of these ways:

e Send a message electronically to the following network ID :

— Internet: inetc370@vnet.ibm.com
— IBMMAIL: ibmmail(caibmrxz)

e Mail your request to:

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR

895 Don Mills Road

NORTH YORK ONTARIO CANADA M3C 1W3

IX 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

About IBM OS/390 C/C ++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the 0OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:

e A C compiler (referred to as the OS/390 C compiler)

e A C++ compiler (referred to as the OS/390 C++ compiler)

e A set of C++ class libraries

e Application Support Class and Collection Class Library source
¢ A mainframe interactive Debug Tool (optional)

* A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (0S/2*), IBM Operating System/400* Version 3 (0S/400*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, 0S/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6
0S/390 C/C++ has made the following changes for this release:

* Added support for the Institute of Electrical and Electronics Engineers (IEEE)
binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++ support,
see the description of the FLOAT option in the OS/390 C/C++ User’s Guide. In
addition, two related sub-options have been introduced, ARCH(3) and TUNE(3).
The two sub-options support the new G5 processor architecture, and IEEE
binary floating-point data. Refer to the ARCHITECTURE and TUNE compiler options
in the OS/390 C/C++ User’s Guide for details.

Complete IEEE binary floating-point support for OS/390 and its elements
requires that you apply small programming enhancements (SPEs) to OS/390
V2R6.0, and to specific releases of some software. These SPEs are delivered
as program temporary fixes (PTFs). Consult your System Programmer to
ensure that the SPE PTFs you require for IEEE binary floating-point support, as
documented in the OS/390 Planning for Installation publication, are applied to
your system. The OS/390 Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point support on
0S/390.

* Improved the performance of the Binary Coded Decimal (BCD) class library,
and its compatibility with the decimal data type in C, and other S/390
languages. For details, see Using the C++ Decimal Data Type in the OS/390
C/C++ Programming Guide.

e Added support for the Tong Tong integer data type. For more details, see the
sections on integer declarations in the OS/390 C/C++ Language Reference.
The run-time library, including functions such as printf() and scanf(), does
not support the Tong long data type at this time.

* Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful

© Copyright IBM Corp. 1996, 1998 Ixi

when porting code that contains #pragma pack directives or packed data from
other platforms. For more information on the PORT option, see the OS/390
C/C++ User’s Guide.

e Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive
templates in an application. For more information on the FASTTEMPINC option,
see the 0OS/390 C/C++ User’s Guide.

¢ Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

e The level of optimization you get when you specify the OPT(1), or OPT, compiler
option is the same as when you specify 0PT(2). For more information on the
OPTIMIZATION option see the OS/390 C/C++ User’s Guide.

e The OS/390 C++ class library header files are now distributed in the
hierarchical file system (HFS) in directory /usr/1pp/ioclib/include.

¢ As part of the name change of OpenEdition* to 0OS/390 UNIX System Services,
occurrences of OpenEdition have been changed to 0S/390 UNIX System
Services or its abbreviated name, OS/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel
text, and other code locations.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quckly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

Ixii

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
0S/390 C++ and 0OS/390 C, refer to the 0S/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Common Features of the OS/390 C and C ++ Compilers

The C or C++ compilers offer many features to help your work:
¢ Optimization support.

— Algorithms to take advantage of S/390 architecture to get better
optimization for speed and use of computer resources through the
OPTIMIZE and IPA compile-time options.

— The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

— Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

— The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

e DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to the
way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs.
When your program calls a DLL function, or references a DLL, IBM OS/390
C/C++ provides a load-on-reference DLL. Your application code explicitly
controls load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

e Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. 0S/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
0S/390 C++ compiler always ensures that C++ programs are reentrant.

e Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification,
System Interface Definitions, Issue 4 and Issue 4 Version 2. This allows
programmers to use locales to specify language/country characteristics for their
applications.

e The ability to call and be called by other languages such as assembiler,
COBOL, PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++
code with existing applications.

e Exploitation of 0S/390 and OS/390 UNIX technology.

About IBM 0S/390 C/C++ IXili

0OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

e When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

— A subset of the extended multibyte and wide character functions as defined
by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

— ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
— |EEE Portable Operating System Interface (POSIX) Part 2, P1003.2

— A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

— X/Open CAE Specification, System Interfaces and Headers, Issue 4
Version 2

— A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary
Floating-Point Arithmetic (ANSI), as applicable to the S/390 environment.

— X/Open CAE Specification, Network Services, Issue 4

e Year 2000 support.

0S/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

e The ability to write portable code that conforms to the following standards:
— All elements of the 1ISO standard ISO/IEC 9899:1990 (E)
— ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
— X/Open Specification Programming Language Issue 3, Common Usage C
— FIPS-160

e System programming capabilities, which allow you to use 0S/390 C in place of
assembler

e Additional optimization capabilities through the INLINE compile-time option

» Extensions of the standard definitions of the C language to provide
programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C ++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:

¢ An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems—
Programming Language C++ (X3J16/92-00091). The OS/390 C++ compiler also
conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

e System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that

IXiv 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through
the IDL compile-time option. This option instructed the compiler to
generate IDL. Mixed-language or distributed object applications used
IDL. If you need IDL for your applications, you should now code it
yourself instead of generating it through the IDL compile option.

C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:

The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

The CXXFILT Utility to map OS/390 C++ mangled names to the original source

The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

The DSECT Conversion Utility to convert descriptive assembler DSECTs into
0S/390 C/C++ data structures

The C/C++ Model Tool to provide online help for C/C++ #pragma directives and
runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

The I/O Stream Class Library

The I/0O Stream Class Library lets you perform input and output (I/O) operations
independent of physical I/O devices or data types that are used. You can code
sophisticated 1/O statements easily and clearly, and define input and output for
your own data types. You can improve the maintainability of programs that use
input and output by using the 1/0O Stream Class Library.

The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

About IBM OS/390 C/C++ IXV

e The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date,
and Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every
collection. Programmers can start programming by using a high level of
abstraction, and later replace an abstract data type with the appropriate
concrete implementation. Each abstract data type has a common interface for
all of its implementations. The Collection Class Library provides programmers
with a consistent set of building blocks from which they can derive application
objects. The library design exploits features of the C++ language such as
exception handling and template support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in addition
to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is

licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

Class Library Source
The Class Library Source consists of the following:

Application Support Class Library source code
Collection Class Library source code (C++ native and C++ SOM only)

Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

Class Library Language Environment message file source

Instructions for building the Class Library Language Environment message files

IXVi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

The Debug Tool

IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:

e Step mode

¢ Breakpoints

e Monitor

e Frequency analysis
e Dynamic patching

You can record the debug session in a log file, and replay the session. You can
also use the Debug Tool to help capture test cases for future program validation or
to further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

0S/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS & VM, Language Environment/370 and LE/370).

0S/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see Figure 1. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

FORTRAN
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

C/C++
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

e Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

About IBM 0S/390 C/C++ IXVii

e Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

¢ Runtime options that help in the execution, performance, and diagnosis of your
application.

e Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

e Access to language-specific library routines, such as the 0S/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:
e Faster rebinds when recompiling and rebinding a few of your source files

* Rebinding at the single compile unit level of granularity (except when you use
the IPA compile-time option)

¢ Input of object modules, load modules, and program objects
e Improved long name support:

— Long names do not get converted into prelinker generated names

— Long names appear in the binder maps, enabling full cross-referencing
— Variables do not disappear after prelink

— Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

0S/390 UNIX System Services (OS/390 UNIX)

Ixviii

0OS/390 UNIX provides capabilities under OS/390 to make it easier to implement or
port applications in an open, distributed environment. OS/390 UNIX Services are
available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

0OS/390 UNIX provides support for both existing OS/390 applications and new
0OS/390 UNIX applications:

C programming language support as defined by ISO/ANSI C
C++ programming language support

C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE
Specification: System Interfaces and Headers, Issue 4, Version 2, which
provides standard interfaces for better source code portability with other
conforming systems; and X/Open CAE Specification, Network Services, Issue
4, which defines the X/Open UNIX descriptions of sockets and X/Open
Transport Interface (XTI)

0OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

The OS/390 UNIX Shell and Utilities feature, which provides:
— A shell, based on the Korn Shell and compatible with the Bourne Shell

— Tools and utilities that conform to the X/Open Single UNIX Specification,
also known as X/Open Portability Guide (XPG) Version 4, Issue 2, and
provide OS/390 support. The following utilities are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from
a shell session

c89 Compiles, assembles, and binds OS/390 UNIX C
applications
gencat Merges the message text source files Messagefile (usually

*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based
on a description that is supplied by the programmer

make Helps you manage projects containing a set of
interdependent files, such as a program with many OS/390
C/C++ source and object files, keeping all such files up to
date with one another

yacc Allows you to write compilers and other programs that
parse input according to strict grammar rules

— Support for other utilities such as:

C++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source

data (the output from mkcatdefs) to gencat

About IBM 0S/390 C/C++ IXIX

dspcat Displays all or part of a message catalog
dspmsg Displays a selected message from a message catalog

e The OS/390 UNIX Debugger feature, which provides the dbx interactive
symbolic debugger for OS/390 UNIX applications

e 0S/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

e 0S/390 C/C++ I/O routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

e Application threads (with support for a subset of POSIX.4a)
e Support for 0S/390 C/C++ DLLs

0OS/390 UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1la (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
0OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the OS/390 UNIX environment can enhance your productivity. Refer
to the OS/390 UNIX System Services User's Guide for more information on the
Shell and Utilities.

0S/390 C/C++ Applications with OS/390 UNIX C/C ++ Functions

IXx

Most OS/390 UNIX C functions are available at all times. However, to use some
0S/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the 0S/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:
e Directly from the OS/390 UNIX Shell.

e From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

e Using the POSIX system() call.

e Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Input and Output

I/O Interfaces

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

The C/C++ runtime library supports the following 1/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method.
This method processes all input and output by
character.

Record 1/0

The library can also process your input and output by
record. A record is a set of data that is treated as a
unit. It can also process VSAM data sets by record.
Record I/O is an OS/390 C/C++ extension to the ANSI
standard.

TCP/IP Sockets I/O
0S/390 UNIX provides support for an enhanced version
of an industry-accepted protocol for client/server
communication that is known as sockets. A set of C
language functions provides support for OS/390 UNIX
sockets. OS/390 UNIX sockets correspond closely to
the sockets that are used by UNIX applications that use
the Berkeley Software Distribution (BSD) 4.3 standard
(also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking
Services, Issue 4, is supplied as an additional choice.
This interface is known as X/Open Sockets.

The OS/390 UNIX socket application program interface
(API) provides support for both UNIX domain sockets
and Internet domain sockets. UNIX domain sockets, or
local sockets, allow interprocess communication within
0S/390 independent of TCP/IP. Local sockets behave
like traditional UNIX sockets and allow processes to
communicate with one another on a single system. With
Internet sockets, application programs can
communicate with others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

About IBM 0S/390 C/C++ IXXi

File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
0S/390 C/C++ has native support for three types of
VSAM data organization:

¢ Key-sequenced data sets (KSDS). Use KSDS to
access a record through a key within the record. A
key is one or more consecutive characters that are
taken from a data record that identifies the record.

e Entry-sequenced data sets (ESDS). Use ESDS to
access data in the order it was created (or in the
reverse order).

¢ Relative-record data sets (RRDS). Use RRDS for
data in which each item has a particular number
(for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations
on these VSAM file types, see the 0S/390 C/C++
Programming Guide.

Hierarchical File System Files
When you are running under MVS, TSO (batch and
interactive), or IMS environments, OS/390 C/C++
recognizes a Hierarchical File System (HFS) file. The
name specified on the fopen() or freopen() call has to
conform to certain rules (described in the 0S/390
C/C++ Programming Guide). You can create regular
HFS files, special character HFS files, or FIFO HFS
files. You can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory.
For improved performance, you can direct input and
output to memory files rather than to devices. Since
memory files reside in main storage and only exist
while the program is executing, you primarily use them
as work files. You can access memory files across load
modules through calls to non-POSIX system() and C
fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on
a non-POSIX system() call using command line
redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace
expanded storage to free up some of your home
address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to
2 gigabytes of contiguous virtual storage space. A
program can use this storage as a buffer
(1 gigabyte = 230 hytes).

IXXii 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Additional 1/0 Features
IBM OS/390 C/C++ provides additional 1/0O support through the following features:

User error handling for serious I/O failures (SIGIOERR)

Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

Overlapped /O support under OS/390 (NCP, BUFNO)
Multibyte character I/O functions
Fixed-point (packed) decimal data type support in formatted 1/O functions

Support for multiple volume data sets that span more than one volume of
DASD or tape

Support for Generation Data Group 1/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services available
on your operating system. SP C offers a number of advantages:

You can develop applications that you can execute in a customized
environment rather than with OS/390 Language Environment services. Note
that if you do not use OS/390 Language Environment services, only some
built-in functions and a limited set of C/C++ runtime library functions are
available to you.

You can substitute the OS/390 C language in place of assembler language
when writing system exit routines, by using the interfaces that are provided by
SP C.

SP C lets you develop applications featuring a user-controlled environment, in
which an 0S/390 C environment is created once and used repeatedly for C
function execution from other languages.

You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross

About IBM 0S/390 C/C++ IXXiii

IXxiv

System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC)
to call OS/390 C programs that access CSP.

Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements
that are embedded in the program. The SQL translator (DB2 preprocessor)
translates the embedded SQL into host language statements that perform the
requested functions. The 0OS/390 C/C++ compilers compile the output of the
SQL translator. The DB2 program processes a request, and processing returns
to the application.

Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

Interactive System Productivity Facility (ISPF)

0S/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable,
message, and dialog services as well as other facilities that are used to write
interactive applications.

Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

— A windowing system that the user can tailor to display selected information

Support for presentation and keyboard interaction

Comprehensive graphics support

Fonts — including support for double-byte character set (DBCS)

Business image support

0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

— Saving and restoring graphics pictures
— Support for many types of display terminals, printers, and plotters
Query Management Facility (QMF)

0S/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as
data entry, query building, administration aids, and report analysis.

Additional Features of OS/390 C/C ++

Feature

Description

Multibyte Character
Support

0S/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support

Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs (), mbstowcs (), wesrtombs(), and mbsrtowcs(),
as well as the family of wide-character 1/0O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

0OS/390 C/C++ provides three S/370 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as Tong doubTe.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and Tong double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection

You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support

0S/390 C/C++ provides message text in either American English or Japanese. You
can dynamically switch between the two languages.

Locale Definition Support

0S/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set
(Code page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF)

Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.

About IBM OS/390 C/C++ IXXV

Feature Description

Packed Structures and 0S/390 C provides support for packed structures and unions. Structures and unions
Unions may be packed to reduce the storage requirements of a OS/390 C program.
Fixed-point (Packed) 0S/390 C supports fixed-point (packed) decimal as a native data type for use in
Decimal Data business applications. The packed data type is similar to the COBOL data type COMP-3

or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in
length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
0S/390, 0S/390 UNIX, and TSO. You can also use the system() function to call
EXECs on 0OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for 0S/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application f selected machine
architecture. TUNE(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

Suggested Reading

The following is a sample of some publications that are generally available. It is
not an exhaustive list. Other publications may be available in your locality.

The Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne
Stroustrup, Addison-Wesley Publishing Company.

The C++ Programming Language (Second Edition) by Bjarne Stroustrup,
Addison-Wesley Publishing Company.

C++ Primer (Second Edition) by Stanley B. Lippman, Addison-Wesley
Publishing Company.
These books contain explanations of data structures that may help you understand
the data structures in the Collection Classes:

Data Structures and Algorithms by Aho, Hopcroft, and Ullman, Addison-Wesley
Publishing Company.

The Art of Computer Programming, Vol. 3: Sorting and Searching, D.E. Knuth,
Addison-Wesley Publishing Company.

C++ Components and Algorithms by Scott Robert Ladd, M&T Publishing Inc.

A Systematic Catalogue of Reusable Abstract Data Types by Juergen Uhl and
Hans Albrecht Schmit, Springer Varlag.

IXXVIi 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Part 1. Complex Mathematics Library

Chapter 1. complex Class 3
Constants Defined in complex.ho 3
Constructors for complex 4
Mathematical Operators for complex 5
Input and Output Operators for complex 6
Mathematical Functions for complex 7
Trigonometric Functions for complex oL 8
Magnitude Functions for complex 8
Conversion Functions for complex 8
Chapter 2. c_exception Class 11
Constructor for c_exception 11
Data Members of c_exception 11
Errors Handled by the Complex Mathematics Library 12

© Copyright IBM Corp. 1996, 1998 1

2 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

complex Class

Chapter 1. complex Class

This chapter describes the member functions of the complex class, the class that
provides you with the facilities to manipulate complex numbers.

Derivation

complex does not derive from any class.
Header File

complex is declared in complex.h
Members

The following members are provided for complex:

Method Page Method Page
Constructors k] conj B
operator + E cos E
operator +=, -=, *=, /= cosh

operator != Bl exp d
operator * B imag B
operator - (negation) B] log d
operator - (subtraction) E] norm B]
operator / Bl polar B
operator >> E pow E
operator << real

operator == E] sin B]
abs El sinh B]
arg b sqrt d

Constants Defined in complex.h

The following table lists the mathematical constants that the Complex Mathematics
Library defines (if they have not been previously defined):

Table 3 (Page 1 of 2). Constants Defined in complex.h

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base of 2
M_LOG10E The logarithm of e to the base of 10
M_LN2 The natural logarithm of 2
M_LN10 The natural logarithm of 10

M_PI T

M_PI_2 nl2

M_PI_4 nl4

M_1 PI 1/x

M_2_PI 2/n

M_2_ SQRTPI 2 divided by the square root of ©t

© Copyright IBM Corp. 1996, 1998 3

complex Constructors

Table 3 (Page 2 of 2). Constants Defined in complex.h

Constant Name Description
M_SQRT2 The square root of 2
M_SQRT1 2 The square root of 1/ 2

Constructors for complex
There are two versions of the complex constructor:

complex();
complex(double r, double i=0.0);

If you declare a complex object without specifying any values for the real or
imaginary part of the complex value, the constructor that takes no arguments is
used and the complex value is initialized to (0, 0). For example, the following
declaration gives the object comp the value (0, 0):

complex comp;

If you give either one or two values in your declaration, the constructor that takes
two arguments is used. If you only give one value, the real part of the complex
object is initialized to that value, and the imaginary part is initialized to 0.

For example, the following declaration gives the object comp2 the value (3.14, 0):

complex comp2(3.14);

If you give two values in the declaration, the real part of the complex object is
initialized to the first value and the imaginary part is initialized to the second value.
For example, the following declaration gives the object comp3 the value (3.14, 6.44):

complex comp3(3.14, 6.44);

There is no explicit complex destructor.

Initializing complex Arrays
You can use the complex constructor to initialize arrays of complex numbers. If the
list of initial values is made up of complex values, each array element is initialized
to the corresponding value in the list of initial values. If the list of initial values is
not made up of complex values, the real parts of the array elements are initialized
to these initial values and the imaginary parts of the array elements are initialized to
0. In the following example, the elements of array b are initialized to the values in
the initial value list, but only the real parts of elements of array a are initialized to
the values in the initial value list.

#include <complex.h>
void main() {

complex a[3]
complex b[3]

{1.0, 2.0, 3.0};

{complex(1.0, 1.0), complex(2.0, 2.0),
complex(3.0, 3.0)};

cout << "Here is the first element of a: " << a[0] << endl;
cout << "Here is the first element of b: " << b[0] << endl;

}

4 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

complex Mathematical Operators

This example produces the following output:

Here is the first element of a: (1, 0)
Here is the first element of b: (1, 1)

Mathematical Operators for complex

Addition

Subtraction

Negation

Multiplication

Division

Equality

The complex operators described in this section have the same precedence as the
corresponding real operators.

friend complex operator+(complex x, complex y);

The addition operator returns the sum of x and y.

friend complex operator-(complex x, complex y);

The subtraction operator returns the difference between x and y.

friend complex operator-(complex x);

The negation operator returns (- a, - b) when its argument is (a, b).

friend complex operator*(complex x, complex y);

The multiplication operator returns the product of x and y.

friend complex operator/(complex x, complex y);

The division operator returns the quotient of x divided by y.

friend int operator==(complex x, complex y);

The equality operator “==" returns a nonzero value if x equals y. This operator
tests for equality by testing that the two real components are equal and that the two
imaginary components are equal.

Because both components are double values, the equality operator tests for an
exact match between the two sets of values. If you want an equality operator that
can test for an absolute difference within a certain tolerance between the two pairs
of corresponding components, you can use a function such as the isequal function
defined in [Equality and Inequality Operators Test for Absolute Equality] in the /1BM
Open Class Library User's Guide.

Chapter 1. complex Class 5

complex Input and Output

Inequality

friend int operator!=(complex x, complex y);

The inequality operator “! =" returns a nonzero value if x does not equal y. This
operator tests for inequality by testing that the two real components are not equal
and that the two imaginary components are not equal.

Because both components are double values, the inequality operator returns false
only when both the real and imaginary components of the two values are identical.
If you want an inequality operator that can test for an absolute difference within a
certain tolerance between the two pairs of corresponding components, you can use
a function such as the is_not_equal function defined in [Equality and Inequality

Operators Test for Absolute Equality’] in the IBM Open Class Library User's Guide.

Mathematical Assignment Operators

void operator+=(complex x)
void operator-=(complex x);
void operatorx=(complex x);
void operator/=(complex x)

.

t
s
b

The following list describes the functions of the mathematical assignment operators:

e x += y assigns the value of x + y to x.
e x -= y assigns the value of x - yto x.
e x *= y assigns the value of x * y to x.
e x /= y assigns the value of x / y to x.

Note: The assignment operators do not produce a value that can be used in an
expression. The following code, for example, produces a compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes a
// compile-time error
y += z; // correct method involves splitting
X =Y; // expression into separate statements

Input and Output Operators for complex

Input Operator

Output Operator

istream& operator>>(istream& is, complex& c);

The input (or extraction) operator >> takes complex value ¢ from the stream is in
the form (a,b). The parentheses and comma are mandatory delimiters for input
when the imaginary part of the complex number being read is nonzero. Otherwise,
they are optional. In both cases, white space is optional.

ostream& operator<<(ostream& os, complex c);

The output (or insertion) operator << writes complex value c to the stream os in
the form (a,b).

6 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

complex Mathematical Functions

Mathematical Functions for complex

exp

pow

sqrt

friend complex exp(complex x);

exp() returns the complex value equal to ex where x is the argument| Table 4 o
shows the values returned by the default error-handling procedure for

exp().

friend complex log(complex x);

Tog() returns the natural logarithm of the argument x.| Table 4 on page 13 shows
the values returned by the default error-handling procedure for Tog().

friend complex pow(double d, complex z);
friend complex pow(complex ¢, int i);

friend complex pow(complex c, double d);
friend complex pow(complex ¢, complex z);

pow() returns the complex value xv, where x is the first argument and y is the
second argument. pow() is overloaded four times. If dis a double value, iis an
integer value, and ¢ and z are complex values, then pow() can produce any of the
following results:

e (F
e d
e cd
e (Z

friend complex sqrt(complex x);

sqrt () returns the square root of its argument. If c and d are real values, then
every complex number (a,b), where:

e a=c2-qa?

e b=2cd

has two square roots:

e (ca)
e (-c-d)

sqrt() returns the square root that has a positive real part, that is, the square root
that is contained in the first or fourth quadrants of the complex plane.

Chapter 1. complex Class

7

complex Conversion Functions

Trigonometric Functions for complex

Cos

cosh

sin

sinh

friend complex cos(complex x);

cos () returns the cosine of x.

friend complex cosh(complex x);

cosh() returns the hyperbolic cosine of x.| Table 4 on page 13 shows the values
returned by the default error-handling procedure for cosh ().

friend complex sin(complex x);

sin() returns the sine of x.

friend complex sinh(complex x);

sinh() returns the hyperbolic sine of x| Table 4 on page 13 shows the values
returned by the default error-handling procedure for sinh().

Magnitude Functions for complex

abs

norm

friend double abs(complex x);

abs () returns the absolute value or magnitude of its argument. The absolute value
of a complex value (a,b) is the positive square root of a2+b2.

friend double norm(complex x);

norm() returns the square of the magnitude of its argument. If the argument x is
equal to the complex number (a,b), norm() returns the value a2+b2. norm() is
faster than abs(), but it is more likely to cause overflow errors.

Conversion Functions for complex

You can use the conversion functions in the Complex Mathematics Library to
convert between the polar and standard complex representations of a value and to
extract the real and imaginary parts of a complex value.

8 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

arg

con;j

polar

real

imag

complex Conversion Functions

friend double arg(complex x);

arg() returns the angle (in radians) of the polar representation of its argument. If
the argument x is equal to the complex number (a,b), the angle returned is the
angle in radians on the complex plane between the real axis and the vector (a,b).
The return value has a range of - to =. See Figure 5 in the IBM Open Class

Library User's Guide. for an illustration of the polar representation of complex
numbers.

friend complex conj(complex x);

conj () returns the complex value equal to (a,-b) if the input argument x is equal to
(a,b).

friend complex polar(double a, double b= 0);

polar() returns the standard complex representation of the complex number that
has a polar representation (a,b).

friend double real(const complex& x);

real () extracts the real part of the complex number x.

friend double imag(const complex& x);

imag() extracts the imaginary part of the complex number x.

Chapter 1. complex Class

9

complex Conversion Functions

10 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

c_exception Data Members

Chapter 2. c_exception Class

Use the c_exception class to handle errors that are created by the functions and
operations in the complex class.

Note: The c_exception class is not related to the C++ exception handling
mechanism that uses the try, catch, and throw statements.

Derivation

c_exception is not derived from any other class.
Header File

c_exception is declared in compTlex.h.
Members

The following members are provided for c_exception:

Member Page Member Page
Constructor name
argl retval
arg2 type

Constructor for c_exception

c_exception(char *n, const complex& al,
const complex& a2 = complex_zero);

The c_exception constructor creates a c_exception object with name member equal
to n, argl member equal to a1, and arg2 member equal to a2.

Data Members of c_exception

argl, arg2
complex argl;
complex arg2;
argl and arg2 are the arguments with which the function that caused the error was
called.
name

char *name;

name is a string that contains the name of the function where the error occurred.

© Copyright IBM Corp. 1996, 1998 11

Errors Handled by the Complex Library

retval

type

complex retval;

retval is the value that the default definition if the error handling function
complex_error() returns. You can make your own definition of complex_error()
return a different value.

int type;

type describes the type of error that has occurred. It can take the following values
that are defined in the complex.h header file:

e SING argument singularity
e OVERFLOW overflow range error
e UNDERFLOW underflow range error

Errors Handled by the Complex Mathematics Library

complex_error

friend int complex_error(c_exception& ce);

complex_error() is invoked by member functions of the Complex Mathematics
Library when errors are detected. The argument ce refers to the c_exception
object that contains information about the error. You can define your own
procedures for handling errors by defining a function called complex_error() with
return type int and a single parameter of type c_exceptiond.

Note: You can only override complex_error() if you are using the static version of
the 1/0O Stream Library

If you define your own complex_error() function and this function returns a nonzero
value, no error message will be generated and the external variable errno will not
be set. If this function returns zero, errno is given the value of one of the following
constants:

e ERANGE if the result is too large or too small
e EDOM if there is a domain error within a mathematical function

These constants are defined in errno.h.

If you define your own version of complex_error(), you must ensure that the name
of the header file that contains your version of complex_error() is included in your
source file when you compile your program.

Default Error-Handling Procedures

If you do not define your own complex_error(), the default error-handling
procedures will be invoked when an error occurs. The results for a given input
complex value (&, b) depend on the kind of error and the sign of the cosine and
sine of b. The following table shows the return value of the default error-handling
procedure and the value given to errno for each function with input equal to the
complex value (a, b).

12 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Notes:

Errors Handled by the Complex Library

The following symbols appear in this table:

1. NA - not applicable. The result of the error depends on the sign of the cosine
and sine of b (the imaginary part of the argument) unless “NA” appears in the
Cosine b or Sine b columns.

2. HUGE - the maximum double value. This value is defined in math.h.

Table 4. Results of the Default Error-Handling Procedures

Function Error Cosine b Sine b Return Value errno
cosh a too large nonnegative nonnegative (+HUGE , +HUGE) ERANGE
cosh a too large nonnegative negative (+HUGE, -HUGE) ERANGE
cosh a too small nonnegative nonnegative (+HUGE, -HUGE) ERANGE
cosh a too small nonnegative negative (+HUGE , +HUGE) ERANGE
cosh a too small negative nonnegative (-HUGE, -HUGE) ERANGE
cosh a too small negative negative (-HUGE, +HUGE) ERANGE
cosh b too large negative nonnegative (-HUGE, +HUGE) ERANGE
cosh b too large negative negative (-HUGE, -HUGE) ERANGE
cosh b too small NA NA (0,0) ERANGE
exp a too large positive positive (+HUGE, +HUGE) ERANGE
exp a too large positive nonpositive (+HUGE, -HUGE) ERANGE
exp a too large nonpositive positive (-HUGE, +HUGE) ERANGE
exp a too large nonpositive nonpositive (-HUGE, -HUGE) ERANGE
exp a too small NA NA (0,0) ERANGE
exp b too large NA NA 0,0) ERANGE
exp b too small NA NA (0,0) ERANGE
log a too large positive positive (+HUGE, 0) EDOM

(See note)
sinh a too large nonnegative nonnegative (+HUGE , +HUGE) ERANGE
sinh a too large nonnegative negative (+HUGE, -HUGE) ERANGE
sinh a too large negative nonnegative (-HUGE , +HUGE) ERANGE
sinh a too large negative negative (-HUGE, -HUGE) ERANGE
sinh a too small nonnegative nonnegative (-HUGE, +HUGE) ERANGE
sinh a too small nonnegative negative (-HUGE, -HUGE) ERANGE
sinh a too small negative nonnegative (+HUGE, +HUGE) ERANGE
sinh a too small negative negative (+HUGE , -HUGE) ERANGE
sinh b too large NA NA (0,0) ERANGE
sinh b too small NA NA (0,0) ERANGE
Note: A message is also produced when errno is set to EDOM.

Chapter 2. c_exception Class

13

Errors Handled by the Complex Library

14 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Part 2. I/O Stream Library

Chapter 3. filebuf Class 17
Public Members of filebufo 18
Chapter 4. fstream, ifstream, and ofstream Classes 23
Public Members of fstreambase L. 23
Public Members of fstream 24
Public Members of ifstream 26
Public Members of ofstream 28
Chapter 5. ios Class 31
Constructors and Assignment Operator forios 32
Format State Variables 32
Format State Flags 33
Public Members of ios for the Format State 36
Public Members of ios for User-Defined Format Flags 38
Public Members of ios for the Error State 39
Other Members of ios 41
Built-In Manipulators forios 42
Chapter 6. iostream and iostream_withassign Classes 43
Public Members of iostream and iostream_withassign 43
Chapter 7. istream and istream_withassign Classes 45
Constructors foristream 45
Input Prefix Function 45
Public Members of istream for Formatted Input 46
Public Members of istream for Unformatted Input 49
Public Members of istream for Positioning 51
Other Public Members of istream 51
Built-In Manipulators for istream 52
Public Members of istream_withassign 53
Chapter 8. Manipulators 55
Parameterized Manipulators for the Format State 55
Chapter 9. ostream and ostream_withassign Classes 59
Constructors for ostream 59
Output Prefix and Suffix Functions 60
Public Members of ostream for Formatted Output 60
Public Members of ostream for Unformatted Output 63
Public Members of ostream for Positioning 64
Other Public Members of ostream 64
Built-In Manipulators for ostream 64
Public Members of ostream_withassign 65
Chapter 10. stdiobuf and stdiostream Classes 67
Public Members of stdiobuf 67
Public Members of stdiostream 68

© Copyright IBM Corp. 1996, 1998 15

Chapter 11. streambuf Class
streambuf Public and Protected Interfaces
Public Members of the streambuf Public Interface
Protected Functions That Return Pointers
Protected Functions That Set Pointers
Other Nonvirtual Protected Member Functions
Protected Virtual Member Functions

Chapter 12. strstream, istrstream, and ostrstream Classes

Public Members of strstreambase
Public Members of strstream
Public Members of istrstream
Public Members of ostrstream

Chapter 13. strstreambuf Class
Public Members of strstreambuf

16 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

filebuf Class

Chapter 3. filebuf Class

Derivation

Header File

Members

This chapter describes the filebuf class, the class that specializes streambuf for
using files as the ultimate producer or the ultimate consumer.

In a filebuf object, characters are cleared out of the put area by doing write
operations to the file, and characters are put into the get area by doing read
operations from that file. The filebuf class supports seek operations on files that
allow seek operations. A filebuf object that is attached to a file descriptor is said
to be open.

The stream buffer is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf(). You can also create an unbuffered filebuf
object by calling the constructor or setbuf() with the appropriate arguments. If the
filebuf objec is unbuffered, a system call is made for each character that is read or
written.

The get and put pointers for a filebuf object behave as a single pointer. This
single pointer is referred to as the get/put pointer. The file that is attached to the
filebuf object also has a single pointer that indicates the current position where
information is being read or written. In this chapter, this pointer is called the file
get/put pointer.

streambuf
filebuf

filebuf is declared in fstream.h.

The following members are provided for filebuf:

Method Page Method Page
filebuf constructor @ is_open @
filebuf destructor L8] open 9]
attach 8] seekoff L9]
close [8] seekpos po]
detach 8] setbuf Z0]
fd 9] sync 2]
fp fL9]

For an example of using the filebuf class, see [Using filebuf Functions to Move
[Through a File”|in the IBM Open Class Library User's Guide.

© Copyright IBM Corp. 1996, 1998 17

filebuf Public Members

Public Members of filebuf

Note: The following descriptions assume that the functions are called as part of a
filebuf object called fb.

Constructors for filebuf

filebuf();
filebuf(int d);
filebuf(int d, charx p, int len);

The filebuf() constructor with no arguments constructs an initially closed filebuf
object.

The filebuf() constructor with one argument constructs a filebuf object that is
attached to file descriptor d.

The filebuf() constructor with three arguments constructs a filebuf object that is
attached to file descriptor d. The object is initialized to use the stream buffer
starting at the position pointed to by p with length equal to /en.

Destructor for filebuf

attach

detach

close

“filebuf();

The filebuf destructor calls fb.close().

filebuf* attach(int d);

attach() attaches fb to the file descriptor d. fb is the filebuf object returned by
attach(). If fbis already open or if d is not open, attach() returns NULL.
Otherwise, attach() returns a pointer to fb.

On 0S/390, if you have a file pointer already opened, use the following function to
do the attach instead of using the file descriptor.

filebufx attach(FILE *fp);

attach() attaches fb to the file pointer fp. If fbis already open , attach() returns
0. Otherwise, attach() returns a pointer to fb.

Note: This member is only supported under OS/390 C/C++.

int detach();

fb.detach() disconnects fb from the file without closing the file. If fbis not open,
detach() returns -1. Otherwise, detach() flushes any output that is waiting in fb to
be sent to the file, disconnects fb from the file, and returns the file descriptor.

filebuf* close();

close() does the following:

1. Flushes any output that is waiting in fb to be sent to the file
2. Disconnects fb from the file

18 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

fd

fp

iS_open

open

seekoff

filebuf Public Members

3. Closes the file that was attached to fb

If an error occurs, close() returns 0. Otherwise, close() returns a pointer to fb.
Even if an error occurs, close() performs the second and third steps listed above.

int fd();

fd() returns the file descriptor that is attached to fb. If fbis closed, fd() returns
EOF.

FILEx fp();

fp() returns the file pointer that is attached to fb. If fb is not opened, fp() returns
0.

Note: This member is only supported under OS/390 C/C++.

int is_open();

is_open() returns a nonzero value if fb is attached to a file descriptor. Otherwise,
is_open() returns zero.

filebuf* open(const char* fname, int omode, int prot=openprot);
filebuf* open(const charx fname, const charx fattr,
int omode, int prot=openprot)

open() opens the file with the name fname and attaches fb to it. If fname does not
already exist and omode does not equal ios::nocreate, open() tries to create it
with protection mode equal to prot. The default value of protis filebuf::openprot.
An error occurs if fb is already open. If an error occurs, open() returns 0.
Otherwise, open() returns a pointer to fb.

The second version of open() is specific to the OS/390 C/C++ implementation of
C++. You can use the fattr parameter to specify additional file attributes, such as
Trecl or recfm. All the parameters documented for the fopen() function in the
0S/390 C/C++ Run-Time Library Reference and OS/390 C/C++ Programming
Guide are supported, with the exception of type=record.

Note: The prot parameter is ignored on OS/390 C/C++.

streampos seekoff(streamoff so, seek dir sd, int omode);
seekoff () moves the file get/put pointer to the position specified by sd with the
offset so. sd can have the following values:

e ios::beg: the beginning of the file
e ios::cur: the current position of the file get/put pointer
e ios::end: the end of the file

Chapter 3. filebuf Class 19

filebuf Public Members

seekpos

setbuf

sync

seekoff() changes the position of the file get/put pointer to the position specified
by the value sd + so. The offset so can be either positive or negative. seekoff ()
ignores the value of omode.

If fb is attached to a file that does not support seeking, or if the value sd + so
specifies a position before the beginning of the file, seekoff() returns EOF and the
position of the file get/put pointer is undefined. Otherwise, seekoff() returns the
new position of the file get/put pointer.

You can use relative byte offsets when seeking from ios::cur or ios::end. You
can use relative byte offsets when seeking from ios::beg if either of the following
conditions are true:

e The file is not a variable record format file, and is opened for binary I/O

e The file is a variable record format file, and is opened for binary 1/0O with the
byteseek option. The byteseek option is enabled for a specific file if the
byteseek fopen() option is passed when the file is opened (see the
MVS-specific constructors and open() functions in this book, and fopen() in the
0S/390 C/C++ Run-Time Library Reference). The byteseek option can also be
enabled for all files if you set the _EDC_BYTESEEK environment variable (see the
0S/390 C/C++ Programming Guide).

When seeking from ios::beg in text files, encoded offsets are used. You can only
seek to an offset value returned by a previous call to seekoff(), and attempting to
calculate a new position based on an encoded offset value results in undefined
behaviour.

The filebuf class inherits the default definition of seekpos() from the streambuf
class. The default definition defines seekpos() as a call to seekoff(). Thus, the
following call to seekpos ():

seekpos (pos, mode);

is converted to a call to seekoff():

seekoff(streamoff(pos), ios::beg, mode);

streambuf* setbuf(char* pbegin, int len);

setbuf() sets up a stream buffer with length in bytes equal to /en, beginning at the
position pointed to by pbegin. setbuf() does the following:

 If pbeginis 0 or len is nonpositive, setbuf() makes fb unbuffered.

e If fbis open and a stream buffer has been allocated, no changes are made to
this stream buffer, and setbuf() returns NULL.

* If neither of these cases is true, setbuf() returns a pointer to fb.

int sync();

sync() attempts to synchronize the get/put pointer and the file get/put pointer.
sync() may cause bytes that are waiting in the stream buffer to be written to the
file, or it may reposition the file get/put pointer if characters that have been read
from the file are waiting in the stream buffer. If it is not possible to synchronize the

20 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

filebuf Public Members

get/put pointer and the file get/put pointer, sync() returns EQOF. If they can be
synchronized, sync() returns zero.

Chapter 3. filebuf Class 21

filebuf Public Members

22 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

fstreambase

Chapter 4. fstream, ifstream, and ofstream Classes

The fstream, ifstream, and ofstream classes specialize istream, ostream, and
iostream for use with files.

Derivation
ios
istream
ifstream
ostream
ofstream
istream and ostream
iostream
fstream
Header File
fstream, ifstream, and ofstream are declared in fstream.h.
Members
The following members are provided for fstream, ifstream, ofstream, and
fstreambase:
Method Page Method Page
fstreambase: ifstream:
attach p4] constructor B6]
close B4] open B7]
detach E rdbuf 2
setbuf 4 ofstream:
fstream: constructor B8]
constructor B4] open Bs]
open 5] rdouf po]
rdbuf Bs]

Public Members of fstreambase
Notes:

1. The fstreambase class is an internal class that provides common functions for
the classes that are derived from it. Do not use the fstreambase class directly.
The following descriptions are provided so that you can use the functions as
part of fstream, ifstream, and ofstream objects.

2. The following descriptions assume that the functions are called as part of an
fstream, ifstream, or ofstream object called 7b.

© Copyright IBM Corp. 1996, 1998 23

fstream

attach

close

detach

setbuf

void attach(int filedesc);

attach() attaches fb to the file descriptor filedesc. If fbis already attached to a file
descriptor, an error occurs and ios::failbit is set in the format state of fb.

void attach(FILE *fp);

attach() attaches fb to the file pointer fp. If fbis already attached to a file pointer,
an error occurs and ios::failbit is set in the format state of 7b.

Note: This member is only supported under OS/390 C/C++.

void close();

close() closes the filebuf object, breaking the connection between fb and the file
descriptor. close() calls fb.rdbuf()->close(). If this call fails, the error state of fb
is not cleared.

int detach();

detach detaches the filebuf object by calling fb.rdbuf()->detach(), and returns
the value returned by fb.rdbuf()->detach().

void setbuf(char* pbegin, int len);

setbuf() sets up a stream buffer with length in bytes equal to /en beginning at the
position pointed to by pbegin. If pbegin is equal to 0 or len is nonpositive, b will be
unbuffered. If fbis open, or the call to fb.rdbuf()->setbuf() fails, setbuf() sets
ios::failbit in the object's state.

Public Members of fstream

Note: The following descriptions assume that the functions are called as part of an
fstream object called fs.

Constructors for fstream

fstream();

This version of the fstream constructor takes no arguments and constructs an
unopened fstream object.

fstream(int filedesc);

This version takes one argument and constructs an fstream object that is attached
to the file descriptor filedesc. |If filedesc is not open, ios::failbit is set in the
format state of fs.

fstream(const char* fname, int mode, int prot=filebuf::openprot);

This version constructs an fstream object and opens the file fname with open mode
equal to mode and protection mode equal to prot. The default value for the

24 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

open

fstream

argument protis filebuf::openprot. If the file cannot be opened, the error state
of the constructed fstream object is set.

fstream(int filedesc, char* bufpos, int len);

This version constructs an fstream object that is attached to the file descriptor
filedesc. If filedesc is not open, ios::failbit is set in the format state of fs. This
constructor also sets up an associated filebuf object with a stream buffer that has
length /en bytes and begins at the position pointed to by bufpos. If bufpos is equal
to O or lenis equal to O, the associated filebuf object is unbuffered.

fstream(const char* fname, const char* fattr,
int omode, int prot=filebuf::openprot);

This version is specific to the OS/390 C/C++ implementation of C++. You can use
the fattr parameter to specify additional file attributes, such as 1recl or recfm. All
the parameters documented for the fopen() function in the 0S/390 C/C++
Run-Time Library Reference and OS/390 C/C++ Programming Guide are supported,
with the exception of type=record.

Note: The prot attribute is ignored on OS/390 C/C++.

void open(const char* fname, int mode, int prot=filebuf::openprot);
void open(const charx fname, const charx fattr,
int omode, int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to fs. If fname does not
already exist, open() tries to create it with protection mode equal to prot, unless
ios::nocreate is set.

The second version of open() is specific to the OS/390 C/C++ implementation of
C++. You can use the fattr parameter to specify additional file attributes, such as
Trecl or recfm. All the parameters documented for the fopen() function in the
0S/390 C/C++ Run-Time Library Reference and OS/390 C/C++ Programming
Guide are supported, with the exception of type=record.

The default value for prot is filebuf::openprot. If fsis already attached to a file
or if the call to fs.rdbuf()->open() fails, ios::failbit is set in the error state for fs.

The members of the ios::open_mode enumeration are bits that can be ORed
together. The value of mode is the result of such an OR operation. This result is an
int value, and for this reason, mode has type int rather than open_mode.

The elements of the open_mode enumeration have the following meanings:

ios::app open() performs a seek to the end of the file. Data that is written
is appended to the end of the file. This value implies that the file
is open for output.

ios::ate open() performs a seek to the end of the file. Setting ios::ate
does not open the file for input or output. If you set ios::ate, you
should explicitly set ios::in, ios::out, or both.

ios::bin See ios::binary below.

Chapter 4. fstream, ifstream, and ofstream Classes 25

ifstream

ios::binary The file is opened in binary mode. In the default (text) mode,
carriage returns are discarded on input. (0xla) This means that a
carriage return without an accompanying line feed causes the
characters on either side of the carriage return to become
adjacent. On output, a line feed is expanded to a carriage return
and line feed. If you specify ios::binary, carriage returns are not
removed on input, and a line feed is not expanded to a carriage
return and line feed on output. ios::binary and ios::bin provide
identical functionality.

ios::in The file is opened for input. If the file that is being opened for
input does not exist, the open operation will fail. ios::noreplace
is ignored if ios::in is set.

ios::out The file is opened for output.

ios::trunc If the file already exists, its contents will be discarded. If you
specify ios::out and neither ios::ate nor ios::app, you are
implicitly specifying ios::trunc. If you set ios::trunc, you should
explicitly set ios::in, ios::out, or both.

ios::nocreate If the file does not exist, the call to open() fails.
ios::noreplace If the file already exists and ios::out is set, the call to open() fails.
If ios::out is not set, ios::noreplace is ignored.

rdbuf
filebuf* rdbuf();

rdbuf () returns a pointer to the filebuf object that is attached to fs.

Public Members of ifstream

For an example of using the ifstream class, see [Opening a File for Input and
Reading from the File’| in the IBM Open Class Library User's Guide.

Note: The following descriptions assume that the functions are called as part of an
ifstream object called ifs.

Constructors for ifstream
ifstream();

This version of the ifstream constructor takes no arguments and constructs an
unopened ifstream object.

ifstream(int filedesc);
This version takes one argument and constructs an ifstream object that is attached

to the file descriptor filedesc. |If filedesc is not open, ios::failbit is set in the
format state of ifs.

ifstream(const char* fname,
int mode=ios::in,
int prot=filebuf::openprot);

The third version constructs an ifstream object and opens the file fname with open
mode equal to mode and protection mode equal to prot. The default value for

26 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

open

rdbuf

ifstream

mode is ios::in, and the default value for protis filebuf::openprot. If the file
cannot be opened, the error state of the constructed ifstream object is set.

ifstream(int filedesc, char* bufpos, int len);

This version constructs an ifstream object that is attached to the file descriptor
filedesc. If filedesc is not open, ios::failbit is set in the format state of ifs. This
constructor also sets up an associated filebuf object with a stream buffer that has
length /en bytes and begins at the position pointed to by bufpos. If bufpos is equal
to O or lenis equal to O, the associated filebuf object is unbuffered.

ifstream(const char* fname, const char* fattr,
int omode=ios::in, int prot=filebuf::openprot);

This version is specific to the OS/390 C/C++ implementation of C++. You can use
the fattr parameter to specify additional file attributes, such as 1recl or recfm. All
the parameters documented for the fopen() function in the 0S/390 C/C++
Run-Time Library Reference and OS/390 C/C++ Programming Guide are supported,
with the exception of type=record.

Note: The prot attribute is ignored on OS/390 C/C++.

void open(const charx fname,
int mode=ios::in,
int prot=filebuf::openprot);
void open(const charx fname, const charx fattr,
int omode=ios::in, int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to ifs. If fname does not
already exist, open() tries to create it with protection mode equal to prot, unless
ios::nocreate is set in mode.

The second version of open() is specific to the 0OS/390 C/C++ implementation of
C++. You can use the fattr parameter to specify additional file attributes, such as
Trecl or recfm. All the parameters documented for the fopen() function in the
0S/390 C/C++ Run-Time Library Reference and OS/390 C/C++ Programming
Guide are supported, with the exception of type=record.

The default value for mode is ios::in. The default value for prot is
filebuf::openprot. If ifsis already attached to a file, or if the call to
ifs.rdbuf()->open() fails, ios::failbit is set in the error status for ifs.

The members of the ios::open_mode enumeration are bits that can be ORed
together. The value of mode is the result of such an OR operation. This result is an
int value, and for this reason mode has type int rather than type open_mode. See
[open” on page 25 [for a list of the possible values for mode.

Note: The prot attribute is ignored on OS/390 C/C++.

filebuf* rdbuf();

rdbuf () returns a pointer to the filebuf object that is attached to ifs.

Chapter 4. fstream, ifstream, and ofstream Classes 27

ofstream

Public Members of ofstream

For an example of using the ofstream class, see [|Opening a File for Output and|
Writing to the File'] in the IBM Open Class Library User's Guide.

Note: The following descriptions assume that the functions are called as part of an
ofstream object called ofs.

Constructors for ofstream

open

ofstream();

This version of the ofstream constructor takes no arguments and constructs an
unopened ofstream object.

ofstream(int filedesc);

This version takes one argument and constructs an ofstream object that is attached
to the file descriptor filedesc. |If filedesc is not open, ios::failbit is set in the
format state of ofs.

ofstream(const charx fname,
int mode=ios::out,
int prot=filebuf::openprot);

This version constructs an ofstream object and opens the file fname with open
mode equal to mode and protection mode equal to prot. The default value for
mode is ios::out, and the default value for protis filebuf::openprot. If the file
cannot be opened, the error state of the constructed ofstream object is set.

ofstream(int filedesc, charx bufpos, int len);

This version constructs an ofstream object that is attached to the file descriptor
filedesc. If filedesc is not open, ios::failbit is set in the format state of ofs. This
constructor also sets up an associated filebuf object with a stream buffer that has
length /en bytes and begins at the position pointed to by bufpos. If pis equal to O
or len is equal to 0, the associated filebuf object is unbuffered.

ofstream(const charx fname, const charx fattr,
int omode=ios::out, int prot=filebuf::openprot);

This version is specific to the OS/390 C/C++ implementation of C++. You can use
the fattr parameter to specify additional file attributes, such as 1recl or recfm. All
the parameters documented for the fopen() function in the 0S/390 C/C++
Run-Time Library Reference and OS/390 C/C++ Programming Guide are supported,
with the exception of type=record.

Note: The prot attribute is ignored on OS/390 C/C++.

void open(const charx fname, int mode, int prot=filebuf::openprot);
void open(const char* fname, const char* fattr,
int omode, int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to ofs. If fname does
not already exist, open() tries to create it with protection mode equal to prot, unless
ios::nocreate is set.

28 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

ofstream

The second version of open() is specific to the OS/390 C/C++ implementation of
C++. You can use the fattr parameter to specify additional file attributes, such as
Trecl or recfm. All the parameters documented for the fopen() function in the
0S/390 C/C++ Run-Time Library Reference and OS/390 C/C++ Programming
Guide are supported, with the exception of type=record.

The default value for mode is ios::out. The default value for the argument prot is
filebuf::openprot. If ofsis already attached to a file, or if the call to the function
ofs.rdbuf () ->open() fails, ios::failbit is set in the error state for ofs.

The members of the ios::open_mode enumeration are bits that can be ORed
together. The value of mode is the result of such an OR operation. This result is an
int value, and for this reason, mode has type int rather than open_mode. See
[open” on page 25|

Note: The prot attribute is ignored on OS/390 C/C++. for a list of the possible
values for mode.

rdbuf
filebuf* rdbuf();

rdbuf () returns a pointer to the filebuf object that is attached to ofs.

Chapter 4. fstream, ifstream, and ofstream Classes 29

ofstream

30 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Chapter 5. ios Class

Derivation

Header File

Members

The ios class maintains the error and format state information for the classes that
are derived from it. The derived classes support the movement of formatted and

unformatted data to and from the stream buffer. This chapter describes the

members of the ios class, and thus describes the operations that are common to

all the classes that are derived from ios.

ios

ios is declared in iostream.h.

The following members are provided for ios. /talicized members are flags or

variables used to maintain the format state information for streams.

oct manipulator
operator void*
operator=

Method Page Method Page
ios constructor precision B6]
bad B9] pword
bitalloc B8] rdbuf B}
clear B9] rdstate ko]
dec B4] right B4]
dec manipulator BZ] scientific B4]
endl manipulator Bz setf B7]
ends manipulator B2] showbase B4]
eof B9] showpoint B4]
fail (0] showpos B4]
fill B6] skip B7]
fixed B5] skipws B3]
flags B8] stdio B5]
flush manipulator Bz sync_with_stdio BT
good (0] tie B
hex B4] unitbuf B5]
hex manipulator EZ] unsetf B7]
internal B4l uppercase B5
iword width
left B3] ws manipulator B2]
oct B4] x_fill BZ]
[2] B2]
kol B3]
B2] B9

© Copyright IBM Corp. 1996, 1998

X_precision
X_width
xalloc

31

Format State Variables

Constructors and Assignment Operator for ios

public:

jos(streambuf* sb);
protected:

ios();

init(streambuf* ish);
private:

jos(ios& ioa);

void operator=(ios& iob);

There are three versions of the ios constructor. The version that is declared
public takes a single argument that is a pointer to the streambuf object that
becomes associated with the constructed ios object. If this pointer is equal to 0,
the result is undefined.

The version of the ios constructor that is declared protected takes no arguments.
This version is needed because ios is used as a virtual base class for iostream,
and therefore the ios class must have a constructor that takes no arguments. If
you use this constructor in a derived class, you must use the init() function to
associate the constructed ios object with the streambuf object pointed to by the
argument isb.

Copying of ios objects is not well defined, and for this reason, both the assignment
operator and the copy constructor are declared private. Assignment between
streams is supported by the istream _withassign, ostream withassign, and
iostream_withassign classes. See [Assignment Operator for istream_withassign|
bn page 53 and fAssignment Operator for ostream withassign” on page 64 for
more details. Except for the ... withassign classes, none of the predefined
classes derived from ios has a copy constructor or an assignment operator.
Unless you define your own copy constructor or assignment operator for a class
that you derive from ios, your class will have neither a copy constructor nor an
assignment operator.

Format State Variables

x_fill

X_precision

The format state is a collection of format flags and format variables that control the
details of formatting for input and output operations. This section describes the
format variables.

char x_fill;

x_fi11 is the character that is used to pad values that do not require the width of
an entire field for their representation. Its default value is a space character.

short x_precision;

x_precision is the number of significant digits in the representation of floating-point
values. Its default value is 6.

32 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Format State Flags

X_width
short x_width;

x_width is the minimum width of a field. Its default value is O.

Format State Flags

The following list shows the formatting features and the format flags that control
them:

e White space and padding: ios::skipws, ios::left, ios::right, ios::internal
e Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase

 Integral formatting: ios::showpos

¢ Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint

e Uppercase and lowercase: ios::uppercase

e Buffer flushing: ios::stdio, ios::unitbuf

[Mutually Exclusive Format Flags” on page 39 describes the flags that produce
unpredictable results if they are set at the same time.

White Space and Padding

The following format state flags control white space and padding characters.
skipws and right are set by default.

skipws
If ios::skipws is set, white space will be skipped on input. If it is not set, white
space is not skipped. If ios::skipws is not set, the arithmetic extractors will signal
an error if you attempt to read an integer or floating-point value that is preceded by
white space. ios::failbit is set, and extraction ceases until it is cleared. This is
done to avoid looping problems. If the following program is run with an input file
that contains integer values separated by spaces, ios::failbit is set after the first
integer value is read, and the program halts. If the program did not call fail() at
the beginning of the while loop to test if ios::failbit is set, it would loop
indefinitely.
#include <fstream.h>
void main()
{ fstream f("spadina.dat", ios::in);
f.unsetf(ios::skipws);
int i;
while (!f.eof() && !f.fail()) {
f > i
cout << i3
}
}
left

If ios::1eft is set, the value is left-justified. Fill characters are added after the
value.

Chapter 5. ios Class 33

Format State Flags

right

internal

If ios::right is set, the value is right-justified. Fill characters are added before the
value.

If ios::internal is set, the fill characters are added after any leading sign or base
notation, but before the value itself.

Base Conversion

dec

oct

hex

showbase

The manipulators ios::dec, jos::oct, and ios::hex (see [Built-In Manipulators foi
jos” on page 42 for more details) have the same effect as the flags ios: :dec,
jos::oct, and ios::hex, respectively. dec is set by default.

If ios::dec is set, the conversion base is 10.

If ios::oct is set, the conversion base is 8.

If ios::hex is set, the conversion base is 16.

If ios::showbase is set, the operation that inserts values converts them to an
external form that can be read according to the C++ lexical conventions for integral
constants. By default, ios::showbase is unset.

Integral Formatting

showpos

If ios::showpos is set, the operation that inserts values places a positive sign “+”
into decimal conversions of positive integral values. By default, showpos is not set.

Floating-Point Formatting

showpoint

scientific

The following format flags control the formatting of floating-point values:

If ios::showpoint is set, trailing zeros and a decimal point appear in the result of a
floating-point conversion. This flag has no effect if either jos::scientific or
jos::fixed is set. showpoint is not set by default.

If ios::scientific is set, the value is converted using scientific notation. In
scientific notation, there is one digit before the decimal point and the number of
digits following the decimal point depends on the value of ios::x_precision. The
default value for ios::x_precision is 6. If ios::uppercase is set, an uppercase “E”
precedes the exponent. Otherwise, a lowercase “e” precedes the exponent. By
default, uppercase is not set. See [‘uppercase” on page 35 for more information.

34 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

fixed

Format State Flags

If ios::fixed is set, floating-point values are converted to fixed notation with the
number of digits after the decimal point equal to the value of ios::x_precision (or
6 by default). ios::fixed is not set by default.

Default Representation of Floating-Point Values

If neither ios::fixed nor ios::scientific is set, the representation of floating-point
values depends on their values and the number of significant digits in the
representation equals ios::x_precision. Floating-point values are converted to
scientific notation if the exponent resulting from a conversion to scientific notation is
less than -4 or greater than or equal to the value of jos::x_precision. Otherwise,
floating-point values are converted to fixed notation. If ios::showpoint is not set,
trailing zeros are removed from the result and a decimal point appears only if it is
followed by a digit. ios::scientific and ios::fixed are collectively identified by
the static member ios::floatfield.

Uppercase and Lowercase

uppercase

Buffer Flushing

unitbuf

stdio

The following enumeration member determines whether alphabetic characters used
in floating-point numbers appear in upper- or lowercase:

If ios::uppercase is set, the operation that inserts values uses an uppercase “E” for
floating-point values in scientific notation. In addition, the operation that inserts
values stores hexadecimal digits “A” to “F” in uppercase and places an uppercase
“X" before hexadecimal values when ios::showbase is set. If ios::uppercase is not
set, a lowercase “e” introduces the exponent in floating-point values, hexadecimal
digits “a” to “f" are stored in lowercase, and a lowercase “x” is inserted before
hexadecimal values when ios::showbase is set.

The setting of uppercase also determines whether special numbers such as inf are
inserted in uppercase.

The following enumeration members affect buffer flushing behavior:

If ios::unitbuf is set, ostream::o0sfx() performs a flush after each insertion. The
attached stream buffer is unit buffered. ios::unitbuf is not set by default.

This flag is used internally by sync_with_stdio(). Do not use ios::stdio directly.
If you want to combine I/O Stream Library input and output with stdio.h input and
output, use sync_with _stdio(). See [sync with stdio” on page 41| for more
details on sync_with_stdio(). ios::stdio is not set by default.

Mutually Exclusive Format Flags

If you specify conflicting flags, the results are unpredictable. For example, the
results will be unpredictable if you set both ios::1eft and ios::right in the format
state of iosobj. Set only one flag in each set of the following three sets:

e jos::left, ios::right, ios::internal

e jos::dec, ios::oct, i0os::hex

Chapter 5. ios Class 35

Format State Members

e jos::scientific, ios::fixed

Public Members of ios for the Format State

fill

flags

precision

You can use the member functions listed below to control the format state of an ios
object.

Note: The following descriptions assume that the functions are called as part of an
ios object called iosoby.

char fill() const;
char fill(char fillchar);

fi11() with no arguments returns the value of ios::x_fil1l in the format state of
iosobj. fi11() with an argument fillchar sets ios::x_fi1l to be equal to fillchar. 1t
returns the value of ios::x_fill.

jos::x_fill is the character used as padding if the field is wider than the
representation of a value. The default value for ios::x_fill is a space. The
jos::left, ios::right, and ios::internal flags determine the position of the fill
character. See [White Space and Padding” on page 33 for more details.

You can also use the parameterized manipulator setfill to set the value of
jos::x_fill. See [setfill” on page 54 for a description of this parameterized
manipulator.

long flags() const;
Tong flags(long flagset);

flags() with no arguments returns the value of the flags that make up the current
format state. flags() with one argument sets the flags in the format state to the
settings specified in flagset and returns the value of the previous settings of the
format flags.

int precision() const;
int precision(int prec);

precision() with no arguments returns the value of ios::x_precision.
precision() with one argument sets the value of ios::x_precision to prec and
returns the previous value. The value of prec must be greater than 0. If the value
is nonpositive, the value of ios::x_precision is set to the default value, 6.
jos::x_precision controls the number of significant digits when floating-point
values are inserted.

The format state in effect when precision() is called affects the behavior of
precision(). If neither ios::scientific nor ios::fixed is set, ios::x_precision
specifies the number of significant digits in the floating-point value that is being
inserted. If, in addition, ios::showpoint is not set, all trailing zeros are removed
and a decimal point only appears if it is followed by digits.

If either jos::scientific or ios::fixed is set, ios::x_precision specifies the
number of digits following the decimal point.

36 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

setf

skip

unsetf

width

Format State Members

You can also use the parameterized manipulator setprecision to set
ios::x_precision. See [setprecision” on page 57 [for more details on this
parameterized manipulator.

long setf(long newset);
long setf(long newset, long field);

setf() with one argument is accumulative. It sets the format flags that are marked
in newset, without affecting flags that are not marked in newset, and returns the
previous value of the format state. You can also use the parameterized
manipulator setiosflags to set the format flags to a specific setting. See
[setiosflags” on page 5@ for more details on this parameterized manipulator.

setf() with two arguments clears the format flags specified in field, sets the format
flags specified in newset, and returns the previous value of the format state. For
example, to change the conversion base in the format state to ios: :hex, you could
use a statement like this:

s.setf(ios::hex, ios::basefield);

In this statement, ios::basefield specifies the conversion base as the format flag
that is going to be changed, and ios: :hex specifies the new value for the
conversion base. If newset equals 0, all of the format flags specified in field are
cleared. You can also use the parameterized manipulator resetiosflags to clear
format flags. See [resetiosflags” on page 5§ for more details on this parameterized
manipulator.

Note: If you set conflicting flags the results are unpredictable. See [Mutually
Exclusive Format Flags” on page 3§ for more details.

int skip(int i);

skip() sets the format flag ios::skipws if the value of the argument i does not
equal 0. If jdoes equal 0, ios::skipws is cleared. skip() returns a value of 1 if
ios::skipws was set prior to the call to skip(), and returns O otherwise.

long unsetf(long oflags);

unsetf() turns off the format flags specified in oflags and returns the previous
format state.

int width() const;
int width(int fwidth);

width() with no arguments returns the value of the current setting of the format
state field width variable, ios::x_width. If the value of ios::x_width is smaller
than the space needed for the representation of the value, the full value is still
inserted.

width() with one argument, fwidth, sets ios::x_width to the value of fwidth and
returns the previous value. The default field width is 0. When the value of

Chapter 5. ios Class 37

User-Defined Format Flags

jos::x_width is O, the operations that insert values only insert the characters
needed to represent a value.

If the value of ios::x_width is greater than 0, the characters needed to represent
the value are inserted. Then fill characters are inserted, if necessary, so that the
representation of the value takes up the entire field. ios::x_width only specifies a
minimum width, not a maximum width. If the number of characters needed to
represent a value is greater than the field width, none of the characters is
truncated. After every insertion of a value of a numeric or string type (including
char*, unsigned charx, signed char=*, and wchar_t=, but excluding char, unsigned
char, signed char, and wchar_t), the value of ios::x width is reset to 0. After
every extraction of a value of type char*, unsigned char*, signed charx*, or
wchar_t*, the value of jos::x_width is reset to 0.

You can also use the parameterized manipulator setw to set the field width. See
[setw” on page 57 [for more information on this parameterized manipulator. Also,
see [Public Members of ostream for Formatted Output” on page 60 for more

information on ios::x_width.

Public Members of ios for User-Defined Format Flags

bitalloc

iword

pword

In addition to the flags described in [Format State Flags” on page 33, you can also
use the ios member functions listed in this section to define additional format flags
or variables in classes that you derive from ios.

static Tong bitalloc();

bitalloc() is a static function that returns a Tong value with a previously
unallocated bit set. You can use this Tong value as an additional flag, and pass it
as an argument to the format state member functions. When all the bits are
exhausted, bitalloc() returns 0.

Tong& dword(int i);

iword() returns a reference to the ith user-defined flag, where i is an index returned
by xalloc(). iword() allocates space for the user-defined flag. If the allocation
fails, iword() sets ios::failbit.

void* & pword(int i);

pword () returns a reference to a pointer to the ith user-defined flag, where iis an

index returned by xalloc(). pword() allocates space for the user-defined flag. If
the allocation fails, pword() sets ios::failbit. pword() is the same as iword(),
except that the two functions return different types.

38 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

xalloc

ios Error State

static int xalloc();

xalloc() is a static function that returns an unused index into an array of words
available for use as format state variables by classes derived from ios.

xalloc() simply returns a new index; it does not do any allocation. iword() and
pword() do the allocation, and if the allocation fails, they set ios::failbit. You
should check ios::failbit after calling iword() or pword().

Public Members of ios for the Error State

bad

clear

eof

The error state is an enumeration that records the errors that take place in the
processing of ios objects. It has the following declaration:

enum io_state { goodbit, eofbit, failbit, badbit, hardfail };

The error state is manipulated using the ios member functions described in this
section.

Notes:
1. hardfail is a flag used internally by the 1/0 Stream Library. Do not use it.

2. The following descriptions assume that the functions are called as part of an
ios object called iosobj.

int bad() const;

bad() returns a nonzero value if io0s::badbit is set in the error state of iosobj.
Otherwise, it returns 0. ijos::badbit is usually set when some operation on the
streambuf object that is associated with the ios object has failed. It will probably
not be possible to continue input and output operations on the ios object.

void clear(int state=0);

clear() changes the error state of iosobj to state. If state equals O (its default), all
of the bits in the error state are cleared. If you want to set one of the bits without
clearing or setting the other bits in the error state, you can perform a bitwise OR
between the bit you want to set and the current error state. For example, the
following statement sets ios::badbit in iosobj and leaves all the other error state
bits unchanged:

iosobj.clear(ios::badbit|iosobj.rdstate());

int eof() const;

eof () returns a nonzero value if os::eofbit is set in the error state of iosoby.
Otherwise, it returns 0. ios::eofbit is usually set when an EOF has been
encountered during an extraction operation.

Chapter 5. ios Class 39

ios Error State

fail

good

rdstate

operator void*

operator!

int fail() const;

fail() returns a nonzero value if either ios::badbit or ios::failbit is set in the
error state. Otherwise, it returns 0.

int good() const;

good () returns a nonzero value if no bits are set in the error state of iosob.
Otherwise, it returns 0.

int rdstate() const;

rdstate() returns the current value of the error state of iosob.

operator voidx();
operator const voidx() const;

The void* operator converts iosobj to a pointer so that it can be compared to 0.
The conversion returns O if os::failbit or ios::badbit is set in the error state of
iosobj. Otherwise, a pointer value is returned. This value is not meant to be
manipulated as a pointer; the purpose of the operator is to allow you to write
statements such as the following:
if (cin)

cout << "ios::badbit and ios::failbit are not set" << endl;
if (cin >> x)

cout << "jos::badbit and ios::failbit are not set "

<< x << " was input" << endl;

int operator!() const;

The ! operator returns a nonzero value if ios::failbit or ios::badbit is setin the
error state of josobj. You can use this operator to write statements like the
following:
if (!cin)
cout << "either ios::failbit or ios::badbit is set" << endl;
else
cout << "neither ios::failbit nor ios::badbit is set"
<< endl;

40 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Other ios Members

Other Members of i0s

rdbuf

sync_with_stdio

tie

This section describes the ios member functions that do not deal with the error
state or the format state. These descriptions assume that the functions are called
as part of an ios object called iosoby.

streambuf* rdbuf();

rdbuf () returns a pointer to the streambuf object that is associated with josobj.
This is the streambuf object that was passed as an argument to the ios
constructor. See [‘Constructors and Assignment Operator for ios” on page 32 for
more details on the ios constructor.

static void sync_with_stdio();

sync_with_stdio() is a static function that solves the problems that occur when
you call functions declared in stdio.h and I/O Stream Library functions in the same
program. The first time that you call sync_with_stdio(), it attaches stdiobuf
objects to the predefined streams cin, cout, and cerr. After that, input and output
using these predefined streams can be mixed with input and output using the
corresponding FILE objects (stdin, stdout, and stderr). This input and output are
correctly synchronized.

If you switch between the 1/O Stream Library formatted extraction functions and
stdio.h functions, you may find that a byte is “lost.” The reason is that the
formatted extraction functions for integers and floating-point values keep extracting
characters until a nondigit character is encountered. This nondigit character acts
as a delimiter for the value that preceded it. Because it is not part of the value,
putback() is called to return it to the stream buffer. If a C stdio library function,
such as getchar(), performs the next input operation, it will begin input at the
character after this nondigit character. Thus, this nondigit character is not part of
the value extracted by the formatted extraction function, and it is not the character
extracted by the C stdio library function. It is “lost.” Therefore, you should avoid
switching between the I/O Stream Library formatted extraction functions and C
stdio library functions whenever possible.

sync_with_stdio() makes cout and clog unit buffered. See [Buffer Flushing” on
for a definition of unit buffering. After you call sync_with_stdio(), the
performance of your program could diminish. The performance of your program
depends on the length of strings, with performance diminishing most when the
strings are shortest.

ostream* tie();
ostream* tie(ostream* 0s);

There are two versions of tie(). The version that takes no arguments returns the
value of ios::x_tie, the tie variable. (The tie variable points to the ostream object
that is tied to the ios object.) The version that takes one argument os makes the
tie variable, ios::x_tie, equal to 0s and returns the previous value.

Chapter 5. ios Class 41

Built-In Manipulators

You can use ios::x_tie to automatically flush the stream buffer attached to an ios
object. If ios::x_tie for an ios object is not equal to 0 and the ios object needs
more characters or has characters to be consumed, the ostream object pointed to
by ios::x_tie is flushed.

By default, the tie variables of the predefined streams cin, cerr, and clog all point
to the predefined stream cout. The following example illustrates how these
streams are tied:

// Tying two streams together

#include <iostream.h>
#include <fstream.h>

void main() {

float f;
cout << "Enter a number: "; // cin is tied to cout, so
cin > f; // cout is flushed before input

cout << "The number was " << f << " \n" << endl;

ofstream myFile;
myFile.open("testfile",ios::out);

cin.tie(&myFile); // now tie cin to a different ostream
cout << "Enter a number: "; // cout is not flushed by cin,
cin > f; // so prompt appears after input.

cout << "The number was " << f << " \n" << endl;

}

Initially, the program displays a prompt, requests input, and then displays output.
After cin is tied to the ofstream myFile, however, the output is not flushed by the
request for input, so no prompt is displayed until after the input is received. The
output is flushed only by the end1 manipulator at the end of the program. The
following shows sample output for this program:

Enter a number: 5
The number was 5.

6
Enter a number: The number was 6.

Built-In Manipulators for ios

The 1/0O Stream Library provides you with a set of built-in manipulators for ios and
the classes derived from it. These manipulators have a specific effect on a stream
other than inserting or extracting a value. Manipulators implicitly invoke functions
that modify the state of the stream, and they allow you to modify the state of a
stream at the same time as you are doing input and output. The syntax for
manipulators is consistent with the syntax for input and output.

The following is a list of the manipulators and the classes that they apply to:

dec istream and ostream
hex istream and ostream
oct istream and ostream
ws istream
end] ostream
ends ostream
flush ostream

42 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

iostream and iostream_withassign Classes

Chapter 6. iostream and iostream_withassign Classes

Derivation

Header File

Members

The iostream class combines the input capabilities of the istream class with the
output capabilities of the ostream class. It is the base class for three other classes
that also provide both input and output capabilities:

e jostream_withassign, also described in this chapter, which you can use to
assign another stream (such as an fstream for a file) to an iostream object.

e strstream, which is a stream of characters stored in memory.

e fstream, which is a stream that supports input and output.

ios
istream
ostream
iostream
iostream_withassign

jostream and iostream withassign are declared in iostream.h.

The following members are provided for iostream and iostream withassign:

Member Page
iostream Constructor
iostream_withassign Constructor 43 |
iostream_withassign Assignment Operator

Public Members of iostream and iostream_withassign

Constructor for iostream

jostream(streambuf* sb);

The iostream constructor takes a single argument sb. The constructor creates an
iostream object that is attached to the streambuf object that is pointed to by sb.

The constructor also initializes the format variables to their defaults. See
[State Variables” on page 32 for more details on the format variables.

Constructor for iostream_withassign

iostream_withassign();

The iostream withassign constructor creates an iostream withassign object. It
does not do any initialization of this object.

Assignment Operator for iostream_withassign

© Copyright IBM Corp. 1996, 1998

jostream withassign& operator=(ios& is);
jostream_withassign& operator=(streambuf* sb);

There are two versions of the jostream withassign assignment operator. The first
version takes a reference to an ios object, is, as its argument. It associates the

43

iostream and iostream_withassign Classes

stream buffer attached to is with the iostream_withassign object that is on the left
side of the assignment operator.

The second version of the iostream_withassign assignment operator takes a
pointer to a streambuf object, sh, as its argument. It associates this streambuf
object with the iostream withassign object that is on the left side of the
assignment operator.

44 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Input Prefix Function

Chapter 7. istream and istream_withassign Classes

This chapter describes the istream class and its derived class istream withassign.
You can use the istream member functions to take characters out of the stream
buffer that is associated with an istream object. istream withassign is derived
from istream and includes an assignment operator.

Derivation
ios
istream
istream_withassign
Header File
istream and istream withassign are declared in iostream.h.
Members

The following members are provided for istream and istream withassign:

Method Page Method Page
ipfx tellg
istream Constructor gcount
input operator KBe] peek
get 9] putback
getline o] sync
ignore BO] istream_withassign Constructor
read BO] istream_withassign operator=
seekg

Constructors for istream

Constructor for istream
istream(streambuf* sb);

The istream constructor takes a single argument sb. The constructor creates an
istream object that is attached to the streambuf object that is pointed to by sb.
The constructor also initializes the format variables to their defaults. See
[State Variables” on page 32 for details on the format variables.

The other istream constructor declarations in iostream.h are obsolete; do not use
them.

Input Prefix Function
int ipfx(int need=0);
ipfx() checks the stream buffer attached to an istream object to determine if it is

capable of satisfying requests for characters. It returns a nonzero value if the
stream buffer is ready, and O if it is not.

© Copyright IBM Corp. 1996, 1998 45

Formatted Input

The formatted input operator calls ipfx(0), while the unformatted input functions
call ipfx(1).

If the error state of the istream object is nonzero, ipfx() returns 0. Otherwise, the
stream buffer attached to the istream object is flushed if either of the following
conditions is true:

¢ need has a value of 0.
e The number of characters available in the stream buffer is fewer than the value
of need.

If ios::skipws is set in the format state of the istream object and need has a value
of 0, leading white-space characters are extracted from the stream buffer and
discarded. If ios::hardfail is set or EOF is encountered, ipfx() returns O.
Otherwise, it returns a nonzero value.

Public Members of istream for Formatted Input

You can use the istream class to perform formatted input from a stream buffer
using the input operator >>. Consider the following statement, where insis a
reference to an istream object and x is a variable of a built-in type:

ins >> X;

The input operator >> calls ipfx(0). If ipfx() returns a nonzero value, the input
operator extracts characters from the streambuf object that is associated with ins.

It converts these characters to the type of x and stores the result in x. The input
operator sets ios::failbit if the characters extracted from the stream buffer
cannot be converted to the type of x. If the attempt to extract characters fails
because EOF is encountered, the input operator sets ios::eofbit and
ios::failbit. If the attempt to extract characters fails for another reason, the input
operator sets ios::badbit. Even if an error occurs, the input operator always
returns ins.

The details of conversion depend on the format state (see [Format State Variables'|
for details) of the istream object and the type of the variable x. The
input operator may set the width variable ios::x_width to O, but it does not change
anything else in the format state. See [Input Operator for Arrays of Characters” o

below for details.

The input operator is defined for the following types:

e Arrays of character values (including signed char and unsigned char)
e Other integral values: short, int, Tong
e float, double, Tong double, and Tong Tong values.

In addition, the input operator is defined for streambuf objects.
You can also define input operators for your own types. For further details see

[Defining an Input Operator for a Class Type”|in the IBM Open Class Library User's
Guide.

The following sections describe the input operator for these types.

Note: The following descriptions assume that the input operator is called with the
istream object ins on the left side of the operator.

46 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Formatted Input

Input Operator for Arrays of Characters
istream& operator>>(char* pc);
istream& operator>>(signed char* pc);
istream& operator>>(unsigned char* pc);
istream& operator>>(wchar_t* pwc);

For pointers to char, signed char, and unsigned char, the input operator stores
characters from the stream buffer attached to ins in the array pointed to by pc. The
input operator stores characters until a white-space character is found. This
white-space character is left in the stream buffer, and the extraction stops. If
jos::x_width does not equal zero, a maximum of ios::x_width - 1 characters are
extracted. The input operator calls ins.width(0) to reset ios::x width to 0.

For pointers to wchar_t, the input operator stores characters from the stream buffer
attached to ins in the array pointed to by pwe. The input operator stores characters
until a white-space character or a wchar_t blank is found. If the terminating
character is a white-space character, it is left in the stream buffer. If it is a wchar_t
blank, it is discarded to avoid returning two bytes to the input stream.

For wchar_t* arrays, if ios::width does not equal zero, a maximum of
ios::width-1 characters (at 2 bytes each) are extracted. A 2-character space is
reserved for the wchar_t terminating null character.

Note: The input operators for these types also reset ios::x_width to 0. None of
the other input operators affects ios::x_width. All of the output operators except
those for the char types and wchar_t, on the other hand, reset ios::x_width to O.

The input operator always stores a terminating null character in the array pointed to
by pc or pwe, even if an error occurs. For arrays of wchar_t+, this terminating null
character is a wchar_t terminating null character.

Input Operator for char
istream& operator>>(char& rc);
istream& operator>>(signed char& rc);
istream& operator>>(unsigned char& rc);
istream& operator>>(wchar t& rc);

For char, signed char, and unsigned char, the input operator extracts a character
from the stream buffer attached to ins and stores it in rc.

For references to wchar_t, the input operator extracts a wchar_t character from the
stream buffer and stores it in we. If ios::skipws is set, the input operator skips
leading wchar_t spaces as well as leading char white spaces.

Input Operator for Other Integral Values
istream& operator>>(short& ir);
istream& operator>>(unsigned short& ir);
istream& operator>>(int& ir);
istream& operator>>(unsigned int& ir);
istream& operator>>(long& ir);
istream& operator>>(unsigned long& ir);
istream& operator>>(long long& ir);
istream& operator>>(unsigned long long& ir);

This section describes how the input operator works for references to the integral
types: short, unsigned short, int, unsigned int, long, unsigned long, Tong Tong,

Chapter 7. istream and istream_withassign Classes 47

Formatted Input

and unsigned long long. For these integral types, the input operator extracts
characters from the stream buffer associated with ins and converts them according
to the format state of ins. The converted characters are then stored in ir. There is
no overflow detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign (+ or -). The
subsequent characters are converted until a nondigit character is encountered.
This nondigit character is left in the stream buffer. Which characters are treated as
digits depends on the setting of the following format flags:

e jos::oct: the characters are converted to an octal value. Characters are
extracted from the stream buffer until a character that is not an octal digit (a
digit from O to 7) is encountered. If ios::oct is set and a signed value is
encountered, the value is converted into a decimal value. For example, if the
characters “- 45" are encountered in the input stream and ios::oct is set, the
decimal value - 37 is actually extracted.

e ijos::dec: the characters are converted to a decimal value. Characters are
extracted from the stream buffer until a character that is not a decimal digit (a
digit from 0 to 9) is encountered.

e ios::hex: the characters are converted to a hexadecimal value. Characters
are extracted from the stream buffer until a character that is not a hexadecimal
digit (a digit from 0 to 9 or a letter from “A” to “F”", upper or lower case) is
encountered. If ios::hex is set and a signed value is encountered, the value is
converted into a decimal value. For example, if the characters “-12” are
encountered in the input stream and ios: :hex is set, the decimal value -18 is
actually extracted.

If none of these format flags is set, the characters are converted according to the
C++ lexical conventions.
This conversion depends on the characters that follow the optional sign:

» |f these characters are “0x” or “0X”, the subsequent characters are converted to
a hexadecimal value.

¢ |[f the first character is “0” and the second character is not “x” or “X”, the
subsequent characters are converted to an octal value.

¢ If neither of these cases is true, the characters are converted to a decimal
value.

If no digits are available in the stream buffer (other than the “0” in “0X” or “0x”
preceding a hexadecimal value), the input operator sets ios::failbit in the error
state of ins.

Input Operator for float and double Values

istream& operator>>(float& ref);
istream& operator>>(doubled ref);
istream& operator>>(long double& ref);

For float, double, and 1Tong double values, the input operator converts characters
from the stream buffer attached to ins according to the C++ lexical conventions.

Note that the istream input operator on some other operating systems converts the
strings nan and infinity (in any combination of upper- and lowercase letters) into
numeric representations of not-a-number and infinity. If you use these string values
as input in a program compiled with OS/390 C/C++, the input operator will not

48 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Unformatted Input

recognize them as floating point numbers and will set ios::badbit in the stream's
error state.

The resulting value is stored in ref. The input operator sets ios::failbit if no
digits are available in the stream buffer or if the digits that are available do not
begin a floating-point number.

Input Operator for streambuf Objects

istream& operators>>(streambuf* sb);

For pointers to streambuf objects, the input operator calls ipfx(0). If ipfx(0)
returns a nonzero value, the input operator extracts characters from the stream
buffer attached to ins and inserts them in sb. Extraction stops when an EOF
character is encountered. The input operator always returns ins.

Public Members of istream for Unformatted Input

get

get

You can use the functions listed in this section to extract characters from a stream
buffer as a sequence of bytes. All of these functions call ipfx(1). They only

proceed with their processing if ipfx(1) returns a nonzero value. See [Input Prefix
Eunction” on page 44 for more details on ipfx().

Note: The following descriptions assume that the functions are called as part of an
istream object called ins.

istream& get(charx ptr, int len, char delim='\n'");
istreamd& get(signed char* ptr, int len, char delim='\n');
istream& get(unsigned charx ptr, int len, char delim='\n');

get () with three arguments extracts characters from the stream buffer attached to
ins and stores them in the byte array beginning at the location pointed to by ptr and
extending for len bytes. The default value of the delim argument is '\n'.

Extraction stops when either of the following conditions is true:

e delim or EQF is encountered before len-1 characters have been stored in the
array. delim is left in the stream buffer and not stored in the array.
* Jen-1 characters are extracted without delim or EOF being encountered.

get () always stores a terminating null character in the array, even if it does not
extract any characters from the stream buffer. get() sets the ios::failbit if it
encounters an EOF character before it stores any characters.

istream& get(streambuf& sb, char delim='\n');

get () with two arguments extracts characters from the stream buffer attached to ins
and stores them in sb. The default value of the delim argument is “\n". Extraction
stops when any of the following conditions is true:

e An EOF character is encountered.

e An attempt to store a character in sb fails. ios::failbit is set in the error
state of ins.

e delimis encountered. delim is left in the stream buffer attached to ins.

Chapter 7. istream and istream_withassign Classes 49

Unformatted Input

get

get

getline

ignore

read

istream& get(char& cref);

istream& get(signed char& cref);
istream& get(unsigned char& cref);
istream& get(wchar_t& cref);

get() with a single argument extracts a single character or wchar_t from the stream
buffer attached to ins and stores this character in cref.

int get();

get () with no arguments extracts a character from the stream buffer attached to ins
and returns it. This version of get () returns EOF if EOF is extracted. ios::failbit
is never set.

istream& getline(charx ptr, int len, char delim='\n');
istream& getline(signed char* ptr, int len, char delim='\n');
istream& getline(unsigned charx ptr, int len, char delim='\n');

getline() extracts characters from the stream buffer attached to ins and stores
them in the byte array beginning at the location pointed to by ptr and extending for
len bytes. The default value of the delim argument is “\n”. Extraction stops when
any one of the following conditions is true:

e delim or EOF is encountered before len-1 characters have been stored in the
array. getline() extracts delim from the stream buffer, but it does not store
delim in the array.

¢ Jen-1 characters are extracted before delim or EOF is encountered.

getline() always stores a terminating null character in the array, even if it does not
extract any characters from the stream buffer. getline() sets the jos::failbit
for ins if it encounters an EOF character before it stores any characters.

getline() is like get() with three arguments, except that get() does not extract the
delim character from the stream buffer, while get1ine() does.

See [White Space in String Input| in the IBM Open Class Library User's Guide for
an example of using the getline() function.

istream& ignore(int num=1, int delim=EOF);

ignore() extracts up to num character from the stream buffer attached to ins and
discards them. ignore() will extract fewer than num characters if it encounters
delim or EOF.

istream& read(char* s, int n);
istream& read(signed char* s, int n);
istream& read(unsigned char* s, int n);

read() extracts n characters from the stream buffer attached to ins and stores them
in an array beginning at the position pointed to by s. If EOF is encountered before

50 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Other Public Members of istream

read() extracts n characters, read() sets the ios::failbit in the error state of ins.
You can determine the number of characters that read() extracted by calling
gcount () immediately after the call to read().

Public Members of istream for Positioning

seekg

tellg

istreamd& seekg(streampos sp);
istream& seekg(streamoff so, ios::seek dir dir);

seekg() repositions the get pointer of the ultimate producer. seekg() with one
argument sets the get pointer to the position sp. seekg() with two arguments sets
the get pointer to the position specified by dir with the offset so. dir can have the
following values:

e ios::beg: the beginning of the stream
e jos::cur: the current position of the get pointer
e io0s::end: the end of the stream

If you attempt to set the get pointer to a position that is not valid, seekg() sets
ios::badbit.

streampos tellg();

tel1g() returns the current position of the get pointer of the ultimate producer.

Other Public Members of istream

gcount

peek

Note: The following descriptions assume that the functions are called as part of an
istream object called ins.

int gcount();

gcount () returns the number of characters extracted from the stream buffer
attached to ins by the last call to an unformatted input function. (See
Members of istream for Unformatted Input” on page 49 for more details.) The input
operator >> may call unformatted input functions, and thus formatted input may
affect the value returned by gcount(). See [Public Members of istream foi
Formatted Input” on page 46 for more details on formatted input.

int peek();

peek() calls ipfx(1). If ipfx() returns zero, or if no more input is available from
the ultimate producer, peek() returns EOF. Otherwise, it returns the next character
in the stream buffer attached to ins without extracting the character.

Chapter 7. istream and istream_withassign Classes 51

Built-In Manipulators

putback

sync

istream& putback(char c);

putback() attempts to put a character that was extracted from the stream buffer
attached to ins back into the stream buffer. ¢ must equal the character before the
get pointer of the stream buffer. Unless some other activity is modifying the stream
buffer, this is the last character extracted from the stream buffer. If ¢ is not equal
to the character before the get pointer, the result of putback() is undefined, and the
error state of ins may be set. putback() does not call ipfx(), but if the error state
of ins is nonzero, putback() returns without putting back the character or setting
the error state. See [Input Prefix Function” on page 45 for more details on ipfx().

int sync();

sync() establishes consistency between the ultimate producer and the stream
buffer attached to ins. sync() calls ins.rdbuf()->sync(), which is a virtual
function, so the details of its operation depend on the way the function is defined in
a given derived class. If an error occurs, sync() returns EOF.

Built-In Manipulators for istream

istream& ws (istreamd);
ios& dec(ios&);
ios& hex(ios&);
ios& oct(iosd);

The 1/O Stream Library provides you with a set of built-in manipulators that can be
used with the istream class. These manipulators have a specific effect on an
istream object beyond extracting their own values. The built-in manipulators are
accepted by the following versions of the input operator:

istream& operator>> (istream& (*f) (istreamd));

istream& operator>> (ios& (*f) (ios&));

If ins is a reference to an istream object, this statement extracts white-space
characters from the stream buffer attached to ins:

ins >> ws;

This statement sets ios: :dec:

ins >> dec;

This statement sets ios: :hex:

ins >> hex;

This statement sets ios::oct:

ins >> oct;

52 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

istream_withassign

Public Members of istream_withassign

Constructor for istream_withassign
istream_withassign();

The istream withassign constructor creates an istream withassign object. It
does not do any initialization of this object.

Assignment Operator for istream_withassign
istream withassign& operator=(istream& is);
istream_withassign& operator=(streambuf* sb);

There are two versions of the istream withassign assignment operator. The first
version takes a reference to an istream object, is, as its argument. It associates
the stream buffer attached to /s with the istream_withassign object that is on the
left side of the assignment operator.

The second version of the assignment operator takes a pointer to a streambuf

object, sb, as its argument. It associates this streambuf object with the
istream withassign object that is on the left side of the assignment operator.

Chapter 7. istream and istream_withassign Classes 53

istream_withassign

54 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Manipulators

Chapter 8. Manipulators

This chapter describes the parameterized manipulators provided by the 1/0O Stream
Library and the facilities you can use to declare your own manipulators.

Derivation
The manipulator classes are defined by a set of macros, and take names as
defined when you use the macros. See [Chapter 6, “Manipulators’| in the /IBM Open
Class Library User's Guide for further information.

Header File
The parameterized manipulator classes are declared in iomanip.h.

Members

The following parameterized manipulators are described:

Manipulator Page Manipulator Page
resetiosflags E6] setiosflags E6]
setbase El setprecision
seffill 56 setw B7

Parameterized Manipulators for the Format State

The iomanip.h header file also contains calls to the I0MANIPdeclare() macro for
types int and Tong. These calls create classes that are used to create the
parameterized manipulators that control the format state of ios objects. See

[Format State Flags” on page 33 for a description of the format state.

The call to IOMANIPdeclare(int) creates classes with names that are expanded
from the following macros:

o SMANIP(int)
e SAPP(int)

« IMANIP(int)
o IAPP(int)

¢ OMANIP(int)
e« OAPP(int)

« IOMANIP(int)
« I0APP(int)

All of these macros expand to names that include the string “int.” Similarly,
IOMANIPdeclare(long) creates eight classes whose names include the string “long.”

The following manipulators are declared using the classes created by the calls to
IOMANIPdeclare(int) and IOMANIPdeclare(long).

Note: All of the parameterized manipulators described below are defined for both
istream and ostream objects. In the following descriptions, is is a reference to an
istream object and os is a reference to an ostream object.

© Copyright IBM Corp. 1996, 1998 55

Manipulators

resetiosflags

setbase

seffill

setiosflags

SMANIP(Tong) resetiosflags(long flags);

resetiosflags() clears the format flags specified in flags. It can appear in an input
stream:

is >> resetiosflags(flags);

In this case, resetiosflags() calls is.setf(0,flags). See |setf’ on page 37 for
more details on setf().

resetiosflags() can also appear in an output stream:

0s << resetiosflags(flags);

In this case, resetiosflags calls os.setf(0,flags).

SMANIP(int) setbase(int base);

setbase() sets the conversion base to be equal to the value of the argument base.
If base equals 10, the conversion base is set to 10. If base equals 8, the
conversion base is set to 8. If base equals 16, the conversion base is set to 16.
Otherwise, the conversion base is set to 0. If the conversion base is 0, output is
treated the same as if the base were 10, but input is interpreted according to the
C++ lexical conventions. This means that input values that begin with “0” are
interpreted as octal values, and values that begin with “Ox” or “0X” are interpreted
as hexadecimal values.

SMANIP(int) setfill(int fill);

setfil1() sets the fill character, ios::x_fi11, to fill. The fill character is the
character that appears in values that need to be padded to fill the field width.
setfil1() can appear in either an input stream or an output stream:

is >> setfill(fill);
os << setfill(fill);

setfil1() performs the same task as the function fi11(). See [fill’ on page 36 for
more details on fi11().

SMANIP(Tong) setiosflags(long flags);

setiosflags() sets the format flags specified in flags. setiosflags() can appear
in an input stream:

is >> setiosflags(flags);
If it appears in an input stream, setiosflags() calls is.setf.(flags) See
for more details on setf().
If it appears in an output stream, setiosflags() calls os.setf(flags):

0os << setiosflags(flags);

56 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

setprecision

setw

Manipulators

SMANIP(int) setprecision(int prec);

setprecision() sets the precision format state variable, ios::x_prec, to the value
of prec. The value of prec must be greater than zero. If the value of prec is
negative, the precision format state variable is set to 6. See

for a description of i0s::x_prec.

setprecision() can appear in either an input stream or an output stream:

is >> setprecision(prec);
0s << setprecision(prec);
SMANIP(int) setw(int width);

setw() sets the width format state variable, ios::x_width, to the value of width.
See ['width” on page 37 for a description of what ios::x_width does.

setw() can appear in either an input stream or an output stream:

is >> setw(width);
0s << setw(width);

Chapter 8. Manipulators 57

Manipulators

58 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

ostream Constructors

Chapter 9. ostream and ostream_withassign Classes

This chapter describes the ostream class and its derived class ostream withassign.
You can use the ostream member functions to put characters into the streambuf
object that is associated with an ostream object. ostream_withassign is derived
from ostream and includes an assignment operator.

Derivation
ios
ostream
ostream_withassign
Header File
ostream and ostream withassign are declared in iostream.h.
Members

The following members are provided for ostream and ostream withassign:

Method Page Method Page
ostream constructors B9l osfx Bo]
output operator put
ostream_withassign constructor seekp
ostream_withassign operator= tellp
flush 4] write
opfx BO]

Constructors for ostream

Constructor for ostream
ostream(streambuf* sb);

The ostream constructor takes a single argument, sb, which is a pointer to a
streambuf object. The constructor creates an ostream object that is attached to the
streambuf object pointed to by sb. The constructor also initializes the format
variables to their defaults. See ['Format State Variables” on page 32 for more
details on the format variables.

The other declarations for the ostream constructor in iostream.h are obsolete; do
not use them.

© Copyright IBM Corp. 1996, 1998 59

Formatted Output

Output Prefix and Suffix Functions

The output operator calls the output prefix function opfx() before inserting
characters into a stream buffer, and calls the output suffix function osfx() after
inserting characters. The following descriptions assume the functions are called as
part of an ostream object called os. See [Public Members of ostream for Formatted
Dutput] for more details on formatted output.

opfx
int opfx();

opfx() is called by the output operator before inserting characters into a stream
buffer. opfx() checks the error state of os. If the internal flag ios::hardfail is
set, opfx() returns 0. Otherwise, opfx() flushes the stream buffer attached to the
ios object pointed to by os.tie(), if one exists, and returns the value returned by
jos::good(). ios::good() returns O if ios::failbit, ios::badbit, or ios::eofbit
is set. Otherwise, ios::good() returns a nonzero value.

osfx
void osfx();

osfx() is called before a formatted output function returns. osfx() flushes the
streambuf object attached to os if ios::unitbuf is set.

osfx() is called by the output operator. If you overload the output operator to
handle your own classes, you should ensure that osfx() is called after any direct
manipulation of a streambuf object. Binary output functions do not call osfx().

Public Members of ostream for Formatted Output

The ostream class lets you use the output operator << to perform formatted output
(or insertion) to a stream buffer. Consider the following statement, where outs is a
reference to an ostream object and x is a variable of a built-in type:

outs << Xx;

The output operator << calls opfx () before beginning insertion. If opfx() (see
returns a nonzero value, the output operator converts x into a series of
characters and inserts these characters into the stream buffer attached to outs. If
an error occurs, the output operator sets ios::failbit.

The details of the conversion of x depend on the format state (see
Flags” on page 33) of the ostream object and the type of x. For numeric and string
values, including the char* types and wchar_t*, but excluding the char types and
wchar_t, the output operator resets the width variable ios::x_width of the format
state of an ostream object to 0, but it does not affect anything else in the format
state.

60 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Formatted Output

The output operator is defined for the following types:

* Arrays of characters and char values, including arrays of wchar_t and wchar_t
values.

e Other integral values: short, int, Tong

e float, double, Tong double, and Tong Tong values.

e Pointers to void

The following sections describe the output operators for these types. The output
operator is also defined for streambuf objects.

You can also define output operators for your own types. See [‘Defining an Output
Operator for a Class Type’] in the IBM Open Class Library User's Guide for
instructions on how to do this.

Note: The following descriptions assume that the output operator is called with the
ostream object outs on the left side of the operator.

Output Operator for Arrays of Characters and char Values
ostream& operator<<(const char* cp);
ostream& operator<<(const signed char* cp);
ostream& operator<<(const unsigned char* cp);
ostreamd operator<<(wchar t);
ostream& operator<<(char ch);
ostream& operator<<(signed char ch);
ostream& operator<<(unsigned char ch);
ostream& operator<<(const wchar_ t =*);

For a pointer to a char, signed char, or unsigned char value, the output operator
inserts all the characters in the string into the stream buffer with the exception of
the null character that terminates the string. For a pointer to a wchar_t, the output
operator converts the wchar_t string to its equivalent multibyte character string, and
then inserts it into the stream buffer except for the null character that terminates the
string.

If ios::x_width is greater than zero and the representation of the value to be
inserted is less than ios::x_width, the output operator inserts enough fill
characters to ensure that the representation occupies an entire field in the stream
buffer.

The output operator does not perform any conversion on char, signed char,
unsigned char, or wchar_t values.

Chapter 9. ostream and ostream_withassign Classes 61

Formatted Output

Output Operator for Other Integral Values
ostream& operator<<(short iv);
ostream& operator<<(unsigned short iv);
ostream& operator<<(int iv);
ostream& operator<<(unsigned int iv);
ostream& operator<<(long iv);
ostream& operator<<(unsigned long iv);
ostream& operator<<(long long iv);
ostream& operator<<(unsigned long long iv);

For the integral types (short, unsigned short, int, unsigned int, Tong, unsigned
long, Tong long, and unsigned long Tong), the output operator converts the
integral value /v according to the format state of outs and inserts characters into the
stream buffer associated with outs. There is no overflow detection on conversion of
integral types.

The conversion that takes place on jv depends, in part, on the settings of the
following format flags:

e If jos::oct is set, ivis converted to a series of octal digits. If ios::showbase is
set, “0” is inserted into the stream buffer before the octal digits. If the value
being inserted is equal to 0, a single “0” is inserted, not “00.”

e If ios::dec is set, ivis converted to a series of decimal digits.

e If ios::hex is set, ivis converted to a series of hexadecimal digits. If
ios::showbase is set, “Ox” (or “OX”" if ios::uppercase is set) is inserted into the
stream buffer before the hexadecimal digits.

If none of these format flags is set, iv is converted to a series of decimal digits. If
iv is converted to a series of decimal digits, its sign also affects the conversion:

* If ivis negative, a negative sign “-” is inserted before the decimal digits.

e If jvis equal to O, the single digit O is inserted.

e If jvis positive and ios::showpos is set, a positive sign “+” is inserted before
the decimal digits.

Output Operator for float and double Values
ostream& operator<<(float val);
ostream& operator<<(double val);
ostream& operator<<(long double val);

The output operator performs a conversion operation on the value val and inserts it
into the stream buffer attached to outs. The conversion depends on the values
returned by the following functions:

e outs.precision(): returns the number of significant digits that appear after the
decimal. The default value is 6.

e outs.width(): if this returns 0, val is inserted without any fill characters. (See
[fil” on page 34 for more details on fill characters.) If the return value is
greater than the number of characters needed to represent val, extra fill
characters are inserted so that the total number of characters inserted is equal
to the return value.

The conversion also depends on the values of the following format flags:

e If jos::scientific is set, valis converted to scientific notation, with one digit
before the decimal, and the number of digits after the decimal equal to the
value returned by outs.precision(). The exponent begins with a lowercase

62 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Unformatted Output

“e” unless ios::uppercase is set, in which case the exponent begins with an
uppercase “E.”

e If jos::fixed is set, val is converted to fixed notation, with the number of digits
after the decimal point equal to the value returned by outs.precision(). If
neither ios::fixed nor ios::scientific is set, the conversion depends upon
the value of val. See ['Floating-Point Formatting” on page 34 for more details.

e If ios::uppercase is set, the exponents of values in scientific notation begin
with an uppercase “E.”

See ['Format State Flags” on page 33 for more details on the format state.

Output Operator for Pointers to void

ostream& operator<<(void* vp);

The output operator converts pointers to void to integral values and then converts
them to hexadecimal values as if ios::showbase were set. This version of the
output operator is used to print out the values of pointers.

Output Operator for streambuf Objects

ostream& operator<<(streambuf* sbh);

If opfx() returns a nonzero value, the output operator inserts all of the characters
that can be taken from sb into the stream buffer attached to outs. Insertion stops
when no more characters can be fetched from sb. No padding is performed. The
return value is outs.

Public Members of ostream for Unformatted Output

put

write

You can use the functions listed in this section to insert characters into a stream
buffer without regard to the type of the values that the characters represent.

Note: The following descriptions assume that the functions are called as part of an
ostream object called outs.

ostream& put(char c);

put () inserts c in the stream buffer attached to outs. put() sets the error state of
outs if the insertion fails.

ostream& write(const char* cp, int n);
ostream& write(const signed charx cp, int n);
ostream& write(const unsigned charx cp, int n);

write() inserts the n characters that begin at the position pointed to by cp. This
array of characters does not need to end with a null character.

Chapter 9. ostream and ostream_withassign Classes 63

Built-In Manipulators

Public Members

seekp

tellp

of ostream for Positioning

Note: The following descriptions assume that the functions are called as part of an
ostream object called outs.

ostream& seekp(streampos sp);
ostreamd seekp(streamoff so, ios::seek dir dir);

seekp () repositions the put pointer of the ultimate consumer. seekp() with one
argument sets the put pointer to the position sp. seekp() with two arguments sets
the put pointer to the position specified by dir with the offset so. dir can have the
following values:

e ios::beg: the beginning of the stream
e jos::cur: the current position of the put pointer
e jos::end: the end of the stream

The new position of the put pointer is equal to the position specified by dir offset by

the value of so. If you attempt to move the put pointer to a position that is not
valid, seekp() sets ios::badbit.

streampos tellp();

tel1p() returns the current position of the put pointer of the stream buffer that is
attached to outs.

Other Public Members of ostream

flush

ostream& flush();

The ultimate consumer of characters that are stored in a stream buffer may not
necessarily consume them immediately. flush() causes any characters that are
stored in the stream buffer attached to outs to be consumed. It calls

outs.rdbuf ()->sync() to accomplish this action.

Built-In Manipulators for ostream

ostream& end1 (ostream& 1i);
ostream& ends (ostream& 1i);
ostreamd& flush(ostreamd) ;
ios& dec(ios&);
ios& hex(ios&);
ios& oct(iosd);

The I/O Stream Library provides you with a set of built-in manipulators that can be
used with the ostream class. These manipulators have a specific effect on an
ostream object beyond extracting their own values. The built-in manipulators are
accepted by the following versions of the output operators:

ostream& operator<<(ostream& (*f)(ostream&));
ostream& operator<<(ios& (*f)(ios&));

64 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

ostream_withassign

If outs is a reference to an ostream object, then this statement inserts a newline
character and calls flush(). See for more details on flush().

outs << endl;

This statement inserts a null character:
outs << ends;

This statement flushes the stream buffer attached to outs. It is equivalent to
flush()

outs << flush;

This statement sets ios::dec:

outs << dec;

This statement sets ios::hex:

outs << hex;

This statement sets ios::oct:

outs << oct;

Public Members of ostream_withassign

Constructor for ostream_withassign
ostream_withassign();

The ostream withassign constructor creates an ostream withassign object. It
does not do any initialization on the object.

Assignment Operator for ostream_withassign
ostream withassign& operator=(ostream& os);
ostream withassign& operator=(streambuf* sb);

There are two versions of the ostream_withassign assignment operator. The first
version takes a reference to an ostream object, o0s, as its argument. It associates
the streambuf attached to os with the ostream withassign object that is on the left
side of the assignment operator.

The second version of the assignment operator takes a pointer to a streambuf
object, sb, as its argument. It associates sb with the ostream_withassign object
that is on the left side of the assignment operator.

Chapter 9. ostream and ostream_withassign Classes 65

ostream_withassign

66 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

stdiobuf

Chapter 10. stdiobuf and stdiostream Classes

This chapter describes the stdiobuf class and stdiostream, the class that uses
stdiobuf objects as stream buffers. Operations on an stdiobuf are mirrored on
the associated FILE structure (defined in the C header file stdio.h).

Note: The classes described in this chapter are meant to be used when you have
to mix C code with C++ code. If you are writing new C++ code, use filebuf,
fstream, ifstream, and ofstream instead of stdiobuf and stdiostream. See
Chapter 4, “fstream, ifstream, and ofstream Classes” on page 23 and [Chapter 3|
[filebuf Class” on page 17 for more details on these classes. See
[sync_with_stdio” on page 41 for information on synchronizing stdio.h input and
output with I/O Stream Library input and output.

Derivation
ios
stdiostream
streambuf
stdiobuf
Header File
stdiobuf and stdiostream are declared in stdiostream.h.
Members

The following members are provided for stdiobuf and stdiostream:

Member Page Member Page
stdiobuf stdiostream

Constructor Constructor
Destructor rdbuf
stdiofile

Public Members of stdiobuf

Constructor for stdiobuf
stdiobuf (FILE* f);

The stdiobuf constructor creates an stdiobuf object that is associated with the
FILE pointed to by . Changes that are made to the stream buffer in an stdiobuf
object are also made to the associated FILE pointed to by f.

Note: If ios::stdio is set in the format state of an ostream object, a call to osfx()
flushes stdout and stderr.

© Copyright IBM Corp. 1996, 1998 67

stdiostream

Destructor for stdiobuf
“stdiobuf();

The stdiobuf destructor frees space allocated by the stdiobuf constructor and
flushes the file that this stdiobuf object is associated with.

stdiofile
FILE* stdiofile();

stdiofile() returns a pointer to the FILE object that the stdiobuf object is
associated with.

Public Members of stdiostream

Constructor for stdiostream
stdiostream(FILEx file);

The stdiostream constructor creates a stdiostream object that is attached to the
FILE pointed to by file.

rdbuf
stdiobuf* rdbuf();

rdbuf () returns a pointer to the stdiobuf object that is attached to the stdiostream
object.

Example of Using stdiostream
The following example shows how you can use the stdiostream class. Two files
are opened using fopen(). The pointers to the FILE structures are then used to
create stdiostream objects. Finally, the contents of one of these stdiostream
objects are copied into the other stdiostream object.

#include <stdiostream.h>
#include <stdio.h>
#include <stdlib.h>

void main()
{
FILE *in = fopen("in.dat", "r");
FILE *out = fopen("out.dat", "w");
int c;
if (in == NULL)
{
cerr << "Cannot open file 'in.dat' for reading."
<< endl;
exit(1);
1
if (out == NULL)
{

cerr << "Cannot open file 'out.dat' for writing."

<< endl;
exit(1);
1
//
// Create a stdiostream object attached to "f"
//

stdiostream sin(in);
stdiostream sout(out);
cout << "The data contained in the file is:

/1

<< endl;

68 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

stdiostream

// Now read data from "sin" and copy it to

// "cout" and "sout"

/1

while ((c = sin.rdbuf()->sbumpc()) != EOF)

{
cout << char(c);
sout.rdbuf()->sputc(c);
1

cout << endl;

If you run this example with an input file containing the following:

input input input input

The following output is produced:

The data contained in the file is:
input input input input

Chapter 10. stdiobuf and stdiostream Classes

69

stdiostream

70 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

streambuf

Chapter 11. streambuf Class

You can use the streambuf class to manipulate objects of its derived classes
filebuf, stdiobuf, and strstreambuf, or to derive other classes from it.

Derivation
streambuf is the base class for strstream, stdiobuf, and filebuf. Itis not derived
from any class.

Header File
streambuf is declared in iostream.h.

Members

The following members are provided for streambuf:

Method Page Method Page
streambuf constructors E pptr E
streambuf destructor 73] sbumpc 3]
allocate 7] seekoff BO]
base f75] seekpos Bo]
blen 7] setb 6]
dbp 7] setbuf B1]
doallocate E setg E
eback 5 setp 6
ebuf [75] sgetc 3]
egptr 5] sgetn 4]
epptr 5] snextc 4]
gbump 8] sputbackc 4]
gptr 5] sputc 4]
in_avail E sputn E
out_waiting 3 stossc 4
overflow 9] sync BI]
pbackfail 9] unbuffered 8]
pbase E underflow E
pbump fr8]

streambuf Public and Protected Interfaces

streambuf has both a public interface and a protected interface. You should think
of these two interfaces as being two separate classes, because the interfaces are
used for different purposes. You should also treat streambuf as if it were defined
as a virtual base class. Do not create objects of the streambuf class itself. This
section describes the ways you can use the two interfaces of streambuf.

Although most virtual functions are declared public, you should overload them in

the classes that you derive from streambuf, and consider them part of the protected
interface.

© Copyright IBM Corp. 1996, 1998 71

Public Members of streambuf

What is the streambuf Public Interface?

You should not create objects of the streambuf public interface directly. Instead,
you should use streambuf through one of the predefined classes derived from
streambuf. You can use objects of filebuf, strstreambuf and stdiobuf (the
predefined classes derived from streambuf) directly as implementations of stream
buffers. The public interface consists of the streambuf public member functions
that can be called on objects of these predefined classes. streambuf itself does not
have any facilities for taking characters from the ultimate producer or sending them
to the ultimate consumer. The specialized member functions that handle the
interface with the ultimate producer and the ultimate consumer are defined in
filebuf, strstreambuf and stdiobuf.

Except for the destructor of the streambuf class, the virtual functions are described
as part of the protected interface.

What is the streambuf Protected Inteface?
Use the streambuf protected interface in the following ways:

¢ As a base class to implement your own specialized stream buffers. In this
sense you can think of streambuf as a virtual base class. The streambuf class
only provides the basic functions needed to manipulate characters in a stream
buffer. The filebuf, strstreambuf and stdiobuf classes contain functions that
handle the interface with the standard ultimate consumers and producers. If
you want to perform more sophisticated operations, or if you want to use other
ultimate consumers and ultimate producers, you will have to create your own
class derived from streambuf. You need to know about the protected interface
if you want to create a class derived from streambuf.

e Through a predefined class derived from streambuf.

There are two kinds of functions in the protected interface:

¢ Nonvirtual member functions, which manipulate streambuf objects at a level of
detail that would be inappropriate in the public interface.

e Virtual member functions, which permit classes that you derive from streambuf
to customize their operations depending on the ultimate producer or ultimate
consumer. When you define the virtual functions in your derived classes, you
must ensure that these definitions fulfill the conditions stated in the descriptions
of the virtual functions. If your definitions of the virtual functions do not fulfill
these conditions, objects of the derived class may have unspecified behavior.
Although most virtual functions are declared as public members, they are
described with the protected interface (with the exception of the destructor for
the streambuf class) because they are meant to be overridden in the classes
that you derive from streambuf.

Public Members of the streambuf Public Interface

Note: The following descriptions assume that the functions are called as part of an
object b of a class derived from streambuf. fb could, for example, be an object of
the class filebuf. It could also be an strstreambuf object or an stdiobuf object.

72 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Public Members of streambuf

Constructors for streambuf

streambuf () ;
streambuf (char* buffer, int len);
streambuf (char* buffer, int len, int c); // obsolete

There are three versions of the constructor for streambuf. The version with no
arguments constructs an empty stream buffer corresponding to an empty sequence.
The values returned by base(), eback(), ebuf(), egptr(), epptr(), pptr(), gptr()
and pbase() are initially all zero for this stream buffer.

The version with two arguments constructs an empty stream buffer of length /en
starting at the position pointed to by buffer.

The version of the constructor with three arguments is obsolete. It is included in
the 1/0O Stream Library for compatibility with the AT&T C++ Language System
Release 1.2.

Destructor for streambuf

in_avail

out_waiting

sbumpc

sgetc

virtual “streambuf();

The destructor for streambuf calls sync(). If a stream buffer has been set up and
jos::alloc is set, sync() deletes the stream buffer. See [sync” on page 81 for
more details on sync().

int in_avail();

in_avail() returns the number of characters that are available to be extracted from
the get area of fb. You can extract the number of characters equal to the value
that in_avail() returns without causing an error.

int out_waiting();

out_waiting() returns the number of characters that are in the put area waiting to
be sent to the ultimate consumer.

int sbumpc();

sbumpc () moves the get pointer past one character and returns the character that it
moved past. sbumpc() returns EOF if the get pointer is already at the end of the get
area.

int sgetc();

sgetc() returns the character after the get pointer without moving the get pointer
itself. If no character is available, sgetc() returns EOF.

Note: sgetc() does not change the position of the get pointer.

Chapter 11. streambuf Class 73

Public Members of streambuf

sgetn

snextc

sputbackc

sputc

sputn

stossc

int sgetn(char* ptr, int n);

sgetn() extracts the n characters following the get pointer, and copies them to the
area starting at the position pointed to by ptr. If there are fewer than n characters
following the get pointer, sgetn() takes the characters that are available and stores
them in the position pointed to by ptr. sgetn() repositions the get pointer following
the extracted characters and returns the number of extracted characters.

int snextc();

snextc() moves the get pointer forward one character and returns the character
following the new position of the get pointer. snextc() returns EOF if the get pointer
is at the end of the get area either before or after it is moved forward.

int sputbackc(char c);

sputbackc() moves the get pointer back one character. The get pointer may
simply move, or the ultimate producer may rearrange the internal data structures so
that the character c is saved. The argument ¢ must equal the character that
precedes the get pointer in the stream buffer. The effect of sputbackc() is
undefined if ¢ is not equal to the character before the get pointer. sputbackc()
returns EOF if an error occurs. The conditions that cause errors depend on the
derived class.

int sputc(int c¢);

sputc() stores the argument c after the put pointer and moves the put pointer past
the stored character. If there is enough space in the stream buffer, this will extend
the size of the put area. sputc() returns EOF if an error occurs. The conditions that
cause errors depend on the derived class.

int sputn(const charx s, int n);

sputn() stores the n characters starting at s after the put pointer and moves the put
pointer to the end of the series. sputn() returns the number of characters
successfully stored. If an error occurs, sputn() returns a value less than n.

void stossc();

stossc() moves the get pointer forward one character. If the get pointer is already
at the end of the get area, stossc() does not move it.

74 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Functions That Return Pointers

Protected Functions That Return Pointers

base

eback

ebuf

egptr

epptr

gptr

pbase

This section describes the functions in the protected interface of streambuf that
return pointers to boundaries of areas in a stream buffer.

Note: The following descriptions assume that the functions are called as part of an
object called dsb, which is an object of a class that is derived from streambuf.

char* base();

base() returns a pointer to the first byte of the stream buffer. The stream buffer
consists of the space between the pointer returned by base() and the pointer
returned by ebuf ().

char* eback();

eback () returns a pointer to the lower bound of the space available for the get area
of dsb. The space between the pointer returned by eback() and the pointer
returned by gptr() is available for putback. See [putback” on page 52| for details
on putback.

char* ebuf();

ebuf() returns a pointer to the byte after the last byte of the stream buffer.

char* egptr();

egptr() returns a pointer to the byte after the last byte of the get area of dsb.

charx epptr();

epptr() returns a pointer to the byte after the last byte of the put area of dsb.

char* gptr();

gptr() returns a pointer to the first byte of the get area of dsb. The get area
consists of the space between the pointer returned by gptr() and the pointer
returned by egptr(). Characters are extracted from the stream buffer beginning at
the character pointed to by gptr().

char* pbase();

pbase() returns a pointer to the beginning of the space available for the put area of
dsb. Characters between the pointer returned by pbase() and the pointer returned

by pptr() have been stored in the stream buffer, but they have not been consumed
by the ultimate consumer.

Chapter 11. streambuf Class 75

Functions That Set Pointers

pptr

char* pptr();

pptr() returns a pointer to the beginning of the put area of dsb. The put area
consists of the space between the pointer returned by pptr() and the pointer
returned by epptr().

Protected Functions That Set Pointers

setb

setg

setp

This section describes the functions in the protected interface of streambuf that set
the boundaries of areas in a stream buffer. The values of these boundaries are
returned by the functions described in |Protected Functions That Return Pointers’|

Note: The following descriptions assume that the functions are called as part of an
object called dsb which is an object of a class that is derived from streambuf.

void setb(char* startbuf, char* endbuf, int delbuf = 0);

setb() sets the beginning of the existing stream buffer (the pointer returned by
dsb.base()) to the position pointed to by startbuf, and sets the end of the stream
buffer (the pointer returned by dsb.ebuf()) to the position pointed to by endbuf.

If delbufis a nonzero value, the stream buffer will be deleted when seth() is called
again. If startbuf and endbuf are both equal to 0, no stream buffer is established.
If startbuf is not equal to 0, a stream buffer is established, even if endbufis less
than startbuf. If this is the case, the stream buffer has length zero.

void setg(char* startpbk, charx startget, char* endget);

setg() sets the beginning of the get area of dsb (the pointer returned by
dsb.gptr()) to startget, and sets the end of the get area (the pointer returned by
dsb.egptr()) to endget. setg() also sets the beginning of the area available for
putback (the pointer returned by dsb.eback()) to startpbk.

void setp(char* startput, char* endput);

setp()sets the spaces available for the put area. Both the start (pbase()) and the
beginning (pptr()) of the put area are set to the value startput. See
in the IBM Open Class Library User's Guide for details on where each of
these functions points to within the stream buffer.

setp() sets the beginning of the put area of dsb (the pointer returned by
dsb.pptr()) to the position pointed to by startput, and sets the end of the put area
(the pointer returned by dsb.epptr()) to the position pointed to by endput.

76 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Other Nonvirtual Member Functions

Other Nonvirtual Protected Member Functions

allocate

blen

dbp

This section describes the remaining nonvirtual member functions that make up the
protected interface of streambuf.

Note: The following descriptions assume that the functions are called as part of an
object called dsb which is an object of a class that is derived from streambuf.

int allocate();

allocate() attempts to set up a stream buffer. allocate() returns the following
values:

e 0, if dsb already has a stream buffer set up (that is, dsb->base() returns a
nonzero value), or if unbuffered() returns a nonzero value. (See
for more details.) allocate() does not do any further processing
if it returns 0.

e 1,if allocate() does set up a stream buffer.

e EOF, if the attempt to allocate space for the stream buffer fails.

allocate() is not called by any other nonvirtual member function of streambuf.

int blen() const;

blen() returns the length (in bytes) of the stream buffer.

void dbp();

dbp() writes to standard output the values returned by the following functions:

e base()
e eback()
e ebuf()
* egptr()
* epptr()
e gptr()
e pptr()

dbp() is intended for debugging. streambuf does not specify anything about the
form of the output. dbp() is considered part of the protected interface because the
information that it prints can only be understood in relation to that interface. It is
declared as a public function so that it can be called anywhere during debugging.

The following example shows the output produced by dbp() when it is called as
part of a filebuf object:

#include <iostream.h>
void main()

{

cout << "Here is some sample output." << endl;
cout.rdbuf()->dbp();
}

If you compile and run this example, your output will look like this:

Chapter 11. streambuf Class 77

Virtual Member Functions

gbump

pbump

unbuffered

Here is some sample output.
buf at 0x20048100, base=0x20049000, ebuf=0x20049400,
pptr=0x20049000, epptr=0x20049400, eback=0x0, gptr=0x0, egptr=0x0

void gbump(int offset);

gbump () offsets the beginning of the get area by the value of offset. The value of
offset can be positive or negative. gbump() does not check to see if the new value
returned by gptr() is valid.

The beginning of the get area is equal to the value returned by gptr(). See
for more details on gptr().

void pbump(int offset);

pbump () offsets the beginning of the put area by the value of offset. The value of
offset can be positive or negative. pbump() does not check to see if the new value
returned by pptr() is valid.

The beginning of the put area is equal to the value returned by pptr(). See
for more details on pptr().

int unbuffered() const;
void unbuffered(int buffstate);

unbuffered() manipulates the private streambuf variable called the buffering state.
If the buffering state is nonzero, a call to allocate() does not set up a stream
buffer. See ['allocate” on page 77 for more details on allocate().

There are two versions of unbuffered(). The version that takes no arguments
returns the current value of the buffering state. The version that takes an
argument, buffstate, changes the value of the buffering state to buffstate.

Protected Virtual Member Functions

This section describes the virtual functions in the protected interface of streambuf.
Although these virtual functions have default definitions in streambuf, they can be
overridden in classes that are derived from streambuf. The following descriptions
state the default definition of each function and the expected behavior for these
functions in classes where they are overridden.

Note: The following descriptions assume that the functions are called as part of an
object called dsb, which is an object of a class that is derived from streambuf.

78 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

doallocate

overflow

pbackfail

Virtual Member Functions

virtual int doallocate();

doallocate() is called when allocate() determines that space is needed for a
stream buffer. See [‘allocate” on page 77 for more details on allocate().

The default definition of doallocate() attempts to allocate space for a stream buffer
using the operator new.

If you define your own version of doallocate(), it must call setb() to provide space
for a stream buffer or return EOF if it cannot allocate space. doallocate() should
only be called if unbuffered() and base() return zero.

In your own version of doallocate(), you provide the size of the buffer for your
constructor. Assign the buffer size you want to to a variable using a #define
statement. This variable can then be used in the constructor for your doallocate()
function to define the size of the buffer. See [unbuffered” on page 78 for more
details on unbuffered(). See ['base” on page 75 for more details on base().

virtual int overflow(int ¢ = EOF);

overflow() is called when the put area is full, and an attempt is made to store
another character in it. overflow() may be called at other times.

The default definition of overflow() is compatible with the AT&T C++ Language
System Release 1.2 version of the stream package, but it is not considered part of
the current I1/0 Stream Library. Thus, the default definition of overflow() should
not be used, and every class derived from streambuf should define overflow()
itself.

The definition of overflow() in your classes derived from streambuf should cause
the ultimate consumer to consume the characters in the put area, call setp() to
establish a new put area, and store the argument c in the put area if ¢ does not
equal EOF. overflow() should return EOF if an error occurs, and it should return a
value not equal to EOF otherwise.

virtual int pbackfail(int c);

pbackfail() is called when both of the following conditions are true:

e An attempt has been made to put back a character.

e There is no room in the putback area. The pointer returned by eback() equals
the pointer returned by gptr(). See ['‘eback” on page 75 for more details on
eback(). See [gptr” on page 75 for more details on gptr().

The default definition of pbackfail() returns EQOF.

If you define pbackfail() in your own classes, your definition of pbackfail()
should attempt to deal with the full putback area by, for instance, repositioning the
get pointer of the ultimate producer. If this is possible, pbackfail() should return
the argument c. If not, pbackfail() should return EOF.

Chapter 11. streambuf Class 79

Virtual Member Functions

seekoff

seekpos

virtual streampos seekoff(streamoff so, seek dir dir,
int mode = ios::in|ios::out);

seekoff () repositions the get or put pointer of the ultimate producer or ultimate
consumer. seekoff() does not change the values returned by dsb.gptr() or
dsb.pptr().

The default definition of seekoff() returns EOF.

If you define your own seekoff() function, it should return EOF if the derived class

does not support repositioning. If the class does support repositioning, seekoff ()

should return the new position of the affected pointer, or EOF if an error occurs. so
is an offset from a position in the ultimate producer or ultimate consumer. diris a

position in the ultimate producer or ultimate consumer. dir can have the following

values:

e ios::beg: the beginning of the ultimate producer or ultimate consumer
e ios::cur: the current position in the ultimate producer or ultimate consumer
e ios::end: the end of the ultimate producer or ultimate consumer

The new position of the affected pointer is the position specified by dir offset by the
value of so. If you derive your own classes from streambuf, certain values of dir
may not be valid depending on the nature of the ultimate consumer or producer.

If ios::in is set in mode, the seekoff() should modify the get pointer. If ios::out
is set in mode, the put pointer should be modified. If both ios::in and jos::out
are set, both the get pointer and the put pointer should be modified.

virtual streampos seekpos(streampos pos,
int mode = ios::in|ios::out);

seekpos () repositions the get or put pointer of the ultimate producer or ultimate
consumer to the position pos. If ios::in is set in mode, the get pointer is
repositioned. If ios::out is set in mode, the put pointer is repositioned. If both
ios::in and ios::out are set, both the get pointer and the put pointer are affected.
seekpos () does not change the values returned by dsb.gptr() or dsb.pptr().

The default definition of seekpos() returns the return value of the function
seekoff(streamoff(pos), ios::beg, mode). Thus, if you want to define seeking
operations in a class derived from streambuf, you can define seekoff() and use
the default definition of seekpos ().

If you define seekpos() in a class derived from streambuf, seekpos() should return
EOF if the class does not support repositioning or if pos points to a position equal to
or greater than the end of the stream. If not, seekpos() should return pos.

80 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

setbuf

sync

underflow

Virtual Member Functions

virtual streambuf* setbuf(char* ptr, int len);
streambuf* setbuf(unsigned char* ptr, int len);
streambuf* setbuf(char* ptr, int len, int count); // obsolete

There are three versions of setbuf(). The two versions that take two arguments
set up a stream buffer consisting of the array of bytes starting at ptr with length /en.

This function is different from setb(). setb() sets pointers to an existing stream
buffer. setbuf(), however, creates the stream buffer. The version of setbuf() that
takes three arguments is obsolete. The I/O Stream Library includes it to be
compatible with AT&T C++ Language System Release 1.2.

The default definition of setbuf() sets up the stream buffer if the streambuf object
does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf() can either
accept or ignore a request for an unbuffered streambuf object. The call to
setbuf() is a request for an unbuffered streambuf object if ptr equals 0 or len
equals 0. setbuf() should return a pointer to sb if it accepts the request, and 0
otherwise.

virtual int sync();

sync() synchronizes the stream buffer with the ultimate producer or the ultimate
consumer.

The default definition of sync() returns 0 if either of the following conditions is true:

e The get area is empty and there are no characters waiting to go to the ultimate
consumer
* No stream buffer has been allocated for sb.

Otherwise, sync() returns EOF.

If you define sync() in a class derived from streambuf, it should send any
characters that are stored in the put area to the ultimate consumer, and (if possible)
send any characters that are waiting in the get area back to the ultimate producer.
When sync() returns, both the put area and the get area should be empty. sync()
should return EOF if an error occurs.

virtual int underflow();

underflow() takes characters from the ultimate producer and puts them in the get
area.

The default definition of underflow() is compatible with the AT&T C++ Language
System Release 1.2 version version of the stream package, but it is not considered
part of the current I/O Stream Library. Thus, the default definition of underflow()
should not be used, and every class derived from streambuf should define
underflow() itself.

Chapter 11. streambuf Class 81

Virtual Member Functions

If you define underflow() in a class derived from streambuf, it should return the
first character in the get area if the get area is not empty. If the get area is empty,
underflow() should create a get area that is not empty and return the next
character. If no more characters are available in the ultimate producer,
underflow() should return EOF and leave the get area empty.

82 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

strstreambase

Chapter 12. strstream, istrstream, and ostrstream Classes

This chapter describes istrstream, ostrsteam, and strstream, the classes that
specialize istream, ostream, and iostream (respectively) to use strstreambuf
objects for stream buffers. These classes are called the array stream buffer
classes because their stream buffers are arrays of bytes in memory. You can use
these classes to perform input and output with strings in memory.

This chapter also describes strstreambase, the class from which the array stream
buffer classes are derived.

Derivation
ios
istream
ostream
iostream
strstream
ios
istream
istrstream
ios
ostream
ostrstream

Header File
strstream, istrstream, and ostrstream are declared in strstrea.h.

Members
The following members are provided for strstream, istrstream, and ostrstream:

ostrstream destructor
strstream constructor

str (strstream)
str (ostrstream)

Method Page Method Page
istrstream constructors strstream destructor
istrstream destructor pcount
ostrstream constructors rdbuf
ﬁ
B4|

SEIESE

Public Members of strstreambase

Note: The strstreambase class is an internal class that provides common
functions for the classes that are derived from it. Do not use the strstreambase
class directly. The following description is provided so that you can use the
function as part of istrstream, ostrsteam, and strstream objects.

rdbuf
strstreambuf* rdbuf();

rdbuf () returns a pointer to the stream buffer that the strstreambase object is
attached to.

© Copyright IBM Corp. 1996, 1998 83

istrstream

Public Members of strstream

Constructor for strstream

strstream();

strstream(char* cp, int len, int mode);
strstream(signed char* cp, int len, int mode);
strstream(unsigned char* cp, int len, int mode);

There are two versions of the strstream constructor. The version that takes no
arguments specifies that space is allocated dynamically for the stream buffer that is
attached to the strstream object.

The version of the strstream constructor that takes three arguments specifies that
characters should be extracted and inserted into the array of bytes that starts at the
position pointed to by cp with a length of len bytes. If ios::ate or ios::app is set
in mode, cp points to a null-terminated string and insertions begin at the null
character. Otherwise, insertions begin at the position pointed to by ¢p. You can
use the istream::seekg() function to reposition the get pointer anywhere in this
array. See ['seekg” on page 51| for more details on seekg().

Destructor for strstream

str

“strstream();

The strstream destructor frees the space allocated by the strstream constructor.

charx str();

str() returns a pointer to the stream buffer attached to the strstream and calls
freeze() (see [freeze” on page 88) with a nonzero value to prevent the stream
buffer from being deleted. If the stream buffer was constructed with an explicit
array, the value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, cp points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the strstream object. After str() has been called, the calling
application has responsibility for the dynamically allocated stream buffer.

Note: If your application calls str() without calling freeze() with a nonzero
argument (to unfreeze the strstream), or without explicitly deleting the array of
characters returned by the call to str(), the array of characters will not be
deallocated by the strstream when it is destroyed. This situation is a potential
source of a memory leak.

Public Members of istrstream

Constructors for istrstream

istrstream(char* cp);
istrstream(signed char* cp);
istrstream(unsigned char* cp);
istrstream(const charx cp);
istrstream(const signed char* cp);
istrstream(const unsigned charx* cp);

84 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

ostrstream

istrstream(char* cp, int len);
istrstream(signed char* cp, int len);
istrstream(unsigned char* cp, int len);
istrstream(const charx cp, int len);
istrstream(const signed char* cp, int len);
istrstream(const unsigned char* cp, int len);

The versions of the istrstream constructor that take one argument specify that
characters should be extracted from the null-terminated string that is pointed to by
cp. You can use the istream::seekg() function to reposition the get pointer in this
string. See ['seekg” on page 51 for more details on seekg().

The versions of the istrstream constructor that take two arguments specify that
characters should be extracted from the array of bytes that starts at the position
pointed to by cp and has a length of len bytes. You can use istream::seekg() to
reposition the get pointer anywhere in this array.

Destructor for istrstream
“istrstream();

The istrstream destructor frees space that was allocated by the istrstream
constructor.

Public Members of ostrstream

Constructors for ostrstream
ostrstream();
ostrstream(char* cp, int len, int mode = ios::out);
ostrstream(signed char* cp, int len, int mode = ios::out);
ostrstream(unsigned char* cp, int len, int mode = ios::out);

The version of the ostrsteam constructor that takes no arguments specifies that
space is allocated dynamically for the stream buffer that is attached to the
ostrsteam object.

The versions of the ostrsteam constructor that take three arguments specify that
the stream buffer that is attached to the ostrsteam object consists of an array that
starts at the position pointed to by cp with a length of len bytes. If ios::ate or
ios::app is set in mode, cp points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position pointed to by cp.

You can use the ostream::seekp() function to reposition the put pointer. See
[seekg” on page 5] for more details on seekg().

Destructor for ostrstream
“ostrstream();

The ostrsteam destructor frees space allocated by the ostrsteam constructor. The
destructor also writes a null byte to the stream buffer to terminate the stream.

Chapter 12. strstream, istrstream, and ostrstream Classes 85

ostrstream

str

pcount

char* str();

str() returns a pointer to the stream buffer attached to the ostrsteam and calls
freeze() (see [freeze” on page 88) with a nonzero value to prevent the stream
buffer from being deleted. If the stream buffer was constructed with an explicit
array, the value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, c¢p points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the ostrsteam object. After str() has been called, the calling
application has responsibility for the dynamically allocated stream buffer.

int pcount();

pcount () returns the number of bytes that have been stored in the stream buffer.
pcount () is mainly useful when binary data has been stored and the stream buffer
attached to the ostrsteam object is not a null-terminated string. pcount() returns
the total number of bytes, not just the number of bytes up to the first null character.

86 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

strstreambuf Class

Chapter 13. strstreambuf Class

This chapter describes the strstreambuf class, the class that specializes streambuf
to use an array of bytes in memory as the ultimate producer or ultimate consumer.

Derivation
streambuf
strstreambuf
Header File
strstreambuf is declared in strstream.h.
Members

The following members are provided for strstreambuf:

Method Page Method Page
strstreambuf constructors seekoff @
strstreambuf destructors setbuf po]
doallocate str B9]
freeze underflow po]
overflow

Public Members of strstreambuf

Constructors for strstreambuf
strstreambuf();
strstreambuf (int bufsize);
strstreambuf(void* (*alloc) (long), void(xfree) (void*));
strstreambuf(char* sp, int len, charx tp);
strstreambuf(signed char* sp, int len, signed char* tp);
strstreambuf (unsigned char* sp, int len, unsigned char* tp);

The first version of the strstreambuf constructor takes no arguments and
constructs an empty strstreambuf object in dynamic mode. Space will be allocated
automatically to accommodate the characters that are put into the strstreambuf
object. This space will be allocated using the operator new and deallocated using
the operator delete. The characters that are already stored by the strstreambuf
object may have to be copied when new space is allocated. If you know you are
going to insert many characters into an strstreambuf object, you can give the 1/O
Stream Library an estimate of the size of the object before you create it by calling
strstreambuf::setbuf(). See [setbuf’ on page 90 for more details on setbuf().

The second version of the strstreambuf constructor takes one argument and
constructs an empty strstreambuf object in dynamic mode. The initial size of the
stream buffer will be at least bufsize bytes.

The third version of the strstreambuf constructor takes two arguments and creates
an empty strstreambuf object in dynamic mode. alloc is a pointer to the function

that is used to allocate space. alloc is passed a long value that equals the nhumber
of bytes that it is supposed to allocate. If the value of alloc is 0, the operator new is

© Copyright IBM Corp. 1996, 1998 87

strstreambuf Class

used to allocate space. free is a pointer to the function that is used to free space.
free is passed an argument that is a pointer to the array of bytes that alloc
allocated. If free has a value of 0, the operator delete is used to free space.

The fourth, fifth, and sixth versions of the strstreambuf constructor take three
arguments and construct a strstreambuf object with a stream buffer that begins at
the position pointed to by sp. The nature of the stream buffer depends on the
value of len:

e If lenis positive, the len bytes following the position pointed to by sp make up
the stream buffer.

e If len equals O, sp points to the beginning of a null-terminated string, and the
bytes of that string, excluding the terminating null character, will make up the
stream buffer.

e If len is negative, the stream buffer has an indefinite length. The get pointer of
the stream buffer is initialized to sp, and the put pointer is initialized to tp.

Regardless of the value of len, if the value of tp is 0, the get area will include the
entire stream buffer, and insertions will cause errors.

Destructor for strstreambuf

doallocate

freeze

“strstreambuf();

If freeze() has not been called for the strstreambuf object and a stream buffer is
associated with the strstreambuf object, the strstreambuf destructor frees the
space allocated by the strstreambuf constructor. The effect of the destructor
depends on the constructor used to create the strstreambuf object:

* |f you created the strstreambuf object using the constructor that takes two
pointers to functions as arguments (see [‘Constructors for strstreambuf’ on
bage 87lfor more details), the destructor frees the space allocated by the
destructor by calling the function pointed to by the second argument to the
constructor.

e If you created the strstreambuf object using any of the other constructors, the
destructor calls the delete operator to free the space allocated by the
constructor.

virtual int doallocate();

doallocate() attempts to allocate space for a stream buffer. If you created the
strstreambuf object using the constructor that takes two pointers to functions as
arguments (see [‘Constructors for strstreambuf’ on page 87 for more details),
doallocate() allocates space for the stream buffer by calling the function pointed to
by the first argument to the constructor. Otherwise, doallocate() calls the operator
new to allocate space for the stream buffer.

void freeze(int n=1);

freeze() controls whether the array that makes up a stream buffer can be deleted
automatically. If n has a nonzero value, the array is not deleted automatically. If n
equals 0, the array is deleted automatically when more space is needed or when
the strstreambuf object is deleted. If you call freeze() with a nonzero argument

88 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

overflow

str

seekoff

strstreambuf Class

for a strstreambuf object that was allocated in dynamic mode, any attempts to put
characters in the stream buffer may result in errors. Therefore, you should avoid
insertions to such stream buffers because the results are unpredictable. However,
if you have a “frozen” stream buffer and you call freeze() with an argument equal
to 0, you can put characters in the stream buffer again.

Only space that is acquired through dynamic allocation is ever freed.

virtual int overflow(int c);

overflow() causes the ultimate consumer to consume the characters in the put
area and calls setp() to establish a new put area. The argument c is stored in the
new put area if ¢ is not equal to EOF.

char* str();

str() returns a pointer to the first character in the stream buffer and calls freeze()
with a nonzero argument. Any attempts to put characters in the stream buffer may
result in errors. If the strstreambuf object was created with an explicit array (that
is, the strstreambuf constructor with three arguments was used), str() returns a
pointer to that array. If the strstreambuf object was created in dynamic mode and
nothing is stored in the array, str() may return 0.

virtual streampos seekoff(
streamoff so, ios::seek dir dir, int mode);

seekoff() repositions the get or put pointer in the array of bytes in memory that
serves as the ultimate producer or the ultimate consumer.

If you constructed the strstreambuf in dynamic mode (see [‘Constructors for
Btrstreambuf” on page 87), the results of seekoff() are unpredictable. Therefore,
do not use seekoff() with an strstreambuf object that you created in dynamic
mode.

If you did not construct the strstreambuf object in dynamic mode, seekoff ()
attempts to reposition the get pointer or the put pointer, depending on the value of
mode. If ios::in is setin mode, seekoff() repositions the get pointer. If ios::out
is set in mode, seekoff() repositions the put pointer. If both ios::in and ios::out
are set, seekoff () repositions both pointers.

seekoff () attempts to reposition the affected pointer to the value of dir + so. dir
can have the following values:

e ios::beg: the beginning of the array in memory
e jos::cur: the current position in the array in memory
e ios::end: the end of the array in memory

If the value of dir + so is equal to or greater than the end of the array, the value is

not valid and seekoff() returns EOF. Otherwise, seekoff() sets the affected
pointer to this value and returns this value.

Chapter 13. strstreambuf Class 89

strstreambuf Class

setbuf

underflow

virtual streambuf* setbuf(0, int bufsize);

setbuf() records bufsize. The next time that the strstreambuf object dynamically
allocates a stream buffer, the stream buffer is at least bufsize bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call it with the first
argument equal to 0.

virtual int underflow();

If the get area is not empty, underflow() returns the first character in the get area.
If the get area is empty, underflow() creates a new get area that is not empty and
returns the first character. If no more characters are available in the ultimate
producer, underflow() returns EOF and leaves the get area empty.

90 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collections

Part 3. Flat Collection Classes

This part contains detailed descriptions of the flat Collection Classes.

Chapter 14, “Introduction to Flat Collections” on page 93|describes the common
member functions for flat collections. Subsequent chapters describe individual
collection classes.

For information on the organization of chapters that describe individual abstract
data types, see [Format of Class Descriptions” on page 94.

© Copyright IBM Corp. 1996, 1998 91

Flat Collections

92 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collections

Chapter 14. Introduction to Flat Collections

This chapter defines some of the terms used in describing the Collection Class
Library classes and functions, describes the format of chapters that describe
individual collections, and describes some types defined by the Collection Class

Library.

Terms Used

CLASS_BASE_NAME

CLASS_NAME

equal element

given ...

iteration order

For constructor and destructor declarations, this term is used in
place of the default implementation variant of a class. For
example, the constructor CLASS BASE_NAME(...) for a Set, is
really ISet(...), because the default implementation variant of a
set is ISet.

For member function declarations, this term is used in place of
the class with template arguments. For example, if you want to
use:

IBoolean operator != (CLASS NAME const& collection) const;

for a Set as B* Tree, substitute ISetAsBstTree<ElementName> for
CLASS_NAME.

Refers to equality of elements as defined by the equality
operation or ordering relation provided for the element type
(Chapter 9, “Element Functions and Key-Type Functions] in the
IBM Open Class Library User's Guide describes the purpose of
the equality operation and ordering relation.) Where both equality
operation and ordering relation are provided, the Collection Class
Library may use either to determine element equality.

Refers to an argument of the described function, such as given
element, given key, or given collection.

The order in which elements are visited in al1ElementsDo() and
setToNext () or setToPrevious().

In ordered collections, the element at position 1 will be visited
first, then the element at position 2, and so on. Sorted
collections, in particular, are visited following the ordering relation
provided for the element type.

In collections that are not ordered, the elements are visited in an
arbitrary order. Each element is visited exactly once.

positioning property

© Copyright IBM Corp. 1996, 1998

The property of an element that is used to position the element in
a collection. For key collections, the positioning property is key
equality. For nonsequential collections with element equality, the
positioning property is element equality. Other collections have
no positioning property.

93

Format of Class Descriptions

same key Refers to equality of keys as defined by the equality operation or
ordering relation provided for the key type. Where both equality
operation and ordering relation are provided, the Collection Class
Library may use either to determine key equality.

this collection The collection to which a function is applied. Contrast with the
given collection, which is an argument supplied to a function.
The collection is synonymous with this collection.

undefined cursor
A cursor that may or may not be valid; there is no way to know
whether the cursor is valid or not. An undefined cursor, even if it
remains valid, may refer to a different element than before, or
even to no element of the collection. Do not use cursors, once
they become undefined, in functions that require the cursor to
point to an element of the collection.

Format of Class Descriptions

Each chapter describing one or more Collection Classes consists of the following
components:

e The chapter title, which usually refers to the kind of collection being discussed.

» A description of the collection's characteristics, such as whether the collection
is sorted or unsorted, or whether the type and value of the elements are
relevant.

* A textual example of using the collection in an application.
* Information on the class's derivation.

¢ A section on class implementation variants that provides some or all of the
following information:

— The default implementation, and the classes that you can use to alter the
way the collection is implemented.

— The names of the header files that correspond to particular implementation
variants, so that you can include those files in your source code to make
use of the implementation variants.

* A section on template arguments and required parameters that provides the
following information:

— Template arguments, which identify what parameters you must supply
when you instantiate a particular implementation variant.

— Required functions, which are functions that must be provided by the
element type or key type you use for any implementation variant.

Optionally, a coding example to show you how to use the collection.

Required Functions

As described in “Element Functions and Key-Type Functions” in the IBM Open
Class Library User's Guide, the Collection Classes require that you provide certain
functions for the element type and key type. These functions are required by
member functions of the Collection Class Library to manipulate elements and keys.
The functions you must provide depend on the abstraction you use and on the
implementation variant you choose. For example, you will usually need to provide

94 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Types Defined for the Collection Class Library

a key access for all keyed abstractions, and for a hash table implementation you
will need to provide a hash function.

Types Defined for the Collection Class Library

The following types are defined in iglobals.h or in header files included by
iglobals.h:

typedef int IBoolean;

enum {
false
False
true =
True =

}s

-

-

1}
_—_0 O
-

typedef unsigned Tong INumber;
typedef unsigned Tong IPosition;

enum ITreelterationOrder {IPreorder, IPostorder}; // for n-ary tree only

Note: If your environment defines another boolean type, use IBoolean wherever
you want to refer to Boolean in the context of the Collection Class Library.

Chapter 14. Introduction to Flat Collections 95

Types Defined for the Collection Class Library

96 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Chapter 15. Flat Collection Member Functions

Constructor

Copy Constructor

Destructor

operator!=

Each flat collection implements some or all of the member functions described in
this chapter. Chapters on individual classes identify which functions are
implemented for those classes.

CLASS_BASE_NAME (INumber numberOfElements = 100) ;

Constructs a collection. numberOfElements is the estimated maximum number of
elements contained in the collection. The collection is unbounded and is initially
empty. If the estimated maximum is exceeded, the collection is automatically
enlarged.

Note: The collection constructor does not define whether any elements are
constructed when the collection is constructed. For some classes, the element's
default constructor may be invoked when the collection's constructor is invoked.
This happens if a tabular or a diluted sequence implementation variant is used for a
collection. The element's default constructor is used to allocate the required
storage and initialize the elements. Therefore, a default constructor must be
available for elements in such cases.

Exception: 10utOfMemory

CLASS_BASE_NAME (CLASS _NAME const& collection) ;

Constructs a collection and copies all elements from the given collection into the
collection as described for [addAllFrom” on page 99,

Exception: 10utOfMemory

“CLASS_BASE_NAME () ;

Removes all elements from the collection. Destructors are called for all elements
contained in the collection and for elements that have been constructed in advance.

Side Effects: All cursors of the collection become undefined.

IBoolean operator!= (CLASS NAME const& collection) const;

Returns true if the given collection is not equal to the collection. For a definition of
equality for collections, see ['operator=="on page 98§.

© Copyright IBM Corp. 1996, 1998 97

Flat Collection Member Functions

operator=

operator==

add

CLASS _NAME& operator= (CLASS NAME const& collection) ;

Copies the given collection to the collection. Removes all elements from the
collection and adds the elements from the given collection as described for
[addAllFrom” on page 99.

Preconditions

« If the collection is bounded, numberOfETements () of the given collection must be
less than maxNumberOfElements() of this collection.

Side Effects

e All cursors of this collection become undefined.
» Collection classes supporting notification send a modifyId notification.

Return Value: Returns a reference to the collection.

Exceptions

e I0utOfMemory
e IFullException, if the collection is bounded

IBoolean operator== (CLASS NAME const& collection) const;

Returns true if the given collection is equal to the collection. Two collections are
equal if the number of elements in each collection is the same, and if the condition
for the collection is described in the following list:

Type of Collection Condition

Unique Elements If the collections have unique elements, any element that
occurs in one collection must occur in the other collection.

Non-Unique Elements If an element has n occurrences in one collection, it must
have exactly n occurrences in the other collection.

Sequential The ordering of the elements is the same for both
collections.

IBoolean add (Element const& element) ;

IBoolean add (Element const& element,
ICursord& cursor) ;

If the collection is unique (with respect to elements or keys) and the element or key
is already contained in the collection, sets the cursor to the existing element in the
collection without adding the element. Otherwise, it adds the element to the
collection and sets the cursor to the added element. In sequential collections, the
given element is added as the last element. In sorted collections, the element is
added at a position determined by the element or key value. Adding an element
will either use the element's copy constructor or the assignment operator provided
for the element type, depending on the implementation variant you choose. See
[contains” on page 10€ for the definition of element or key containment.

98 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Preconditions

e The cursor must belong to the collection.

 |If the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

 |f the collection is bounded and nonunique,
(numberOfETements() < maxNumberOfElements()).

 |If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

e |f an element was added, all cursors of this collection, except the given cursor,
become undefined.

e |If an element was added, collection classes supporting notifications send an
addId notification.

Return Value: Returns true if the element was added.

Exceptions

e ITQutOfMemory

e ICursorInvalidException

e IFullException, if the collection is bounded

e IKeyAlreadyExistsException, if the collection is a map or a sorted map

addAllFrom
void addA11From (CLASS NAME const& collection) ;

void addA11From (
IACollection <Element> const& collection) ;

Adds (copies) all elements of the given collection to the collection. The elements
are added in the iteration order of the given collection. The contents of the
elements, not the pointers to the elements, are copied. The elements are added
according to the definition of add for this collection. The given collection is not
changed.

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual add operation:

 |f the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

¢ |f the collection is bounded and nonunique,
(numberOfElements () < maxNumberOfElements()).

* If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

e [f any elements were added, all cursors of this collection become undefined.
e |If any elements were added, collection classes supporting notifications send a
modifyId notification.

Chapter 15. Flat Collection Member Functions 99

Flat Collection Member Functions

addAsFirst

addAsLast

Exceptions

e I0utOfMemory

e TIdenticalCollectionException

e IFullException, if the collection is bounded

e IKeyAlreadyExistsException, if the collection is a map or a sorted map

void addAsFirst (Element const& element) ;
void addAsFirst (Element const& element, ICursor& cursor) ;

Adds the element to the collection as the first element in sequential order. Sets the
cursor to the added element.
Preconditions

e The cursor must belong to the collection.

* If the collection is bounded, (number0fETements() < maxNumberOfElements()).
Side Effects

e All cursors of this collection, except the given cursor, become undefined.
e |f an element was added, collection classes supporting notifications send an
addId notification.
Exceptions

e ICursorInvalidException
e I0utOfMemory
e IFullException, if the collection is bounded

void addAsLast (Element const& element) ;
void addAsLast (Element const& element, ICursor& cursor) ;

Adds the element to the collection as the last element in sequential order. Sets the
cursor to the added element.
Preconditions

e The cursor must belong to the collection.

« If the collection is bounded, (numberOfETements() < maxNumberOfElements()).
Side Effects

e All cursors of this collection, except the given cursor, become undefined.
e |If an element was added, collection classes supporting notifications send an
addId notification.

Exceptions

e ICursorInvalidException
e ITQutOfMemory
e IFullException, if the collection is bounded

100 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

addAsNext

addAsPrevious

addAtPosition

Flat Collection Member Functions

void addAsNext (Element const& element, ICursor& cursor) ;

Adds the element to the collection as the element following element pointed to by
the cursor. Sets the cursor to the added element.
Preconditions

e The cursor must belong to the collection and must point to an element of the
collection.
« If the collection is bounded, (numberOfETements() < maxNumberOfElements()).

Side Effects

e All cursors of this collection, except the given cursor, become undefined.
e |If an element was added, collection classes supporting notifications send an
addId notification.

Exceptions

e I0utOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

void addAsPrevious (Element const& element, ICursor& cursor) ;

Adds the element to the collection as the element preceding the element pointed to
by the cursor. Sets the cursor to the added element.
Preconditions

e The cursor must belong to the collection and must point to an element of the
collection.
* If the collection is bounded, (number0fETements() < maxNumberOfElements()).

Side Effects

e All cursors of this collection, except the given cursor, become undefined.
e |f an element was added, collection classes supporting notifications send an
addId notification.

Exceptions

e ITQutOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

void addAtPosition (IPosition position, Element const& element) ;

void addAtPosition (IPosition position, Element const& element,
ICursord& cursor) ;

Adds the element at the given position to the collection, and sets the cursor to the
added element. If an element exists at the given position, the new element is
added as the element preceding the existing element.

Chapter 15. Flat Collection Member Functions 101

Flat Collection Member Functions

addDifference

Preconditions

e The cursor must belong to the collection.
* (1 < position = numberOfElements + 1).
e If the collection is bounded, (numberOfETements() < maxNumberOfElements()).

Side Effects

e All cursors of this collection, except the given cursor, become undefined.
e |f an element was added, collection classes supporting notifications send an
addId notification.

Exceptions

e I0utOfMemory

e ICursorInvalidException

e IPositionInvalidException

e IFullException, if the collection is bounded

void addDifference (CLASS_NAME const& collectionl,
CLASS_NAME const& collection?) ;

Creates the difference between the two given collections, and adds this difference
to the collection. The contents of the added elements, not the pointers to those
elements, are copied.

For a definition of the difference between two collections, see ['differenceWith” o

DaQ 3.
Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

 |If the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

 |f the collection is bounded and nonunique,
(numberOfETements() < maxNumberOfElements()).

 |If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

 If any elements were added, all cursors of this collection become undefined.
e |f any elements were added, collection classes supporting notifications send a
modifyId notification.

Exceptions

e ITQutOfMemory
e IFullException, if the collection is bounded
e IKeyAlreadyExistsException, if the collection is a map or a sorted map

102 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

addIntersection
void addIntersection (CLASS_NAME const& collectionl,
CLASS_NAME const& collection?) ;

Creates the intersection of the two given collections, and adds this intersection to
the collection. The contents of the added elements, not the pointers to those
elements, are copied.

For a definition of the intersection of two collections, see [intersectionWith” on

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

 |If the collection is bounded and unique, the element or key must exist or
(numberOfElements() < maxNumberOfElements()).

 |f the collection is bounded and nonunique,
(numberOfETements() < maxNumberOfElements()).

 |If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

 If any elements were added, all cursors of this collection become undefined.
¢ |f any elements were added, collection classes supporting notifications send a
modifyId notification.

Exceptions

e TQutOfMemory
e IFullException, if the collection is bounded
e IKeyAlreadyExistsException, if the collection is a map or a sorted map

addOrReplaceElementWithKey
IBoolean addOrReplaceElementWithKey (
Element const& element);

IBoolean addOrReplaceElementWithKey (
Element const& element, ICursord cursor) ;

If an element is contained in the collection where the key is equal to the key of the
given element, sets the cursor to this element in the collection and replaces it with

the given element. Otherwise, it adds the given element to the collection, and sets
the cursor to the added element. If the given element is added, the contents of the
element, not a pointer to it, is added.

Preconditions

e The cursor must belong to the collection.
* |If the collection is bounded, an element with the given key must be contained in
the collection, or (numberOfETements() < maxNumberOfElements()).

Chapter 15. Flat Collection Member Functions 103

Flat Collection Member Functions

Side Effects

e |f the element was added, all cursors of this collection, except the given cursor,
become undefined.

» |f the element was added, collection classes supporting notifications send a
replaceld notification.

Return Value: Returns true if the element was added. Returns false if the
element was replaced.

Exceptions

e ITQutOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

addUnion
void addUnion (CLASS_NAME const& collectionl,
CLASS _NAME const& collection?) ;

Creates the union of the two given collections, and adds this union to the collection.
The contents of the added elements, not the pointers to those elements, are
copied.

For a definition of the union of two collections, see ['unionWith” on page 124

Preconditions: Because the elements are added one by one, the following
preconditions are tested for each individual addition.

¢ |f the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

 |If the collection is bounded and nonunique,
(numberOfETements() < maxNumberOfElements()).

¢ |f the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

» If any elements were added, all cursors of this collection become undefined.
e |f any elements were added, collection classes supporting notifications send a
modifyId notification.

Exceptions

e ITQutOfMemory
e IFullException, if the collection is bounded
e IKeyAlreadyExistsException, if the collection is a map or a sorted map

104 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

allElementsDo

allElementsDo

Flat Collection Member Functions

IBoolean allElementsDo (
IBoolean (*function) (Element&, voidx),
void* additionalArgument = 0) ;

IBoolean allElementsDo (
IBoolean (*function) (Element const&, voidx),
void* additionalArgument = 0) const;

Calls the given function for all elements in the collection until the given function
returns false. The elements are visited in iteration order. Additional arguments
can be passed to the given function using additionalArgument. The additional
argument defaults to zero if no additional argument is given.

Notes:

1. The given function must not remove elements from or add them to the
collection. If you want to remove elements, you can use the removeAll ()
function with a property argument. For further information see

2. For the non-const version of al1ETementsDo(), the given function must not
manipulate the element in the collection in a way that changes the positioning
property of the element.

Return Value: Returns true if the given function returns true for every element it
is applied to. Returns false if the collection is empty or if the given function returns
false for at least one element it is applied to.

IBoolean allElementsDo (IApplicator <Element>& applicator) ;
IBoolean allElementsDo (IConstantApplicator <Element>& applicator) const;

Calls the applyTo() function of the given applicator for all elements of the collection
until the applyTo() function returns false. The elements are visited in iteration
order. Additional arguments may be passed as arguments to the constructor of the
derived applicator class. (For further details, see [Iteration Using allElementsDao’| in
the IBM Open Class Library User's Guide.)

Notes:

1. The applyTo() function must not remove elements from or add elements to the
collection. If you want to remove elements, you can use the removeAll ()
function with a property argument. For further information, see

2. For the non-const version of al1ElementsDo(), the applyTo() function must not
manipulate the element in the collection in a way that changes the positioning
property of the element.

Return Value: Returns true if the applyTo() function returns true for every
element it is applied to. Returns false if the collection is empty or if the appTyTo()
function returns false for at least one element it is applied to.

Chapter 15. Flat Collection Member Functions 105

Flat Collection Member Functions

any

compare

contains

containsAllFrom

Element const& any () const;
Returns a reference to an arbitrary element of the collection.
Precondition: The collection must not be empty.

Exception: IEmptyException

Tong compare (CLASS NAME const& collection,
long (*comparisonFunction)
(Element const& elementl,Element const& element?)
) const;

Compares the collection with the given collection. Comparison yields <0 if the
collection is less than the given collection, O if the collection is equal to the given
collection, and >0 if the collection is greater than the given collection. Comparison
is defined by the first pair of corresponding elements, in both collections, that are
not equal. If such a pair exists, the collection with the greater element is the
greater one. Otherwise, the collection with more elements is the greater one.

Notes:

1. The given comparison function must return a result according to the following

rules:

>0 if (elementl > element?2)
0 if (elementl == element?2)
<0 if (elementl < element2)

2. For elements of type charx, compare() is not locale-sensitive by default.
Because it uses strcmp() and not strcoll(), it compares the binary values
representing the characters, and is not based on the LC_COLLATE category of
the current locale. Its results are reliable only for code pages and character
sets in which the collating sequence matches the sequence of binary
representations. If you need a comparison based on the LC_COLLATE cateogory,
then you must implement your own compare() function as described in
Separate Functions’|in the IBM Open Class Library User's Guide.

Return Value: Returns the result of the collection comparison.

IBoolean contains (Element const& element) const;

Returns true if the collection contains an element equal to the given element.

IBoolean containsAl1From (
CLASS NAME const& collection) const;

IBoolean containsAl1From (
IACollection <Element> const& collection) const;

Returns true if all the elements of the given collection are contained in the
collection. The definition of containment is described in

106 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

containsAllKeysFrom
IBoolean containsAl1KeysFrom (
CLASS_NAME const& collection) const;

IBoolean containsAl1KeysFrom (
IACollection <Element> const& collection) const;

Returns true if all of the keys of the given collection are contained in the collection.

containsElementWithKey
IBoolean containsElementWithKey (Key const& key) const;

Returns true if the collection contains an element with the same key as the given
key.

copy

void copy (IACollection <Element> const& collection) ;

Copies the given collection to this collection. copy() removes all elements from this
collection, and adds the elements from the given collection. For information on how
adding is done, see [addAllFrom” on page 99

Note: The given collection may be of a concrete type other than the collection

itself. In this case, copying implicitly performs a conversion. If, for example, the
given collection is a bag and the collection itself is a set, elements with multiple

occurrences in the copied bag will only occur once in the resulting set.

Preconditions: Because the elements are copied one by one, the following
preconditions are tested for each individual copy operation:

 |If the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

¢ |f the collection is bounded and nonunique,
(numberOfElements () < maxNumberOfElements()).

* If the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

e All cursors of this collection become undefined.
» |If any elements were copied, collection classes supporting notifications send a
modifyId notification.

Exceptions

e I0utOfMemory

e IFullException, if the collection is bounded

e IKeyAlreadyExistsException, if the collection has unique keys. This exception
may be thrown, for example, when copying a bag into a map.

Chapter 15. Flat Collection Member Functions 107

Flat Collection Member Functions

deque

differenceWith

disableNotification

elementAt

void deque () ;
void deque (Element& element) ;

Copies the first element of the collection to the given element, and removes it from
the collection.

Precondition: The collection must not be empty.

Side Effects

e All cursors of this collection become undefined.
» |f the element is removed, collection classes supporting notifications send a
modifyId notification.

Exception: IEmptyException

void differenceWith (CLASS NAME const& collection) ;

Makes the collection the difference between the collection and the given collection.
The difference of A and B (A minus B) is the set of elements that are contained in
A but not in B.

The following rule applies for bags with duplicate elements: If bag P contains the
element X m times and bag Q contains the element X n times, the difference of P
and Q contains the element X m-n times if m > n, and zero times if m=n.

Side Effects

¢ |f any elements were removed, all cursors of this collection become undefined.
» If the element is removed, collection classes supporting notifications send a
modifyId notification.

INotifier&
disableNotification();

Stops the notifier from sending notifications to its observers.

Element& elementAt (ICursor const& cursor) ;
Element const& elementAt (ICursor const& cursor) const;

Returns a reference to the element pointed to by the given cursor.

Note: For the version of elementAt () without the const suffix, do not manipulate
the element or the key of the element in the collection in a way that changes the
positioning property of the element.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

108 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Exception: ICursorInvalidException

elementAtPosition
Element const& elementAtPosition (IPosition position) const;

Returns a reference to the element at the given position in the collection.
Position 1 specifies the first element.

Position must be a valid position in the collection; that is,
(1 = position = numberOfElements()).

Precondition: (1 = position = numberOfETements()).

Exception: IPositionInvalidException

elementWithKey
Elementd elementWithKey (Key const& key) ;

Element const& elementWithKey (Key const& key) const;
Returns a reference to an element specified by the key.

Notes:

1. For the version of elementWithKey() without a const suffix, do not manipulate
the element in the collection in a way that changes the positioning property of
the element.

2. If there are several elements with the given key, an arbitrary one is returned.
Precondition: The given key is contained in the collection.

Exception: INotContainsKeyException

enableNotification
INotifier&
enableNotification(IBoolean = true);

Starts the notifier sending notifications to its observers. This function can be
overridden by derived classes to perform customized notification that your
application might need. For instance, one of your function methods may require
that a database be accessible before processing a retrieve function.

enqueue
void enqueue (Element const& element) ;

void enqueue (Element const& element, ICursor& cursor) ;

Adds the element to the collection, and sets the cursor to the added element. For
ordinary queues, the given element is added as the last element. For priority
gueues, the element is added at a position determined by the ordering relation
provided for the element or key type.

Chapter 15. Flat Collection Member Functions 109

Flat Collection Member Functions

first

intersectionWith

isBounded

iISEmpty

Preconditions

e The cursor must belong to the collection.
* If the collection is bounded, (number0fElements() < maxNumberOfElements()).

Side Effects

» All cursors of this collection except the given cursor become undefined.
e |f the element is added, collection classes supporting notifications send a
modifyId notification.

Exceptions

e ITQutOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

Element const& first () const;
Returns a reference to the first element of the collection.
Precondition: The collection must not be empty.

Exception: IEmptyException

void intersectionWith (CLASS NAME const& collection) ;

Makes the collection the intersection of the collection and the given collection. The
intersection of A and B is the set of elements that is contained in both A and B.

The following rule applies for bags with duplicate elements: If bag P contains the
element X m times and bag Q contains the element X n times, the intersection of P
and Q contains the element X MIN(m,n) times.

Side Effects

IBoolean isBounded () const;

Returns true if the collection is bounded.

IBoolean isEmpty () const;

Returns true if the collection is empty.

110 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

isEnabledForNotification
IBoolean
isEnabledForNotification() const;

Returns true if a notifier can send notifications to its observers.

isFirstAt
IBoolean isFirstAt (ICursor const& cursor) const;
Returns true if the given cursor points to the first element of the collection.
Preconditions: The cursor must belong to the collection and must point to an
element of the collection.
Exception: ICursorInvalidException
isFull
IBoolean isFull () const;
Returns true if the collection is bounded and contains the maximum number of
elements; that is, if (numberOfETements() == maxNumberOfElements()).
isLastAt
IBoolean isLastAt (ICursor const& cursor) const;
Returns true if the given cursor points to the last element of the collection.
Preconditions: The cursor must belong to the collection and must point to an
element of the collection.
Exception: ICursorInvalidException
key
Key const& key (Element const& element) const;
Returns a reference to the key of the given element using the key() function
provided for the element type.
last

Element const& last () const;
Returns a reference to the last element of the collection.
Precondition: The collection must not be empty.

Exception: IEmptyException

Chapter 15. Flat Collection Member Functions 111

Flat Collection Member Functions

locate

IBoolean locate (Element const& element, ICursor& cursor) const;

Locates an element in the collection that is equal to the given element. Sets the
cursor to point to the element in the collection, or invalidates the cursor if no such
element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Precondition: The cursor must belong to the collection.
Return Value: Returns true if an element was found.

Exceptions: ICursorInvalidException

locateElementWithKey

locateFirst

locateLast

IBoolean locateElementWithKey (Key const& key, ICursor& cursor) const;

Locates an element in the collection with the same key as the given key. Sets the
cursor to point to the element in the collection, or invalidates the cursor if no such
element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Precondition: The cursor must belong to the collection.
Return Value: Returns true if an element was found.

Exception: ICursorInvalidException

IBoolean locateFirst (Element const& element, ICursor& cursor) const;

Locates the first element in iteration order in the collection that is equal to the given
element. Sets the cursor to the located element, or invalidates the cursor if no
such element exists.

Precondition: The cursor must belong to the collection.
Return Value: Returns true if an element was found.

Exception: ICursorInvalidException

IBoolean locatelLast (Element const& element, ICursor& cursor) const;

Locates the last element in iteration order in the collection that is equal to the given
element. Sets the cursor to the located element, or invalidates the cursor if no
such element exists.

112 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

locateNext

Flat Collection Member Functions

Precondition: The cursor must belong to the collection.
Return Value: Returns true if an element was found.

Exception: ICursorlnvalidException

IBoolean locateNext (Element const& element, ICursor& cursor) const;

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the given
cursor. Sets the cursor to point to the element in the collection. The cursor is
invalidated if the end of the collection is reached and no more occurrences of the
given element are left to be visited.

Note: If you code a call to TocateFirst() and a set of calls to TocateNext(), each
occurrence of an element will be visited exactly once in iteration order.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if an element was found.

Exception: ICursorInvalidException

locateNextElementWithKey

locateOrAdd

IBoolean locateNextElementWithKey (
Key const& key, ICursor& cursor) const;

Locates the next element in iteration order in the collection with the given key,
starting at the element next to the one pointed to by the given cursor. Sets the
cursor to point to the element in the collection. The cursor is invalidated if the end
of the collection is reached and no more occurrences of such an element are left to
be visited.

Note: If you code a call to 1ocateFirst() and a set of calls to
TocateNextElementWithKey(), each occurrence of an element will be visited exactly
once in iteration order.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if an element was found.

Exception: ICursorInvalidException

IBoolean locateOrAdd (Element const& element) ;
IBoolean locateOrAdd (Element const& element, ICursor& cursor) ;

Locates an element in the collection that is equal to the given element. (See
[locate” on page 117 for details on Tocate().) If no such element is found,
locateOrAdd() adds the element as described in f'add” on page 98. The cursor is
set to the located or added element.

Chapter 15. Flat Collection Member Functions 113

Flat Collection Member Functions

Note: This method may be more efficient than using Tocate() followed by a
conditionally called add().

Preconditions

e The cursor must belong to the collection.

¢ |f the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

e The element or key must exist, or
(numberOfETements() < maxNumberOfElements()).

Side Effects

e |f the element was added, all cursors of this collection, except the given cursor,
become undefined.

» |f the element was added, collection classes supporting notifications send an
addId notification.

Return Value: Returns true if the element was located. Returns false if the
element could not be located but had to be added.

Exceptions

e I0utOfMemory

e ICursorlnvalidException

e IFullException, if the collection is bounded

e IKeyAlreadyExistsException, if the collection is a map or a sorted map

locateOrAddElementWithKey
IBoolean TocateOrAddElementWithKey (
Element const& element) ;

IBoolean locateOrAddElementWithKey (
Element const& element; ICursor& cursor) ;

Locates an element in the collection with the given key as described for the
TocateElementWithKey() function. If no such element exists,
locateOrAddETementWithKey () adds the element as described in [fadd” on page 98.
The cursor is set to the located or added element.

Preconditions

¢ |f the collection is bounded and an element with the given key is not already
contained, (numberOfElements() < maxNumberOfElements()).
e The cursor must belong to the collection.

Side Effects

e |f the element was added, all cursors of this collection, except the given cursor,
become undefined.

¢ |f the element was added, collection classes supporting notifications send an
addId notification.

114 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Return Value: Returns true if the element was located. Returns false if the
element could not be located but had to be added.

Exceptions

e I0utOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

locatePrevious
IBoolean locatePrevious (Element const& element,
ICursord& cursor) const;

Locates the previous element in iteration order that is equal to the given element,
beginning at the element previous to the one specified by the given cursor and
moving in reverse iteration order through the elements. Sets the cursor to the
located element, or invalidates the cursor if no such element exists.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if an element was found.

Exceptions: ICursorInvalidException

maxNumberOfElements
INumber maxNumberOfElements () const;

Returns the maximum number of elements the collection can contain.
Precondition: The collection is bounded.

Exceptions: INotBoundedException

newCursor
ICursor* newCursor () const;
Creates a cursor for the collection and returns a pointer to the cursor. The cursor
is initially not valid.
Exception: 10utOfMemory
notifier

INotifier const&
notifier() const;

INotifier&
notifier();

Returns a reference to the notifier object.

Chapter 15. Flat Collection Member Functions 115

Flat Collection Member Functions

notifyObservers
INotifier&
notifyObservers(INotificationEvent const&);

Notifies all observers in a notifier's list of observers. Each observer receives a
notification event containing the identity of the natifier, the notification ID, and any
optional data provided by the specific notifier object.

Note:

A public and a protected version of notifyObservers are provided for convenience.
The protected version does not require the caller to construct an INotificationEvent
to call it. In this case, the construction of the INotificationEvent occurs in the code
of the protected notifyObservers function.

numberOfDifferentElements
INumber numberOfDifferentElements () const;

Returns the number of different elements in the collection.

numberOfDifferentKeys
INumber numberOfDifferentKeys () const;

Returns the number of different keys in the collection.

numberOfElements
INumber numberOfElements () const;

Returns the number of elements the collection contains.

numberOfElementsWithKey
INumber numberOfElementsWithKey (Key const& key) const;

Returns the number of elements in the collection with the given key.

numberOfOccurrences
INumber numberOfOccurrences (Element const& element) const;

Returns the number of occurrences of the given element in the collection.

pop
void pop () ;

void pop (Element& element) ;

Copies the last element of the collection to the given element, and removes it from
the collection.

Precondition: The collection must not be empty.

Side Effects

e All cursors of this collection become undefined.
¢ |f the element was removed from the collection, collection classes supporting
notifications send a removeld notification.

116 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

positionAt

push

remove

Flat Collection Member Functions

Exception: IEmptyException

IPosition positionAt (ICursor const& cursor) const;

Determines the position of the current element. Position 1 specifies the first
element.

Precondition: The cursor must belong to the collection, and the cursor must point
to an element of the collection.

Exception: ICursorInvalidException

void push (Element const& element) ;
void push (Element const& element, ICursor& cursor) ;

Adds the element to the collection as the last element (as defined for
bage 99), and sets the cursor to the added element.

Preconditions
e The cursor must belong to the collection.
* If the collection is bounded, (number0fETements() < maxNumberOfElements()).

Side Effects

» All cursors of this collection, except the given cursor, become undefined.
» |f the element was added to the collection, collection classes supporting
notifications send an addId notification.

Exceptions

e ITQutOfMemory
e ICursorInvalidException
e IFullException, if the collection is bounded

IBoolean remove (Element const& element) ;

Removes an element in the collection that is equal to the given element. If no such
element exists, the collection remains unchanged. In collections with nonunique
elements, an arbitrary occurrence of the given element will be removed. Element
destructors are called as described in [removeAt” on page 119

Side Effects

e If an element was removed, all cursors of this collection become undefined.
e |f an element was removed, collection classes supporting notifications send a
removeld notification.

Return Value: Returns true if an element was removed.

Chapter 15. Flat Collection Member Functions 117

Flat Collection Member Functions

removeAll
INumber removeAll () ;
Removes all elements from the collection. Element destructors are called as
described in [removeAt’ on page 119.
Side Effects
e All cursors of this collection become undefined.
e Collection classes supporting naotifications send a modifylId notification.
Return Value: The number of elements removed.
removeAll

INumber removeAll (
IBoolean (*propertyFunction) (Element const&, voidx*),
void* additionalArgument = 0) ;

Removes all elements from this collection for which the given property function
returns true. Additional arguments can be passed to the given property function
using additionalArgument. The additional argument defaults to zero if no
additional argument is given. Element destructors are called as described in
[removeAt” on page 119.

Side Effects

e If any elements were removed, all cursors of this collection become undefined.
¢ |f any elements were removed, collection classes supporting notifications send
a modifyId notification.

Return Value: The number of elements removed.

removeAllElementsWithKey
INumber removeAllElementsWithKey (Key const& key) ;

Removes all elements from the collection with the same key as the given key.
Element destructors are called as described in [removeAt” on page 119.

Side Effects

» If any elements were removed, all cursors of this collection become undefined.
» If any elements were removed, collection classes supporting notifications send
a removeld notification.

Return Value: The number of elements removed.

removeAllOccurrences
INumber removeAllOccurrences (Element const& element) ;

Removes all elements from the collection that are equal to the given element, and
returns the number of elements removed. Element destructors are called as
described in [removeAt” on page 119.

118 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Side Effects

¢ |f any elements were removed, all cursors of this collection become undefined.
e If any elements were removed, collection classes supporting notifications send
a modifyId notification.

removeAt
void removeAt (ICursor& cursor) ;

Removes the element pointed to by the given cursor. The given cursor is
invalidated.

Note: It is undefined whether the destructor for the removed element is called or
whether the element will only be destructed with the collection destructor. For
example, in a tabular implementation, a destructor will only be called when the
whole collection is destructed, not when a single element is removed.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Side Effects

e All cursors of this collection, except the given cursor, become undefined.
* |f an element was removed, collection classes supporting notifications send a
removeld notification.

Exception: ICursorInvalidException

removeAtPosition
void removeAtPosition (IPosition position) ;

Removes the element from the collection that is at the given position. Element

destructors are called as described in
The first element of the collection has position 1.

Precondition: Position must be a valid position in the collection; that is,
(1 = position = numberOfElements()).

Side Effects

e All cursors of this collection become undefined.
e Collection classes supporting naotifications send a removeld notification.

Exception: IPositionInvalidException

removeElementWithKey
IBoolean removeElementWithKey (Key const& key) ;

Removes an element from the collection with the same key as the given key. If no
such element exists, the collection remains unchanged. In collections with
nonunique elements, an arbitrary occurrence of such an element will be removed.
Element destructors are called as described in M

Chapter 15. Flat Collection Member Functions 119

Flat Collection Member Functions

removeFirst

removeLast

replaceAt

Side Effects

¢ If an element was removed, all cursors of this collection become undefined.
e If an element was removed, collection classes supporting notifications send a
removeld notification.

Return Value: Returns true if an element was removed.

void removeFirst () ;

Removes the first element from the collection. Element destructors are called as
described in [removeAt’ on page 119.

Precondition: The collection must not be empty.

Side Effects

e All cursors of this collection become undefined.
e |f an element was removed, collection classes supporting notifications send a
removeld notification.

Exception: IEmptyException

void removelast () ;

Removes the last element from the collection. Element destructors are called as
described in [removeAt” on page 119.

Precondition: The collection must not be empty.

Side Effects

e All cursors of this collection become undefined.
e |f an element was removed, collection classes supporting notifications send a
removeld notification.

Exception: IEmptyException

void replaceAt (ICursor const& cursor, Element const& element) ;
Replaces the element pointed to by the cursor with the given element.

Preconditions

e The cursor must belong to the collection and must point to an element of the
collection.

e The given element must have the same positioning property as the replaced
element.

Side Effect: Collection classes supporting notifications send a replaceld
notification.

120 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

Exceptions

e ICursorInvalidException
e IInvalidReplacementException

replaceElementWithKey
IBoolean replaceElementWithKey (Element const& element) ;

IBoolean replaceElementWithKey (Element const& element,
ICursord& cursor) ;

Replaces an element with the same key as the given element by the given
element, and sets the cursor to this element. If no such element exists, it

invalidates the cursor. In collections with nonunique elements, an arbitrary
occurrence of such an element will be replaced.

Precondition: The cursor must belong to the collection.

Side Effect: Collection classes supporting notifications send a replaceld
notification.

Return Value: Returns true if an element was replaced.

Exceptions: ICursorInvalidException

reverse
void reverse () ;

Reverses the sequence of elements in the collection.

Side Effects

e All cursors of this collection become undefined.
e Collection classes supporting naotifications send a modifyId notification.

setToFirst
IBoolean setToFirst (ICursor& cursor) const;

Sets the cursor to the first element of the collection in iteration order. If the
collection is empty (if no first element exists), it invalidates the given cursor.

Precondition: The cursor must belong to the collection.
Return Value: Returns true if the collection is not empty.

Exception: ICursorInvalidException

setTolLast
IBoolean setTolLast (ICursor& cursor) const;

Sets the cursor to the last element of the collection in iteration order. If the
collection is empty (if no last element exists), the given cursor is no longer valid.

Chapter 15. Flat Collection Member Functions 121

Flat Collection Member Functions

Precondition: The cursor must belong to the collection.
Return Value: Returns true if the collection is not empty.

Exceptions: ICursorInvalidException

setToNext
IBoolean setToNext (ICursor& cursor) const;

Sets the cursor to the next element in the collection in iteration order. If no more
elements are left to be visited, the given cursor will no longer be valid.

Precondition: The cursor must belong to the collection and must point to an
element.

Return Value: Returns true if there is a next element.

Exceptions: ICursorInvalidException

setToNextDifferentElement
IBoolean setToNextDifferentElement (ICursor& cursor) const;

Sets the cursor to the next element in iteration order in the collection that is
different from the element pointed to by the given cursor. If no more elements are
left to be visited, the given cursor will no longer be valid.

Precondition: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if a subsequent element was found that is different.

Exception: ICursorInvalidException

setToNextWithDifferentKey
IBoolean setToNextWithDifferentKey (ICursord& cursor) const;

Sets the cursor to the next element in the collection in iteration order with a key
different from the key of the element pointed to by the given cursor. If no such
element exists, the given cursor is no longer valid.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if a subsequent element was found whose key is
different from the current key.

Exception: ICursorlnvalidException

122 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Flat Collection Member Functions

setToPosition
void setToPosition (IPosition position, ICursor& cursor) const;

Sets the cursor to the element at the given position. Position 1 specifies the first
element.
Precondition

e The cursor must belong to the collection.
e Position must be a valid position in the collection; that is,
(1 = position = numberOfElements()).

Exceptions

e ICursorInvalidException
e IPositionInvalidException

setToPrevious
IBoolean setToPrevious (ICursor& cursor) const;

Sets the cursor to the previous element in iteration order, or invalidates the cursor if
no such element exists.

Preconditions: The cursor must belong to the collection and must point to an
element of the collection.

Return Value: Returns true if a previous element exists.

Exception: ICursorInvalidException

sort
void sort (Tong (*comparisonFunction)
(Element const& elementl, Element const& element?));

Sorts the collection so that the elements occur in ascending order. The relation of
two elements is defined by the comparisonFunction, which you provide.

Note: The comparisonfunction must deliver a result according to the following

rules:

>0 if (elementl > element?2)
0 if (elementl == element?2)
<0 if (eTementl < element2)

Side Effects

e All cursors of this collection become undefined.
¢ Collection classes supporting notifications send a modifylId notification.

Chapter 15. Flat Collection Member Functions 123

Flat Collection Member Functions

top
Element const& top () const;
Returns a reference to the last element of the collection.
Precondition: The collection must not be empty.
Exception: IEmptyException

unionWith

void unionWith (CLASS_NAME const& collection) ;

Makes the collection the union of the collection and the given collection. The union
of A and B is the set of elements that are members of A or B or both.

The following rule applies for bags with duplicate elements: If bag P contains the
element X m times and bag Q contains the element X n times, the union of P and
Q contains the element X m+n times.

Preconditions: Because the elements from the given collection are added to the
collection one by one, the following preconditions are tested for each individual add
operation :

¢ |f the collection is bounded and unique, the element or key must exist or
(numberOfETements() < maxNumberOfElements()).

 |If the collection is bounded and nonunique,
(numberOfETements() < maxNumberOfElements()).

¢ |f the collection is a map or a sorted map and contains an element with the
same key as the given element, this element must be equal to the given
element.

Side Effects

* If any elements were added to the collection, all cursors of this collection
become undefined.
e Collection classes supporting naotifications send a modifylId notification.

Exceptions

e ITQutOfMemory
e IFullException, if the collection is bounded
e IKeyAlreadyExistsException, if the collection is a map or a sorted map

124 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Bag

Chapter 16. Bag

A bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. A request to add an element that already exists is not
ignored.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a bag and its
relationship to other flat collections.

An example of using a bag is a program for entering observations on species of
plants and animals found in a river. Each time you spot a plant or animal in the
river, you enter the name of the species into the collection. If you spot a species
twice during an observation period, the species is added twice, because a bag
supports multiple elements. You can locate the name of a species that you have
observed, and you can determine the number of observations of that species, but
you cannot sort the collection by species, because a bag is an unordered
collection. If you want to sort the elements of a bag, use a sorted bag instead.

The following rule applies for duplicates: If bag P contains the element X m times
and bag Q contains the element X n times, then the union of P and Q contains the
element X m+n times, the intersection of P and Q contains the element X MIN(m,n)
times, and the difference of P and Q contains the element X m-n times if mis > n,
and zero times if mis < n.

Derivation
Collection
Equality Collection
Bag

Variants and Header Files
IBag, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« ['disableNotification” on page 108
« [enableNotification” on page 109

« [isEnabledForNotification” on page 111]
. :‘notifier" on ﬁaﬁe 115
« [notifyObservers” on page 118

Class Name Header File Implementation
Variant

IBag ibag.h List

I1GBag ibag.h List

IBagAsHshTable ibaghsh.h Hash Table

IGBagAsHshTable ibaghsh.h Hash Table

© Copyright IBM Corp. 1996, 1998 125

Bag

Class Name Header File Implementation
Variant

IBagAsList ibaglst.h List
IGBagAsList ibaglst.h List
IBagAsTable ibagtab.h Table
IGBagAsTable ibagtab.h Table
IBagAsDilTable ibagdil.h Diluted Table
IGBagAsDilTable ibagdil.h Diluted Table

Members

All member functions of flat collections are described in Chapter 14, “Introduction td
Flat Collections” on page 93. The following members are provided for bag:

Method Page Method Page
Constructor E iISEmpty 110

Copy Constructor b7] isFull 11

Destructor p7] locate L12]
operator!= E locateNext 113

operator= pg] locateOrAdd 13

operator== pg] maxNumberOfElements f15]
add E newCursor fL15]
addAllFrom 9 numberOfDifferentElements 116

addDifference [[02] numberOfElements [[16]
addintersection 03] numberOfOccurrences L16]
addUnion flo4] remove 117

allElementsDo [[05] removeAllOccurrences 18

anyElement [06] removeAll 18]
contains 06 removeAt E
containsAllFrom 06 replaceAt 20

copy [07] setToFirst [21]
differenceWith O8] setToNext L22]
elementAt 108 setToNextDifferentElement 122

intersectionWith 10 unionWith 124
isBounded [L10]

Bag also defines a cursor that inherits from IElementCursor. The members for
IETementCursor are described in Chapter 37, “Cursor” on page 25%.

Template Arguments and Required Functions

Bag
IBag <Element>
1GBag <Element, COps>

The default implementation of the class IBag requires the following element
functions:

Element Type

126 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Bag

e Copy constructor
Destructor

e Assignment

¢ Ordering relation

Bag as Hash Table

Bag as List

Bag as Table

IBagAsHshTable <Element>
I1GBagAsHshTable <Element, EHOps>

The implementation of the class IBagAsHshTable requires the following element
functions:

Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

e Equality test

¢ Hash function

IBagAsList <Element>
IGBagAsList <Element, COps>

The implementation of the class IBagAsList requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

IBagAsTable <Element>
1GBagAsTable <Element, COps>

The implementation of the class IBagAsTable requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

Chapter 16. Bag 127

Bag

Bag as Diluted Table

IBagAsDilTable <Element>
1GBagAsDilTable <Element, COps>

The implementation of the class IBagAsDilTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

* Ordering relation

Abstract Class

IABag <Element>

For polymorphism, you can use the corresponding abstract class, IABag, which is
found in the iabag.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Bag

The following program uses the default bag class, IBag, to create a bag. It fills the
bag with the integers passed as arguments.

The program uses the the constant applicator class, IConstantApplicator, to
summarize all integers with the applyTo() function. It uses the add() function to fill
the bag and the alTElementsDo function to summarize all elements of the bag.

| sumup.CPP - Sum up integers to demonstrate using iterators.

iterators with additional arguments.

|
Add all elements in a bag to demonstrate the use of |
|
The bag elements are integers passed as arguments to main(). |
/

#include <ibag.h>
#include <iostream.h>
#include <stdlib.h>

typedef IBag <int> IntBag;

class SumApplicator : public IConstantApplicator <int> {
int ivSum;
public:
SumApplicator () : ivSum (0) {}
IBoolean applyTo (int const& i) {
ivSum += i
return True;
}
int sum () { return ivSum; }

}s

int sumUsingApplicatorObject (IntBag const& bag) {

128 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Bag

SumApplicator sumUp;
bag.allElementsDo (sumUp);
return sumUp.sum ();

}

IBoolean sumUpFunction (int const& i, voidx sum) {
(int)sum += i;
return True;

}s

int sumUsingApplicatorFunction (IntBag const& bag) {
int sum = 0;
bag.al1ElementsDo (sumUpFunction, &sum);
return sum;

}

int main (int argc, charx argv[]) {
IntBag intbag;
for (int cnt=1; cnt < argc; cnt++)
intbag.add(atoi(argv[cnt]));

cout << "Sum obtained using an Applicator Object = "
<< sumUsingApplicatorObject(intbag) << endl;

cout << "Sum obtained using an Applicator Function = "
<< sumUsingApplicatorFunction(intbag) << endl;

return 0;

}
The program produces the following output, using arguments 12 34 5

Sum obtained using an Applicator Object = 15
Sum obtained using an Applicator Function = 15

Chapter 16. Bag 129

Bag

130 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Deque

Chapter 17. Deque

A deque or double-ended queue is a sequence with restricted access. It is an
ordered collection of elements with no key and no element equality. The elements
are arranged so that each collection has a first and a last element, each element
except the last has a next element, and each element but the first has a previous
element. You can only add or remove the first or last element.

The type and value of the elements are irrelevant, and have no effect on the
behavior of the collection.

An example of using a deque is a program for managing a lettuce warehouse.
Cases of lettuce arriving into the warehouse are registered at one end of the queue
(the “fresh” end) by the receiving department. The shipping department reads the
other end of the queue (the “old” end) to determine which case of lettuce to ship
next. However, if an order comes in for very fresh lettuce, which is sold at a
premium, the shipping department reads the “fresh” end of the queue to select the
freshest case of lettuce available.

Derivation
Collection
Ordered Collection
Sequential Collection
Sequence
Deque

Note that deque is based on sequence but is not actually derived from it or from
the other classes shown above. See [Restricted Access] in the IBM Open Class
Library User's Guide for further details.

Variants and Header Files
IDeque, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« ['disableNotification” on page 108
« [enableNotification” on page 109

« [isEnabledForNotification” on page 111]
. :‘notifier" on ﬁaﬁe 115
« [notifyObservers” on page 118

© Copyright IBM Corp. 1996, 1998 131

Deque

Class Name Header File Implementation Variant
IDeque idqu.h List

IGDeque idqu.h List

IDequeAsList idqulst.h List

IGDequeAsList idqulst.h List

IDequeAsTable idqutab.h Table

IGDequeAsTable idqutab.h Table
IDequeAsDilTable idqudil.h Diluted table
IGDequeAsDilTable idqudil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaj
Collections” on page 93. The following members are provided for deque:

Method Page Method Page
Constructor isFull L11]
Copy Constructor isLast 111
Destructor lastElement 11
operator= maxNumberOfElements L15]
add newCursor L15]
addAllFrom b9] numberOfElements fL16]
addAsFirst [[00] positionAt L17]
addAsLast [L00] removeAll L18]
allElementsDo removeFirst
anyElement [[06] removelast [[20]
compare [[06] setToFirst [21]
copy [07] setToLast L21]
elementAt 108 setToNext 122
elementAtPosition 09 setToPosition 23
firstElement [[10] setToPrevious 23]
isBounded 110

iISEmpty 110

isFirst 111

Deque also defines a cursor that inherits from I0rderedCursor. The members for
I0rderedCursor are described in Chapter 37, “Cursor” on page 257.

Template Arguments and Required Functions

Deque
IDeque <Element>
IGDeque <Element, StdOps>

The default implementation of the class IDeque requires the following element
functions:

Element Type

132 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Deque

e Copy constructor
e Destructor
e Assignment

Deque as List
IDequeAsList <Element>
IGDequeAsList <Element, StdOps>

The implementation variant IDequeAsList requires the following element functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Deque as Table

IDequeAsTable <Element>
IGDequeAsTable <Element, StdOps>

The implementation of the class IDequeAsTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Deque as Diluted Table

IDequeAsDilTable <Element>
IGDequeAsDilTable <Element, StdOps>

The implementation of the class IDequeAsDilTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Abstract Class

IADeque <Element>

For polymorphism, you can use the corresponding abstract class, IADeque, which is
found in the iadqu.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

Chapter 17. Deque 133

Deque

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Deque

The following program uses the default deque class, IDeque, to create a deque. It
fills the deque with characters by adding them to the back end. The program then
removes the characters from alternating ends of the deque (beginning with the front
end) until the deque is empty.

The program uses the constant iterator class, IConstantIterator, when printing the
collection. It uses the addAsLast() function to fill the deque and the
numberOfElements () function to determine the deque's size. It uses the functions
firstElement(), removeFirst(), lastElement(), and removelast() to empty the
deque.

| 1etterdq.CPP - Letter Double Ended Queue |
This is an example of using a Deque. |

#include <iostream.h>

#include <idqu.h>

// Let's use the default deque
typedef IDeque <char> Deque;

// The deque requires iteration to be const
typedef IConstantApplicator <char> CharApplicator;

class Print : public CharApplicator

{
public:
IBoolean applyTo(char const&c)

{

cout << c;

return True;

1
}s
JHm e e e e e e *\
| Test variables |
2y */

JHm e e e e e *\
| Main program |
2y */
int main()
{

Deque D;

char C;

IBoolean ReadFront = True;

int i;

// Put all characters in the deque.

// Then read it, changing the end to read from

// with every character read.

cout << endl
<< "Adding characters to the back end of the deque:" << endl;

for (i = 03 String[i] != 0; i ++) {

134 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Deque

D.addAsLast (String[i]);
cout << String[i];

}

cout << endl << endl
<< "Current number of elements in the deque:
<< D.numberOfElements() << endl;

cout << endl

<< "Contents of the deque:" << endl;
Print Aprinter;
D.allElementsDo(Aprinter);

cout << endl << endl
<< "Reading from the deque one element from front, one
<< "from back, and so on:" << endl;

while (!D.isEmpty())

{
if (ReadFront) // Read from front of Deque
{
C = D.firstElement(); // Get the character
D.removeFirst(); // Delete it from the Deque
1
else
{
C = D.lastElement();
D.removelast();
1
cout << C;
ReadFront = !ReadFront; // Switch to other end of Deque
1

cout << endl;

return(0);

The program produces the following output:

Adding characters to the back end of the deque:
Tegikbonfxjmsoe aydg.o zlarv pu o wr cu h

Current number of elements in the deque: 42

Contents of the deque:
Tegikbonfxjmsoe aydg.o zlarv pu o wr cu h

Reading from the deque one element from front, one from back, and so on:
The quick brown fox jumps over a lazy dog.

Chapter 17. Deque

135

Deque

136 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Equality Sequence

Chapter 18. Equality Sequence

Derivation

An equality sequence is an ordered collection of elements. The elements are
arranged so that each collection has a first and a last element, each element
except the last has a next element, and each element but the first has a previous
element. An equality sequence supports element equality, which gives you the
ability, for example, to search for particular elements.

An example of using an equality sequence is a program that calculates members of
the Fibonacci sequence and places them in a collection. Multiple elements of the
same value are allowed. For example, the sequence begins with two instances of
the value 1. You can search for a given element, for example 8, and find out what
element follows it in the sequence. Element equality allows you to do this, using
the locate() and setToNext() functions.

Collection
Equality Collection
Sequential Collection
Equality Sequence

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide illustrates the properties of an equality sequence and its
relationship to other flat collections.

Variants and Header Files

IEqualitySequence, the first class in the table below, is the default implementation
variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

. :‘disabIeNotification” on page 10§|
¢ [‘enableNotification” on Eaﬁe 109
¢ [isEnabledForNotification” on page llil

* [notifier” on page 11§
» [notifyObservers” on page 114

© Copyright IBM Corp. 1996, 1998 137

Equality Sequence

Class Name Header Implementation
File Variant
IEqualitySequence ies.h List
IGEqualitySequence ies.h List
IEqualitySequenceAsList jeslst.h List
IGEqualitySequenceAsList ieslst.h List
IEqualitySequenceAsTable jestab.h Table
IGEqualitySequenceAsTable jestab.h Table
IEqualitySequenceAsDilTable jesdil.h Diluted table
IGEqualitySequenceAsDilTable jesdil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flat
Collections” on page 93. The following members are provided for equality

138 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

sequence:

Method Page Method Page
Constructor lastElement
Copy Constructor locate
Destructor locateFirst [12]
operator!= locateLast L12]
operator= A locateNext E
operator== 08| locateOrAdd 13
add locatePrevious L15]
addAllFrom po] maxNumberOfElements L15]
addAsFirst 100 newCursor 115
addAsLast 100 numberOfElements 116
addAsNext [01] numberOfOccurrences fL16]
addAsPrevious E positionAt fL17]
addAtPosition 01 remove 117
allElementsDo fl05] removeAll 18
anyElement [[06] removeAllOccurrences L18]
compare 106 removeAt 119
contains 06 removeAtPosition 19
containsAllFrom [l06] removeFirst [20]
copy 107 removelast 120
elementAt [LO8] replaceAt [L20 |
elementAtPosition [L09] reverse [21]
firstElement [[10] setToFirst L21]
isBounded 110 setTolLast 121
isEmpty 10 setToNext 22
isFirst [11] setToPosition 23]
isFull f(11] setToPrevious 23]
isLast 111 sort 123

Equality sequence also defines a cursor that inherits from I0rderedCursor. The
members for I0rderedCursor are described in Chapter 37, “Cursor” on page 257.

Equality Sequence

Template Arguments and Required Functions

Equality Sequence

IEqualitySequence <Element>
IGEqualitySequence <Element, EOps>

The default implementation of IEqualitySequence requires the following element
functions:

Element Type

e Assignment

e Copy constructor
e Destructor

e Equality test

Equality Sequence as List

IEqualitySequenceAsList <Element>
IGEqualitySequenceAsList <Element, EOps>

The implementation of the class IEqualitySequenceAsList requires the following
element functions:

Element Type

e Assignment

e Copy constructor
e Destructor

e Equality test

Equality Sequence as Table

IEqualitySequenceAsTable <Element>
IGEqualitySequenceAsTable <Element, EOps>

The implementation of the class [EqualitySequenceAsTable requires the following
element functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Equality test

Equality Sequence as Diluted Table

IEqualitySequenceAsDilTable <Element>
IGEqualitySequenceAsDilTable <Element, EOps>

The implementation of the class IEqualitySequenceAsDilTable requires the
following element functions:

Element Type

e Copy constructor

Chapter 18. Equality Sequence 139

Equality Sequence

e Destructor
e Assignment
e Equality test

Abstract Class
IAEqualitySequence<Element>

For polymorphism, you can use the corresponding abstract class,
IAEqualitySequence, which is found in the iaes.h header file. See the section on
Polymorphism and the Collections in the IBM Open Class Library User's Guide for
more information.

The required functions are the same as the required functions of the concrete base
class.

140 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Heap

Chapter 19. Heap

A heap is an unordered collection of zero or more elements with no key. Element
equality is not supported. Multiple elements are supported. The type and value of
the elements are irrelevant, and have no effect on the behavior of the heap.

You can compare using a heap collection to managing the scrap metal entering a
scrapyard. Pieces of scrap are placed in the heap in an arbitrary location, and an
element can be added multiple times (for example, the rear left fender from a
particular kind of car). When a customer requests a certain amount of scrap,
elements are removed from the heap in an arbitrary order until the required amount
is reached. You cannot search for a specific piece of scrap except by examining
each piece of scrap in the heap and manually comparing it to the piece you are
looking for.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide illustrates the properties of a heap and its relationship to other
flat collections.

Derivation
Collection
Heap

Variants and Header Files
IHeap, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

¢ ['disableNaotification” on page 10

. :‘enabIeNotification" on Eaﬁe 109
« [isEnabledForNotification” on page 111]

. :‘notifier” on Eaée 115
o [notifyObservers” on page 116

Class Name Header File Implementation Variant
IHeap ihp.h List

IGHeap ihp.h List

IHeapAsList ihplst.h List

IGHeapAsList ihplst.h List

IHeapAsTable ihptab.h Table

IGHeapAsTable ihptab.h Table
IHeapAsDiTTable ihpdil.h Diluted table
IGHeapAsDilTable ihpdil.h Diluted table

© Copyright IBM Corp. 1996, 1998 141

Heap

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flai
Collections” on page 93. The following members are provided for heap:

Method Page Method Page
Constructor replaceAt 20]
Copy Constructor setToFirst 121
Destructor setToNext 122
operator=

add EEI

addAllFrom 09|

allElementsDo [L05]

anyElement [Lo6]

copy 107

elementAt 08

isBounded 10

iISEmpty 10

isFull 11

maxNumberOfElements fL15]

newCursor [L15]

numberOfElements 116

removeAll 18

removeAt fL19]

Heap also defines a cursor that inherits from IETementCursor. The members for
IE1ementCursor are described in Chapter 37, “Cursor” on page 25%.

Template Arguments and Required Functions

Heap

Heap as List

IHeap <Element>
IGHeap <Element, StdOps>

The default implementation of IHeap requires the following element functions:

Element Type

e Copy constructor
e Assignment

IHeapAsList <Element>
IGHeapAsList <Element, StdOps>

The implementation variant IHeapAsList requires the following element functions:

Element Type

e Copy constructor
e Assignment

142 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Heap as Table

Heap

IHeapAsTable <Element>
IGHeapAsTable <Element, StdOps>

The implementation of the class IHeapAsTable requires the following element
functions:
Element Type

e Copy constructor
e Assignment

Heap as Diluted Table

IHeapAsDilTable <Element>
IGHeapAsDilTable <Element, StdOps>

The implementation of the class IHeapAsDilTable requires the following element
functions:
Element Type

e Assignment
e Copy constructor

Abstract Class

IAHeap<Element>

For polymorphism, you can use the corresponding abstract class, IAHeap, which is
found in the iahp.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Heap

See [‘Coding Example for Key Sorted Set” on page 167 for an example of using a
heap.

Chapter 19. Heap 143

Heap

144 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Bag

Chapter 20. Key Bag

A key bag is an unordered collection of zero or more elements that have a key.
Multiple elements are supported.

An example of using a key bag is a program that manages the distribution of
combination locks to members of a fitness club. The element key is the number
that is printed on the back of each combination lock. Each element also has data
members for the club member's name, member number, and so on. When you join
the club, you are given one of the available combination locks, and your name,
member number, and the number on the combination lock are entered into the
collection. Because a given number on a combination lock may appear on several
locks, the program allows the same lock number to be added to the collection
multiple times. When you return a lock because you are leaving the club, the
program finds each element whose key matches your lock's serial number, and
deletes one such element that has your name associated with it.

The figure “Behavior of add for Unique and Multiple Collections” in the IBM Open
Class Library User's Guide illustrates the differences in behavior between map,
relation, key set, and key bag when identical elements and elements with the same
key are added.

Derivation
Collection
Key Collection
Key Bag

The figure “Combination of Flat Collection Properties” in the IBM Open Class

Library User's Guide gives an overview of the properties of a key bag and its
relationship to other flat collections.

Variants and Header Files
IKeyBag, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« [disableNotification” on page 10§

« [enableNotification” on page 109

« [isEnabledForNotification” on page 111|
e ['notifier” on Eaée 115

¢ [notifyObservers” on page 11§

Class Name Header File Implementation Variant
IKeyBag ikb.h Hash table
IGKeyBag ikb.h Hash table
IKeyBagAsHshTable ikbhsh.h Hash table
IGKeyBagAsHshTable ikbhsh.h Hash table

© Copyright IBM Corp. 1996, 1998 145

Key Bag

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flai
Collections” on page 93. The following members are provided for key bag:

Method Page Method Page
Constructor locateElementWithKey L12]
Copy Constructor locateNextElementWithKey 113

Destructor locateOrAddElementWithKey 14

operator= maxNumberOfElements L15]
add newCursor f15]
addAllFrom 09| numberOfDifferentKeys 116

addOrReplaceElementWithKey [L03] numberOfElements L16]
allElementsDo [[05] numberOfElementsWithKey L16]
anyElement @ removeAll 118

containsAllKeysFrom [[07] removeAllElementsWithKey 18

containsElementWithKey [[07] removeAt L19]
copy E removeElementWithKey E
elementAt 08 replaceAt 20

elementWithKey [L09] replaceElementWithKey [21]
isBounded [10] setToFirst L21]
iISEmpty 110 setToNext 122

isFull 11 setToNextWithDifferentKey 122

key f11]

Key Bag also defines a cursor that inherits from IElementCursor. The members for
IE1ementCursor are described in Chapter 37, “Cursor” on page 25%.

Template Arguments and Required Functions

Key Bag
IKeyBag <Element, Key>
1GKeyBag <Element, Key, KEHOps>

The default implementation of the class IKeyBag requires the following element and
key-type functions:
Element Type

e Copy constructor
* Destructor

e Assignment

e Key access

Key Type

e Equality test
e Hash function

146 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Bag

Key Bag as Hash Table

IKeyBagAsHshTable <Element, Key>
1GKeyBagAsHshTable <Element, Key, KEHOps>

The implementation of the class IKeyBagAsHshTable requires the following element
and key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

e Equality test
e Hash function

Abstract Class

IAKeyBag<Element,Key>

For polymorphism, you can use the corresponding abstract class, IAKeyBag, which
is found in the iakb.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Key Bag

The following program uses the default key bag class, IKeyBag, to create a key bag
for storing observations made on animals. The key of the class is the name of the
animal. The program produces various reports regarding the observations. Then it
removes all the extinct animals, which are stored in a sequence, from the key bag.

The program uses the add() function to fill the key bag and the forICursor macro
to display the observations. It uses the following functions to produce the reports:

¢ numberOfETements ()

¢ number0QfDifferentKeys ()

¢ numberOfElementsWithKey()
e TlocateETementWithKey()

e setToNextETlementWithKey()
e removeAl1ETementsWithKey ()

See Pppendix_A, “Header Files for Collection Class Library Coding Examples” on
for the code of the animal.h file.

Chapter 20. Key Bag 147

Key Bag

animals.CPP - Example for the use of the Key Bag

We keep a Key Bag of our observations on animals. Elements
handled in this Key Bag are of type animal, the key is the
name of the animal.

This Key Bag allows us to efficiently access all observations
on an animal.

We use a Sequence to store the names of all extinct animals.
At Tast we remove all extinct animals from the Key Bag.

#include <iostream.h>
// Class Animal:
#include "animal.h"

// Let's use the default Key Bag:
#include <ikb.h>
typedef IKeyBag<Animal, IString> Animals;

// For keys let's use the default Sequence:
#include <iseq.h>
typedef ISequence<IString> Names;

main() {

Animals animals;
Animals::Cursor animalsCurl(animals), animalsCur2(animals);

animals.add(Animal ("bear", "heavy"));
animals.add(Animal ("bear", "strong"));
animals.add(Animal ("dinosaur", "heavy"));
animals.add(Animal("dinosaur", "huge"));
animals.add(Animal("dinosaur", "extinct"));
animals.add(Animal("eagle", "black"));
animals.add(Animal("eagle", "strong"));
animals.add(Animal("1ion", "dangerous"));
animals.add(Animal("1ion", "strong"));
animals.add(Animal ("mammoth", "long haired"));
animals.add(Animal ("mammoth", "extinct"));
animals.add(Animal("sabre tooth tiger", "extinct"));
animals.add(Animal("zebra", "striped"));

// Display all elements in animals:
cout << endl
<< "Al11 our observations on animals:" << endl;
forICursor(animalsCurl) cout << " " << animalsCurl.element();

cout << endl << endl
<< "Number of observations on animals:
<< animals.numberOfElements() << endl;

cout << endl
<< "Number of different animals:
<< animals.number0fDifferentKeys() << endl;

Names namesOfExtinct(animals.numberOfDifferentKeys());
Names: :Cursor extinctCurl(namesOfExtinct);

animalsCurl.setToFirst();
do {
IString name = animalsCurl.element().name();

cout << endl
<< "We have " << animals.numberOfElementsWithKey(name)
<< " observations on " << name << ":" << endl;

// We need to use a separate cursor here

// because otherwise animalsCurl would become

// invalid after last locateNextElement...()
animals.locateElementWithKey(name, animalsCur?2);

148 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

do {
IString attribute = animalsCur2.element().attribute();
cout << " " << attribute << endl;
if (attribute == "extinct") namesOfExtinct.add(name);

} while (animals.locateNextElementWithKey(name, animalsCur2));
} while (animals.setToNextWithDifferentKey(animalsCurl));

// Remove all observations on extinct animals:
forICursor(extinctCurl)
animals.removeAl1ETementsWithKey (extinctCurl.element());

// Display all elements in animals:
cout << end]l << endl
<< "After removing all observations on extinct animals:"
<< endl;
forICursor(animalsCurl) cout << " " << animalsCurl.element();

cout << endl
<< "Number of observations on animals:
<< animals.numberOfElements() << endl;

cout << endl
<< "Number of different animals:
<< animals.number0fDifferentKeys() << endl;

return 0;

The program produces the following output:

A1l our observations on animals:

The mammoth is extinct.

The mammoth is Tong haired.
The dinosaur is heavy.

The dinosaur is huge.

The dinosaur is extinct.
The sabre tooth tiger is extinct.
The zebra is striped.

The bear is strong.

The bear is heavy.

The Tion is strong.

The Tion is dangerous.

The eagle is black.

The eagle is strong.

Number of observations on animals: 13

Number of different animals: 7

We

We

We

We

We

We

have 2 observations on eagle:
strong
black

have 2 observations on bear:
strong
heavy

have 1 observations on zebra:
striped

have 2 observations on mammoth:
extinct
long haired

have 2 observations on Tion:
strong
dangerous

have 3 observations on dinosaur:

Chapter 20.

Key Bag

Key Bag

149

Key Bag

extinct
huge
heavy

We have 1 observations on sabre tooth tiger:
extinct

After removing all observations on extinct animals:

The eagle is strong.

The eagle is black.

The bear is strong.

The bear is heavy.

The zebra is striped.

The Tlion is strong.

The Tion is dangerous.

Number of observations on animals: 7

Number of different animals: 4

150 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Set

Chapter 21. Key Set

A key setis an unordered collection of zero or more elements that have a key.
Element equality is not supported. Only unigue elements are supported, in terms of
their key.

An example of using a key set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the element's key, and the
patron's name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board, and enters that key's number and
your name into the collection. When you return the key at check-out time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present, because there is only one key for each room.
If you attempt to add an element that is already present, the add() function returns
false to indicate that the element was not added.

The figure “Behavior of add for Unique and Multiple Collections” in the IBM Open
Class Library User's Guide illustrates the differences in behavior between map,
relation, key set, and key bag when identical elements and elements with the same
key are added.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a key set and its
relationship to other flat collections.

Derivation
Collection
Key Collection
Key Set

Variants and Header Files
IKeySet, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« ['disableNotification” on page 108
« [enableNotification” on page 109

« [isEnabledForNotification” on page 111]
. :‘notifier" on ﬁaﬁe 115
« [notifyObservers” on page 118

Class Name Header File Implementation Variant
IKeySet iks.h AVL tree

I1GKeySet iks.h AVL tree
IKeySetAsAviTree iksavl.h AVL tree
IGKeySetAsAviTree iksavl.h AVL tree
IKeySetAsBstTree ikshst.h B* tree
I1GKeySetAsBstTree ikshst.h B* tree
IKeySetAsHshTable ikshsh.h Hash table

© Copyright IBM Corp. 1996, 1998 151

Key Set

Members

Class Name Header File Implementation Variant
IGKeySetAsHshTable ikshsh.h Hash table
IKeySetAsList iksIst.h List

1GKeySetAsList iksIst.h List

IKeySetAsTable ikstab.h Table
IGKeySetAsTable ikstab.h Table
IKeySetAsDi1Table iksdil.h Diluted table
I1GKeySetAsDil1Table iksdil.h Diluted table

All members of flat collections are described in [Chapter 14, “Introduction to Flai

Collections” on page 93. The following members are provided for key set:

Method Page Method Page
Constructor iSEmpty 110
Copy Constructor isFull 11
Destructor key L11]
operator= locateElementWithKey E
add 08| locateOrAddElementWithKey 14
addAllFrom po] maxNumberOfElements L15]
addOrReplaceElementWithKey [Lo3] newCursor L15]
allElementsDo 105 numberOfElements 116
anyElement 06 removeAll 18
containsAllKeysFrom [[07] removeAt L19]
containsElementWithKey g removeElementWithKey E
copy 07 replaceAt 20
elementAt [08] replaceElementWithKey [21]
elementWithKey [L09] setToFirst L21]
isBounded 110 setToNext 122

Key set also defines a cursor that inherits from IETementCursor. The members for
IE1ementCursor are described in Chapter 37, “Cursor” on page 257.

Template Arguments and Required Functions

Key Set

IKeySet <Element, Key>

1GKeySet <Element, Key, KCOps>

The default implementation of the class IKeySet requires the following element and

key-type functions:

152 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Set

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Set as AVL Tree

IKeySetAsAvlTree <Element, Key>
1GKeySetAsAvlTree <Element, Key, KCOps>

The implementation of the class IKeySetAsAv1Tree requires the following element
and key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type
Ordering relation

Key Set as B* Tree

IKeySetAsBstTree <Element, Key>
1GKeySetAsBstTree <Element, Key, KCOps>

The implementation of the class IKeySetAsBstTree requires the following element
and key-type functions:

Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Set as Hash Table
IKeySetAsHshTable <Element, Key>
1GKeySetAsHshTable <Element, Key, KEHOps>

The implementation class IKeySetAsHshTable requires the following element and
key-type functions:

Chapter 21. Key Set 153

Key Set

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

e Equality test
¢ Hash function

Key Set as List

IKeySetAsList <FElement, Key>
1GKeySetAsList <Element, Key, KCOps>

The implementation of the class IKeySetAsList requires the following element and
key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Set as Table

IKeySetAsTable <Element, Key>
IGKeySetAsTable <Element, Key, KCOps>

The implementation of the class IKeySetAsTable requires the following element and
key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Set as Diluted Table

IKeySetAsDilTable <Element, Key>
IGKeySetAsDi1Table <Element, Key, KCOps>

The implementation of the class IKeySetAsDilTable requires the following element
and key-type functions:

154 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Set

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Abstract Class

IAKeySet<Element,Key>

For polymorphism, you can use the corresponding abstract class, IAKeySet, which
is found in the iaks.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Key Set

The following program implements a key set using the default class, IKeySet. The
program adds four elements to the key set and then removes one element by
looking for a key. If an exception occurs, it displays the exception name and
description.

The program uses cursor iteration (the forCursor macro) to display the contents of
the collection. To add and remove elements, it uses the add() function and the
removeElementWithKey() function.

See Appendix_A, “Header Files for Collection Class Library Coding Examples” on|
for the code of the demoelem.h file.

| intkyset.CPP - Integer Key Set for demonstration of using |
[a KeySet. |

#include <iostream.h>
#include <iglobals.h>

#include <iks.h>
// Class DemoElement:

#include "demoelem.h"
#ifdef IC_PAGETUNE

#define _INTKYSET CPP_

#include <ipagetun.h>
#endif
typedef IKeySet < DemoElement,int > TestKeySet;

ostream & operator << (ostream & sout, TestKeySet const & t)
{ sout << t.numberOfElements() << " elements are in the set:" << endl;

TestKeySet::Cursor cursor (t);

// forICursor(c)

Chapter 21. Key Set 155

Key Set

// expands to
// for ((c).setToFirst (); (c).isValid (); (c).setToNext ())

forICursor (cursor)
sout << " " << cursor.element () << endl;

return sout << endl;

main()

{
TestKeySet t;

t.add(DemoElement(1,1));
t.add(DemoElement (2,4711));
t.add(DemoElement(3,1));
t.add(DemoETement (4,443));

cout << t;
t.removeElementWithKey (3);
cout << t;

return 0;

The program produces the following output:

4 elements are in the set:
1,1
2,4711
3,1
4,443

3 elements are in the set:
1,1
2,4711
4,443

156 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Bag

Chapter 22. Key Sorted Bag

A key sorted bag is an ordered collection of zero or more elements that have a key.
Elements are sorted according to the value of their key field. Element equality is
not supported. Multiple elements are supported.

An example of using a key sorted bag is a program that maintains a list of families,
sorted by the number of family members in each family. The key is the nhumber of
family members. You can add an element whose key is already in the collection
(because two families can have the same number of members), and you can
generate a list of families sorted by size. You cannot locate a family except by its
key, because a key sorted bag does not support element equality.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a key sorted bag and its
relationship to other flat collections.

Derivation
Collection
Ordered Collection
Key Collection Sorted Collection
Key Sorted Collection
Key Sorted Bag

Variants and Header Files
IKeySortedBag, the first class in the table below, is the default implementation
variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

¢ [disableNotification” on page 10

. :‘enabIeNotification” on Eaﬁe 109
« [isEnabledForNotification” on page 111

¢ [notifier” on page 115

 [notifyObservers” on page 11§

Class Name Header File Implementation
Variant
IKeySortedBag iksb.h List
IGKeySortedBag iksb.h List
IKeySortedBagAsList iksbhlst.h List
IGKeySortedBagAsList iksbhlst.h List
IKeySortedBagAsTable iksbtab.h Table
IGKeySortedBagAsTable iksbtab.h Table
IKeySortedBagAsDilTable iksbdil.h Diluted table
IGKeySortedBagAsDilTable iksbdil.h Diluted table

© Copyright IBM Corp. 1996, 1998 157

Key Sorted Bag

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flat

Collections” on page 93. The following members are provided for key sorted bag:

Method Page Method Page
Constructor numberOfDifferentKeys L16]
Copy Constructor numberOfElements 116
Destructor numberOfElementsWithKey 16
operator= positionAt L17]
add removeAll 18]
addAllFrom 09| removeAllElementsWithKey 118
addOrReplaceElementWithKey [L03] removeAt L19]
allElementsDo [05] removeAtPosition L19]
anyElement 106 removeElementWithKey 119
compare 06 removeFirst 20
containsAllKeysFrom [[07] removeLast 20]
containsElementWithKey E replaceAt E
copy 07 replaceElementWithKey 21
elementAt [[08] setToFirst [21]
elementAtPosition [09] setToLast L21]
elementWithKey 109 setToNext 122
firstElement 10 setToNextWithDifferentKey 22
isBounded [[10] setToPosition 23]
iSEmpty 10] setToPrevious 23]
isFirst 11
isFull f11]
isLast 11l
key 111
lastElement [L1T]
locateElementWithKey L12]
locateNextElementWithKey 113
locateOrAddElementWithKey 114
maxNumberOfElements [15]
newcCursor [15]

Key sorted bag also defines a cursor that inherits from IOrderedCursor. The

members for I0rderedCursor are described in [Chapter 37, “Cursor” on page 257.

Template Arguments and Required Functions

Key Sorted Bag

IKeySortedBag <Element, Key>
IGKeySortedBag <Element, Key, KCOps>

The implementation of the class IKeySortedBag requires the following element and
key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

158 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Bag

Key Sorted Bag

Key Sorted Bag

Key Sorted Bag

Key Type

Ordering relation

as List

IKeySortedBagAsList <Flement, Key>
I1GKeySortedBagAsList <Element, Key, KCOps>

The implementation of the class IKeySortedBagAsList requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

as Table

IKeySortedBagAsTable <Element, Key>
I1GKeySortedBagAsTable <Element, Key, KCOps>

The implementation of the class IKeySortedBagAsTable requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

as Diluted Table

IKeySortedBagAsDilTable <Element, Key>
I1GKeySortedBagAsDilTable <Element, Key, KCOps>

The implementation of the class IKeySortedBagAsDilTable requires the following
element and key-type functions:

Chapter 22. Key Sorted Bag 159

Key Sorted Bag

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Abstract Class
IAKeySortedBag<Element,Key>

For polymorphism, you can use the corresponding abstract class, IAKeySortedBag,
which is found in the iaksb.h header file. See the section on Polymorphism and
the Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Key Sorted Bag

The following program illustrates the use of a key sorted bag. The program
determines the number of words that have the same length in a phrase. It stores
the words of the phrase in a key sorted bag that it implements using the default
class, IKeySortedBag. The program makes the key the length of the word.
Because of the properties of a key sorted bag, it sorts the words by their length
(the key), and it stores all duplicate words.

The program determines the number of different word lengths using the
number0fDifferentKeys () function. It uses the numberOfElementsWithKey() function
and the setToNextWithDifferentKey() function to iterate through the collection and
count the number of words with the same length.

See Appendix_A, “Header Files for Collection Class Library Coding Examples” on|
for the code of the toyword.h file.

// WORDBAG - An example of using a Key Sorted Bag
#include <iostream.h>

// Class Word
#include "toyword.h"

// Let's use the defaults:
#include <iksb.h>

typedef IKeySortedBag <Word, unsigned> WordBag;

int main()
{
IString phrase[] = {"people", "who", "live", "in", "glass",
"houses", "should", "not", "throw", "stones"};
const size_t phraseWords = sizeof(phrase) / sizeof(IString);

WordBag wordbag(phraseWords);
for (int cnt=0; cnt < phraseWords; cnt++) {

unsigned keyValue = phrase[cnt].length();
Word theWord(phrase[cnt],keyValue);

160 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Bag

wordbag.add (theWord);
1

cout << "Contents of our WordBag sorted by number of letters:" << endl;

WordBag: :Cursor wordBagCursor(wordbag);
forCursor(wordBagCursor)
cout << "WB: " << wordBagCursor.element().getWord() << endl;

cout << endl << "QOur phrase has " << phraseWords << " words." << endl;
cout << "In our WordBag are " << wordbag.numberOfETements ()
<< " words." << endl << endl;

cout << "There are " << wordbag.numberQfDifferentKeys()
<< " different word lengths." << endl << endl;

wordBagCursor.setToFirst();
do
unsigned letters = wordbag.key(wordBagCursor.element());
cout << "There are "
<< wordbag.numberOfElementsWithKey(letters)
<< " words with " << letters << " Tetters." << endl;
} while (wordbag.setToNextWithDifferentKey(wordBagCursor));

return 0;

This program produces the following output:

Contents of our WordBag sorted by number of Tetters:

WB: in

WB: who
WB: not
WB: Tive
WB: glass
WB: throw
WB: people
WB: houses
WB: should
WB: stones

Our phrase has 10 words.
In our WordBag are 10 words.

There

There
There
There
There
There

are 5 different word lengths.

words with 2 letters.
words with 3 letters.
words with 4 letters.
words with 5 letters.
words with 6 letters.

are
are
are
are
are

BN

Chapter 22. Key Sorted Bag 161

Key Sorted Bag

162 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Set

Chapter 23. Key Sorted Set

A key sorted set is an ordered collection of zero or more elements that have a key.
Elements are sorted according to the value of their key field. Element equality is
not supported. Only elements with unique keys are supported. A request to add
an element whose key already exists is ignored.

An example of using a key sorted set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once, and the collection is sorted by card number. When a
merchant enters a customer's card number into a point-of-sale terminal, the
collection is checked to see if that card number is listed in the collection of
canceled cards. If it is found, the name of the individual is shown, and the
merchant is given directions for contacting the card company. If the card number is
not found, the transaction can proceed because the card is valid. A list of canceled
cards is printed out each month, sorted by card number, and distributed to all
merchants who do not have an automatic point-of-sale terminal installed.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a key sorted set and its
relationship to other flat collections.

Derivation
Collection
Ordered Collection
Key Collection Sorted Collection
Key Sorted Collection
Key Sorted Set

Variants and Header Files

IKeySortedSet, the first class in the table below, is the default implementation
variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

* [disableNotification” on page 108
¢ [‘enableNotification” on §a§e 109
¢ [isEnabledForNotification” on Eaﬁe llil

* [notifier” on page 11§
« [notifyObservers” on page 118

Class Name Header File Implementation Variant
IKeySortedSet ikss.h AVL tree
IGKeySortedSet ikss.h AVL tree
IKeySortedSetAsAvlTree ikssavl.h AVL tree
IGKeySortedSetAsAviTree ikssavl.h AVL tree
IKeySortedSetAsBstTree ikssbst.h B* tree
1GKeySortedSetAsBstTree ikssbst.h B* tree

© Copyright IBM Corp. 1996, 1998 163

Key Sorted Set

Class Name Header File Implementation Variant
IKeySortedSetAsList iksslst.h List
I1GKeySortedSetAsList ikssIst.h List
IKeySortedSetAsTable iksstab.h Table
I1GKeySortedSetAsTable iksstab.h Table
IKeySortedSetAsDilTable ikssdil.h Diluted table
IGKeySortedSetAsDilTable ikssdil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaj
Collections” on page 93. The following members are provided for key sorted set:

Method Page Method Page
Constructor key 111
Copy Constructor lastElement 11
Destructor locateElementWithKey [1Z]
operator= locateNextElementWithKey L13]
add 08 | locateOrAddElementWithKey 114
addAllFrom ba] maxNumberOfElements [[15]
addOrReplaceElementWithKey 03] newCursor L15]
allElementsDo 105] numberOfElements fL16]
anyElement 06 positionAt d
compare [L06] removeAll 18]
containsAllKeysFrom 07 removeAt 19
containsElementWithKey 07 removeAtPosition 19
copy [07] removeElementWithKey L19]
elementAt [L08] removeFirst L20]
elementAtPosition 109 removelLast 120
elementWithKey 09 replaceAt 20
firstElement [10] replaceElementWithKey [21]
isBounded 10 setToFirst 21
isEmpty 10 setTolLast 21
isFirst [I1] setToNext [22]
isFull LII] setToPosition 23]
isLast 111 setToPrevious 123

Key Sorted Set also defines a cursor that inherits from IOrderedCursor. The
members for I0rderedCursor are described in Chapter 37, “Cursor” on page 257.

Template Arguments and Required Functions

Key Sorted Set

IKeySortedSet <Element, Key>
1GKeySortedSet <Element, Key, KCOps>

The implementation of the class IKeySortedSet requires the following element and
key-type functions:

Element Type

e Copy constructor

164 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Set

e Destructor
e Assignment
e Key access

Key Type

Ordering relation

Key Sorted Set as AVL Tree

IKeySortedSetAsAvlTree <Element, Key>
IGKeySortedSetAsAviTree <Element, Key, KCOps>

The implementation of the class IKeySortedSetAsAviTree requires the following
element and key-type functions:
Element Type

e Copy constructor
e Assignment

e Destructor

e Key access

Key Type
Ordering relation

Key Sorted Set as B* Tree

IKeySortedSetAsBstTree <Element, Key>
IKeySortedSetAsBstTree <Element, Key, KCOps>

The implementation of the class IKeySortedSetAsBstTree requires the following
element and key-type functions:
Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Sorted Set as List

IKeySortedSetAsList <Element, Key>
1GKeySortedSetAsList <Element, Key, KCOps>

The implementation of the class IKeySortedSetAsList requires the following
element and key-type functions:

Element Type

e Copy constructor

Chapter 23. Key Sorted Set 165

Key Sorted Set

e Destructor
e Assignment
e Key access

Key Type

Ordering relation

Key Sorted Set as Table

IKeySortedSetAsTable <Element, Key>
I1GKeySortedSetAsTable <Element, Key, KCOps>

The implementation of the class IKeySortedSetAsTable requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Key Sorted Set as Diluted Table

IKeySortedSetAsDilTable <Element, Key>
IGKeySortedSetAsDilTable <Element, Key, KCOps>

The implementation of the class IKeySortedSetAsDilTable requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Abstract Class
IAKeySortedSet<ETement,Key>
For polymorphism, you can use the corresponding abstract class, IAKeySortedSet,
which is found in the iakss.h header file. See the section on Polymorphism and
the Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

166 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Key Sorted Set

Coding Example for Key Sorted Set

The following program uses the default classes for a key sorted set and a heap,
IKeySortedSet and IHeap, to track parcels for a delivery service. It uses a key
sorted set to record the parcels that are currently in circulation. The fast access of
a sorted collection is not necessary to keep track of the delivered parcels, so the
program uses a heap to keep track of them.

The parcel element contains three data members: one of type PlaceTime that
stores the origin time and place of the parcel, another of type PlaceTime that stores
the current time and place of the parcel, and one of type ToyString that stores the
destination.

The function update() adds parcels that have arrived at their destinations to the
heap of delivered parcels, and removes them from the key sorted set for circulating
parcels.

The program uses the add() function to update and the removeAl1() function to
remove elements from the key sorted set.

See Appendix_A, “Header Files for Collection Class Library Coding Examples” on|

for the code of the parcel.h file.

parcel.CPP - Parcels are handled using a KeySorted Set and
a Heap. LURIN NIRRT

We maintain two collections that keep track of parcels in

circulation and parcels delivered. The collection for the

parcels in circulation is a KeySorted Set (key, sorted,

unique elements, no element equality). For the delivered

parcels we do not care about fast or sorted retrieval.

So we select the Heap for this collection (no key, unordered,

multiple elements, no element equality).

A parcel has as member data two objects of type PlaceTime,
which is a point in space and time: one object for its origin,
one for its current place and time. It also has as member
data two objects of type IString, for the destination and

for the ID.

Function updateParcels adds parcels that have arrived at
their destination to the collection for delivered parcels,
and removes them from the collection of circulating parcels.
This demonstrates the use of removeAll().

#include <iostream.h>
#include "parcel.h"
// Let's use the default KeySorted Set:
#include <ikss.h>
// Let's use the default Heap:
#include <ihp.h>

typedef IKeySortedSet<Parcel, IString> ParcelSet;
typedef IHeap <Parcel> ParcelHeap;

ostreamd& operator<<(ostream&, ParcelSet constd);
ostreamd& operator<<(ostream&, ParcelHeap constd);

void update(ParcelSet&, ParcelHeapd);

main() {

Chapter 23. Key Sorted Set 167

Key Sorted Set

ParcelSet circulating;
ParcelHeap delivered;

int today = 8;

circulating.add(Parcel ("London", "Athens",
today, "26L0At"));
circulating.add(Parcel ("Amsterdam", "Toronto",
today += 2, "27AmTo"));
circulating.add(Parcel("Washington", "Stockholm",
today += 5, "25WaSt"));
circulating.add(Parcel ("Dublin", "Kairo",
today += 1, "25Duka"));
update(circulating, delivered);
cout << endl << "The situation at start:" << endl;
cout << "Parcels in circulation:" << endl << circulating;

today ++;

circulating.elementWithKey("27AmTo").arrivedAt (
"Atlanta", today);

circulating.elementWithKey("25WaSt") .arrivedAt (
"Amsterdam", today);

circulating.elementWithKey("25DuKa") .arrivedAt (
"Paris", today);

update(circulating, delivered);

cout << endl << endl << "The situation at day " << today << ":"

<< endl;
cout << "Parcels in circulation:" << endl << circulating;

today ++; // One day later ...
circulating.elementWithKey("27AmTo").arrivedAt("Chicago", today);
// As in real life, one parcel gets lost:

circulating.removeElementWithKey("26LoAt");

update(circulating, delivered);

cout << endl << endl << "The situation at day " << today << ":"
<< endl;

cout << "Parcels in circulation:" << endl << circulating;

today ++;
circulating.elementWithKey("25WaSt").arrivedAt("0slo", today);
circulating.elementWithKey("25Duka").arrivedAt("Kairo", today);

// New parcels are shipped.
circulating.add(Parcel ("Dublin", "Rome", today, "27DuRo"));

// Let's try to add one with a key already there.

// The KeySsorted Set should ignore it:
circulating.add(Parcel ("Nowhere", "Nirvana", today, "25WaSt"));
update(circulating, delivered);
cout << endl << endl << "The situation at day " << today << ":"

<< endl;
cout << "Parcels in circulation:" << endl << circulating;
cout << "Parcels delivered:" << endl << delivered;

// Now we make all parcels arrive today:
today ++;

ParcelSet::Cursor circulatingcursor(circulating);
forICursor(circulatingcursor) {

circulating.elementAt(circulatingcursor).wasDelivered(today);
}

update(circulating, delivered);

cout << endl << endl << "The situation at day " << today << ":"
<< endl;

cout << "Parcels in circulation:" << endl << circulating;

cout << "Parcels delivered:" << endl << delivered;

if (circulating.isEmpty())
cout << endl << "Al1 parcels were delivered." << endl;
else
cout << endl << "Something very strange happened here." << endl;

168 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

return 0;

}

ostream& operator<<(ostream& os, ParcelSet const& parcels)
ParcelSet::Cursor pcursor(parcels);
forICursor(pcursor) {
0s << pcursor.element() << endl;
}

return os;

}

ostream& operator<<(ostream& os, ParcelHeap const& parcels)
ParcelHeap::Cursor pcursor(parcels);
forICursor(pcursor) {
0s << pcursor.element() << endl;
}

return os;

}

IBoolean wasDelivered(Parcel const& p, void* dp) {
if (p.lastArrival().city() == p.destination()) {
((ParcelHeap*)dp)->add(p);
return True;
1
else
return False;
1

void update(ParcelSet& p, ParcelHeap& d) {
p.removeAll(wasDelivered, &d);
1

The program produces the following output:

The situation at start:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo
is at Dublin since day 16.
25WaSt: From Washington(day 15) to Stockholm
is at Washington since day 15.
26LoAt: From London(day 8) to Athens
is at London since day 8.
27AmTo: From Amsterdam(day 10) to Toronto
is at Amsterdam since day 10.

The situation at day 17:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo
is at Paris since day 17.
25WaSt: From Washington(day 15) to Stockholm
is at Amsterdam since day 17.
26LoAt: From London(day 8) to Athens
is at London since day 8.
27AmTo: From Amsterdam(day 10) to Toronto
is at Atlanta since day 17.

The situation at day 18:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo
is at Paris since day 17.
25WaSt: From Washington(day 15) to Stockholm
is at Amsterdam since day 17.
27AmTo: From Amsterdam(day 10) to Toronto
is at Chicago since day 18.

{

Chapter 23

Key Sorted Set

Key Sorted Set

169

Key Sorted Set

The situation at day 19:
Parcels in circulation:
25WaSt: From Washington(day 15) to Stockholm
is at Oslo since day 19.
27AmTo: From Amsterdam(day 10) to Toronto
is at Chicago since day 18.
27DuRo: From Dublin(day 19) to Rome
is at Dublin since day 19.
Parcels delivered:
25DuKa: From Dublin(day 16) to Kairo
was delivered on day 19.

The situation at day 20:
Parcels in circulation:
Parcels delivered:
25DuKa: From Dublin(day 16) to Kairo
was delivered on day 19.
25WaSt: From Washington(day 15) to Stockholm
was delivered on day 20.
27AmTo: From Amsterdam(day 10) to Toronto
was delivered on day 20.
27DuRo: From Dublin(day 19) to Rome
was delivered on day 20.

A11 parcels were delivered.

170 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Map

Chapter 24. Map

A map is an unordered collection of zero or more elements that have a key.
Element equality is supported and the values of the elements are relevant.

Only elements with unique keys are supported. A request to add an element
whose key already exists in another element of the collection causes an exception
to be thrown. A request to add a duplicate element is ignored.

An example of using a map is a program that translates integer values between the
ranges of 0 and 20 to their written equivalents, or between written numbers and
their numeric values. Two maps are created, one with the integer values as keys,
one with the written equivalents as keys. You can enter a number, and that
number is used as a key to locate the written equivalent. You can enter a written
equivalent of a number, and that text is used as a key to locate the value. A given
key always matches only one element. You cannot add an element with a key of 1
or “one” if that element is already present in the collection.

The figure “Behavior of add for Unique and Multiple Collections” in the IBM Open
Class Library User's Guide illustrates the differences in behavior between map,
relation, key set, and key bag when identical elements and elements with the same
key are added.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a map and its
relationship to other flat collections.

Derivation
Collection
Key Collection Equality Collection
Equality Key Collection
Map

Variants and Header Files
IMap, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

l'disableNotification” on page 108|

* [enableNotification” on page 109
¢ [isEnabledForNotification” on Eaﬁe 111|
e [|'notifier” on Eaée 115

+ [notifyObservers” on page 11

Class Name Header File Implementation Variant
IMap imap.h AVL tree
IGMap imap.h AVL tree
IMapAsAv1Tree imapavl.h AVL Tree
IGMapAsAviTree imapavl.h AVL Tree

© Copyright IBM Corp. 1996, 1998 171

Map

Members

172 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Class Name Header File Implementation Variant
IMapAsBstTree imapbst.h B* tree
IGMapAsBstTree imapbst.h B* tree
IMapAsList imaplst.h List
IGMapAsList imaplst.h List
IMapAsTable imaptab.h Table
IGMapAsTable imaptab.h Table
IMapAsDilTable imapdil.h Diluted table
IGMapAsDiTTable imapdil.h Diluted table
IMapAsHshTable imaphsh.h Hash table
IGMapAsHshTable imaphsh.h Hash table

All members of flat collections are described in [Chapter 14, “Introduction to Flat

Collections” on page 93. The following members are provided for map:

Method Page Method Page
Constructor intersectionWith

Copy Constructor isBounded

Destructor isEmpty

operator!= isFull

operator= key

operator== locate

add locateElementWithKey

addAllFrom locateOrAdd

addDifference locateOrAddElementWithKey

addIntersection
addOrReplaceElementWithKey
addUnion

allElementsDo
anyElement

contains

containsAllFrom
containsAllKeysFrom
containsElementWithKey
copy

differenceWith

elementAt
elementWithKey

EREEER e EERE

=
o
J

=
O
00

EE

maxNumberOfElements
newCursor
numberOfElements
remove

removeAll

removeAt
removeElementWithKey
replaceAt
replaceElementWithKey
setToFirst

setToNext

unionWith

== = = =
nNf|so]Nofnofl= ===l = === ==l =l = = =l 2 =
N|[=]l=]|S] o[co]|oo| (N[o [[o||uf | | wo]Nol ™ol = 1= [lol|olle

124

Map also defines a cursor that inherits from IElementCursor. The members for
IETementCursor are described in Chapter 37, “Cursor” on page 257.

Map

Template Arguments and Required Functions

Map
IMap <Element, Key>
IGMap <Element, Key, EKCOps>

The default implementation of the class IMap requires the following element and
key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Equality test

e Key access

Key Type

Ordering relation

Map as AVL Tree

IMapAsAvlTree <Element, Key>
IGMapAsAviTree <Element, Key, EKCOps>

The implementation of the class IMapAsAv1Tree requires the following element and
key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment
Equality test

e Key access

Key Type

Ordering relation

Map as B* Tree

IMapAsBstTree <Element, Key>
IGMapAsBstTree <Element, Key, EKCOps>

The implementation of the class IMapAsBstTree requires the following element and
key-type functions:

Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

e Equality test

Chapter 24. Map 173

Map

e Key access
Key Type

Ordering relation

Map as List

IMapAsList <Element, Key>
IGMapAsList <Element, Key, EKCOps>

The implementation of the class IMapAsSortedlList requires the following element
and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Equality test

* Key access

Key Type
Ordering relation

Map as Table

IMapAsTable <Element, Key>
IGMapAsTable <Element, Key, EKCOps>

The implementation of the class IMapAsTable requires the following element and
key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Equality test

e Key access

Key Type

Ordering relation

Map as Diluted Table

IMapAsDilTable <Element, Key>
IGMapAsDilTable <Element, Key, EKCOps>

The implementation of the class IMapAsDilTable requires the following element and
key-type functions:

174 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Map

Element Type

e Copy constructor
e Destructor

e Assignment

e Equality test

e Key access

Key Type

Ordering relation

Map as Hash Table

IMapAsHshTable <Element, Key>
IGMapAsHshTable <Element, Key, EKEHOps>

The implementation of the class IMapAsHshTable requires the following element and
key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Equality test

e Key access

Key Type

e Equality test
e Hash function

Abstract Class

IAMap<ETlement ,Key>

For polymorphism, you can use the corresponding abstract class, IAMap, which is
found in the iamap.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Chapter 24. Map 175

Map

Coding Example for Map

The following program translates a string from EBCDIC to ASCII and from ASCII to
EBCDIC. It uses two maps, one with the EBCDIC code as key (E2AMap) and one
with the ASCII code as key (A2EMap). It converts from EBCDIC to ASCII by finding
the element whose key matches the EBCDIC code in E2AMap (which has the
EBCDIC code as key) and taking the ASCII code information from that element. It
converts from ASCII to EBCDIC by finding the key that matches the ASCII code in
A2EMap (which has the ASCII code as key) and taking the EBCDIC code information
for that element.

The program uses the add() function to build the maps and the elementWithKey ()
function to convert the characters.

See Appendix_A, “Header Files for Collection Class Library Coding Examples” on|
for the code of the files transelm.h, trmapops.h, and xebc2asc.h.

transtab.CPP - Translation table to demonstrate using a Map
This example demontrates the use of a Map through a
bidirectional mapping between the 256 EBCDIC characters and
the 256 ASCII code points.

We build a map with 256 elements, each of which has

an ebcCode and an ascCode.

For EBCDIC-ASCII translation we want key access with
ebcCode as key,

for ASCII-EBCDIC translation we want key access with
ascCode as key.

Therefore this example demonstrates the principle of using
different keys on the same element type when stored in
different collections.

What you can learn from this example:
- What to do to use the map abstraction.
- How to specify the required element functions in two ways:
1. defining operators for the element to store in the map
2. defining an operation class that contains
element and key functions
- How to use the same element with different keys in
different maps.

This example does not show the most efficient way of
implementing an ASCII-EBCDIC translation.

#include "transelm.h"

// Get the standard operation classes:
#include <istdops.h>

#include "trmapops.h"
// char const translationTable[256] =
#include "xebc2asc.h"
| Now we define the two Map templates and two maps.
| We want both of them to be based on the Hashtable KeySet. |

#include <imaphsh.h>

typedef IGMapAsHshTable
< TranslationElement, char, TranslationOpsE2A > TransE2AMap;

176 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Map

typedef IGMapAsHshTable

< TranslationElement, char, TranslationOpsA2E > TransA2EMap;

void display(charx, charx);

int main(int argc, char* argv[]) {

}

TransA2EMap A2EMap;
TransE2AMap E2AMap;

| Load the translation table into both maps.
| The maps organize themselves according to the key |
| specification already given.

for (int i=0; i < 2563 i++)
{
/* ascCode ebcCode */
TranslationElement te(translationTable[i], i);

E2AMap.add(te);
A2EMap.add(te);
1
// What do we want to convert now?
char* toConvert;
if (argc > 1) toConvert = argv[l];
else toConvert = "§7 (=Dollar seven)";

size_t textLength = strlen(toConvert) +1;

charx convertedToAsc = new char[textLength];
charx convertedToEbc = new char[textLength];

// Convert the strings in place, character by character
for (i=0; toConvert[i]i != 0x00; i++) {
convertedToAsc[i]
= E2AMap.elementWithKey(toConvert[i]).ascCode ();
convertedToEbc[i]
= A2EMap.elementWithKey(toConvert[i]).ebcCode ();
1

display("To convert", toConvert);
display("After EBCDIC-ASCII conversion", convertedToAsc);
display("After ASCII-EBCDIC conversion", convertedToEbc);

delete[] convertedToAsc;
delete[] convertedToEbc;

return 0;

#include <iostream.h>
#include <iomanip.h>

void display (charx title, char* text) {

cout << endl << title << ':' << endl;
cout << " Text: '" << text << "'" << endl;
cout << " Hex: " << hex;
for (int i=0; text[i] != 0x00; i++) {

cout << (int)(unsigned char) text[] << " ";
}

cout << dec << endl;

Chapter 24. Map 177

Map

The program produces the following output:

To convert:
Text: '$7 (=Dollar seven)'
Hex: 5b f7 40 40 4d 7e c4 96 93 93 81 99 40 a2 85 a5 85 95 5d

After EBCDIC-ASCII conversion:
Hex: 24 37 20 20 28 3d 44 6f 6¢c 6¢c 61 72 20 73 65 76 65 6e 29

After ASCII-EBCDIC conversion:
Hex: ad fb 7c 7c d4 al bf 8a 9d 9d 20 56 7c 2c eb 55 eb 2b bd

178 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Priority Queue

Chapter 25. Priority Queue

A priority queue is a key sorted bag with restricted access. It is an ordered
collection of zero or more elements. Keys and multiple elements are supported.
Element equality is not supported.

When an element is added, it is placed in the queue according to its key value or
priority. The highest priority is indicated by the lowest key value. You can only
remove the element with the highest priority. Within the priority queue, elements
are sorted according to ascending key values, as in other key collections. You can
only remove the element with the lowest key value.

For elements with equal priority, the priority queue has a first-in, first-out behavior.

An example of a priority queue is a program used to assign priorities to service
calls in a heating repair firm. When a customer calls with a problem, a record with
the customer's name and the seriousness of the situation is placed in a priority
gueue. When a service person becomes available, customers are chosen by the
program beginning with those whose situation is most severe. In this example, a
serious problem such as a nonfunctioning furnace would be indicated by a low
value for the priority, and a minor problem such as a noisy radiator would be
indicated by a high value for the priority.

Derivation
Key Sorted Collection
Key Sorted Bag
Priority Queue

Note that priority queue is based on key sorted bag but is not actually derived from
it or from the other classes shown above. The diagram does not show all bases of
priority queue. See the figure “Abstract Class Hierarchy” in the IBM Open Class
Library User's Guide for a complete illustration. See [Restricted Access'| in the IBM
Open Class Library User's Guide for further details.

Variants and Header Files
IPriorityQueue, the first class in the table below, is the default implementation
variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

¢ [disableNotification” on page 10
* |‘enableNotification” on Eaﬁe 109
« [isEnabledForNotification” on page 111|

. :‘notifier" on ﬁaﬁe 115
o [notifyObservers” on page 116

© Copyright IBM Corp. 1996, 1998 179

Priority Queue

Members

Class Name Header File Implementation Variant
IPriorityQueue ipqu.h List

IGPriorityQueue ipqu.h List
IPriorityQueueAsList ipqulst.h List
IGPriorityQueueAsList ipqulst.h List
IPriorityQueueAsTable ipqutab.h Table
IGPriorityQueueAsTable ipqutab.h Table
IPriorityQueueAsDilTable ipqudil.h Diluted table
IGPriorityQueueAsDilTable ipqudil.h Diluted table

All members of flat collections are described in [Chapter 14, “Introduction to Flaj
ollections” on page 93. The following members are provided for priority queue:

Method Page Method Page
Constructor isFull 111
Copy Constructor isLast 111
Destructor key 17]
operator= lastElement L1t
add locateElementWithKey 112
addAllFrom locateNextElementWithKey 13
allElementsDo locateOrAddElementWithKey

anyElement maxNumberOfElements

compare newCursor

containsAllKeysFrom numberOfDifferentKeys

containsElementWithKey
copy

dequeue
elementAt
elementAtPosition
elementWithKey
enqueue
firstElement
isBounded
iISEmpty

isFirst

Priority queue also defines a cursor that inherits from IOrderedCursor. The

EEEEEEEEEEEEEEEEERRES

numberOfElements
numberOfElementsWithKey
positionAt

removeAll

removeFirst

setToFirst

setTolLast

setToNext
setToNextWithDifferentKey
setToPosition
setToPrevious

HERREEEEREEEEEE

members for I0rderedCursor are described in Chapter 37, “Cursor’ on page 251

Template Arguments and Required Functions

Priority Queue

180 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

IPriorityQueue <Element, Key>

IGPriorityQueue <Element, Key, KCOps>

The implementation of the class IPriorityQueue requires the following element and

key-type functions:

Element Type

Priority Queue

e Copy constructor
Destructor

e Assignment

e Key access

Key Type

Ordering relation

Priority Queue as List

IPriorityQueueAsList <Element, Key>
IGPriorityQueueAsList <Element, Key, KCOps>

The implementation of the class IPriorityQueueAsList requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Priority Queue as Table

IPriorityQueueAsTable <Element, Key>
IGPriorityQueueAsTable <Element, Key, KCOps>

The implementation of the class IPriorityQueueAsTable requires the following
element and key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access
Key Type

Ordering relation

Chapter 25. Priority Queue 181

Priority Queue

Priority Queue as Diluted Table
IPriorityQueueAsDilTable <Element, Key>
IGPriorityQueueAsDilTable <Element, Key, KCOps>

The implementation of the class IPriorityQueueAsDilTable requires the following
element and key-type functions:
Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

Key Type

Ordering relation

Abstract Class
IAPriorityQueue<Element,Key>
For polymorphism, you can use the corresponding abstract class, IAPriorityQueue,
which is found in the iapqu.h header file. See the section on Polymorphism and
the Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

182 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Queue

Chapter 26. Queue

A queue is a sequence with restricted access. It is an ordered collection of
elements with no key and no element equality. The elements are arranged so that
each collection has a first and a last element, each element except the last has a
next element, and each element but the first has a previous element. The type and
value of the elements are irrelevant, and have no effect on the behavior of the
collection.

You can only add an element as the last element, and you can only remove the
first element. Consequently, the elements of a queue are in chronological order.

A queue is characterized by a first-in, first-out (FIFO) behavior.

An example of using a queue is a program that processes requests for parts at the
cash sales desk of a warehouse. A request for a part is added to the queue when
the customer's order is taken, and is removed from the queue when an order picker
receives the order form for the part. Using a queue collection in such an
application ensures that all orders for parts are processed on a first-come,
first-served basis.

Derivation
Collection
Ordered Collection
Sequential Collection
Sequence
Queue

Note that queue is based on sequence but is not actually derived from it or from
the other classes shown above. See [Restricted Access]| in the IBM Open Class
Library User's Guide for further details.

Variants and Header Files
IQueue, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« [disableNotification” on page 108

» [enableNotification” on page 109

« [isEnabledForNotification” on page 111|
o [notifier on page 11§

o [notifyObservers” on page 118

© Copyright IBM Corp. 1996, 1998 183

Queue

Class Name Header File Implementation Variant
IQueue iqu.h List

IGQueue iqu.h List

IQueueAsList iqulst.h List

I1GQueueAsList iqulst.h List

IQueueAsTable iqutab.h Table

I1GQueueAsTable iqutab.h Table
IQueueAsDilTahle iqudil.h Diluted table
IGQueueAsDilTable iqudil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaf
Collections” on page 93. The following members are provided for queue:

Method Page Method Page
Constructor isBounded L10]
Copy Constructor iSEmpty 110

Destructor isFirst 11

operator= isFull LI1]
add isLast LC11]
addAllFrom b9] lastElement fi11]
addAsLast [[00] maxNumberOfElements L15]
allElementsDo [L05] newCursor L15]
anyElement numberOfElements
compare [[06] positionAt L[17]
copy [L07] removeAll 18]
dequeue [[08] removeFirst [20]
elementAt 108 setToFirst 121

elementAtPosition 09 setTolLast 21

enqueue [[09] setToNext [22]
firstElement [(10] setToPosition 23]

Queue also defines a cursor that inherits from I0rderedCursor. The members for
I0rderedCursor are described in Chapter 37, “Cursor” on page 251.

Template Arguments and Required Functions

Queue

IQueue <Element>
1GQueue <Element, StdOps>

184 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Queue

The default implementation of the class IQueue requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor
e Assignment

Queue as List
IQueueAsList <Element>
1GQueueAsList <Element, StdOps>

The implementation of the class IQueueAsList requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Queue as Table
IQueueAsTable <Element>
I1GQueueAsTable <Element, StdOps>

The implementation of the class IDequeAsTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Queue as Diluted Table

IQueueAsDilTable <Element>
1GQueueAsDil1Table <Element, StdOps>

The implementation of the class IQueueAsDiTTable requires the following element
functions:
Element Type

e Copy constructor
e Destructor
e Assignment

Chapter 26. Queue 185

Queue

Abstract Class
IAQueue<ETement>

For polymorphism, you can use the corresponding abstract class, IAQueue, which is
found in the iaqu.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

186 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Relation

Chapter 27. Relation

A relation is an unordered collection of zero or more elements that have a key.
Element equality is supported, and the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not
there is already an element in the collection with the same key.

The figure “Behavior of add for Unique and Multiple Collections” in the IBM Open
Class Library User's Guide illustrates the differences in behavior between map,
relation, key set, and key bag when identical elements and elements with the same
key are added.

An example of using a relation is a program that maintains a list of all your
relatives, with an individual's relationship to you as the key. You can add an aunt,
uncle, grandmother, daughter, father-in-law, and so on. You can add an aunt even
if an aunt is already in the collection, because you can have several relatives who
have the same relationship to you. (For unique relationships such as mother or
father, your program would have to check the collection to make sure it did not
already contain a family member with that key, before adding the family member.)
You can locate a member of the family, but the family members are not in any
particular order.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a relation and its
relationship to other flat collections.

Derivation
Collection
Key Collection Equality Collection
Equality Key Collection
Relation

Variants and Header Files
IRelation is the default implementation variant. IGRelation is the default
implementation with generic operations class. Both variants are declared in the
header file irel.h. If you want to use polymorphism, you can replace these class
implementation variants by the reference class.

To use notifications with your collections, change the name of the desired collection
class template from I... to IV... (change IRelation to IVRelation, and
IGRelation to IVGRelation).

Notification-enabled classes have the following additional members:

¢ ['disableNaotification” on page 10

. :‘enabIeNotification" on Eaﬁe 1OQ
« [isEnabledForNotification” on page 111]

o :‘notifier” on Eaée 115
« [notifyObservers” on page 11§

© Copyright IBM Corp. 1996, 1998 187

Relation

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flat

Collections” on page 93. The following members are provided for relation:

Method Page Method Page
Constructor key L11]
Copy Constructor locate 112
Destructor locateElementWithKey 12
operator!= locateNextElementWithKey L13]
operator= locateOrAdd L13]
operator== 08| locateOrAddElementWithKey 114
add maxNumberOfElements L15]
addAllFrom po] newCursor L15]
addDifference 102 numberOfDifferentKeys 116
addintersection 03 numberOfElements 16
addOrReplaceElementWithKey (03] numberOfElementsWithKey L16]
addUnion E remove 17
allElementsDo 05 removeAll 18
anyElement [L06] removeAllElementsWithKey 18]
contains [Lo6] removeAt L19]
containsAllFrom @ removeElementWithKey 119
containsAllKeysFrom [[07] replaceAt 20
containsElementWithKey [[07] replaceElementWithKey 21
copy 07 setToFirst 21
differenceWith 08 setToNext 22
elementAt l08] setToNextWithDifferentkey f[22]
elementWithKey [L09] unionwith [24]
intersectionWith 110

isBounded [L710]

iSEmpty 1ol

isFull f11]

Relation also defines a cursor that inherits from IElementCursor. The members for

IETementCursor are described in Chapter 37, “Cursor” on page 257.

Template Arguments and Required Functions

IRelation <Element, Key>
IGRelation <Element, Key, EKEHOps>

The default implementation of the class IRelation requires the following element

functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access
Equality test

Key Type

e Equality test
¢ Hash function

188 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Relation

Abstract Class

IAReTation<Element,Key>

For polymorphism, you can use the corresponding abstract class, IARelation,
which is found in the iarel.h header file. See the section on Polymorphism and
the Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Chapter 27. Relation 189

Relation

190 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sequence

Chapter 28. Sequence

A sequence is an ordered collection of elements. The elements are arranged so
that each collection has a first and a last element, each element except the last has
a next element, and each element but the first has a previous element.

The type and value of the elements are irrelevant, and have no effect on the
behavior of the collection. Elements can be added and deleted from any position in
the collection. Elements can be retrieved or replaced. A sequence does not
support element equality or a key. If you require element equality for a sequence,
you can use an equality sequence. See Chapter 18, “Equality Sequence” or

for further details.

An example of a sequence is a program that maintains a list of the words in a
paragraph. The order of the words is obviously important, and you can add or
remove words at a given position, but you cannot search for individual words
except by iterating through the collection and comparing each word to the word you
are searching for. You can add a word that is already present in the sequence,
because a given word may be used more than once in a paragraph.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide shows the properties of a sequence and its relationship to
other flat collections.

Derivation
Collection
Ordered Collection
Sequential Collection
Sequence

Variants and Header Files
ISequence, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« ['disableNotification” on page 108
« [enableNotification” on page 109

« [isEnabledForNotification” on page 111]
. :‘notifier" on ﬁaﬁe 115
« [notifyObservers” on page 118

© Copyright IBM Corp. 1996, 1998 191

Sequence

Class Name Header File Implementation Variant
ISequence iseq.h List

IGSequence iseq.h List

ISequenceAsList iseqlst.h List

IGSequenceAsList iseqlst.h List

ISequenceAsTable iseqtab.h Table
IGSequenceAsTable iseqtab.h Table
ISequenceAsDilTable iseqdil.h Diluted table
IGDi1Table iseqdil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaf
Collections” on page 93. The following members are provided for sequence:

Method Page Method Page
Constructor isLast 111

Copy Constructor lastElement 11

Destructor maxNumberOfElements L15]
operator= newCursor 115

add numberOfElements 16

addAllFrom b9l positionAt f17]
addAsFirst fl00] removeAll 18]
addAsLast 100 removeAt 119

addAsNext [[01] removeAtPosition [[19]
addAsPrevious [L01] removeFirst 20]
addAtPosition flo1] removeLast 120

allElementsDo [[05] replaceAt 20

anyElement [[06] replaceAt [20]
compare 06 reverse E
copy 07 setTolLast 21

elementAt [[08] setToNext [22]
elementAtPosition [l09] setToPosition 23]
firstElement 110 setToPrevious 123

isBounded 10 sort 123

iSEmpty L10]

isFirst f11]

isFull 111

Sequence also defines a cursor that inherits from I0rderedCursor. The members
for I0rderedCursor are described in [Chapter 37, “Cursor” on page 257

Template Arguments and Required Functions

Sequence

ISequence <Element>
IGSequence <Element, StdOps>

The default implementation of ISequence requires the following element functions:

192 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sequence

Element Type

e Copy constructor
e Destructor
e Assignment

Sequence as List
ISequenceAsList <Element>
IGSequenceAsList <Element, StdOps>

The implementation of the class ISequenceAsList requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Sequence as Table
ISequenceAsTable <Element>
IGSequenceAsTable <Element, StdOps>

The implementation of the class ISequenceAsTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Sequence as Diluted Table
ISequenceAsDilTable <Element>
IGSequenceAsDi1Table <Element, StdOps>

The implementation of the class 1SequenceAsDi1Table requires the following
element functions:

Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

Abstract Class

IASequence<Element>

For polymorphism, you can use the corresponding abstract class, IASequence,
which is found in the iaseq.h header file. See the section on Polymorphism and
the Collections in the IBM Open Class Library User's Guide for further information.

Chapter 28. Sequence 193

Sequence

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Sequence

The following program creates a sequence using the default sequence class,
ISequence, and adds a number of words to it. The program sorts the words in
ascending order and searches the sequence for the word “fox.” Finally, it prints the
word that is in position 9.

The program uses two types of iteration. It uses the iterator class, IIterator,
when printing the sequence, and it uses cursor iteration when searching for a word.
With the iterator object, the program uses the al1ETementsDo() function. With
cursor iteration, it uses the setToFirst(), isValid(), and setToNext() functions. It
uses the elementAt () and elementAtPosition() functions to find words in the
sequence.

See endix A, “Header Files for Collection Class Library Coding Examples” o

for the code of the toyword.h file.

JHm e e e e e e *\
| wordseq.CPP - Example for using the Sequence.

| This Sequence is used to handle elements of type Word. |
| This example also demonstrates two different ways of

| iteration, using an object of an applicator class

| and using a cursor.
|y Sy G S S S S Sy Sy S S Sy S S S Sy S S */

#include <iostream.h>

// Get definition and declaration of class Word:
#include "toyword.h"

// Define a compare function to be used for sort:

inline long wordCompare (Word const& wl, Word const& w2) {
return (wl.getWord() > w2.getWord());

#include <iseq.h>

typedef ISequence <Word> WordSeq;
typedef IApplicator <Word> WordApplicator;

£ *\
| Our Applicator class for use with allElementsDo(). |
I |
| The alternative method of iteration, using a cursor, does |
| not need such an applicator class. If you want to see

| this alternative, search for occurences of cursor below. |
2 */

class PrintClass : public WordApplicator
{
public:
IBoolean applyTo(Word &w)
{
cout << endl << w.getWord(); // Print the string
return(True);
1
1s

194 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

in

t main() {

IString wordArray [9] = {
"the", "quick",
Iloverll R n

}s

WordSeq WL;
WordSeq: :Cursor cursor(WL);
PrintClass Print;

int i

for (i =05 i <9; i ++) {
Word aWord(wordArray[i]);
WL.addAsLast (aWord) ;

}

"brown",
all’ II'IaZyII’

"fOX", "jumps",

udogu

cout << endl << "Sequence in initial order:" << endl;

WL.al1ETementsDo(Print);

WL.sort(wordCompare) ;

// Sort the Sequence ascending

cout << endl << endl << "Sequence in sorted order:" << endl;

WL.al1ETementsDo(Print);

// Use iteration via cursor now:

Sequence

// Put all strings into Sequence
// Fill object with right value
// Add it to the Sequence at end

cout << endl << endl << "Look for \"fox\" in the Sequence:" << endl;

for (cursor.setToFirst();

cursor.isValid() && (WL.elementAt(cursor).getWord() != "fox");

cursor.setToNext());

if (WL.elementAt(cursor).getWord() != "fox") {
cout << endl << "The element was not found." << endl;

}

else {

cout << endl << " The element was found." << endl;

}

cout << end] << "The element at position 9:

<< WL.elementAtPosition(9).getWord()

<< endl;

return(0);

Chapter 28. Sequence

195

Sequence

The program produces the following output:

Sequence in initial order:

the
quick
brown
fox
Jjumps
over
a
lazy
dog

Sequence in sorted order:

a
brown
dog
fox
jumps
lazy
over
quick
the

Look for "fox" in the Sequence:
The element was found.

The element at position 9: the

196 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Set

Chapter 29. Set

A set is an unordered collection of zero or more elements with no key. Element
equality is supported, and the values of the elements are relevant.

Only unique elements are supported. A request to add an element that already
exists is ignored.

An example of a set is a program that creates a packing list for a box of free
samples to be sent to a warehouse customer. The program searches a database
of in-stock merchandise, and selects ten items at random whose price is below a
threshold level. Each item is then added to the set. The set does not allow an
item to be added if it is already present in the collection, ensuring that a customer
does not get two samples of a single product. The set is not sorted, and elements
of the set cannot be located by key.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a set and its
relationship to other flat collections.

The set also offers typical set functions such as union, intersection, and difference.

Derivation
Collection
Equality Collection
Set

Variants and Header Files
ISet, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

 |disableNotification” on page 10
« [enableNotification” on Eaée 109
« [isEnabledForNotification” on page 111]
¢ ['notifier” on page 11
 [notifyObservers” on page 114

© Copyright IBM Corp. 1996, 1998 197

Set

Members

198 0s/390 V2R6.0 C/C++ IBM Open Class Library Reference

Class Name Header File Implementation Variant
ISet iset.h AVL tree
I1GSet iset.h AVL tree
ISetAsAviTree isetavl.h AVL tree
I1GSetAsAviTree isetavl.h AVL tree
ISetAsBstTree isetbst.h B* tree
I1GSetAsBstTree isetbst.h B* tree
ISetAsList isetlst.h List
I1GSetAsList isetlst.h List
ISetAsTable isettab.h Table
IGSetAsTable isettab.h Table
ISetAsDilTable isetdil.h Diluted table
IGSetAsDilTable isetdil.h Diluted table
ISetAsHshTable isethsh.h Hash table
IGSetAsHshTable isethsh.h Hash table

All members of flat collections are described in [Chapter 14, “Introduction to Flaf

Collections” on page 93. The following members are provided for set:

Method Page Method Page
Constructor elementAt
Copy Constructor b7] intersectionWith L10]
Destructor b7] isBounded 110

operator!= p7] iSEmpty 10

operator= pg] isFull LI1]
operator== E locate E
add 8 locateOrAdd 13

addAllFrom pg] maxNumberOfElements L15]
addDifference [02] newCursor L15]
addIntersection numberOfElements
addUnion [[04] remove [17]
allElementsDo [LO5] removeAll L18]
anyElement fl06] removeAt L19]
contains 106 replaceAt 120

containsAllFrom 06 setToFirst 21

copy [[07] setToNext [22]
differenceWith fl08] unionwith fi24]

Set also defines a cursor that inherits from IETementCursor. The members for
IETementCursor are described in Chapter 37, “Cursor”’ on page 257.

Set

Template Arguments and Required Functions

Set

ISet <Element>
1GSet <Element, COps>

The default implementation of the class ISet requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

Set as AVL Tree

Set as B* Tree

Set as List

ISetAsAvlTree <Element>
1GSetAsAviTree <Element, (COps>

The implementation of the class ISetAsAv1Tree requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Ordering relation

ISetAsBstTree <Element>
1GSetAsBstTree <Element, (COps>

The implementation of the class 1SetAsBstTree requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

¢ Ordering relation

ISetAsList <Element>
I1GSetAsList <Element, COps>

The implementation of the class ISetAsList requires the following element
functions:

Chapter 29. Set 199

Set

Element Type

e Copy constructor
e Destructor

e Assignment

¢ Ordering relation

Set as Table

ISetAsSortedTable <Element>
1GSetAsTable <Element, COps>

The implementation of the class ISetAsTable requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

Set as Diluted Table

ISetAsDilTable <Element>
1GSetAsDil1Table <Element, COps>

The implementation of the class ISetAsDil1Table requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Ordering relation

Set as Hash Table

ISetAsHshTable <Element>
IGSetAsHshTable <Element, EHOps>

The implementation of the class I1SetAsHshTabTe requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Equality test

e Hash function

200 0sS/390 V2R6.0 C/C++ IBM Open Class Library Reference

Set

Abstract Class

IASet<ETlement>

For polymorphism, you can use the corresponding abstract class, IASet, which is
found in the iaset.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Set

The following program creates sets using the default class, ISet. The odd set
contains all odd numbers less than ten. The prime set contains all prime numbers
less than ten. The program creates a set, oddPrime, that contains all the prime
numbers less than ten that are odd, by using the intersection of odd and prime. It
creates another set, evenPrime, that contains all the prime numbers less than ten
that are even, by using the difference of prime and oddPrime.

When printing the sets, the program uses the iterator class, IIterator. It uses the
add() function to build the odd and prime sets. It uses the addIntersection() and
addDifference() functions to create the oddPrime and evenPrime sets, respectively.

| evenodd.CPP - Even and Odd numbers are handled in different |
Sets do demonstrate using Sets.

#include <iostream.h>

#include <iset.h> // Take the defaults for the Set and for
// the required functions for integer
typedef ISet <int> IntSet;

e *\
| For iteration we want to use an object of an iterator class |
2Ty */
class PrintClass : public IIterator<int> {
public:
virtual IBoolean applyTo(int& i)
{ cout << " " << i << " "; return True;}

1s
2y *\
| Local prototype for the function to display an IntSet. |
2 */

int main () {
IntSet odd, prime;
IntSet oddPrime, evenPrime;

int One = 1, Two = 2, Three = 3, Five = 5, Seven = 7, Nine = 9;
// Fill odd set with odd integers < 10

odd.add(One);
odd.add(Three);

Chapter 29. Set 201

Set

odd.add(Five);
odd.add(Seven);
odd.add(Nine);
List("0dds less than 10: ", odd);

// Fill prime set with primes < 10
prime.add(Two);
prime.add(Three);
prime.add(Five);
prime.add(Seven);
List("Primes less than 10: ", prime);

// Intersect 'Odd' and 'Prime' to give 'OddPrime'
oddPrime.addIntersection(odd, prime);
List("0dd primes less than 10: ", oddPrime);

// Subtract all '0Odd' from 'Prime' to give 'EvenPrime'
evenPrime.addDifference(prime, oddPrime);
List("Even primes less than 10: ", evenPrime);

return(0);

}

K m e m e e *\
| Local function to display an IntSet. |
|y S S Sy S Sy S Sy Sy Sy S */

void List(char *Message, IntSet &anIntSet) {
PrintClass Print;

cout << Message;
anIntSet.al1ElementsDo(Print);
cout << endl;

The program produces the following output:

Odds less than 10: 1 3 5 7 9
Primes less than 10: 2 3 5 7

0dd primes Tess than 10: 3 5 7
Even primes less than 10: 2

202 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Chapter 30. Sorted Bag

Sorted Bag

A sorted bag is an ordered collection of zero or more elements with no key. Both
element equality and multiple elements are supported.

An example of using a sorted bag is a program for entering observations on the

types of stones found in a riverbed. Each time you find a stone on the riverbed,

you enter the stone's mineral type into the collection. You can enter the same

mineral type for several stones, because a sorted bag supports multiple elements.
You can search for stones of a particular mineral type, and you can determine the
number of observations of stones of that type. You can also display the contents of
the collection, sorted by mineral type, if you want a complete list of observations

made to date.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a sorted bag and its

relationship to other flat collections.

Derivation
Collection
Ordered Collection
Equality Collection Sorted Collection
Equality Sorted Collection
Sorted Bag

Variants and Header Files

ISortedBag, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

¢ [disableNotification” on page 10

. :‘enabIeNotification” on Eaﬁe 109
« [isEnabledForNotification” on page 111

¢ [notifier” on page 115

 [notifyObservers” on page 11§

Class Name Header File Implementation
Variant
ISortedBag isb.h List
IGSortedBag isb.h List
ISortedBagAsList isblst.h List
IGSortedBagAsList isblst.h List
ISortedBagAsTable isbtab.h Table
IGSortedBagAsTable isbtab.h Table
ISortedBagAsDilTable ishdil.h Diluted table
IGSortedBagAsDilTable ishdil.h Diluted table

© Copyright IBM Corp. 1996, 1998

203

Sorted Bag

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flat

Collections” on page 93. The following members are provided for sorted bag:

Method Page Method Page
Constructor isLast L11]
Copy Constructor lastElement 111
Destructor locate 12
operator!= locateNext L13]
operator= locateOrAdd L13]
operator== 08| maxNumberOfElements 115
add newCursor L15]
addAllFrom po] numberOfDifferentElements L16]
addDifference 102 numberOfElements 116
addintersection 03 numberOfOccurrences 16
addUnion [[04] positionAt Li7]
allElementsDo E remove 17
anyElement 06 removeAll 18
compare [[06] removeAllOccurrences 18]
contains [L06] removeAt L19]
containsAllFrom @ removeAtPosition 119
copy [[07] removeFirst 20
differenceWith [f08] removelLast 20
elementAt E replaceAt 20
elementAtPosition 09 setToFirst 21
firstElement [10] setTolLast [21]
intersectionWith [10] setToNext L22]
isBounded setToNextDifferentElement
iSEmpty [[I0] setToPosition 23]
isFirst [[11] setToPrevious 23]
isFull f11] unionwith fi24]

Sorted Bag also defines a cursor that inherits from IOrderedCursor. The members
for I0rderedCursor are described in Chapter 37, “Cursor” on page 257

Template Arguments and Required Functions

Sorted Bag

ISortedBag <Element>
IGSortedBag <Element, COps>

The default implementation of the class ISortedBag requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

204 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Bag

Sorted Bag as List

ISortedBagAsList <Element>
IGSortedBagAsList <Element, COps>

The implementation of the class ISortedBagAsList requires the following element
functions:

Element Type

e Constructor
e Assignment
e Ordering relation

Sorted Bag as Table

ISortedBagAsTable <Element>
IGSortedBagAsTable <Element, COps>

The implementation of the class ISortedBagAsTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Ordering relation

Sorted Bag as Diluted Table

ISortedBagAsDi1Table <Element>
IGSortedBagAsDilTable <Element, COps>

The implementation of the class ISortedBagAsDilTable requires the following
element functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Ordering relation

Abstract Class

IASortedBag<ELement>

For polymorphism, you can use the corresponding abstract class, IASortedBag,
which is found in the iasb.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

Chapter 30. Sorted Bag 205

Sorted Bag

The required functions are the same as the required functions of the concrete base
class.

206 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Map

Chapter 31. Sorted Map

A sorted map is an ordered collection of zero or more elements that have a key.
Element equality is supported and the values of the elements are relevant.
Elements are sorted by the value of their keys.

Only elements with unique keys are supported. A request to add an element
whose key already exists in another element of the collection causes an exception
to be thrown. A request to add a duplicate element is ignored.

An example of using a sorted map is a program that matches the names of rivers
and lakes to their coordinates on a topographical map. The river or lake name is
the key. You cannot add a lake or river to the collection if it is already present in
the collection. You can display a list of all lakes and rivers, sorted by their names,
and you can locate a given lake or river by its key, to determine its coordinates.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a sorted map and its
relationship to other flat collections.

Derivation

Equality Key Collection Equality Sorted Collection
Equality Key Sorted Collection
Sorted Map

The diagram does not show all bases of sorted map. See the figure “Abstract

Class Hierarchy” in the IBM Open Class Library User's Guide for a complete
illustration.

Variants and Header Files
ISortedMap, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

 ['disableNotification” on page 10

« [enableNotification” on Eaﬁe 109

+ [isEnabledForNotification” on page 111]
¢ ['notifier” on page 115
['notifyObservers” on page 114

Class Name Header File Implementation Variant
ISortedMap ism.h AVL tree

IGSortedMap ism.h AVL tree
ISortedMapAsAviTree ismavl.h AVL tree
IGSortedMapAsAviTree ismavl.h AVL tree
ISortedMapAsBstTree ismbst.h B* tree
IGSortedMapAsBstTree ismbst.h B* tree

© Copyright IBM Corp. 1996, 1998 207

Sorted Map

Class Name Header File Implementation Variant
ISortedMapAsList ismlst.h List
IGSortedMapAsList ismlst.h List
ISortedMapAsTable ismtab.h Table
IGSortedMapAsTable ismtab.h Table
ISortedMapAsDilTable ismdil.h Diluted table
IGSortedMapAsDilTable ismdil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaj
Collections” on page 93. The following members are provided for sorted maps:

containsElementWithKey removeElementWithKey

Method Page Method Page
Constructor isFull 111
Copy Constructor isLast 11
Destructor key 1]
operator!= lastElement f11]
operator= 08| locate 112
operator== locateElementWithKey [12]
add locateNext L13]
addAllFrom 9] locateNextElementWithKey 113
addDifference [[0Z] locateOrAdd 13
addIntersection 03] locateOrAddElementWithKey [14]
addOrReplaceElementWithKey E maxNumberOfElements E
addUnion 04 newCursor 15
allElementsDo [L05] numberOfElements L16]
anyElement [L06] positionAt L17]
compare 106 remove 117
contains 06 removeAll 18
containsAllFrom [[06] removeAt
containsAllKeysFrom 07 removeAtPosition
07

[L07]

fios]

fL09]

fL09]

f(19]
19
19
copy removeFirst [20]
differenceWith removeLast L20]
elementAt replaceAt
elementAtPosition replaceElementWithKey [21]
elementWithKey setToFirst [21]
firstElement 110 setToLast f21]
intersectionWith 110 setToNext 122
isBounded 10 setToPosition 23
iSEmpty [[10] setToPrevious 23]
isFirst f11] unionwith fi24]

Sorted map also defines a cursor that inherits from I0rderedCursor. The members
for I0rderedCursor are described in Chapter 37, “Cursor” on page 257

208 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Map

Template Arguments and Required Functions

Sorted Map

ISortedMap <Element, Key>
IGSortedMap <Element, Key, EKCOps>

The implementation of the class ISortedMap requires the following element and
key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Sorted Map as AVL Tree

ISortedMapAsAviTree <Element, Key>
IGSortedMapAsAvlTree <Element, Key, EKCOps>

The implementation of the class ISortedMapAsAv1Tree requires the following
element and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Sorted Map as B* Tree

ISortedMapAsBstTree <Element, Key>
IGSortedMapAsBstTree <Element, Key, EKCOps>

The implementation of the class ISortedMapAsBstTree requires the following
element and key-type functions:

Element Type

e Default constructor
e Copy constructor
e Destructor

e Assignment

e Key access

Chapter 31. Sorted Map 209

Sorted Map

e Equality test
Key Type

Ordering relation

Sorted Map as List
ISortedMapAsList <Element, Key>
IGSortedMapAsList <Element, Key, EKCOps>

The implementation of the class ISortedMapAsList requires the following element
and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Sorted Map as Table

ISortedMapAsTable <Element, Key>
IGSortedMapAsTable <Element, Key, EKCOps>

The implementation of the class ISortedMapAsTable requires the following element
and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access
Equality test

Key Type

Ordering relation

Sorted Map as Diluted Table

ISortedMapAsDilTable <Element, Key>
IGSortedMapAsDilTable <Element, Key, EKCOps>

The implementation of the class ISortedMapAsDilTable requires the following
element and key-type functions:

Element Type

e Copy constructor
¢ Destructor

210 0sS/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Map

e Assignment
e Key access
e Equality test

Key Type

Ordering relation

Abstract Class

IASortedMap<Element,Key>

For polymorphism, you can use the corresponding abstract class, IASortedMap,
which is found in the iasm.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Sorted Map

The following program uses a sorted map and a sorted relation to display sorted
lists of the name and size of files contained on a disk. It uses the default classes,
ISortedMap and ISortedRelation, to implement the collections. The program uses
the sorted map to store the name of the file, because all elements in a sorted map
are unique and all names on a disk are unique. It uses a sorted relation for the file
size, because there may be identical file sizes, and identical values are permissible
in sorted relations.

The program uses the add() function to fill both collections. To print the
collections, it uses the forICursor macro and the all1ETementsDo() function.

The program produces a list of files sorted by name (in ascending order) and a list
of the same files sorted by file size (in descending order). The program uses an
input file, DSU, rather than call an operating system function to get disk usage
information. The input file was created using the du command on an AIX system.
The input file is contained in the same dataset as the sample program.

See Appendix A, “Header Files for Collection Class Library Coding Examples” onl
for the code of the dsur.h file.

dskusage.CPP - Disk Usage Information is handled using
a Sorted Map and a Sorted Relation.

This program reads a file containing disk space usage
records 'DiskSpaceUR'. Each record is added into two
Equality Key Sorted Collections.

One of these collections, DSURbyName, is a Sorted Map.
The key is the name, which is unique.

The other collection, DSURbySpace, is a Sorted Relation.
The key is the space, which can occur multiple times.

Using the iteration method allETementsDo, both Collections
then print their contents in the sorted order.

Chapter 31. Sorted Map 211

Sorted Map

| Note: If we could be sure that there would never be two |
| identical records in the input data, it would be better|
| to use the corresponding collections that do not need |
| element equality. These are KeySorted Set and

| KeySorted Bag instead of Sorted Map and

| Sorted Relation. |
\ /

#include "dsur.h"
// Our own common exit for all errors:
void errorExit(int, char*, charx = "");

// Use the default Sorted Map as is:
#include <ism.h>

// Use the default Sorted Relation as is:
#include <isr.h>

int main (int argc, charx argv[])
{ charx fspec = "dsu.dat"; // Default for input file

if (argc > 1) fspec = argv[1];

ifstream inputfile (fspec);
if (Yinputfile)
errorExit (20, "Unable to open input file", fspec);

ISortedMap <DiskSpaceUR, charx> dsurByName;
ISortedMap <DiskSpaceUR, char*>::Cursor curByName (dsurByName);

IGSortedRelation <DiskSpaceUR, int, DSURBySpaceOps>
dsurBySpace;

IGSortedRelation <DiskSpaceUR, int, DSURBySpaceOps>::Cursor
curBySpace(dsurBySpace);

// Read all records into dsurByName
while (inputfile.good()) {
DiskSpaceUR dsur (inputfile);
if (dsur.isValid ()) {
dsurByName.add (dsur);
dsurBySpace.add (dsur);
1
}
if (! inputfile.eof ())
errorExit (39, "Error during read of", fspec);

cout << endl << endl
<< "A11 Disk Space Usage records
<< "sorted (ascending) by name:" << endl << endl;

forICursor (curByName)
cout << " " << dsurByName.elementAt (curByName) << endl;

cout << endl << endl
<< "A11 Disk Space Usage records
<< "sorted (descending) by space:" << endl << endl;

for (curBySpace.setTolast ();
curBySpace.isValid ();
curBySpace.setToPrevious ())
cout << " " << dsurBySpace.elementAt (curBySpace) << endl;

return 0;

1
#include <stdlib.h> // for exit () definition
void errorExit (int rc, char* sl, charx s2)

{ cerr << s1 << " " << 52 << endl;
exit (rc);

212 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Map

The program produces the following output:

A11 Disk Space Usage records sorted (ascending) by name:

./tmp 116
./tmp/.X11-unix 4
./tmp/inutmpK5kBM_ 8
./tmp/inutmpKIoCKs 4
./tmp/inutmpMrQBQD 16
./tmp/inutmpQ4IBFe 16
./tmp/objrepos.inst 60
./usr/bin 38280
.Jusr/bin/c++ 8988
./usr/bin/graf 864
./usr/ccs 7872
./usr/ccs/bin 924
./usr/ccs/1ib 6944
./usr/etc 8
./usr/etc/yp 4
./usr/include 4532
./usr/include/DPS 116
./usr/include/IN 80
.Jusr/include/aixif 8
./usr/include/arpa 28
./usr/include/diag 44
./usr/include/em78 16
.Jusr/include/id1 176
./usr/include/isode 492
.Jusr/include/jfs 64
./usr/include/net 60
./usr/include/netinet 128
./usr/include/netiso 192
./usr/include/netns 52
.Jusr/include/nfs 36
./usr/include/protocols 24
./usr/include/rpc 80
./usr/include/rpcsvc 156
./usr/include/sys 1808
.Jusr/1bin 592
./usr/1bin/refer 52
.Jusr/1bin/spell 320
.Jusr/1bin/tty 168
.Jusr/1ib 58132
./usr/1ib/INed 492
./usr/1ib/INnet 68
./usr/1ib/acct 4
.Jusr/1ib/asw 224
./usr/1ib/boot 3520
.Jusr/lib/drivers 4316
./usr/1ib/dwb 400
.Jusr/1ib/dwm 600
./usr/1ib/em78 736
./usr/1ib/font 9124
./usr/1ib/graf 16
./usr/1ib/hcon 912
./usr/1ib/inst_updt 2532
.Jusr/1ib/instl 136
./usr/1ib/Tearn 20
./usr/1ib/1ibtermcap 72
./usr/1ib/1pd 1264
./usr/1ib/methods 1864
./usr/1ib/mh 1224
./usr/1ib/microcode 6632
.Jusr/1lib/netsvc 124
.Jusr/1lib/nls 8156
./usr/1ib/objrepos 7448
./usr/1ib/ps 2000
./usr/1ib/ras 136
./usr/1ib/sa 24
./usr/1ib/security 96

Chapter 31. Sorted Map 213

Sorted Map

214 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

./usr/1ib/struct
./usr/1ib/uucp
./usr/lost+found
./usr/1pp
./usr/1pp/DPS
./usr/1pp/INed
./usr/1pp/SC
./usr/1pp/X11
./usr/1pp/X1ldev
./usr/1pp/X1ldeviEn_US
.Jusr/1pp/X11fnt
./usr/1pp/X11mEn_US
./usr/1pp/X1lrte
./usr/Tpp/aic
./usr/1pp/aicmEn_US
./usr/1pp/bos
./usr/1pp/bosadt
./usr/1pp/bosextl
./usr/1pp/bosext2
./usr/Tpp/bosinst
./usr/1pp/bosnet
./usr/1pp/bosperf
./usr/1pp/bseiEn_US
./usr/1pp/bs]1
./usr/1pp/bsmEn_US
./usr/1pp/bspiEn_US
./usr/1pp/bssiEn_US
./usr/Tpp/cobolcmp
./usr/Tpp/cobolrte
./usr/1pp/colormaps
./usr/1pp/cpp
./usr/1pp/diagnostics
./usr/1pp/em78
./usr/1pp/em78mEn_US
./usr/1pp/fonts
./usr/1pp/gai
./usr/1pp/gsl
./usr/1pp/hcon
./usr/1pp/hconmEn_US
.Jusr/1pp/hft
./usr/1pp/info
./usr/1pp/integrator
.Jusr/1pp/jls
./usr/1pp/1pex
./usr/1pp/1ud
./usr/1pp/mf
./usr/1pp/ncs
./usr/1pp/nfs
./usr/1pp/pci
./usr/1pp/sna
./usr/1pp/snamEn_US
./usr/1pp/snmpd
.Jusr/1pp/tcpip
./usr/1pp/tex
./usr/1pp/txtfmt
./usr/1pp/vdi
./usr/1pp/vdimEn_US
./usr/1pp/workbench
./usr/1pp/workbenchmkn_US
.Jusr/1pp/x_st_mgr
./usr/1pp/x_st_mgrmen_US
.Jusr/1pp/xdt3
./usr/1pp/x1C
./usr/1pp/x1Cbrs
./usr/1pp/x1Ccmp
./usr/1pp/x1CmEn_US
./usr/1pp/x1Crte
./usr/1pp/x1Cwkb
.Jusr/1pp/xic
./usr/1pp/x1ccmp
./usr/1pp/x1fcmp
.Jusr/Tpp/x1p

112

4

4
266820
4664
36
9232
45840
668
36
1260
72
1648
15128
52
31220
3420
1552
2256
392
2004
716
28
144

4664

1328

Sorted Map

./usr/1pp/xTpcmp 316
./usr/1pp/x1pcmpiEn_US 36
./usr/1pp/x1pcmpmEn_US 40
.Jusr/1pp/x1prte 40
./usr/1pp/x1prtemEn_US 40
./usr/1pp/x1prtemsg 20
./usr/mbin 1972
.Jusr/shin 10196
./usr/shin/acct 244
./usr/sbhin/uucp 404
./usr/share 5908
./usr/share/dict 336
./usr/share/info 124
./usr/share/1ib 3656
./usr/share/1pp 696
./usr/share/man 1092
./usr/uch 152
./usr/usg 4

A11 Disk Space Usage records sorted (descending) by space:

./tmp/.X11-unix 4
./tmp/inutmpKIoCKs 4
./usr/lib/acct 4
./usr/1ib/uucp 4
./usr/lost+found 4
./usr/usg 4
./usr/etc/yp 4
./tmp/inutmpK5kBM_ 8
./usr/include/aixif 8
./usr/etc 8
./usr/1pp/x_st_mgrmen_US 12
./tmp/inutmpQ4IBFe 16
./tmp/inutmpMrQBQD 16
./usr/Tpp/cobolcmp 16
./usr/1pp/cobolrte 16
.Jusr/1pp/ils 16
./usr/include/em78 16
./usr/1ib/graf 16
./usr/1pp/x1prtemsg 20
.Jusr/1ib/Tearn 20
./usr/1pp/colormaps 24
./usr/1pp/x1fcmp 24
./usr/include/protocols 24
./usr/1ib/sa 24
./usr/1pp/bspiEn_US 28
./usr/1pp/bseiEn_US 28
.Jusr/include/arpa 28
./usr/1pp/x_st_mgr 32
./usr/1pp/bssikn_US 36
./usr/1pp/INed 36
./usr/1pp/X1ldeviEn_US 36
./usr/1pp/x1pcmpiEn_US 36
./usr/include/nfs 36
.Jusr/1pp/x1prte 40
./usr/1pp/x1prtemEn_US 40
./usr/1pp/x1pcmpmEn_US 40
./usr/1pp/x1Crte 40
./usr/1pp/fonts 44
./usr/1pp/vdimEn_US 44
./usr/include/diag 44
./usr/1pp/cpp 48
./usr/1pp/aicmEn_US 52
./usr/1pp/em78mEn_US 52
./usr/1pp/hconmEn_US 52
./usr/1pp/snamEn_US 52
./usr/1pp/x1CmEn_US 52
./usr/1pp/x1Cbrs 52
./usr/include/netns 52
./usr/1bin/refer 52
./tmp/objrepos.inst 60

Chapter 31. Sorted Map 215

Sorted Map

./usr/1pp/x1Cwkb 60
./usr/include/net 60
.Jusr/include/jfs 64
.Jusr/1ib/INnet 68
./usr/1pp/X11mEn_US 72
./usr/1ib/1ibtermcap 72
./usr/1pp/x1ccmp 76
./usr/1pp/workbenchmkn_US 76
./usr/1pp/em78 80
./usr/include/IN 80
./usr/include/rpc 80
./usr/1pp/integrator 96
./usr/1lib/security 96
.Jusr/1ib/struct 112
./tmp 116
./usr/include/DPS 116
./usr/1ib/netsvc 124
./usr/share/info 124
./usr/include/netinet 128
.Jusr/1pp/nfs 136
.Jusr/1lib/instl 136
.Jusr/1ib/ras 136
./usr/1pp/bs1 144
./usr/uch 152
./usr/include/rpcsvc 156
.Jusr/1bin/tty 168
./usr/include/id1 176
./usr/1pp/snmpd 192
./usr/include/netiso 192
./usr/1pp/bsmEn_US 212
.Jusr/1ib/asw 224
./usr/shin/acct 244
./usr/1pp/hcon 252
./usr/1pp/x1pcmp 316
.Jusr/1bin/spell 320
./usr/Tpp/hft 336
./usr/share/dict 336
./usr/1pp/bosinst 392
./usr/1pp/x1Ccmp 400
./usr/1ib/dwb 400
./usr/sbhin/uucp 404
./usr/Tpp/1u@ 420
./usr/Tpp/ncs 452
.Jusr/1pp/tcpip 464
./usr/include/isode 492
./usr/1ib/INed 492
./usr/1pp/gs] 560
./usr/1bin 592
.Jusr/1ib/dwm 600
./usr/1pp/pci 652
./usr/1pp/X1ldev 668
./usr/share/1pp 696
./usr/1pp/bosperf 716
./usr/1ib/em78 736
./usr/1pp/txtfmt 776
./usr/bin/graf 864
./usr/1ib/hcon 912
./usr/ccs/bin 924
./usr/share/man 1092
./usr/1ib/mh 1224
./usr/1pp/X11fnt 1260
./usr/1ib/1pd 1264
./usr/1pp/sna 1328
./usr/1pp/bosextl 1552
.Jusr/1pp/X1llrte 1648
./usr/include/sys 1808
./usr/1ib/methods 1864
./usr/mbin 1972
./usr/1ib/ps 2000
./usr/1pp/bosnet 2004
./usr/1pp/gai 2084
./usr/1pp/bosext2 2256

216 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

.Jusr/1pp/x1p
.Jusr/1ib/inst_updt
./usr/1pp/xdt3
.Jusr/1pp/xlc
.Jusr/1pp/vdi
./usr/1pp/bosadt
./usr/1ib/boot
./usr/1pp/Tpex
./usr/share/1ib
./usr/1pp/diagnostics
./usr/1ib/drivers
./usr/include
./usr/1pp/DPS
./usr/Tpp/mf
./usr/share
./usr/1ib/microcode
./usr/ccs/1ib
./usr/1ib/objrepos
./usr/ccs
.Jusr/1ib/nls
.Jusr/bin/c++
./usr/1ib/font
./usr/1pp/SC
./usr/shin
.Jusr/1pp/x1C
./usr/1pp/aic
./usr/1pp/workbench
./usr/Tpp/bos
./usr/bin
./usr/1pp/tex
./usr/1pp/info
./usr/1pp/X11
.Jusr/1ib

./usr/1pp

Sorted Map

2520
2532
2564
2920
2948
3420
3520
3632
3656
4156
4316
4532
4664
4664
5908
6632
6944
7448
7872
8156
8988
9124
9232
10196
10488
15128
16240
31220
38280
40964
45568
45840
58132
266820

Chapter 31. Sorted Map

217

Sorted Map

218 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Relation

Chapter 32. Sorted Relation

Derivation

A sorted relation is an ordered collection of zero or more elements that have a key.
The elements are sorted by the value of their key. Element equality is supported,
and the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not
there is already an element in the collection with the same key.

An example of using a sorted relation is a program used by telephone operators to
provide directory assistance. The computerized directory is a sorted relation whose
key is the name of the individual or business associated with a telephone number.
When a caller requests the number of a given person or company, the operator
enters the name of that person or company to access the phone number. The
collection can have multiple identical keys, because two individuals or companies
might have the same name. The collection is sorted alphabetically, because once
a year it is used as the source material for a printed telephone directory.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a sorted relation and its
relationship to other flat collections.

Equality Key Collection Equality Collection
Equality Key Sorted Collection
Sorted Relation

The diagram does not show all bases of sorted relation. See the figure “Abstract
Class Hierarchy” in the IBM Open Class Library User's Guide for a complete
illustration.

Variants and Header Files

ISortedRelation, the first class in the table below, is the default implementation
variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

« [disableNotification” on page 108

» [enableNotification” on page 109

« [isEnabledForNotification” on page 111|
o [notifier on page 11§

o [notifyObservers” on page 118

© Copyright IBM Corp. 1996, 1998 219

Sorted Relation

Members

220 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Class Name Header File Implementation Variant
ISortedRelation isr.h List

IGSortedRelation isr.h List
ISortedRelationAsList isrlst.h List
IGSortedRelationAsList isrlst.h List
ISortedRelationAsTable isrtab.h Table
IGSortedRelationAsTable isrtab.h Table
ISortedRelationAsDilTable isrdil.h Diluted table
IGSortedRelationAsDilTable isrdil.h Diluted table

All members of flat collections are described in [Chapter 14, “Introduction to Flat

ollections” on page 93. The following members are provided for sorted relation:

Method Page Method Page
Constructor E key 111
Copy Constructor 7 lastElement 111
Destructor b7] locate [12]
operator!= b7 locateElementWithKey L12]
operator= ps] locateNext 113
operator== pg] locateNextElementWithKey 13
add pg] locateOrAdd L13]
addAllFrom B9] locateOrAddElementWithKey E
addDifference [L02] maxNumberOfElements 15
addintersection 03] newCursor L15]
addOrReplaceElementWithKey [Lo3] numberOfDifferentKeys L16]
addUnion [l04] numberOfElements 116
allElementsDo [[05] numberOfElementsWithKey 16
anyElement [[06] positionAt Td
compare 06 remove 17
contains 06 removeAll 18
containsAllFrom [[06] removeAllElementsWithKey 18]
containsAllKeysFrom L07] removeAt L19]
containsElementWithKey removeAtPosition
copy [[07] removeElementWithKey [[19]
differenceWith [08] removeFirst [20]
elementAt fl08] removelLast f120]
elementAtPosition 109 replaceAt 120
elementWithKey 09 replaceElementWithKey 21
firstElement [10] setToFirst [21]
intersectionWith 110 setToLast 121
isBounded 110 setToNext 122
iSEmpty [10] setToNextWithDifferentkey [22]
isFirst f(11] setToPosition 23]
isFull 111 setToPrevious 123
isLast 111 unionWith 124

Sorted relation also defines a cursor that inherits from I0rderedCursor. The
members for I0rderedCursor are described in Chapter 37, “Cursor” on page 2571.

Sorted Relation

Template Arguments and Required Functions

Sorted Relation

ISortedRelation <Element, Key>
IGSortedRelation <Element, Key, EKCOps>

The default implementation of the class ISortedRelation requires the following
element and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Sorted Relation as List

ISortedRelationAsList <Element, Key>
IGSortedRelationAsList <Element, Key, EKCOps>

The implementation of the class ISortedRelationAsKey requires the following
element and key-type functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Sorted Relation as Table

ISortedRelationAsTable <Element, Key>
IGSortedRelationAsTable <Element, Key, EKCOps>

The implementation of the class ISortedRelationAsTable requires the following
element and key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

e Equality test

Chapter 32. Sorted Relation 221

Sorted Relation

Key Type

Ordering relation

Sorted Relation as Diluted Table

ISortedRelationAsDilTable <Element, Key>
IGSortedRelationAsDilTable <Element, Key, EKCOps>

The implementation of the class ISortedRelationAsDilTable requires the following
element and key-type functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Key access

e Equality test

Key Type

Ordering relation

Abstract Class
IASortedRelation<Element,Key>

For polymorphism, you can use the corresponding abstract class,
IASortedRelation, which is found in the iasr.h header file. See the section on
Polymorphism and the Collections in the IBM Open Class Library User's Guide for
further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Sorted Relation

See ['Coding Example for Sorted Map” on page 211| for an example of a sorted
relation.

222 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Set

Chapter 33. Sorted Set

A sorted set is an ordered collection of zero or more elements with element equality
but no key. Only unique elements are supported. A request to add an element
that already exists is ignored. The value of the elements is relevant.

The elements of a sorted set are ordered such that the value of each element is
less than or equal to the value of its successor.

The element with the smallest value currently in a sorted set is called the first
element. The element with the largest value is called the last element. When an
element is added, it is placed in the sorted set according to the defined ordering
relation.

An example of using a sorted set is a program that tests numbers to see if they are
prime. Two complementary sorted sets are used, one for prime numbers, and one
for nonprime numbers. When you enter a number, the program first looks in the
set of nonprime numbers. If the value is found there, the number is nonprime. If
the value is not found there, the program looks in the set of prime numbers. If the
value is found there, the number is prime. Otherwise the program determines
whether the number is prime or nonprime, and places it in the appropriate sorted
set. The program can also display a list of prime or nonprime numbers, beginning
at the first prime or nonprime following a given value, because the numbers in a
sorted set are sorted from smallest to largest.

The figure “Combination of Flat Collection Properties” in the IBM Open Class
Library User's Guide gives an overview of the properties of a sorted set and its
relationship to other flat collections.

Derivation
Collection
Ordered Collection
Sorted Collection Equality Collection
Equality Sorted Collection
Sorted Set

Variants and Header Files
ISortedSet, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

» |'disableNotification” on page 10

« [isEnabledForNotification” on page 111|
o [notifier_ on page 11§
o [notifyObservers” on page 116

Class Name Header File Implementation Variant
ISortedSet iss.h AVL tree
IGSortedSet iss.h AVL tree

© Copyright IBM Corp. 1996, 1998 223

Sorted Set

Class Name Header File Implementation Variant
ISortedSetAsAviTree issavl.h AVL tree
IGSortedSetAsAviTree issavl.h AVL tree
ISortedSetAsBstTree issbst.h B* tree
IGSortedSetAsBstTree issbst.h B* tree
ISortedSetAsList isslst.h List
IGSortedSetAsList isslst.h List
ISortedSetAsTable isstab.h Table
IGSortedSetAsTable isstab.h Table
ISortedSetAsDilTable issdil.h Diluted table
IGSortedSetAsDilTable issdil.h Diluted table

Members

All members of flat collections are described in [Chapter 14, “Introduction to Flaj
Collections” on page 93. The following members are provided for sorted sets:

Method Page Method Page
Constructor isFirst 111
Copy Constructor isFull 11
Destructor isLast L11]
operator!= lastElement E
operator= 08| locate 12
operator== locateNext L13]
add locateOrAdd L13]
addAllFrom 9] maxNumberOfElements fi15]
addDifference [[0Z] newCursor L15]
addIntersection 03] positionAt d
addUnion 04 remove E
allElementsDo 05 removeAll 18
anyElement [[06] removeAt [19]
compare [L06] removeAtPosition L19]
contains removeFirst
containsAllFrom [[06] removelast [[20]
copy [[07] replaceAt [20]
differenceWith fl08] setToFirst f21]
elementAt 108 setToLast 121
elementAtPosition 09 setToNext 22
firstElement [[10] setToPosition 23]
intersectionWith 110 setToPrevious 123
isBounded 110 unionWith 124
iISEmpty 110

Sorted Set also defines a cursor that inherits from I0rderedCursor. The members
for I0rderedCursor are described in Chapter 37, “Cursor” on page 257.

224 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Set

Template Arguments and Required Functions

Sorted Set

ISortedSet <Element>
IGSortedSet <Element, COps>

The default implementation of the class ISortedSet requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

e Ordering relation

Sorted Set as AVL Tree

ISortedSetAsAviTree <Element>
IGSortedSetAsAvlTree <Element, EOps>

The implementation of the class ISortedSetAsAv1Tree requires the following
element functions:

Element Type

e Copy constructor
e Destructor

e Assignment

e Ordering relation

Sorted Set as B* Tree

ISortedSetAsBstTree <Element>
I1GSortedSetAsBstTree <Element, COps>

The default implementation of the class ISortedSetAsBstTree requires the following
element functions:

Element Type

e Copy constructor
e Destructor

e Assignment

¢ Ordering relation

Sorted Set as List
ISortedSetAsList <Element>
IGSortedSetAsList <Element, COps>

The implementation of the class ISortedSetAsList requires the following element
functions:

Element Type

e Copy constructor

Chapter 33. Sorted Set 225

Sorted Set

e Assignment
e Destructor
e Ordering relation

Sorted Set as Table

ISortedSetAsTable <Element>
IGSortedSetAsTable <Element, COps>

The implementation of the class ISortedSetAsTable requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor

e Assignment

¢ Ordering relation

Sorted Set as Diluted Table

ISortedSetAsDilTable <Element>
IGSortedSetAsDilTable <Element, COps>

The implementation of the class ISortedSetAsDilTable requires the following
element functions:

Element Type

e Copy constructor
e Destructor

e Assignment

* Ordering relation

Abstract Class
IASortedSet<Element>
For polymorphism, you can use the corresponding abstract class, IASortedSet,

which is found in the iass.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Coding Example for Sorted Set

The following program uses the default class, ISortedSet, to create sorted lists of
planets with different properties. The program stores all planets in our solar
system, all heavy planets in our solar system, all bright planets in our solar system,
and all heavy or bright planets in our solar system in a number of sorted sets.
Each set sorts the planets by its distance from the sun.

The program uses the forICursor macro to create the heavyPlanets and the
brightPlanets collections. It uses the al1ElementsDo() function to display the

226 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Sorted Set

planets in each collection and the unionWith() function when creating the
bright-or-heavy planets category.

See endix_A, “Header Files for Collection Class Library Coding Examples” o

for the code of the planet.h file.

JHm e e e e e *\
| planets.CPP - A1l known planets are handled in a Sorted Set. |
| [NRRTRTTRININ N |
| This example creates several sorted sets of planets. |
| The sort order is based on each planets distance from |
[the sun. [
A * e m e e e e e */

#include <iostream.h>

// Let's use the Sorted Set Default Variant:
#include <iss.h>

// Get Class Planet:
#include "planet.h"

int main()
{ ISortedSet <Planet> allPlanets, heavyPlanets, brightPlanets;
// A cursor to cursor through allPlanets:
ISortedSet <Planet>::Cursor aPCursor (allPlanets);

SayPlanetName showPlanet;

allPlanets.add (Planet("Earth", 149.60f, 1.0000f, 99.9f));
allPlanets.add (Planet("Jupiter", 778.3f, 317.818f, -2.4f));
allPlanets.add (Planet("Mars", 227.9f, 0.1078f, -1.9f));
allPlanets.add (Planet("Mercury", 57.91f, 0.0558f, -0.2f));
allPlanets.add (Planet("Neptun", 4498.f, 17.216f, +7.6f));
allPlanets.add (Planet("Pluto", 5910.f, 0.18f, +14.7f));
allPlanets.add (Planet("Saturn", 1428.f, 95.112f, +0.8f));
allPlanets.add (Planet("Uranus", 2872.f, 14.517f, +5.8f));
allPlanets.add (Planet("Venus", 108.21f, 0.8148f, -4.1f));

forICursor (aPCursor) {
if (al1Planets.elementAt (aPCursor).isHeavy ())
heavyPlanets.add (allPlanets.elementAt (aPCursor));

if (al1Planets.elementAt (aPCursor).isBright ())
brightPlanets.add (allPlanets.elementAt (aPCursor));
}

cout << endl << endl << "Al1l Planets: " << endl;
allPlanets.all1ElementsDo (showPlanet);

cout << end] << endl << "Heavy Planets: " << endl;
heavyPlanets.al1ElementsDo (showPlanet);

cout << endl << endl << "Bright Planets: " << endl;
brightPlanets.allElementsDo (showPlanet);

cout << endl << endl << "Bright-or-Heavy Planets: " << endl;
brightPlanets.unionWith (heavyPlanets);
brightPlanets.al1ElementsDo (showPlanet);

cout << endl << endl
<< "Did you notice that all these Sets are sorted"
<< " in the same order"
<< endl
<< " (distance of planet from sun) ? " << endl;

return 0;

Chapter 33. Sorted Set

227

Sorted Set

The program produces the following output:

A11 Planets:
Mercury Venus Earth Mars Jupiter Saturn Uranus Neptun Pluto

Heavy Planets:
Jupiter Saturn Uranus Neptun

Bright Planets:
Mercury Venus Mars Jupiter

Bright-or-Heavy Planets:
Mercury Venus Mars Jupiter Saturn Uranus Neptun

Did you notice that all these Sets are sorted in the same order
(distance of planet from sun) ?

228 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Stack

Chapter 34. Stack

Derivation

A stack is a sequence with restricted access. It is an ordered collection of
elements with no key and no element equality. The elements are arranged so that
each collection has a first and a last element, each element except the last has a
next element, and each element but the first has a previous element. The type and
value of the elements are irrelevant and have no effect on the behavior of the
stack.

Elements are added to and deleted from the top of the stack. Consequently, the
elements of a stack are in reverse chronological order.

A stack is characterized by a last-in, first-out (LIFO) behavior.

An example of using a stack is a program that keeps track of daily tasks that you
have begun to work on but that have been interrupted. When you are working on a
task and something else comes up that is more urgent, you enter a description of
the interrupted task and where you stopped it into your program, and the task is
pushed onto the stack. Whenever you complete a task, you ask the program for
the most recently saved task that was interrupted. This task is popped off the
stack, and you resume your work where you left off. When you attempt to pop an
item off the stack and no item is available, you have completed all your tasks and
you can go home.

Collection
Ordered Collection
Sequential Collection
Sequence
Stack

Note that stack is based on sequence but is not actually derived from it or from the
other classes shown above. See [Restricted Access/| in the IBM Open Class
Library User's Guide for further details.

Variants and Header Files

IStack, the first class in the table below, is the default implementation variant.

To use notifications with your collections, change the name of the desired collection
class template in the list below from I... to IV....

Notification-enabled classes have the following additional members:

¢ [disableNotification” on page 10
* |‘enableNotification” on Eaﬁe 109
« [isEnabledForNotification” on page 111|

. :‘notifier" on ﬁaﬁe 115
« [notifyObservers” on page 116

© Copyright IBM Corp. 1996, 1998 229

Stack

Members

Class Name Header File Implementation Variant
IStack istk.h List

IGStack istk.h List

IStackAsList istkIst.h List

IGStackAsList istkIst.h List

IStackAsTable istktab.h Table

IGStackAsTable istktab.h Table
IStackAsDilTable istkdil.h Diluted table
IGStackAsDilTable istkdil.h Diluted table

All members of flat collections are described in [Chapter 14, “Introduction to Flat

ollections” on page 93. The following members are provided for stack:

Method Page Method Page
Constructor 07 | isFull 111
Copy Constructor 07| isLast 111
Destructor lastElement [17]
operator= maxNumberOfElements L15]
add newCursor 115
addAllFrom pg] numberOfElements 16
addAsLast [L00] pop L16]
allElementsDo 05 positionAt 17
anyElement 06 push 17
compare [06] removeAll L18]
copy [07] removeLast L20]
elementAt 108 setToFirst 121
elementAtPosition 09 setTolLast 21
firstElement [10] setToNext [22]
isBounded 10 setToPosition E
isEmpty 10 setToPrevious 23
isFirst L11] top [24]

Stack also defines a cursor that inherits from IOrderedCursor. The members for

I0rderedCursor are described in Chapter 37, “Cursor’ on page 2571.

Template Arguments and Required Functions

Stack

IStack <Element>
1GStack <Element, StdOps>

The default implementation of the class IStack requires the following element

functions:

Element Type

e Copy constructor
e Destructor
e Assignment

230 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Stack as List

Stack as Table

Stack

IStackAsList <Element>
IGStackAsList <Element, StdOps>

The implementation of the class IStackAsList requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

IStackAsTable <FElement>
IGStackAsTable <Element, StdOps>

The implementation of the class IStackAsTable requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor
e Assignment

Stack as Diluted Table

IStackAsDilTable <Element>
IGStackAsDilTable <Element, StdOps>

The implementation of the class IStackAsDilTable requires the following element
functions:

Element Type

e Copy constructor
e Destructor
e Assignment

Abstract Class

IAStack<ETement>

For polymorphism, you can use the corresponding abstract class, IAStack, which is
found in the iastk.h header file. See the section on Polymorphism and the
Collections in the IBM Open Class Library User's Guide for further information.

The required functions are the same as the required functions of the concrete base
class.

Chapter 34. Stack 231

Stack

Coding Example for Stack

The following program creates two stacks (Stackl and Stack?2) using the default
class, IStack. It adds a number of words to Stackl, removes them from Stackl,
adds them to Stack?2, and finally removes them from Stack?2 so that they can be
printed. The push() and pop() functions are used for adding and removing
elements, respectively.

Between these stack operations the stacks are printed. To prevent the stack from
changing during printing, the program uses the constant version of the applicator
class, IConstantApplicator with the al1ElementsDo() function. The words print in
the same order as they were originally added to Stackl.

Because of the nature of the stack class, the program must use the constant
applicator class, IConstantApplicator, when printing the stacks. It uses the push()
and pop() functions for adding and removing elements, respectively. The
allETementsDo() function is used when the collection is printed.

| pushpop.CPP - Simple example for the use of the Stack. |

#include <string.h>
#include <iostream.h>

// Let's use the default stack: IStack
#include <istk.h>

typedef IStack <char*> SimpleStack;
// The stack requires iteration to be const.
typedef IConstantApplicator <char*> StackApplicator;

R —— == — o _______ *\
* Test variables to put into our Stack: *
2y */
char *String[9]9 = {

"The",

"quick",

"brown",

llfoxll ,

lljumpsll s

"over",

Ilall .

"lazy",

Ildog . n
}s
e *\
* A class to display the contents of our Stack *
2y */

class PrintClass : public StackApplicator
{
public:

IBoolean applyTo(char* const& w)

cout << w << endl;
return(True);
}

}s

232 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

int main()

SimpleStack Stackl, Stack2;

char *S;
PrintClas

s Print;

// We specify two stacks.

// First all the strings are pushed onto the first stack.
// Next, they are popped from the first and pushed onto

// the second.

// Finally they are popped from the second and printed.
// During this final print the strings must appear
// in their original order.

int i;

for (i =
Stackl
}

cout << "Contents of Stackl:" <<
Stackl.allETlementsDo(Print);

while (!Stackl.isEmpty()) {

Stackl
Stack2
1

0; i <9; i ++) {
.push(String[i]);

____________________________ " << endl;

-pop(S);
.push(S);

/!
/1

cout << "Contents of Stack2:" <<

Stack2.allElementsDo(Print);

cout << "

while (!Stack2.isEmpty()) {

Stack2

Pop from stack 1

Add it on top of stack 2

............................ " << endl;

.pop(S);

cout << "Popped from Stack 2:

}

return(0)

B

" << S << endl;

This program produces the following output:
Contents of Stackl:

The
quick
brown
fox
jumps
over
a
lazy
dog.

Contents of Stack2:

dog.
lazy
a
over
Jjumps
fox
brown
quick
The

Popped from Stack 2: The
Popped from Stack 2: quick

Chapter 34. Stack

Stack

233

Stack

Popped from Stack 2: brown
Popped from Stack 2: fox
Popped from Stack 2: jumps
Popped from Stack 2: over
Popped from Stack 2: a
Popped from Stack 2: lazy
Popped from Stack 2: dog.

234 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Tree Classes

Part 4. Tree Collection Classes

Chapter 35. Introductionto Trees 237
Defining the Traversal Order of Tree Elements 237
Chapter 36. Multiway Tree 239
Template Arguments and Required Functions 239
Terms Used 240
Coding Example for Multiway Tree 240
Tree Functions 244

© Copyright IBM Corp. 1996, 1998 235

Tree Classes

236 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Traversal Order

Chapter 35. Introduction to Trees

A tree is a collection of nodes that can have an arbitrary number of references to
other nodes. There can be no cycles or short-circuit references. A unique path
connects every two nodes. One node is designated as the root of the tree.

Formally, a tree can be defined recursively in the following manner:
1. A single node by itself is a tree. This node is also the root of the tree.

2. If N is a node and T-1, T-2, ..., T-k are trees with roots R-1, R-2, ..., R-k,
respectively, then a new tree can be constructed by making N the parent of the
nodes R-1, R-2, ..., R-k. In this new tree, N is the root and T-1, T-2, ..., T-k are
the subtrees of the root N. Nodes R-1, R-2, ..., R-k are called children of
node N.

Associated with each node is a data item called element.

Nodes without children are called leaves or terminals. The number of children in a
node is called the degree of that node. The level of a given node is the number of
steps in the path from the root to the given node. The root is at level O by
definition. The height of a tree is the length of the longest path from the root to any
node.

Defining the Traversal Order of Tree Elements

You can define the order in which nodes of a tree are traversed by specifying a
parameter of type IMultiwayTreelterationOrder in calls to the following member
functions:

e setToFirst

e setTolLast

e setToNext

e setToPrevious

¢ allElementsDo, allSubtreeElementsDo

These functions are described in Chapter 36, “Multiway Tree” on page 239.

The IMultiwayTreelterationOrder parameter can have one of two values:
IPreorder or IPostorder. The effect of each of these values is explained below.

IPreorder
The search begins at the root of the tree, and continues with the leftmost child of
the root. If the child is the root of a subtree, the search continues with the leftmost
child of the subtree, and so on, until a terminal node is detected. The search
continues with all siblings of the terminal node, from left to right. If any of these
siblings is the root of a subtree, the subtree is searched the same way as
described above for the tree.

The preorder method can be summarized by the following recursive rules:

1. Visit the root.
2. Traverse the subtrees from left to right in preorder.

© Copyright IBM Corp. 1996, 1998 237

Traversal Order

IPostorder
The IPostorder method is the opposite of IPreorder. The search begins with the
leftmost terminal node in the tree. Then that node's siblings are searched from left

to right. If any of these siblings is the root of a subtree, the subtree is searched for
its leftmost terminal node.

The postorder method can be sumarized by the following recursive rules:

1. Traverse the subtrees from left to right in postorder.
2. Visit the root.

The following figure shows a tree with 12 nodes, and the order of traversal for both
preorder and postorder methods. Numbers indicate the preorder method (node 1 is
searched before node 2) while letters indicate the postorder method (node A is
searched before node B).

1 M
| |
2 D |6 G| |9 L
| |
3 ¢ 0 H 11 13 K
4 Al |5 Bl |7 El |8 Flol12

Figure 2. Preorder and Postorder Iteration Methods for Trees

238 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Multiwvay Tree

Chapter 36. Multiway Tree

Derivation

A multiway tree, also known as an n-ary tree, is a special tree where each node
can have up to n children.

n must be greater than one. If nis one, the tree is a list. If nis zero, the structure
loses its meaning.

An example of using an multiway tree is a program used to build a family tree.
(For simplicity, assume that the family tree is not concerned with information about
spouses.) Whenever you discover a relative who is not already in your family tree,
you enter the relative's name. If you know the parent's name, and the parent is
already in the collection, the new relative is added as a child of the existing parent.
If the parent is known but is not in the collection, a new collection is created, with
the parent as the root element and the child as a child node of the parent. If you
do not know the parent, the relative is entered as the root element of a new
collection. You can also enter information about the children of a given relative;
this information is used to attach a subtree, whose root node is the child, to the
node of the parent of that child. Once you have established the collection, you can
determine who is the parent or oldest known ancestor of a given relative, and you
can display a list of all descendents of a given family member.

Tree
Multiway Tree

Variants and Header Files

Members

IMuTtiwayTree is the default implementation variant based on tabular tree.
IGMultiwayTree is the default implementation variant with generic operations class.
Both classes are declared in imwt.h. No reference class exists for tree classes.

[Tree Functions” on page 244 lists the member functions for Multiway Tree.

Template Arguments and Required Functions

IMultiwayTree <numberOfChildren, Element>
IGMultiwayTree <numberOfChildren, Element, StdOps>

The default implementation of IMultiwayTree requires the following element
functions:

Element Type

e Copy constructor
¢ Destructor
e Assignment

The argument value of number0fChildren specifies the maximum number of
children for each node.

© Copyright IBM Corp. 1996, 1998 239

Multiway Tree

Terms Used

Some of the terms used in this chapter are defined below. You can also use the
Glossary to look up terms you are unfamiliar with.

this tree The tree to which a function is applied, in contrast to the
given tree.

given ... Referring to a tree, element, or function that is given as a
function argument.

returned element An element returned as a function return value.

iteration order The order in which elements are visited in functions
allETementsDo(), al1SubtreeElementsDo(), setToNext(), and
setToPrevious().

Coding Example for Multiway Tree

The following sample constructs a binary tree for the following expression: (8+2) *
(2+4) / (7-5). The program prints this tree in preorder, using prefix notation. It then
calculates the result of the expression. The program identifies subtrees consisting
of an operand and two operators, calculates the result and replaces the subtree by
its result. Finally, the tree consists of one node that is the result of the expression.

Note that the code does not respect precedence of "/" and "*" over "+" and "-".

/**

Licensed Materials - Property of IBM

5645-001
(C) Copyright IBM Corp. 1992, 1997

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

E R R T
S~k 3k Ok X X X X X X F

#pragma csect (CODE, "EXPR")
#pragma csect (STATIC, "expr")

#pragma comment (copyright, \

"Licensed Materials - Property of IBM\n\n \

5645-001 \n \

(C) Copyright IBM Corp. 1992, 1997 \n\n \

US Government Users Restricted Rights - Use, duplication or\n \
disclosure restricted by GSA ADP Schedule Contract with IBM\n \
Corp.")

expr.CPP - An example of using a Multiway Tree
Construct a tree for the following expression:
(8+2) = (2+4) / (7-5) ==> result: 30

This is done explicitly for the following reasons:

- no parser is available

- program demonstrates the use of some common
functions for multiway trees.

This programm also calculates the result from the

expression. A subtree (with two operands and one

operator) is calculated and replaced by the result.

Note that the code does not respect

precedence of "/" and "*" over "+" and "-".

240 0S/390 V2R6.0 C/C++ IBM Open Class Library Reference

Multiwvay Tree

#include <imwt.h>
#include <istring.hpp>
#include <iostream.h>

LTI 020101000101 11111111111711

// The tree for this expression looks 1ike follows: //
/! //
// / //
// //
// * - //
// //
// + + 7 5 //
// //
/! 8 2 2 4 //

LTI 0101011 11711711111]

typedef IMultiwayTree <2, IString> BinaryTree;

/ functions /

IBoolean printNode(IString const& node, void* dummy)
[***x prints one node of a multiway tree *#*x/
{
cout << node << "|
return True;

}

void prefixedNotation(BinaryTree const& binTree)
/* prints an binary tree in prefixed notation */
{
binTree.allElementsDo(printNode , IPreorder);
cout << endl;

}

void identifyChildren (IString &childl,
IString &child2,
BinaryTree &binTree,
ITreeCursor &binTreeCursor)

/ /

[xxrx identifies the children of a node *xkk [

/ /
{

binTree.setToNext (binTreeCursor, IPreorder);
childl = binTree.elementAt (binTreeCursor);
binTree.setToNextExistingChild(binTreeCursor);
child2 = binTree.elementAt(binTreeCursor);
binTree.setToParent (binTreeCursor);

IBoolean isNumber(IString child)

/ /
[**xx checks whether a node contains a number *kkk
/ /
if ((child != '+') &&
(child != '-') &&
(child t= '+') &&
(child 1= '/'))

{ return True; }
else { return False; }

}

void TookForNextOperator(BinaryTree &binTree,
ITreeCursor &binTreeCursor)

/ /
/*%%% Tlooks for the next operator in the tree wkkk [
/ /

Chapter 36. Multiway Tree

241

Multiway Tree

IBoolean operatorFound = False;

do
{
if (!isNumber(binTree.elementAt(binTreeCursor)))
{
operatorFound = True;
1
else
{
binTree.setToNext(binTreeCursor, IPreorder);
1
1

while (! operatorFound);

void calculateSubtree(double &result, double &operandl,
double &operand2, IString &operatorSign)

/**/

[**xx calculates the result from a subtree in the *kkk [
[wHHH complete tree *kkk [
/ /
{
switch (*(charx)operatorSign)

case '+':

result = operandl+operand?2;

break;

case '-':

result = operandl-operand2;

break;

case '/':

result = operandl/operand2;

break;

case '*':

result = operandl*operand2;

break;

} /* endswitch =/

/************************ main ****************************/

int main ()
{

0000100000 0000001010101010101101111111111111111111171
// Constructing the tree: //
III00000000001000000000010010100101010101171111111111111111171

BinaryTree binTree;
BinaryTree::Cursor binTreeCursor(binTree);
BinaryTree::Cursor binTreeSaveCursor(binTree);

binTree.addAsRoot ("/");

binTree.setToRoot (binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "*");
binTree.setToChild(1l, binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "+");
binTree.setToChild(1, binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "8");
binTree.addAsChild(binTreeCursor, 2, "2");
binTree.setToParent (binTreeCursor);
binTree.addAsChild(binTreeCursor, 2, "+");
binTree.setToChild(2, binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "2");
binTree.a