<|lI!

05/390

C/C++
User’s Guide

SC09-2361-04

<|lI!

05/390

C/C++
User’s Guide

SC09-2361-04

Note!
FBefore using this information and the product it supports be sure to read the general information under [Natices” on page xl.

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of 0S/390 C/C++ (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you use the
correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for the
program.

Technical changes in the text since the last release of this book are indicated by a vertical line (]) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390 Library
page at: http://www.s390.1ibm.com/0s390/bkserv.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)
IBM/PROFS: torolab4(torrcf)
IBMMAIL: ibmmail(caibmwt9)

To send your comments by facsimile (attention: RCF coordinator) use the following FAX numbers:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

Alternatively, you can use the Reader’s Comment Form that is provided at the back of this publication, or mail your
comments directly to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices oL xY
Standards L. L Lo
Trademarks.o o x
Part 1. Introduction1

Chapter 1. About This Book e e e 3
IBM OS/390 C/C++ and Related Publlcatlons e
Hardcopy Books . Coe e 9
Softcopy Books)
Softcopy Examples . . .)

0S/390 C/C++ on the World W|de Web e K
C/C++ News.... . . e)
How to Read the Syntax D|agrams e i
Chapter 2. About IBM OS/390C/C++ 15
Changes for Version 2 Release 6. 15
The C/C++ Compilers .. 16
TheClanguage. « « « « « « o 16
The C++ Language 16
Common Features of the OS/390 C and C++ Compllers T Y 4
0S/390 C Compiler Specific Features 18
Features That Are Specific to the OS/390 C++ Compller 18
Utilites1
Class Libraries .. .19
Class Library Source .. 20
The Debug Tool . . . e e e e o220
0S/390 Language Enwronment 2 &
The Program Management Binder . . . e |
0S/390 UNIX System Services (0S/390 UNIX) Co ... 22
0S/390 C/C++ Applications with OS/390 UNIX C/C++ Functlons23
Inputand Output. 24
I/O Interfaces 24
File Types . . . 24)
Additional 1/O Features o 24 o
The System Programming C FaC|I|ty C e e e 26
Interaction with Other IBM Products. 26
Additional Features of OS/390 C/C++ 27
Chapter 3. Important Changes to the Prelinker Documentation <) |
Part 2. Users Reference33
Chapter 4. OS/390 C Example 35
Example of an OS/390 C Program 35
CBC3UAAM 35
CBC3UAAN 36
Compiling, Binding, and Runnlng the OS/390 C Example < V4
Under OS/390 Batch . 37
Under TSO. . . . < V4
Under the OS/390 Shell e 12

© Copyright IBM Corp. 1996, 1999 iii

Chapter 5. OS/390 C++ Examples
Example of an OS/390 C++ Program
CBC3UBRH
CBC3UBRC .
Compiling, Binding, and Runnlng the OS/390 C++ Example .
Under OS/390 Batch e
Under TSO . .
Under the OS/390 SheII . .
Example of an OS/390 C++ Template Program
CLB3ALST.C . .
CLB3ALST.H
CLB3AITR.C
CLB3AITR.H .
CLB3AMAX.H .
CLB3AMAX.C .
CLB3AMIN.H .
CLB3AMIN.C .
CLB3ASTR.H .
CLB3ATMP.CXX .
Compiling, Binding, and Runnlng the C++ Template Example
Under OS/390 Batch
Under TSO . .
Under the OS/390 SheII .

Chapter 6. Compiler Options
Specifying Compiler Options

IPA Considerations .

Using Special Characters.

Specifying OS/390 C Compiler Optlons Usmg #pragma Optlons

Specifying Compiler Options under OS/390 UNIX. .o
Compiler Option Defaults. G
Summary of Compiler Options .
Compatibility Options .
Compiler Options for File Management
Options That Control the Compiler Listing.
Options for Debugging and Diagnosing Errors .
Options That Control the Source Code.
Options That Control the Object Code .
Options That Control the Preprocessor.
Options That Control Program Execution .
Options That Control the IPA Object.
Options That Control the IPA Link Step.
Direct-to-SOM Options. -
Portability Options .
Description of Compiler Optlons .

AGGREGATE | NOAGGREGATE.

ALIAS | NOALIAS

ANSIALIAS | NOANSIALIAS

ARCHITECTURE

ARGPARSE | NOARGPARSE

ATTRIBUTE | NOATTRIBUTE .

CHECKOUT | NOCHECKOUT .

CONVLIT | NOCONVLIT .

CSECT | NOCSECT

DEFINE .

DIGRAPH | NODIGRAPH

iV 0S/390 V2R6.0 C/C++ User's Guide

39
39
40
41
43
43
43
45
45
46
46
47
47
47
48
48
48
49
50
51
51
53
53

55
55
56
57
58
59
59
59
62
63
64
65
66
66
68
68
68
69
70
70
70
70
71
72
73
74
75
76
78
79
82
82

DLL | NODLL .

EVENTS | NOEVENTS
EXECOPS | NOEXECOPS .
EXH | NOEXH. .
EXPMAC | NOEXPMAC .o
EXPORTALL | NOEXPORTALL

FASTTEMPINC | NOFASTTEMPINC

FLAG | NOFLAG.

FLOAT . . .

GENPCH | NOGENPCH
GONUMBER | NOGONUMBER
HALT(num) . . e
INFO | NOINFO .

INLINE | NOINLINE.

INLRPT | NOINLRPT .

IPA | NOIPA

LANGLVL .

LIBANSI | NOLIBANSI

LIST | NOLIST

LOCALE | NOLOCALE
LONGNAME | NOLONGNAME
LSEARCH | NOLSEARCH
MARGINS | NOMARGINS
MAXMEM | NOMAXMEM
MEMORY | NOMEMORY.
NESTINC | NONESTINC .
OBJECT | NOOBJECT

OE | NOOE. .
OFFSET | NOOFFSET
OMVS | NOOMVS .
OPTFILE | NOOPTFILE . .
OPTIMIZE | NOOPTIMIZE .
PHASEID .o
PLIST. . . .

PORT | NOPORT

PPONLY | NOPPONLY

REDIR | NOREDIR .

RENT | NORENT

ROUND . .
SEARCH | NOSEARCH .
SERVICE | NOSERVICE .
SEQUENCE | NOSEQUENCE.
SHOWINC | NOSHOWINC .
SOM | NOSOM .
SOMEINIT | NOSOMEINIT
SOMGS | NOSOMGS .
SOMRO | NOSOMRO.

SOMVOLATTR | NOSOMVOLATTR.

SOURCE | NOSOURCE .
SPILL | NOSPILL .
SRCMSG | NOSRCMSG .
SSCOMM | NOSSCOMM
START | NOSTART . .
STRICT | NOSTRICT .
TARGET .

TEMPINC | NOTEMPINC

84
85
86
87
88
88
89
90
91
95
96
97
98
99

. 102
. 103
. 107
. 110
. 110
. 112
. 114
. 115
. 121
. 123
. 124
. 125
. 125
. 127
. 128
. 129
. 129
. 131
. 133
. 134
. 134
. 136
. 138
. 139
. 140
. 140
. 142
. 143
. 145
. 145
. 146
. 146
. 147
. 148
. 148
. 150
. 151
. 151
. 152
. 153
. 153
. 156

Contents

\Y

TERMINAL | NOTERMINAL.157

TEST|NOTEST. .158
TUNE. 161
UNDEFINE e e e1e3
UPCONV | NOUPCONV e e e1e3
USEPCH |NOUSEPCH .le4d
WSIZEOF | NOWSIZEOF165
XREF |NOXREF. .166
XSOMINC | NOXSOMINC e X ¥ 4
Description of Compatible Compiler Opt|ons . ele8
DECK|NODECK .169
HWOPTS | NOHWOPTS.170
sysLB e (0]
SYSPATH | NOSYSPATH i
USERLIB . . . e Y 44
USERPATH | NOUSERPATH e Y £<
Using the OS/390 C Compiler Listing1l74
IPA Considerations . . . 0
Example of an OS/390 C Comp|ler Llstmg e 49
0OS/390 C Compiler Listing Components180
Using the OS/390 C++ Compiler Listing183
IPA Considerations183
Example of an OS/390 C++ Compller Llstlng T 072
0OS/390 C++ Compiler Listing Components190
Using the IPA Link Step Listng193
Example of an IPA Link Step Listing.193
IPA Link Step Listing Components200
Chapter 7. Binder Options and Control Statements C e e 207
Binder Options . . A 0 Y
ALIASES(ALL | NO) - 0
CALL(YES|NO).207
CASE(UPPER | MIXED) . . . Ce ... 207
COMPAT(PM1 | PM2 | PM3 | CURRENT | CURR)208
DYNAM(DLL | NO)208
LET(0|41]8]12)208
LIST(OFF | STMT | SUMMARY | NOIMP |ALL) 0 |
MAP(YES|NO) :209
OPTIONS . . . e e o209
REUS(NONE|SERIAL|RENT) 209
UPCASE(YES|NO) .21
XREF(YES|NO).210
Binder Control Statements .210
AUTOCALL Control Statement.21
ENTRY Control Statements21
IMPORT Control Statements212
INCLUDE Control Statements212
LIBRARY Control Statement213
NAME control statement .214
RENAME Control Statement214
Chapter 8. Runtime Options217
Specifying Runtime Options. . . . 2 4
Using the #pragma runopts Preprocessor D|rect|ve 2 Y
Part 3. Compiling, Binding, and Running OS/390 C/C++ Programs coe ... 219

Vi 0S/390 V2R6.0 C/C++ User's Guide

Chapter 9. Compiling

Compiling with IPA .

The IPA Compile Step .
The IPA Link Step

Input to the OS/390 C/C++ Comprler
Primary Input . e
Secondary Input .

Output from the Compiler.

Specifying Output Files

Valid Input/Output File Types

Compiling Under OS/390 Batch .
Using Cataloged Procedures for OS/390 C .
Using Cataloged Procedures for OS/390 C++ .

Using Special Characters. G

Using Your Own JCL

Specifying Source Files

Specifying Include Files

Specifying Output Files

Compiling Under TSO .

Using the CC and CXX REXX EXECs .
Specifying Sequential and Partitioned Data Sets .
Specifying HFS Files or Directories .

Using ISPF to Invoke the Compiler . .

Compiling and Binding under the OS/390 Shell. .
Compiling and Binding in One Step with ¢89 and c++ (or cxx)
Using the make Utility .

Using Feature Test Macros .

Using Include Files .
Specifying Include File Names
Forming File Names .
Forming Data Set Names Wlth LSEARCH | SEARCH Opt|ons .
Search Sequence -
Determining whether the Frle Name is in Absolute Form
Using SEARCH and LSEARCH

Search Sequences for Include Files .
With the NOOE option.
With the OE option . .
Compiling OS/390 C Source Code Usrng the SEARCH optlon .

Compiling OS/390 C++ Source Code Using the SEARCH option .

Chapter 10. Using Precompiled Headers
Determining the Initial Sequence .
Matching the Initial Sequence .
Example - Reusing Sequences .
Using the GENP and USEP Compiler Optrons
Using an Alternative Initial Sequence
Restrictions . .
Organizing Your Source Flles .
Common Header File . .
Global PCH File for the Entire Drrectory
One PCH file for Each Member of the Directory

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs
IPA Linking Your Program Ce
Using DD Statements for the Standard Data Sets

Primary Input (SYSIN) .

Contents

. 221
. 221
. 221
. 222
. 223
. 224
. 224
. 224
. 225
. 227
. 228
. 229
. 229
. 230
. 230
. 231
. 232
. 232
. 233
. 233
. 234
. 235
. 236
. 239
. 242
. 243
. 244
. 246
. 247
. 247
. 248
. 250
. 251
. 253
. 254
. 255
. 255
. 257
. 257

. 259
. 259
. 262
. 263
. 263
. 264
. 264
. 265
. 266
. 266
. 266

. 267
. 267
. 268
. 269

Vii

viii

Location of Compiler and OS/390 Language Environment L|brary (STEPLIB) 269

Secondary Input (SYSLIB) .
Output (SYSLIN or SYSPUNCH) .

Destination of Errors Generated by the IPA L|nk Step (SYSOUT)

Listing (SYSCPRT) .

Temporary Workspaces for the IPA L|nk Step (SYSUTx)

IPA Link Step Input .

Primary Input .

Secondary Input .

Object File Formats .

Object Record Formats

The IPA Link Step Control File .
Output from the IPA Link Step .

Specifying Output Files

Mapping Static Symbol Names . .
Running the IPA Link Step Under OS/390 Batch

Using the EDCI and CBCI Cataloged Procedures.

Using Your Own JCL . . .

Running the IPA Link Step in OS/390 UNIX
Using JCL . . .o
Invoking IPA from the c89 Utlllty .

Chapter 12. Binding OS/390 C/C++ Programs
When You Can Use the Binder -
When You Cannot Use the Binder
Your Output is a PDS, not a PDSE .
CICs . Co
MTF
IPA . .
Using Different Methods to Bmd .
Single Final Bind . .
Bind Each Compile Unit .
Build and Use a DLL .
Rebind a Changed Compile Un|t
Binding Under OS/390 UNIX
0S/390 UNIX Example
Single Final Bind Using c89.
Bind Each Compile Unit Using c89 .
Build and Use a DLL Using c89 .
Rebind a Changed Compile Unit Using 089
Binding under OS/390 Batch -
0S/390 Batch Example
Single Final Bind under OS/390 Batch
Bind Each Compile Unit under OS/390 Batch
Build and Use a DLL under OS/390 Batch

Rebind a Changed Compile Unit under OS/390 Batch

Writing JCL for the binder
Binding Under TSO Using CXXBIND
TSO Example . .o .o
Single Final Bind Under TSO
Bind Each Compile Unit Under TSO.
Build and Use a DLL under TSO . .
Rebind a Changed Compile Unit Under TSO

Chapter 13. Binder Processing
Primary Input Processing.

0S/390 V2R6.0 C/C++ User’s Guide

. 269
. 270
. 270
. 270
. 271
. 271
. 271
. 272
. 274
. 275
. 277
. 281
. 281
. 283
. 283
. 284
. 286
. 286
. 286
. 287

. 289
. 289
. 289
. 289
. 289
. 289
. 289
. 290
. 290
. 291
. 292
. 294
. 294
. 295
. 295
. 296
. 297
. 297
. 299
. 299
. 299
. 300
. 301
. 303
. 304
. 305
. 306
. 307
. 307
. 308
. 308

. 311
. 312

C or C++ Object Module as Input.
Secondary Input Processing.

Load Module as Input .

Program Object as input .
Autocall Input Processing (Library Search)

Incremental Autocall Processing (AUTOCALL Control Statement)

Final Autocall Processing (SYSLIB) .
Rename Processing

Generating Aliases for Automatrc L|brary CaII (Lrbrary Search)

Dynamic Link Library (DLL) Processmg
Statically bound functions
Imported Variables .
Imported Functions .
Output Program Object
Output IMPORT Statements.
Output Listing .
Header .
Input Event Log .
Module Map
Cross Reference TabIe .
Imported and Exported Symbols Llstrng
Mangled to Demangled Symbol Cross Reference
Processing Options .
Save Operation Summary
Save Module Attributes
Entry Point and Alias Summary
Long Symbol Abbreviation Table .
DDname vs Pathname Cross Reference Table
Message Summary Report .
Binder Processing of C/C++ Object to Program Object
Rebindability - .o
Error recovery .
Unresolved Symbols
Significance of Library Search Order
Duplicates .
Duplicate functions from autocaII .
Hunting down references to unresolved symbols .
Non-reentrant DLL Problems
Code That Has Been Prelinked

Chapter 14. Running an OS/390 C/C++ Application
Running an Application Under OS/390 Batch
Specifying Runtime Options under OS/390 Batch .
Specifying Runtime Options in the EXEC Statement.
Using Cataloged Procedures Coe e
Running an Application under TSO .
Specifying Runtime Options under TSO
Passing Arguments to the OS/390 C/C++ Applrcatlon
Running an Application under OS/390 UNIX. .
0S/390 UNIX Application Environments .
Specifying Runtime Options under OS/390 UNIX
Restriction on Using 24-bit AMODE Programs .
Copying Applications between a PDS and HFS
Running a Data Set Member from the OS/390 Shell.

Running an OS/390 UNIX Application under OS/390 Batch .

. 312
. 312
. 313
. 313
. 313
. 313
. 314
. 314
. 315
. 315
. 316
. 316
. 316
. 316
. 317
. 317
. 318
. 319
. 319
. 321
. 321
. 322
. 323
. 323
. 323
. 324
. 324
. 325
. 325
. 326
. 327
. 329
. 329
. 330
. 331
. 333
. 333
. 333
. 334

. 335
. 335
. 335
. 336
. 336
. 337
. 338
. 338
. 339
. 339
. 339
. 340
. 340
. 340
. 340

Contents

iX

Part 4. Utilities and Tools G 1 X

Chapter 15. Model Tool . . . R C ¥ 15
About the OS/390 C/C++ Model TooI R C ¥ 1
Accessing Library Functions.345
Method 1. .346
Method2. .346
Method 3. .348
Method 4. A 2 S
Accessing Pragma D|rect|ves N 77 ¥
Method 1. .348
Method 2. .34
Method 3. .34
Chapter 16. Object Library Utility . . . e L
Creating an Object Library Under OS/390 Batch e [
Creating and Object Library UnderTSO352
Object Library Utility Map. .353
Chapter 17. DLL Rename Utility R 1Y 4
DLL Redistribution Scenario.357
Inputs and OQutputs .358
Restrictiono359
Using the DLL Rename Ut|I|ty under OS/390 Batch360
Example of Renaming a DLL under OS/390 Batch361
Using the DLL Rename Utility under TSO.361
Specifying DLLRNAME Parameters Directly361
Specifying DLLRNAME Parameters Using an Input File 362
Example of Renaming a DLL underTSO.363
Chapter 18. Filter Utility .365
CXXFILT Options. . . . e e3066
SYMMAP | NOSYMMAP e e e3066
SIDEBYSIDE | NOSIDEBYSIDE366
WIDTH(width) | NOWIDTH366
REGULARNAME | NOREGULARNAME . e366
CLASSNAME | NOCLASSNAME367
SPECIALNAME | NOSPECIALNAME367
Unknown Type of Name .367
Under OS/390 Batch .367
UnderTSO. .368
Chapter 19. DSECT Conversion Utility371
DSECT Utility Options .37
SECT. . . . e Y4
BITFOXL | NOBITFOXL . ¥ 44
COMMENT | NOCOMMENT373
DEFSUB |NODEFSUB .373
EQUATE | NOEQUATE .373
HDRSKIP | NOHDRSKIP.375
INDENT [NOINDENT .376
LOCALE | NOLOCALE . . . e e e316
LOWERCASE | NOLOWERCASE e e e ..., .376
OPTFILE | NOOPTFILE .377
PPCOND |[NOPPCOND3817
SEQUENCE | NOSEQUENCE.377

X 0S/390 V2R6.0 C/C++ User’s Guide

UNNAMED | NOUNNAMED.378

OQUTPUT.378
RECFM .378
LRECL .. .378
BLKSIZE. . . . N Y
Generation of Structures R Y £
Under OS/390 Batch .38
UnderTSO.« . .« . .«38
Chapter 20. Coded Character Set and Locale Utilities38
Coded Character Set Conversion Utilites.385
iconv Utility38
genxlt Utility .387
localedef Utility .388
Part 5. 0S/390 UNIX Utilities393
Chapter 21. Archive and Make Utilites39
Archive Libraries . . . R 105
Creating Archive leranes R 1)
Creating Makefiles .39
Chapter 22. BPXBATCH Utility397
BPXBATCH Usage .39
Parameter .39
Usage Notes .398
Files L0039
Part 6. Appendixes A0
Appendix A. Prelinking and Linking OS/390 C/C++ Programs403
Prelinking an Application403
Using DD Statements for the Standard Data Sets Prellnker 404
Input to the Prelinker .406
Prelinker Output e 10
Mapping long names to S- Names < (0 Y
Linking an Application408
Using DD Statements for Standard Data Sets—Lrnkage Edltor408
Input to the Linkage Editor409
Output from the Linkage Editor410
Link-Editing Multiple Object Modules412
Building DLLs A 2
Linking Your Code .413
Using DLLs. 413
Prelinking and L|nk|ng an Appllcatlon Under OS/390 Batch and TSO T 4
0S/390 Language Environment PrelinkerMap418
Processing the Prelinker Automatic Library Call423
References to Currently Undefined Symbols (External References)423
Prelinking and Linking Under OS/390 Batch.423
Writing JCL for the Prelinker and Linkage Editor425
Secondary Input to the Linker426
Using Additional Input Object Modules under OS/390 Batch Y Y
Under TSO. e 22 s
Using CPLINK.4
Using LINK. .43

Contents Xi

Xii

Prelinking and Link-Editing under the OS/390 Shell .
Using your JCL . e
Setting ¢89 to Invoke the Prelmker .
Using the c89 Utility.
Prelinker Control Statement Processmg
IMPORT Control Statement .
INCLUDE Control Statement
LIBRARY Control Statement
RENAME Control Statement
Reentrancy .
Natural or Constructed Reentrancy
Using the Prelinker to Make Your Program Reentrant
Generating a Reentrant Load Module in C
Generating a Reentrant Load Module in C++ .
Resolving Multiple Definitions of the Same Template Functlon .
External Variables

Appendix B. Prelinker and Linkage Editor Options
Prelinker Options. Ce e
DLLNAME(dIl-name)
DUP | NODUP
ER | NOER.
MAP | NOMAP .
MEMORY | NOMEMORY
NCAL | NONCAL.
OMVS | NOOMVS .
UPCASE | NOUPCASE
Linkage Editor Options.

Appendix C. Diagnosing Problems
Problem Checklist .o
When Does the Error Occur? .
The Error Occurs at Compile Time
The Error Occurs at IPA Link Time
The Error Occurs at Bind Time.
The Error Occurs at Prelink Time.
The Error Occurs at Link Time .
The Error Occurs at Run Time .
Installation Problems

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs

Tailoring PROCs, REXX EXECs, and EXECs
Data Sets Used . .
Description of Data Sets Used
Examples Using Cataloged Procedures

Appendix E. Using Assembler Macros
CBC3UAAP.
CBC3UAAQ
CBC3UAAR
CBC3UAAS.
CBC3UAAT.
CBC3UAAU

Appendix F. 0S/390 C/C++ Compller Return Codes and Messages
Return Codes .

0S/390 V2R6.0 C/C++ User’s Guide

. 434
. 435
. 437
. 437
. 437
. 438
. 438
. 439
. 440
. 441
. 441
. 442
. 442
. 443
. 443
. 444

. 445
. 445
. 445
. 445
. 445
. 445
. 446
. 446
. 446
. 447
. 447

. 449
. 449
. 450
. 450
. 451
. 452
. 452
. 453
. 453
. 455

. 457
. 458
. 460
. 460
. 466

. 467
. 469
. 470
. 471
. 472
. 473
. 474

. 475
. 475

Compiler Messages.
Appendix G. Other Return Codes and Messages

Appendix H. Utility Messages
DSECT Utility Messages .
Return Codes .

Messages . .
DLLRNAME Utility Messages .
Return Codes . .

Messages .

CXXFILT Utility Messages
Return Codes .
Messages

Appendix I. Other OS/390 C Utilities
Using the OId Syntax for CC
Using CMOD . .o

Appendix J. Layout of the Events File
Description of the Fileid Field .
Description of the Filend Field .
Description of the Error Field

Glossary

Bibliography

0S/390

VS COBOL Il Release 4 .

COBOL FOR MVS & VM Release 2

COBOL for OS/390 & VM Version 2 Release 1
PL/I for MVS & VM Release 1 Modification 1
OS PL/I Version 2 Release 3

VS FORTRAN Version 2 Release 6
CICS/ESA Version 4 Release 1 .

CICS Transaction Server for OS/390 Release 2
DB2 Version 3 Release 1.

DB2 Version 4 Release 1.

DB2 Version 5 Release 1.

IMS/ESA Version 4 Release 1 .

IMS/ESA Version 5 Release 1 .

IMS/ESA Version 6 Release 1 .

QMF Version 3 Release 2

VSAM.

INDEX

Readers’ Comments — We'd Like to Hear from You

Contents

. 475

. 595

. 597
. 597
. 597
. 597
. 599
. 599
. 599
. 600
. 600
. 600

. 603
. 603
. 604

. 607
. 607
. 608
. 608

. 611

. 639
. 639
. 639
. 639
. 639
. 640
. 640
. 640
. 640
. 640
. 640
. 641
. 641
. 641
. 641
. 641
. 641
. 642

. 643

. 657

Xiii

XiV 0S/390 V2R6.0 C/C++ User’s Guide

Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM'’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build any
dependencies on these interfaces, as IBM can change or remove interfaces at any
time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites. IBM
accepts no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1. System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

© Copyright IBM Corp. 1996, 1999 XV

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (APl)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any I1SO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains 1ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open

Company Ltd, UK.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks

of International Business Machines Corporation in the United States or other

countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400
BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICs CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN 0s/2 0S/390
0S/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application VisualAge
Architecture
VM/ESA VSE/ESA VTAM
3090 3890 400

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

XVi 0S/390 V2R6.0 C/C++ User's Guide

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices XVil

XVili 0S/390 V2R6.0 C/C++ User’s Guide

Part 1. Introduction

This part presents introductory concepts on the OS/390 C/C++ product, and
discusses the OS/390 C/C++ library. Specifically, it discusses the following:

° 44"

© Copyright IBM Corp. 1996, 1999

2 0S/390 V2R6.0 C/C++ User's Guide

Chapter 1. About This Book

This edition of the OS/390 C/C++ User’s Guide is intended for users of the IBM
0S/390 C/C++ compiler with the OS/390 Language Environment product. It
provides you with information about implementing (compiling, linking, and running)
programs that are written in C and C++. It contains guidelines for preparing C and
C++ programs to run under the OS/390 operating system.

To use this, or any other OS/390 C/C++ book, you must have a working knowledge
of the C and C++ programming languages. You should also know the operating
system, and the related products as appropriate. This includes the OS/390
Language Environment product and OS/390 UNIX® System Services (0S/390
UNIX).

© Copyright IBM Corp. 1996, 1999 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. ©OS/390 C/C++ Publications

Book Title and Number

=

ey Sections/Chapters in the Book

0S/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:

* C/C++ input and output

» Debugging OS/390 C programs that use input/output

» Using linkage specifications in C++

» Combining C and assembler

» Creating and using DLLs

* Using threads in an OS/390 UNIX application

* Reentrancy

» Using the decimal data type in C and C++

» Handling exceptions, error conditions, and signals

* Optimizing code

* Optimizing your C/C++ code with Interprocedural Analysis

* Network communications under OS/390 UNIX

» Interprocess communications using OS/390 UNIX

e Structuring a program that uses C++ templates

» Using environment variables

» Using System Programming C facilities

 Library functions for the System Programming C facilities

* Using runtime user exits

= Using the OS/390 C multitasking facility

» Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,
GDDM?*, IMS*, ISPF, QMF¥*)

* Direct-to-SOM support under OS/390 C/C++

¢ |Internationalization: locales and character sets, code set conversion utilities,
mapping variant characters

* POSIX character set

» Code point mappings

» Locales supplied with OS/390 C/C++

* Charmap files supplied with OS/390 C/C++

» Examples of charmap and locale definition source files

» Converting code from code character set IBM-1047

* Using built-in functions

* Programming considerations for 0S/390 UNIX C/C++

0S/390 C/C++ User’s Guide,
SC09-2361

Guidance information for:

* 0S/390 C/C++ examples

» Compiler options

» Binder options and control statements

= Specifying OS/390 Language Environment runtime options

» Compiling, IPA Linking, binding, and running OS/390 C/C++ programs

» Using precompiled headers

» Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code
Set and Locale, ar and make, BPXBATCH)

» Diagnosing problems

» Cataloged procedures and REXX EXECs supplied by IBM

= Error messages and return codes

4 0S/390 V2R6.0 C/C++ User’s Guide

Table 1. OS/390 C/C++ Publications (continued)

=

Book Title and Number ey Sections/Chapters in the Book

0S/390 C/C++ Language Reference, |Reference information for:

SC09-2360 * The C and C++ Languages

» Lexical elements of OS/390 C and OS/390 C++
» Declarations, expressions and operators

* Implicit type conversions

» Functions and statements

* Preprocessor directives

* C++ classes, class members, and friends

» C++ overloading, special member functions, and inheritance
» C++ templates and exception handling

* 0S/390 C and OS/390 C++ compatibility

0S/390 C/C++ Run-Time Library Reference information for:
Reference, SC28-1663 * C header files

* C Library functions
0S/390 C Curses, SC28-1907 Reference information for:

» Curses concepts

» Key data types

* General rules for characters, renditions, and window properties
» General rules of operations and operating modes

* Use of macros

* Restrictions on block-mode terminals

» Curses functional interface

» Contents of headers

* The terminfo database

0S/390 C/C++ Compiler and Guidance and reference information for:
Run-Time Migration Guide, » Common migration questions
SC09-2359 » Application executable program compatibility

» Source program compatibility

* Input and output operations compatibility
» Class library migration considerations

» Changes between releases of OS/390

» C/370* V1 to V2 compiler changes

» Other migration considerations

0S/390 C/C++ Reference Summary, |Summary tables for:

SX09-1313 » Character set, trigraphs, digraphs, and keywords
» Escape sequences, storage classes

» Predefined and derived types, type qualifiers

» Operator precedence, redirection symbols

« fprintf() format, type characters, and flag characters
» fscanf() format and type characters

e __amrc structure

» Hardware exceptions and signals

» Compiler return codes

= Compiler options

» #pragma directives

 Library functions

» Utilities

Chapter 1. About This Book

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number

=

ey Sections/Chapters in the Book

0S/390 C/C++ IBM Open Class
Library User’s Guide, SC09-2363

Guidance information for:

» Using the Complex Mathematics Class Library: Review of complex
numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

» Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

» Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
tutorials, problem solving, compatibility with previous releases, thread safety

» Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

0S/390 C/C++ IBM Open Class
Library Reference, SC09-2364

Reference information for:

» Complex Mathematics Class Library
* |/O Stream Class Library

» Collection Class Library

» Application Support Class Library

0S/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
SC09-2366

Guidance and reference information for:

* C++ SOM (RRBC-enabled) versions of Collection and Application Support
Class Libraries

» Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and
Reference, SC09-2137

Guidance and reference information for:

* Preparing to debug programs

» Debugging programs

» Using Debug Tool in different environments
» Language-specific information

» Debug Tool reference

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:

 Isolating reportable problems

» Keywords

» Preparing an Authorized Program Analysis Report (APAR)

* Problem identification worksheet

* Maintenance on OS/390

» Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the 0S/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to 0OS/390 Language
Environment Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 0S/390 V2R6.0 C/C++ User’s Guide

Table 2. Publications by Task

Tasks

Books

Planning, preparing, and migrating to OS/390 C/C++

0S/390 C/C++ Compiler and Run-Time Migration
Guide, SC09-2359

0S/390 Language Environment Customization,
SC28-1941

0S/390 UNIX System Services Planning, SC28-1890
0S/390 Planning for Installation, GC28-1726

0S/390 Task Atlas, available on the OS/390 Library
page on the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Installing

0S/390 Program Directory

0S/390 Planning for Installation, GC28-1726
0S/390 Language Environment Customization,
SC28-1941

Coding programs

0S/390 C/C++ Run-Time Library Reference,
SC28-1663

0S/390 C/C++ Language Reference, SC09-2360
0S/390 C/C++ Reference Summary, SX09-1313
0S/390 C/C++ Programming Guide, SC09-2362
0S/390 Language Environment Concepts Guide,
GC28-1945

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Programming
Reference, SC28-1940

0S/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

0S/390 C/C++ IBM Open Class Library Reference,
SC09-2364

0S/390 C/C++ SOM-Enabled Class Library User’s
Guide and Reference, SC09-2366

Coding and binding programs with interlanguage calls

0S/390 C/C++ Programming Guide, SC09-2362
0S/390 C/C++ Language Reference, SC09-2360
0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Writing Interlanguage
Applications, SC28-1943

DFSMS/MVS Program Management, SC26-4916

Compiling, binding, and running programs

0S/390 C/C++ User’s Guide, SC09-2361

0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

DFSMS/MVS Program Management, SC26-4916
0S/390 Messages Database, available on the OS/390
Library page in the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Compiling and binding applications in the OS/390 UNIX
environment

0S/390 C/C++ User’s Guide, SC09-2361

0S/390 UNIX System Services User’s Guide,
SC28-1891

0S/390 UNIX System Services Command Reference,
SC28-1892

DFSMS/MVS Program Management, SC26-4916

Chapter 1. About This Book

7

Table 2. Publications by Task (continued)

Tasks

Books

Compiling and binding SOM applications with OS/390
SOMobjects*

0S/390 SOMobjects Programmer’s Guide, GC28-1859
0S/390 C/C++ Programming Guide, SC09-2362
0S/390 C/C++ User’s Guide, SC09-2361

Debugging programs

README file

Debug Tool User’s Guide and Reference, SC09-2137
0S/390 C/C++ User’s Guide, SC09-2361

0S/390 C/C++ Programming Guide, SC09-2362
0S/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

0S/390 UNIX System Services Messages and Codes,
SC28-1908

0S/390 UNIX System Services User’s Guide,
SC28-1891

0S/390 UNIX System Services Command Reference,
SC28-1892

0S/390 UNIX System Services Programming Tools,
SC28-1904

Using shells and utilities in the OS/390 UNIX environment

0S/390 C/C++ User’s Guide, SC09-2361

0S/390 UNIX System Services Command Reference,
SC28-1892

0S/390 UNIX System Services Messages and Codes,
SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

0S/390 C/C++ Run-Time Library Reference,
SC28-1663

Porting a UNIX Application to OS/390

0S/390 UNIX System Services Porting Guide

This guide contains useful information about supported
header files and C functions, sockets in an OS/390
UNIX environment, process management, compiler
optimization tips, and suggestions for improving the
application’s performance after it has been ported. The
Porting Guide is available as a PDF file which you can
download, or as web pages which you can browse, at
the following URL:
http://www.s390.ibm.com/unix/bpxalpor.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

0S/390 C/C++ User’s Guide, SC09-2361
CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Quick reference

0S/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial

For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see EAppendix A Prelinking and | inking 0S/390 C/C++ Programs” o
hage 403. As of Release 4, this appendix contains information that was previously in the chapter on prelinking and
linking OS/390 C/C++ programs in OS/390 C/C++ User’s Guide. It also contains prelinker information that was

previously in the OS/390 C/C++ Programming Guide.

8 0S/390 V2R6.0 C/C++ User’s Guide

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:

* (0S5/390 C/C++ Run-Time Library Reference, SC28-1663

* 0S/390 C/C++ User’s Guide, SC09-2361

* 0S5/390 C/C++ Programming Guide, SC09-2362

* 0S5/390 C/C++ Reference Summary, SX09-1313

* 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

* 0S/390 C Curses, SC28-1907

* 0S/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
» Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
0S/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062,
5695-046) licensed program must be available on your operating system.
BookManager Read provides access to online information as an alternative to hard
copy documents. You can read, search, make notes, and select sections of text to
print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If you
know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The Library"
link on the OS/390 home page. The URL for this page is:

http://www.s390.1ibm.com/0s390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:

* 0S/390 C/C++ Language Reference, SC09-2360

* 0S/390 C/C++ User’s Guide, SC09-2361

* 0S/390 C/C++ Programming Guide, SC09-2362

* 0S/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Chapter 1. About This Book 9

* (0S5/390 C/C++ IBM Open Class Library Reference, SC09-2364
* (0S5/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference,
SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:

* R and X refer to the 0S/390 C/C++ Language Reference, SC09-2360

* G refers to the 0S/390 C/C++ Programming Guide, SC09-2362

* U refers to the OS/390 C/C++ User’s Guide, SC09-2361

» Arefers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference,
the OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide.
Examples labelled as CLBxyyy appear in the 0S/390 C/C++ IBM Open Class
Library User’s Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the 0OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366. For the OS/390 C/C++
SOM-Enabled Class Library User’s Guide and Reference, SC09-2366, the label
refers to a member name in the data set CBC.SCLBXSM.

0S/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web. The
URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c390/index.htm]

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:

* Send a message electronically to the following network ID :
— Internet: inetc370@ca.ibm.com
— IBMMAIL: ibmmail(caibmrxz)

* Mail your request to:

10 0S/390 V2R6.0 C/C++ User's Guide

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR

895 Don Mills Road

NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:

* Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next line.
In the following diagrams, "statement” represents a command, directive, or
statement.

v
A

»»>—statement

The following indicates a continuation; the opposing arrowheads indicate the end
of a command, directive, or statement.

»»>—statement »><

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

»»>—statement <

* Required items are on the horizontal line (the main path).

»—statement—required_item ><

» Optional items are below the main path.

»>—statement <
l—optional_itemJ

» If you can choose from two or more items, they are vertical in a stack.
If you must choose one of the items, one item of the stack is on the main path.

»>—statemen t—[requi red_choicel ><
required_choi ce2—|

If choosing one of the items is optional, the entire stack is below the main path.

Chapter 1. About This Book 11

v
A

»>—statement
|:<O)ptiona l_choi cel:‘

ptional_choiceZ

* An arrow that returns to the left above the main line indicates an item that you
can repeat.

v

»>—statement repeatable_item

A\
A

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

» If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise
specified.

The following syntax diagram example shows the syntax for the #pragma comment

directive.
(1) (2) (3) (4)
»>—i pragma comment >
(5) (6) (9) (10)
—(—compiler) >
—date
—timestamp
copyright
|:user*—l L (7) (8)
s "—token_sequence—"
Notes:
1 This is the start of the syntax diagram.
2 The symbol -# must appear first.
3 The keyword -pragma must follow the -# symbol.
4 The keyword -comment must follow the keyword -pragma.
5 An opening parenthesis must follow the keyword -comment.
6 The comment type must be entered only as one of the following: -compiler,

-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

12 0S/390 V2R6.0 C/C++ User's Guide

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 Aclosing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment (date)
#pragma comment (user)
#pragma comment (copyright,"This text will appear in the module")

Chapter 1. About This Book 13

14 0s/390 V2R6.0 C/C++ User's Guide

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:

A C compiler (referred to as the OS/390 C compiler)

A C++ compiler (referred to as the OS/390 C++ compiler)

A set of C++ class libraries

Application Support Class and Collection Class Library source
A mainframe interactive Debug Tool (optional)

A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (0S/2*), IBM Operating System/400* Version 3 (OS/400%), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, 0S/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6

0S/390 C/C++ has made the following changes for this release:

© Copyright IBM Corp. 1996,

Added support for the Institute of Electrical and Electronics Engineers (IEEE)
binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++ support,
see LELQAT” an page 91l. In addition, two related sub-options have been
introduced, ARCH(3) and TUNE(3). The two sub-options support the new G5
processor architecture, and IEEE binary floating-point data. Refer to

FARCHITECTURE” on page 73 and LTUNE” on page 161 for details.

Complete IEEE binary floating-point support for OS/390 and its elements requires
that you apply small programming enhancements (SPEs) to OS/390 V2R6.0, and
to specific releases of some software. These SPEs are delivered as program
temporary fixes (PTFs). Consult your System Programmer to ensure that the
SPE PTFs you require for IEEE binary floating-point support, as documented in
the OS/390 Planning for Installation publication, are applied to your system. The
0S/390 Planning for Installation publication documents the complete software
requirements for IEEE binary floating-point support on 0S/390.

Improved the performance of the Binary Coded Decimal (BCD) class library, and
its compatibility with the decimal data type in C, and other S/390 languages. For
details, see Using the C++ Decimal Data Type in the OS/390 C/C++
Programming Guide.

Added support for the Tong Tong integer data type. For more details, see the
sections on integer declarations in the 0S/390 C/C++ Language Reference. The
run-time library, including functions such as printf() and scanf(), does not
support the Tong lTong data type at this time.

Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful when
porting code that contains #pragma pack directives or packed data from other
Elatforms. For more information on the PORT option, see LPQRT | NOPORT” od

Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive

1999 15

templates in an application. For more information on the FASTEMPINC option, see

* Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

* The level of optimization you get when you specify the 0PT(1), or OPT, compiler
option is the same as when you specify OPT(2). For more information on the
OPTIMIZATION option, see the L z

* The OS/390 C++ class library header files are now distributed in the hierarchical
file system (HFS) in directory /usr/1pp/ioclib/include.

» As part of the name change of OpenEdition* to OS/390 UNIX System Services,
occurrences of OpenkEdition have been changed to OS/390 UNIX System
Services or its abbreviated name, 0S/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel text,
and other code locations.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
0S/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

16 0S/390 V2R6.0 C/C++ User's Guide

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:
» Optimization support.

— Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

— The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

— Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

— The precompiled header facility, to save information from one compilation unit
for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

* DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to the
way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

* Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The OS/390
C++ compiler always ensures that C++ programs are reentrant.

» Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

* The ability to call and be called by other languages such as assembler, COBOL,
PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code with
existing applications.

» Exploitation of OS/390 and OS/390 UNIX technology.
0S/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

* When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

Chapter 2. About IBM 0S/390 C/C++ 17

— A subset of the extended multibyte and wide character functions as defined by
the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

— ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
— |EEE Portable Operating System Interface (POSIX) Part 2, P1003.2

— A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

— X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

— A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

— X/Open CAE Specification, Network Services, Issue 4
* Year 2000 support.

0S/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

* The ability to write portable code that conforms to the following standards:
All elements of the ISO standard ISO/IEC 9899:1990 (E)

ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

X/Open Specification Programming Language Issue 3, Common Usage C
FIPS-160

» System programming capabilities, which allow you to use OS/390 C in place of
assembler
» Additional optimization capabilities through the INLINE compile-time option

» Extensions of the standard definitions of the C language to provide programmers
with support for the OS/390 environment, such as fixed-point (packed) decimal
data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:

* An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems— Programming
Language C++ (X3J16/92-00091). The OS/390 C++ compiler also conforms to a
subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

» System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when creating
C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate

18 0s/390 V2R6.0 C/C++ User's Guide

IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead of
generating it through the IDL compile option.

C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:

The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

The CXXFILT Utility to map OS/390 C++ mangled names to the original source

The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

The DSECT Conversion Utility to convert descriptive assembler DSECTSs into
0S/390 C/C++ data structures

The C/C++ Model Tool to provide online help for C/C++ #pragma directives and
runtime library functions. These functions are other than the C Curses functions,
and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

The I/O Stream Class Library

The 1/0 Stream Class Library lets you perform input and output (I/O) operations
independent of physical I/O devices or data types that are used. You can code
sophisticated 1/0O statements easily and clearly, and define input and output for
your own data types. You can improve the maintainability of programs that use
input and output by using the 1/0 Stream Class Library.

The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of

Chapter 2. About IBM 0S/390 C/C++ 19

building blocks from which they can derive application objects. The library design
exploits features of the C++ language such as exception handling and template
support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in addition
to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:
» Application Support Class Library source code
* Collection Class Library source code (C++ native and C++ SOM only)

 Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

* Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

* Class Library Language Environment message file source
 Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:

* Step mode

* Breakpoints

* Monitor

* Frequency analysis

* Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

20 0S/390 V2R6.0 C/C++ User's Guide

0OS/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS & VM, Language Environment/370 and LE/370).

0S/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see E?.U:Egl 0S/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

C/C++ COBOL PL/I FORTRAN

Language Language Language Language
Specific Specific Specific Specific
Library Library Library Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

* Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

» Extended services that are often needed by applications. OS/390 C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

* Runtime options that help in the execution, performance, and diagnosis of your
application.

» Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

* Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

Chapter 2. About IBM 0S/390 C/C++ 21

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:

» Faster rebinds when recompiling and rebinding a few of your source files

* Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

* Input of object modules, load modules, and program objects

* Improved long name support:
— Long names do not get converted into prelinker generated names

Long names appear in the binder maps, enabling full cross-referencing

Variables do not disappear after prelink

Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object stored in a PDS, or a PDSE
or HFS file.

0OS/390 UNIX System Services (OS/390 UNIX)

0OS/390 UNIX provides capabilities under OS/390 to make it easier to implement or
port applications in an open, distributed environment. OS/390 UNIX Services are
available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

0S/390 UNIX provides support for both existing OS/390 applications and new

0OS/390 UNIX applications:

* C programming language support as defined by ISO/ANSI C

* C++ programming language support

» C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

* 0S/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

* The OS/390 UNIX Shell and Utilities feature, which provides:
— A shell, based on the Korn Shell and compatible with the Bourne Shell

— Tools and utilities that conform to the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
0S/390 support. The following utilities are included:

ar Creates and maintains library archives

22 0S/390 V2R6.0 C/C++ User's Guide

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a

shell session
c89 Compiles, assembles, and binds OS/390 UNIX C applications
gencat Merges the message text source files Messagefile (usually

*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

make Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source and
object files, keeping all such files up to date with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

— Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

* The OS/390 UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for OS/390 UNIX applications

* 0S/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

* 0S/390 C/C++ /O routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

* Application threads (with support for a subset of POSIX.4a)
* Support for 0S/390 C/C++ DLLs

0S/390 UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
0S/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the OS/390 UNIX environment can enhance your productivity. Refer to
the OS/390 UNIX System Services User's Guide for more information on the Shell
and Utilities.

0OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
0S/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you must
also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the

Chapter 2. About IBM 0S/390 C/C++ 23

behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses 0S/390 UNIX C functions
using the following methods:

» Directly from the OS/390 UNIX Shell.

* From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

* Using the POSIX system() call.

 Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime option.

Input and Output

I/O Interfaces

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/0 Stream Class Library provides additional support.

The C/C++ runtime library supports the following 1/O interfaces:

C Stream 1/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/0
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets 1/0
0OS/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for 0S/390 UNIX
sockets. OS/390 UNIX sockets correspond closely to the sockets that are
used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
0S/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted 1/O in C++. You can
code sophisticated I/0O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

24 0S/390 V2R6.0 C/C++ User's Guide

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets

0S/390 C/C++ has native support for three types of VSAM data
organization:

» Key-sequenced data sets (KSDS). Use KSDS to access a record through

a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

* Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in the reverse order).

* Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system with a
record associated with each number).

For more information on how to perform 1/O operations on these VSAM file
types, see the OS/390 C/C++ Programming Guide.

Hierarchical File System Files

When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files

Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace* Expanded Storage

Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 2°° bytes).

Additional I/0O Features

IBM OS/390 C/C++ provides additional I/O support through the following features:

User error handling for serious 1/O failures (SIGIOERR)

Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

Full support of PDS/Es on 0S/390 — including support for multiple members
opened for write

Overlapped I/0O support under OS/390 (NCP, BUFNO)
Multibyte character I/O functions

Chapter 2. About IBM 0S/390 C/C++ 25

Fixed-point (packed) decimal data type support in formatted 1/O functions

Support for multiple volume data sets that span more than one volume of DASD
or tape

Support for Generation Data Group 1/0

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services available
on your operating system. SP C offers a number of advantages:

You can develop applications that you can execute in a customized environment
rather than with OS/390 Language Environment services. Note that if you do not
use 0OS/390 Language Environment services, only some built-in functions and a
limited set of C/C++ runtime library functions are available to you.

You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

26 0S/390 V2R6.0 C/C++ User's Guide

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL translator.
The DB2 program processes a request, and processing returns to the
application.

» Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

* Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

* Interactive System Productivity Facility (ISPF)

0S/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable, message,
and dialog services as well as other facilities that are used to write interactive
applications.

* Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

— A windowing system that the user can tailor to display selected information
— Support for presentation and keyboard interaction
— Comprehensive graphics support
— Fonts — including support for double-byte character set (DBCS)
— Business image support
— Saving and restoring graphics pictures
— Support for many types of display terminals, printers, and plotters
* Query Management Facility (QMF)

0S/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
guery building, administration aids, and report analysis.

Additional Features of OS/390 C/C++

Feature Description

Multibyte Character Support 0S/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowes (),
as well as the family of wide-character 1/O functions. Wide-character data can be
represented by the wchar_t data type.

Chapter 2. About IBM 0S/390 C/C++ 27

Feature

Description

Extended Precision
Floating-Point Numbers

0S/390 C/C++ provides three S/370 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long doubTe.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and Tong double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if ¥ou
sgeci% the FLOAT(IEEE754) compile option. For details on this support, see

Command Line Redirection

You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support

0S/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support

0S/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF)

Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

0S/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

0S/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support

For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls

You can call commands or executable modules using the system() function under
0S/390, OS/390 UNIX, and TSO. You can also use the system() function to call
EXECs on 0OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA

Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

28 0S/390 V2R6.0 C/C++ User's Guide

Feature

Description

Exploitation of hardware

Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to LARCHITECTIIRE” on page 73

and ETUNE” on page 161,

Chapter 2. About IBM OS/390 C/C++

29

30 0S/390 V2R6.0 C/C++ User's Guide

Chapter 3. Important Changes to the Prelinker Documentation

Prior to OS/390 C/C++ Version 2 Release 4, examples in this book showed how to
use the prelinker and linkage-editor, and sections throughout the book discussed
concepts of prelinking and linking. As of OS/390 C/C++ Version 2 Release 4, these
examples show how to use the binder, and the concept of binding is discussed
throughout the book.

If you still need to use the prelinker and linkage-editor, see [Appendix A. Prelinking
bnd | inking OS/390 C/C++ Programs” on page 4013.

You can use the binder in place of the prelinker and linkage-editor, with the
following exceptions:

* Your output is a PDS, not a PDSE
If you are using OS/390 batch or TSO, and your output must target a PDS
instead of a PDSE, you cannot use the binder.

* CICS
CICS does not support PDSEs. If your program targets CICS, you cannot use
the binder.

« MTF
MTF does not support PDSEs. If your program targets MTF, you cannot use the
binder.

* |IPA Restrictions
Obiject files that are generated by the IPA Compile step using the compiler option
IPA(NOLINK,0BJECT) may be given as input to the binder. Such an object file is a
combination of an IPA object module, and a regular compiler object module. The

binder processes the regular compiler object module, ignores the IPA object
module, and no IPA optimization is done.

Obiject files that are generated by the IPA Compile step using compiler option
IPA(NOLINK,NOOBJECT) should not be given as input to the binder. These are IPA
only object files, and do not contain a regular compiler object module.

© Copyright IBM Corp. 1996, 1999 31

32 0S/390 V2R6.0 C/C++ User's Guide

Part 2. User’'s Reference

This part reviews the basic steps for compiling, binding, and running OS/390 C/C++
programs under the OS/390 operating system. It also describes the options
available to you at compile, IPA link, bind, and run time.

© Copyright IBM Corp. 1996, 1999 33

34 0S/390 V2R6.0 C/C++ User's Guide

Chapter 4. OS/390 C Example

This chapter outlines the basic steps for compiling, binding, and running an OS/390
C example program under OS/390 batch, TSO, or the OS/390 shell.

If you have not yet compiled an OS/390 C program, some concepts in this chapter

may be unfamiliar. Refer to 'Chapter 9_Compiling” on page 221, tChapter 12}
Binding 0S/390 C/C++ Programs” an page 289, and [Chapter 14 Running ad

DS/390 C/C++ Application” on page 335 for a detailed description on compiling,
binding, and running an OS/390 C program.

This chapter describes steps to bind an an OS/390 C example program. It does not
describe the prelink and link steps. If you are using the prelinker, see

The example program that this chapter describes is shipped with the OS/390 C
compiler in the data set CBC.SCBCSAM.

Example of an OS/390 C Program

CBC3UAAM

The following example shows a simple OS/390 C program that converts
temperatures in Celsius to Fahrenheit. You can either enter the temperatures on the
command line or let the program prompt you for the temperature.

In this example, the main program calls the function convert() to convert the
Celsius temperature to a Fahrenheit temperature and to print the result.

#include <stdio.h> 1]
#include "cbc3uaan.h" 2]
void convert(double);

int main(int argc, char *xargv) [{
{
double c_temp; B

if (argc == 1) { /* get Celsius value from stdin */
printf("Enter Celsius temperature: \n");

if (scanf("%f", &c_temp) != 1) {
printf("You must enter a valid temperature\n");
}
else {
convert(c_temp);
}
}

Figure 2. Celsius-to-Fahrenheit Conversion (Part 1 of 2)

© Copyright IBM Corp. 1996, 1999 35

else { /* convert the command-line arguments to Fahrenheit =*/
int i;

for (i = 1; i < argc; ++i) {
if (sscanf(argv[i], "%f", &c_temp) != 1)
printf("%s is not a valid temperature\n",argv[i]);
else
convert(c_temp);

}

void convert(double c_temp) { B

double f_temp = (c_temp * CONV + OFFSET);

printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);
}

Figure 2. Celsius-to-Fahrenheit Conversion (Part 2 of 2)

/**
* User include file: cbc3uaan.h « H
"""""""" R R R e A s T E T

#define CONV (9./5.)
#define OFFSET 32

Figure 3. User #include File for the Conversion Program

This preprocessor directive includes the system file that contains the
declarations of standard library functions, such as the printf() function
used by this program.

The compiler searches the system libraries for the file STDIO. For more
information about searches for include files, see I'Search Sequences fot

2 | This preprocessor directive includes a user file that defines constants that
are used by the program.

The compiler searches the user libraries for the fle CBC3UAAN.

If the compiler cannot locate the file in the user libraries, it searches the
system libraries.

H This is a function prototype declaration. This statement declares convert ()
as an external function having one parameter.

4] The program begins execution at this entry point.

B This is the automatic (local) data definition to main().

6 | This printf statement is a call to a library function that allows you to format
your output and print it on the standard output device. The printf()
function is declared in the standard 1/0 header file stdio.h included at the
beginning of the program.

This statement contains a call to the convert () function, which was

declared earlier in the program as receiving one double value, and not
returning a value.

36 0S/390 V2R6.0 C/C++ User's Guide

B This is a function definition. In this example, the declaration for this function
appears immediately before the definition of the main() function. The code
for the function is in the same file as the code for the main() function.

H This is the user include file containing the definitions for CONV and OFFSET.
If you need more details on the constructs of the OS/390 C language, see the

0S/390 C/C++ Language Reference and the OS/390 C/C++ Run-Time Library
Reference.

Compiling, Binding, and Running the OS/390 C Example

In general, you can compile, bind, and run OS/390 C programs under OS/390
batch, TSO, or the OS/390 shell. You cannot run the IPA Link step under TSO, or

under OS/390 batch by using the ISPF interface. For more information, see
kCha,p];e_d_Cam_pﬂm_gLan_page_Zﬂ] f(‘hnn'rpr 12_Binding OQIQQO (‘l(‘++ Drnnrnm<|

%ﬂd, and I "

This book uses the term user prefix to refer to the high-level qualifier of your data
sets. For example, in PETE.TESTHDR.H, the user prefix is PETE.

Under OS/390 Batch

Under TSO

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBC3UAAM) in
PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CBC3UAAN). You can use
the IBM-supplied cataloged procedure EDCCBG to compile, bind, and run the
example program as follows:

//DOCLG EXEC ~ PROC=EDCCBG,INFILE='PETE.TEST.C(CTOF)',
// CPARM="'LSEARCH("'"'"''PETE.TESTHDR.+'"'"'")"
//GO.SYSIN DD DATA,DLM=@@

19

ee

Figure 4. JCL to Compile, Bind, and Run the Example Program Using the EDCCBG
Procedure

In m the LSEARCH statement describes where to find the user include files.
The GO.SYSIN statement indicates that the input that follows it is given for the
execution of the program.

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample OS/390 C program
(CBC3UAAM) in PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CBC3UAAN).

Use the following set of TSO commands to compile, bind, and run the example

program:

1. Ensure that the OS/390 Language Environment runtime library and the OS/390
C compiler are in the STEPLIB, LPALST, or LNKLST concatenation.

2. Compile the OS/390 C source. You can use the REXX EXEC CC to invoke the

0S/390 C compiler under TSO as follows:
Chapter 4. 0S/390 C Example 37

%CC TEST.C(CTOF) (LSEARCH(TESTHDR.H)

The REXX EXEC CC compiles CTOF with the default compiler options and stores
the resulting object module in PETE.TEST.C.0BJ(CTOF).

The compiler searches for user header files in the PDS PETE.TESTHDR.H, which
you specified at compile time by the LSEARCH option.

For more information see lCampiling Under TSQ” on page 233

3. Perform a bind:
CXXBIND OBJ(TEST.C.OBJ(CTOF)) LOAD(TEST.C.LOAD(CTOF))

CXXBIND binds the object module PETE.TEST.C.0BJ(CTOF) to create an
executable module CTOF in the PDSE PETE.TEST.C.LOAD, with the default bind

options. See [Chapter 12_Binding QS/390 C/C++ Programs” on page 289 for

more information.
4. Run the program:
CALL TEST.C.LOAD(CTOF)

CALL runs CTOF from PETE.TEST.C.LOAD with the default runtime options in effect.

See IChapter 14 _Running an QS/390 C/C++ Application” on page 335 for more

information.

Under the OS/390 Shell

1. Ensure that the OS/390 Language Environment runtime library and the OS/390
C compiler are in the STEPLIB, LPALST, or LNKLST concatenation.
2. Put the source in the HFS. From the OS/390 shell type:

tso oput "'cbc.schcsam(cbc3uaam)' '$PWD/cbc3uaam.c'"
tso oput "'cbc.schcsam(cbc3uaan)' '$PWD/cbc3uaan.h'"

In this example, the current working directory is used, so make sure that you
are in the directory you want to use. Use the pwd command to display the
directory, the mkdir command to create a new directory, and the cd command to
change the directory.

3. Compile and bind:
c89 -0 ctof cbc3uaam.c

Note: You can use c89 to compile source that is stored in a data set.
4. Run the program:
./ctof

38 0S/390 V2R6.0 C/C++ User's Guide

Chapter 5. OS/390 C++ Examples

This chapter outlines the basic steps for compiling, binding, and running OS/390
C++ example programs under OS/390 batch, TSO, or the OS/390 shell.

If you have not yet compiled an OS/390 C++ program, some concepts in this
chapter may be unfamiliar. Refer to ['Chapter 9. Compiling” on page 221|,
[Chapter 12_Binding OS/390 C/C++ Programs” an page 289, and [Chapter 14]
Running an OS/390 C/C++ Application” on page 335 for a detailed description on

compiling, binding, and running an an OS/390 C++ program.

The example programs that this chapter describes are shipped with the OS/390
C++ compiler. Example programs with the names CBC3Uxxx are shipped in the data
set CBC.SCBCSAM. Example programs with the names CLB3xxxx are shipped in
the data set CBC.SCLBSAM.

Example of an OS/390 C++ Program

The following example shows a simple OS/390 C++ program that prompts you to
enter a birth date. The program output is the corresponding biorhythm chart.

The program is written in object-oriented fashion. A class that is called BioRhythm is
defined. It contains an object birthDate of class BirthDate, which is derived from
the class Date. An object that is called bio of the class BioRhythm is declared.

The example contains 2 files. File CBC3UBRH contains the classes that are used in
the main program. File CBC3UBRC contains the remaining source code. The example
files CBC3UBRC and CBC3UBRH are shipped with the OS/390 C++ compiler in data sets
CBC.SCBCSAM(CBC3UBRC) and CBC.SCBCSAM(CBC3UBRH).

If you need more details on the constructs of the OS/390 C++ language, see the
0S/390 C/C++ Language Reference or the OS/390 C/C++ Run-Time Library
Reference.

© Copyright IBM Corp. 1996, 1999 39

CBC3UBRH

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current
// system date and birth date entered

//

// File 1 of 2-other file is CBC3UBRC
class Date {
public:
Date();
int DaysSince(const char =*date);
protected:
int curYear, curDay;
static const int datelen;
static const int numMonths;
static const int numDays[];
}s
const int Date::datelLen = 10;
const int Date::numMonths = 12;
const int Date::numDays[Date::numMonths] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1

class BirthDate : public Date {
public:
BirthDate();
BirthDate(const char *birthText);
int Days01d() { return(DaysSince(text)); }

private:
char text[datelLen+1];
1

Figure 5. Header File for the Biorhythm Example (Part 1 of 2)

40 0S/390 V2R6.0 C/C++ User's Guide

CBC3UBRC

class BioRhythm {
friend static ostream& operator<<(ostream&, BioRhythm&);

public:
BioRhythm(char *birthText) : birthDate(birthText) {
age = birthDate.Days01d();
1
BioRhythm() : birthDate() {
age = birthDate.Days01d();

1
“BioRhythm() {}

int AgeInDays() {
return(age);

1
double Physical() {
return(Cycle(pCycle));

double Emotional() {
return(Cycle(eCycle));

double Intellectual() {
return(Cycle(iCycle));

1
int ok() {
return(age >= 0);

private:
int age;
double Cycle(int phase) {
return(sin(fmod(age, phase) / phase * M_2PI));
1
BirthDate birthDate;
static const int pCycle;
static const int eCycle;
static const int iCycle;

}s

const int BioRhythm::pCycle=23; // Physical cycle - 23 days
const int BioRhythm::eCycle=28; // Emotional cycle - 28 days
const int BioRhythm::iCycle=33; // Intellectual cycle - 33 days

static ostream& operator<<(ostream&,BioRhythm&);

Figure 5. Header File for the Biorhythm Example (Part 2 of 2)

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current
// system date and birth date entered

//

// File 2 of 2-other file is CBC3UBRH

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <iostream.h>
#include <iomanip.h>

#include "cbc3ubrh.h" //BioRhythm class and Date class

int .mai n (void) { Chapter 5. 0S/390 C++ Examples
BioRhythm bio;

int code;

ifF (1hin nk())

41

BirthDate::BirthDate(const char xbirthText) {
strcpy(text, birthText);
1

BirthDate::BirthDate() {
cout << "Please enter your birthdate in the form yyyy/mm/dd\n";
cin >> setw(datelLen+l) >> text;

1
Date::DaysSince(const char *text) {

int year, month, day, totDays, delim;
int daysInYear = 0;

int i;

int leap = 0;

int rc = sscanf(text, "%4d%c%2d%c%2d",
&year, &delim, &month, &delim, &day);

--month;

if (rc =5 || year <0 || year > 9999
month < 0 month > 11
day <1 day > 31

(day > numDays[month]&& month != 1)) {
return(-1);

}
if ((year % 4 == 0 & year % 100 != 0) || year % 400 == 0)
leap = 1;

if (month == 1 &% day > numDays[month]) {
if (day > 29)
return(-1);
else if (!leap)
return (-1);

for (i=0;i<month;++i) {
daysInYear += numDays[i];
}

daysInYear += day;

// correct for leap year

if (leap == 1 &&
(month > 1 || (month == 1 && day == 29)))
++daysInYear;

totDays = (curDay - daysInYear) + (curYear - year)=*365;
// now, correct for leap year
for (i=year+l; i < curYear; ++i) {
if ((1%4==0281%100!=0) || i%400==20) {
++totDays;

}

}
return(totDays);

Figure 6. 0S/390 C++ Biorhythm Example Program (Part 2 of 2)

42 0S/390 V2R6.0 C/C++ User's Guide

Compiling, Binding, and Running the OS/390 C++ Example

In general, you can compile, bind, and run OS/390 C++ programs under OS/390
batch, TSO, or the OS/390 shell. You cannot run the IPA Link step under TSO, or

under OS/390 batch by using the ISPF interface. For more information, see
kChap_te@_C_gm_pﬂquan_paqe_Zﬂ] i(‘h;mh:r 12 _Binding QS/390Q C/C++ Drnnmmci

%ﬁd,and‘ i ication”

This book uses the term user prefix to refers to the high-level qualifier of your data
sets. For example, in CEE.SCEERUN, the user prefix is CEE.

Under OS/390 Batch

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBCUBRC) in
PETE.TEST.C(CBC3UBRC), and the header file (CBCUBRC) in
PETE.TESTHDR.H(CBC3UBRH). You can use the IBM-supplied cataloged procedure
CBCCBG to compile, bind, and run the source code as follows:

/1*

//* COMPILE, BIND AND RUN

/1%

//DOCLG EXEC CBCCBG,

/1l INFILE='PETE.TEST.C(CBC3UBRC) ',
/] CPARM="OPTFILE (DD:CCOPT)"

//COMPILE.CCOPT DD =
LSEARCH('PETE.TESTHDR.H")
SEARCH('CEE.SCEEH.+",'CBC.SCLBH.+")

/*

//* ENTER TODAY'S DATE IN THE FORM YYYY/MM/DD

//GO.SYSIN DD *

1997/10/19

/*

Figure 7. JCL to Compile, Bind, and Run the Example Program Using the CBCCBG
Procedure

n m the LSEARCH statement describes where to find the user include files,
and the SEARCH statement describes where to find the system include files. The
GO.SYSIN statement indicates that the input that follows it is given for the execution
of the program.

For more information on compiling, binding, and running, see m

%ﬂp&g&m I(‘h:-mtpr 12_BRinding QS/390 C/C++ Programs” on
and LChapLeuA_Elmnmg_an_QSBQO_CLCd:LAppucanm_on_pagP_SSH

Under TSO

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBCUBRC) in
PETE.TEST.C(CBC3UBRC), and the header file (CBCUBRH) in
PETE.TESTHDR.H(CBC3UBRH).

Chapter 5. 0S/390 C++ Examples 43

Use the following set of TSO commands to compile, bind, and run the example

program:

1. Ensure that the OS/390 Language Environment runtime library, the OS/390
class library DLLs, and the OS/390 C++ compiler are in the STEPLIB, dynamic
LPA, or Link List concatenation.

2. Compile the OS/390 C++ source. You can use the REXX EXEC CXX to invoke
the OS/390 C++ compiler under TSO as follows:

CXX 'PETE.TEST.C(CBC3UBRC)' (LSEARCH('PETE.TESTHDR.H') OBJECT(BIO.TEXT)
SEARCH('CEE.SCEEH.+", 'CBC.SCLBH.+")

CXX compiles CBC3UBRC with the specified compiler options and stores the
resulting object module in PETE.BIO.TEXT(CBC3UBRC).

The compiler searches for user header files in the PDS PETE.TESTHDR.H, which
you specified at compile time with the LSEARCH option. The compiler searches for
system header files in the PDS CEE.SCEEH.+ and CBC.SCLBH.+, which you
specified at compile time with the SEARCH option.

For more information see lCampiling Under TSQ” on page 233,
3. Bind:
CXXBIND OBJ(BIO.TEXT(CBC3UBRC)) LOAD(BIO.LOAD(BIORUN))

CXXBIND binds the object module PETE.BIO.TEXT(CBC3UBRC), and creates an
executable module BIORUN in PETE.BIO.LOAD PDSE with the default bind options.

Note: To avoid a bind error, the dataset PETE.BIO.LOAD must be a PDSE, not a
PDS.

For more information see [Chapter 12 RBinding QS/390 C/C++ Programs” on

44 0S/390 V2R6.0 C/C++ User's Guide

4.

Run the program:
CALL BIO.LOAD(BIORUN)

CALL runs the module BIORUN from the PDSE PETE.BIO.LOAD with the default
runtime options.

For more information see [Running an Application under TSQ” on page 337,

Under the OS/390 Shell

1.

2.

4.

Ensure that the OS/390 Language Environment runtime library and the OS/390
C++ compiler library are in the STEPLIB, LPALST, or LNKLST concatenation.

Put the source in the HFS. From the OS/390 shell type:

tso oput "'cbc.schcsam(cbc3ubre)' '$PWD/cbc3ubrc.C'"
tso oput "'cbc.schcsam(cbc3ubrh) ' '$PWD/cbc3ubrh.h'"

In this example, the current working directory is used, so make sure that you
are in the directory you want to use. Use the pwd command to display the
current working directory, the mkdir command to create a new directory, and the
cd command to change directory.

Compile and bind:
c++ -0 bio chc3ubrc.C

Note: You can use c++ to compile source that is stored in a data set.
Run the program:
./bio

Example of an OS/390 C++ Template Program

A class template or generic class is a blueprint that describes how members of a
set of related classes are constructed.

The following example shows a simple OS/390 C++ program that uses templates to
perform simple operations on linked lists. This program consists of ten files that are
described and illustrated below.

The main program, CLB3ATMP.CXX (see I'CL BAATMP CXX” an page 5d) has two

class templates: List (in the file CLB3ALST.C that uses CLB3ALST.H) and
Iterator (in the file CLB3AITR.C that uses CLB3AITR.H). List is a template of a
linked list, and Iterator is a template that walks a List class.

Chapter 5. 0S/390 C++ Examples 45

CLB3ALST.C

#include "clb3alst.h"

template <class Item> void List<Item>::append(Item item) {
GetNode()
cur—>node = jtem;

}

template <class Item> void List<Item>::GetNode() {
if (cur) {
cur—>next = new Node<Item>;
cur = cur—>next;
}
else {
cur = new Node<Item>;
head = cur;
1
cur—>next = 0;
return;

Figure 8. Template of a Linked List

CLB3ALST.H

??=ifndef CBCLIST H_

??7=ifdef __COMPILER VER _
??=pragma filetag ("IBM-1047")

??=endif

??=define _CBCLIST_H_ 1

#pragma nomargins nosequence

#pragma checkout (suspend)

template <class Item> struct Node {
Item node;
struct Node<Item> *next;
}s
template <class Item> class List {
public:
List() :cur(0), head(0) {}

“List() {}
void append(Item item);
Node<Item> *cur, xhead;

private:
void GetNode();
}s
#pragma checkout (resume)
#endif

Figure 9. Header file for CBC3ALST.C

46 0S/390 V2R6.0 C/C++ User's Guide

CLB3AITR.C

CLB3AITR.H

CLB3AMAX.H

#include "clb3aitr.h"

template <class Item> Item& Iterator<Item>::operator++() {
node = cur—>node;
cur = cur—>next;
return(node) ;

}

template <class Item> int Iterator<Item>::eol() {
return(cur == 0);

}

template <class Item> void Iterator<Item>::reset() {
cur = head;

}

Figure 10. Template of an Iterator

?2?7=ifndef _CBCITER_H_
?7=ifdef _COMPILER VER _
??=pragma filetag ("IBM-1047")
??=endif
?7=define CBCITER H_ 1
#pragma nomargins nosequence
#pragma checkout (suspend)
#include "c1b3alst.h"
template <class Item> class Iterator {
public:
Iterator(List<Item>& Tist)
ccur(list.head), head(list.head) {}
Item& operator++();
int eol();
void reset();

private:
Node<Item> =*cur;
Node<Item> =*head;
Item node;
}s
#pragma checkout (resume)
#endif

Figure 11. Header file for CLB3AITR.C

There are two template functions, max(T,T) (in the file CLB3AMAX.C which uses
CLB3AMAX.H), and min(T,T) (in the file CLB3AMIN.C which uses CLB3AMIN.H).
max(T,T) returns the maximum object of two objects, and min(T,T) returns the
minimum object of two objects.

template <class T> T& max(T a, T b);

Chapter 5. 0S/390 C++ Examples 47

CLB3AMAX.C

template <class T> T& max(T a, T b) {
if (a > b) return(a);
else return(b);

1
CLB3AMIN.H
template <class T> T& min(T a, T b);

CLB3AMIN.C

template <class T> T& min(T a, T b) {
if (a < b) return(a);
else return(b);

}

There is one simple class, String, defined in the file CLB3ASTR.H.

48 0S/390 V2R6.0 C/C++ User's Guide

CLB3ASTR.H

??=ifndef CBCSTR H_

??=ifdef _ COMPILER_VER _
??=pragma filetag ("IBM-1047")

??7=endif

??=define _CBCSTR_H_ 1

#pragma nomargins nosequence

#pragma checkout (suspend)

#include <iostream.h>

#include <iomanip.h>

class String {
friend static ostream& operator<<(ostream&, String);
friend static istream& operator>>(istream&, Stringd);

public:
String() {
str = new char[1];
str[0] = '\0';
!

String(const char *s) {
const int len = strlen(s);
str = new char[len+1];
memcpy (str, s, len+l);

“String() {
delete str;

void replace(const char #*s) {
const int len = strlen(s);
char *newStr = new char[len+1];
delete str;
str = newStr;
memcpy (str, s, len+l);
1
int operator >(String& rhs) {
return(strcmp(str, rhs.string()));
1

int operator <(String& rhs) {
return(!strcmp(str, rhs.string()));
1

const char string() {
return(str);

private:

char *str;

#pragma checkout (resume)
#endif

Figure 12. Definition of the String Class

Chapter 5. 0S/390 C++ Examples

49

CLB3ATMP.CXX

#include "clb3amax.h"
#include "clb3amin.h"
#include "clb3alst.h"
#include "clb3aitr.h"
#include "clb3astr.h"
#include <string.h>

#include <iostream.h>
#include <iomanip.h>

template <class Item> class IOList {
pubTlic:
I0List() : Tist() {}
void write();
void read(const char *msg);
void append(Item item) {
Tist.append(item);
}
private:
List<Item> 1ist;
1

template <class Item> void IOList<Item>::write() {
Iterator<Item> iter(list);
while (!iter.eol()) {
cout << ' ' << ++iter;
1

cout << endl;

}

template <class Item> void IOList<Item>::read(const char *msg) {
Item item;
cout << msg << endl;
while (cin >> item) {
list.append(item);

}

ostream& operator<<(ostream& os, String& str) {
0s << str.string() << endl;
return(os);

}

istream& operator>>(istream& is, String& str) {
char tmpStr[80];
cin.width(79);
is >> tmpStr;
str.replace(tmpStr);
return(is);

Figure 13. OS/390 C++ Template Program (Part 1 of 2)

50 0S/390 V2R6.0 C/C++ User's Guide

int main() {
IOList<String> stringlist;
I0List<int> intList;

char Tinel[]= "This program will read in a Tist of";
char Tine2[]= "strings, integers and real numbers";
char Tine3[]= "and then print them out";

stringlList.append(linel);

stringlList.append(1ine2);

stringlList.append(1ine3);

stringlList.write();

intList.read("Enter some integers (/* to terminate)");
intList.write();

String namel
String name2

"Bloe, Joe";
"Jackson, Joseph";

cout << min(namel, name2) << " comes before
<< max(namel, name2) << endl;

23;
28;

int numl
int num2

cout << min(numl, num2) << " comes before "
<< max(numl, num2) << endl;

return(0);

Figure 13. OS/390 C++ Template Program (Part 2 of 2)

Compiling, Binding, and Running the C++ Template Example

This section describes the commands to compile, bind and run the template
example under OS/390 batch,TSO, and the OS/390 shell.

Under OS/390 Batch

To compile, bind, and run the template example program under OS/390 batch,
follow these steps:

1. Ensure that OS/390 Language Environment runtime library and the OS/390 C++
compiler are in STEPLIB, LPALST, or the LNKLST concatenation.

2. Use the following JCL to compile, bind, and run the template example. In the
example JCL, change <userhlg> to your own user prefix.

Chapter 5. 0S/390 C++ Examples 51

CBC3UNCL

//Jobcard info

//PROC JCLLIB ORDER=(CBC.SCBCPRC,

// CEE.SCEEPROC)

//*

//* Compile MAIN program, creating an object deck and a TEMPLATE PDS
//* of the source code. The TEMPLATE PDS of source code will be

//* written to the default TEMPLATE PDS '<userhlg>.TEMPINC'

/1%

//MAINCC EXEC CBCC, * Compile main program

// INFILE="'CBC.SCLBSAM(CLB3ATMP) ',

// OUTFILE="'<userhlg>.SAMPLE.OBJ(CLB3ATMP) ,DISP=SHR ',
// CPARM="0PTF(DD:COPTS) "

//COPTS DD =
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+")
LSEARCH('CBC.SCLBSAM.+") TEMPINC
/*
A
//* Compile PDS of TEMPLATE source code. Direct template source file
//* creation to this PDS with the TEMPINC option. Then, if any
//* TEMPLATE compilation creates new members, they will be created
//* in this PDS. The compiler will detect this and automatically
//* compile the newly created members as part of this step.

/1%

//TMPCC EXEC CBCC, * Compile PDS of templates
// INFILE="'<userhlg>.TEMPINC',

// OQUTFILE="'<userhlg>.TEMPINC.0BJ,DISP=SHR ',

/] CPARM="'0PTF (DD:COPTS) !

//COPTS DD =*
SEARCH('CEE.SCEEH.+",'CBC.SCLBH.+")
LSEARCH('CBC.SCLBSAM.+") TEMPINC
/*
/1*
//* Make the PDS of template objects have long named aliases used
//* for autocall by using the EDCLIB utility with the DIR command.

/1%

//GENLIB EXEC EDCLIB, * Create Template Library
// OPARM='DIR",

// LIBRARY="'<userhlg>.TEMPINC.OBJ"

/1%

//* Bind the program --- specify the template library on the
//* bind autocall Tibrary.

/1%

//BIND EXEC CBCB, * Bind main program

// INFILE="'<userh1q>.SAMPLE.OBJ (CLB3ATMP) ',
// OUTFILE="'<userhlg>.SAMPLE.LOAD(CLB3ATMP),DISP=SHR'
//BIND.SYSLIB DD

// DD

// DD

// DD DSN=<userhlq>.TEMPINC.0BJ,DISP=SHR
//G0 EXEC CBCG,

// INFILE="'<userhlq>.SAMPLE.LOAD',

/1l GOPGM=CLB3ATMP

//GO.SYSIN DD =
125378321011
/*

Figure 14. JCL to Compile, Bind and Run the Template Example

52 0S/390 V2R6.0 C/C++ User's Guide

Under TSO

To compile, bind, and run the example program under TSO, follow these steps:
1. Ensure that OS/390 Language Environment runtime library, the OS/390 Class

Library DLLs, and the OS/390 C++ compiler are in STEPLIB, LPALST, or the

LNKLST concatenation.

Compile the source files:

a. CXX 'CBC.SCLBSAM(CLB3ATMP)' (LSEARCH('CBC.SCLBSAM.+')
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+') OBJ(SAMPLE.OBJ(CLB3ATMP))

Compiles CLB3ATMP with the default compiler options, and stores the object
module in userhlq.SAMPLE.OBJ(CLB3ATMP), where userhlq is your user prefix.
The template instantiation files are written to the PDS userhlq.TEMPINC.

b. CXX TEMPINC (LSEARCH('CBC.SCLBSAM.+")
SEARCH('CEE.SCEEH.+',"'CBC.SCLBH.+")

Compiles the PDS TEMPINC and creates the corresponding objects in the
PDS userhlq.TEMPINC.O0BJ.

See ECompiling Under TSQ” on page 233 for more information.
Create a library from the PDS userhlq.TEMPINC.0BJ:
C370LIB DIR LIB(TEMPINC.OBJ)

For more information see [Creating and Ohject Library Under TSQ” on

Bind the program:
CXXBIND OBJ(SAMPLE.OBJ(CLB3ATMP)) LIB(TEMPINC.0BJ) LOAD(SAMPLE.LOAD(CLB3ATMP))

Binds the userhlq.SAMPLE.OBJ(CLB3ATMP) text deck using the
userhlq.TEMPINC.OBJ library and the default bind options. This step creates the
executable module userhlq.SAMPLE.LOAD (CLB3ATMP).

Note: To avoid a binder error, the dataset userhlq.SAMPLE.LOAD must be a
PDSE.

For more information see [Binding Under TSO Using CXXBIND” on page 305.

Run the program:
CALL SAMPLE.LOAD(CLB3ATMP)

Executes the module userhiq.SAMPLE.LOAD(CLB3ATMP) using the default runtime

options. For more information see 'Running an Application under TSQ” onl

Under the OS/390 Shell

To compile, bind, and run the template example program under the OS/390 shell,
follow these steps:

1.

2.

Ensure that OS/390 Language Environment runtime library and the OS/390 C++
compiler are in STEPLIB, LPALST, or the LNKLST concatenation.

Perform a series of oput commands for all files that are used, as follows:

tso oput "'cbc.sclbsam(clb3atmp)' '$PWD/clb3atmp.C'"
tso oput "'cbc.sclbsam.h(clb3astr)' '$PWD/clb3astr.h'"
tso oput "'cbc.sclbsam.h(clb3aitr)' '$PWD/cib3aitr.h'"
tso oput "'cbc.sclbsam.h(clb3amin)' '$PWD/c1b3amin.h""
tso oput "'cbc.sclbsam.h(clb3amax)' '$PWD/clb3amax.h'"
tso oput "'cbc.sclbsam.h(c1b3alst)' '$PWD/clb3alst.h'"

Chapter 5. 0S/390 C++ Examples 53

tso oput "'cbc.sclbsam.c(clb3aitr)' '$PWD/clb3aitr.c'"
tso oput "'cbc.sclbsam.c(clb3alst)' '$PWD/cTb3alst.c'"
tso oput "'cbc.sclbsam.c(clb3amax)' '$PWD/cTb3amax.c'"
tso oput "'cbc.sclbsam.c(clb3amin)' '$PWD/cTb3amin.c'"

Note: You must use the correct suffixes: C for the main source file, ¢ for the
template definition files, and h for all header files.

3. Then, to compile and bind:
ct+ -0 clb3atmp clb3atmp.C

This command compiles c1b3atmp.C and then compiles the ./tempinc directory
(which is created if it doesn’t already exist). It then binds using all the objects in
the ./tempinc directory. An archive file, or C370LIB object library is not created.

4. Run the program:
./c1b3atmp

54 0S/390 V2R6.0 C/C++ User's Guide

Chapter 6. Compiler Options

This chapter describes the options that you can use to alter the compilation of your
program.

Specifying Compiler Options

© Copyright IBM Corp. 1996, 1999

You can override your installation default options when you compile your OS/390
C/C++ program, by specifying an option in one of the following ways:

* In the option list when you invoke the IBM-supplied REXX EXECs.

* In the CPARM parameter of the IBM-supplied cataloged procedures, when you are
compiling under OS/390 batch.

See EChapter 9._Compiling” on page 221, and EAppendix D 1BM Supplied
Cataloged Pracedures and REXX EXECS' on page 457

for details.
* In your own JCL procedure, by passing a parameter string to the compiler.

+ In an options file. See LQPTEIE | NOQPTEIL E” on page 124 for details.

* For OS/390 C, in a #pragma options preprocessor directive within your source
file. See t ifyi i i i ions”
for details.

Compiler options that you specify on the command line or in the CPARM parameter
of IBM-supplied cataloged procedures can override compiler options that are
used in #pragma options. The exception is CSECT, where the #pragma csect
directive takes precedence.

* In the utilities c89, cc, or c++, by using the -W option to pass options to the
compiler.

* In the ISPF panels that are used to invoke the OS/390 C/C++ compiler in
foreground and background.

The following compiler options are inserted at the bottom of your object module to
indicate their status:

ALIAS (C compile and IPA Link step only)
ANSIALIAS (C compile and C++ compile only)
ARCHITECTURE

ARGPARSE

CONVLIT

DLL

EVENTS

EXH (C++ compile only)

EXECOPS

EXPORTALL (C compile and C++ compile only)
FLOAT

GENPCH

GONUMBER

IPA

INLINE (C compile and IPA Link step only)
LANGLVL

LIBANSI

LOCALE

LONGNAME

OPTIMIZE

55

PLIST

REDIR (C compile and IPA Link step only)
RENT (C compile and IPA Link step only)
ROUND

START

STRICT

SOM (C++ compile only)

SOMEINIT (C++ compile only)

SOMGS (C++ compile only)

TARGET

TEST

TUNE

UPCONV (C compile only)

USEPCH (C compile and C++ compile only)

IPA Considerations

The following sections explain what you should be aware of if you request
Interprocedural Analysis (IPA) through the IPA option. Refer to the 0OS/390 C/C++
Programming Guide for an overview of IPA before you use the IPA compiler option.

Applicability of Compiler Options under IPA

You should keep the following points in mind when specifying compiler options for
the IPA Compile or IPA Link step:

* Many compiler options do not have any special effect on IPA. For example, the
PPONLY option processes source code, then terminates processing prior to IPA
Compile step analysis.

» Compiler options that affect the way the compiler generates a regular object
module have the same effect on how the IPA compile step generates an object
module with IPA (OBJECT).

* In some situations, you must specify a compiler option on the IPA Compile step if
you want the benefit of the option on the IPA Link step. In some situations, you
must specify the option again on the IPA Link step.

* Some compiler options have special behavior or restrictions other than what is
described above.

» #pragma directives in your source code, and compiler options you specify for the
IPA Compile step, may conflict across compilation units.

#pragma directives in your source code, and compiler options you specify for the
IPA Compile step may conflict with options you specify for the IPA Link step.

IPA will detect such conflicts and apply default resolutions with appropriate
diagnostic messages. The Compiler Options Map section of the IPA Link step
listing displays the conflicts and their resolutions.

To avoid problems, use the same options and suboptions on the IPA Compile
and IPA Link steps. Also, if you use #pragma directives in your source code,
specify the corresponding options for the IPA Link step.

* You must specify either the LONGNAME compiler option or the #pragma Tongname
preprocessor directive on the IPA Compile step (unless you are using the c89
utility). Otherwise, the compiler generates an unrecoverable error.

» If you specify a compiler option that is irrelevant for a particular IPA step, IPA
ignores it and does not issue a message.

56 0S/390 V2R6.0 C/C++ User's Guide

In this chapter, the description of each compiler option includes its effect on IPA
processing.

Interactions between Compiler Options and IPA Suboptions

During IPA Compile step processing, IPA handles conflicts between IPA suboptions
and certain compiler options that affect code generation.

If you specify a compiler option for the IPA Compile step, but do not specify the
corresponding suboption of the IPA option, the compiler option may override the IPA
suboption. shows how the OPT, LIST, and GONUMBER compiler options interact
with the OPT, LIST, and GONUMBER suboptions of the IPA option. The xxxx indicates
the name of the option or suboption. NOxxxx indicates the corresponding negative
option or suboption.

Table 3. Interactions Between Compiler Options and IPA Suboptions

Compiler Option Corresponding IPA Suboption Value used in IPA Object
no option specified no suboption specified NOXXXX

no option specified NOXXXX NOXXXX

no option specified XXXX XXXX

NOXXXX no option specified NOXXXX

NOXXXX NOXXXX NOXXXX

NOxXxxx XXXX XXXX

XXXX no option specified XXXX

XXXX NOXxxx XXXX

XXXX XXXX XXXX

Note: *An informational message is produced that indicates that the suboption
NOxxxx is promoted to xxxx.

Using Special Characters
Under TSO

When HFS file names contain the special characters blank, backslash, and double
guote, a backslash (\) must precede these characters.

Two backslashes must precede suboptions that contain these special characters:

left parenthesis (, right parenthesis), comma, backslash, blank, double quote, less
than <, and greater than >

For example:
def (errno=\\(*__errno\\(\\)\\))

Note: Under TSO, a backslash \ must precede special characters in file names
and options.

Under the OS/390 Shell

The OS/390 shell imposes its own parsing rules. The ¢89 utility escapes special
compiler and runtime characters as needed to invoke the compiler, so you need

Chapter 6. Compiler Options 57

only be concerned with shell parsing rules. See 0S/390 UNIX System Services
Command Reference for more information.

Under OS/390 Batch

When invoking the compiler directly (not through a cataloged procedure), you
should type a single quote () within a string as two single quotes ("), as follows:

//COMPILE EXEC PGM=CBCDRVR,PARM='OPTFILE(''USERID.OPTS'")"

If you are using the same string to pass a parameter to a JCL PROC, use four
single quotes ("), as follows:

//COMPILE EXEC CBCC,CPARM='OPTFILE(''''USERID.OPTS'''")"

Special characters in HFS file names that are referenced in DD cards do not need a
preceding backslash. For example, the special character blank in the file name obj
1.0 does not need a preceding backslash when it is used in a DD card:

//SYSLIN DD PATH='u/userl/obj 1.0’

A backslash must precede special characters in HFS file names that are referenced
in the PARM statement. The special characters are: backslash, blank, and double
quote. For example, a backslash precedes the special character blank in the file
name obj 1.0, when used in the PARM keyword:

//STEP1 EXEC PGM=CBCDRVR,PARM='0BJ(/u/userl/obj\ 1.0)"'
Specifying OS/390 C Compiler Options Using #pragma Options

You can use the #pragma options preprocessor directive to override the default
values for compiler options. Compiler options that are specified on the command
line or in the CPARM parameter of the IBM-supplied cataloged procedures can
override compiler options that are used in #pragma options. The exception is CSECT,
where the #pragma csect directive takes precedence. For complete details on the
#pragma options preprocessor directive, see the 0S/390 C/C++ Language
Reference.

The #pragma options preprocessor directive must appear before the first 0S/390 C
statement in your input source file. Only comments and other preprocessor
directives can precede the #pragma options directive. Only the options that are
listed below can be specified in a #pragma options directive. If you specify a
compiler option that is not in the following list, the compiler generates a warning
message, and does not use the option.

AGGREGATE OBJECT
ALIAS OPTIMIZE
ANSIALIAS RENT
ARCHITECTURE SERVICE
CHECKOUT SPILL
DECK START
GONUMBER TEST
INLINE TUNE
LIBANSI UPCONV
MAXMEM XREF
Notes:

1. When you specify conflicting attributes explicitly, or implicitly by the specification
of other options, the last explicit option is accepted. The compiler usually does
not issue a diagnostic message indicating that it is overriding any options.

58 0S/390 V2R6.0 C/C++ User's Guide

2. When you compile your program with the SOURCE compiler option, an options list
in the listing indicates the options in effect at invocation. The values in the list
are the options that are specified on the command line, or the default options
that were specified at installation. These values do not reflect options that are
specified in the #pragma options directive.

Specifying Compiler Options under OS/390 UNIX

The ¢89 and c++ utilities specify most compiler options when they call the OS/390
C/C++ compiler. Therefore, #pragma options and other #pragma directives that are
overridden by command line options are not used. For example, if you compile
using c89, and have #pragma Tanglvl (EXTENDED) in your source, c89 uses
LANGLVL (ANSI). This is because c89 specifies ANSI explicitly when it calls the
compiler.

To change compiler options, use the corresponding c89 or c++ option. For example,
use -I to set the search option that specifies where to search for #include files. If
there is no corresponding c89 or c++ option, use -W. For example, specify -Wc,expo
to export all functions and variables.

For a complete description of c89, c++ and related utilities, refer to the OS/390
UNIX System Services Command Reference.

Compiler Option Defaults

You can use various options to change the compilation of your program. You can
specify compiler options when you invoke the compiler or, in an OS/390 C program,
in a #pragma options directive in your source program. Options that you specify
when you invoke the compiler override installation defaults and compiler options
that are specified through a #pragma options directive.

The compiler option defaults that are supplied by IBM can be changed to other
selected defaults when OS/390 C/C++ is installed. To find out the current defaults,
compile a program with only the SOURCE compiler option specified. The compiler
listing shows the options that are in effect at invocation. The listing does not reflect
options that are specified through a #pragma options directive in the source file.

Summary of Compiler Options

Most compiler options have a positive and negative form. The negative form is the
positive with NO before it. For example, NOXREF is the negative form of XREF. Fable 4
lists the compiler options in alphabetical order, their abbreviations, and the _defaults
that are supplied by IBM. Suboptions inside square brackets are optional.
mg lists options that are compatible with previous versions of the compiler.
Use these options only in existing code. For each of these options, there is a
replacement option inm that you should use for new programs.

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults

Compiler Option (Abbreviated Names are IBM Supplied Default C++ Accepted More
underlined) by IPA | Information
Link
AGGREGATE INOAGGREGATE NOAGG I See
ALIAS[(name)] | NOALIAS NOALI See [
Chapter 6. Compiler Options 59

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are IBM Supplied Default C C++ Accepted More
underlined) by IPA | Information
Link

ANSIALIAS | NOANSIALIAS ANS I I I See 72
ARCHITECTURE(n) ARCH(0) v e e See 3
ARGPARSE| NOARGPARSE ARG I I I See 74
ATTRIBUTE[(FULL)] | NOATTRIBUTE ATT v - See 79
CHECKOUT (subopts) | NOCHECKOUT NOCHE v e See [Z6
CONVLIT | NOCONVLIT NOCONV I 4 I See 78
CSECT | NOCSECT NOCSE I I I d See [19
DEFINE(namel[= | =defl], name2[= | no default user definitions I - L~ See B2
=def2],...)
DIGRAPH | NODIGRAPH NODIGR I See B3
DLL(CBA | NOCBA) | NODLL(CBA [NCBA) | NODLL(NOCBA) v v See B4
DLL(CBA | NOCBA) DLL(NOCBA) v e See B4
EVENTS[(filename)] | NOEVENTS NOEVENT I I L See B3
EXECOPS | NOEXECOPS EXEC I I I See B6
EXH | NOEXH EXH . See B7
EXPMAC | NOEXPMAC NOEXP I I I See B3
EXPORTALL | NOEXPORTALL NOEXPO I I 4 See B3
FASTTEMPINC | NOFASTTEMPINC NOFASTT I See B9
FLAG(severity) | NOFLAG FL(I) I I I See 0
FLOAT (subopts) FLOAT[(HEX, FOLD, I I I See b1

NOMAF, NORRM,

NOAFP)]
GENPCH][(filename)] | NOGENPCH(filename) | NOGENP 4 I I See b3
GONUMBER | NOGONUMBER NOGONUM I I I See DA
HALT (num) HALT(16) W v v See b7
INFO[(subopts)] | NOINFO NOINFO I See B
INLINE(subopts) | NOINLINE [(subopts)] NOINL(AUTO, 4 L~ See B9

NOREPORT, 100, 1000)

INLRPT[(filename)] | NOINLRPT[(filename)] NOINLR v - v See 02
IPA[(subopts)] | NOIPA[(subopts)] NOIPA(NOLINK, OBJECT, | »~ e e See 03
NOOPT, NOLIST,

NOGONUMBER,

NOATTRIBUTE,

NOXREF,

LEVEL(1),NOMAP, DUP,

ER, NONCAL,

NOUPCASE,

NOCONTROL
LANGLVL(ANSI|SAA LANG(EXTENDED) - . See Lod
|SAAL2|COMPAT|EXTENDED|COMMONC)
LIBANSI | NOLIBANSI NOLIB o W See fl1d
LIST[(filename)] | NOLIST [(filename)] NOLIS - v - See [L1d

60 0S/390 V2R6.0 C/C++ User’s Guide

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are IBM Supplied Default C C++ Accepted More
underlined) by IPA | Information
Link
LOCALE[(name)] | NOLOCALE NOLOC v v - See (19
LONGNAME | NOLONGNAME NOLO (C only), LO (C++ v v e See 114
only)
LSEARCH(subopts) | NOLSEARCH NOLSE I I 4 See 19
MARGINS | NOMARGINS NOMAR I I I See 21
MARGINS(m,n) | NOMARGINS (C compile and | V-format: NOMAR I 4 See 21
IPA Link step) F-format: MAR(1,72)
MAXMEM | NOMAXMEM MAXMEM(2097152) I I 4 See (23
MEMORY | NOMEMORY MEM | - See 24
NESTINC(num) | NONESTINC NONEST v v w See 124
OBJECT][(filename)] | NOOBJECT [(filename)] | OBJ - - % See 29
OE[(filename)] | NOOE (filename)] NOOE I I I See 127
OFFSET | NOOFFSET NOOF | e - See f2d
OPTFILE[(filename)] | NOOPTFILE[(filename)] | NOOPTF I I I See [L2d
OPTIMIZE[(level)] | NOOPTIMIZE NOOPT e v e See 31
PHASEID | NOPHASEID NOPHASEID I I I See 33
PLIST(HOST | OS) PLIST(HOST) v v - See 124
PORT(PPS | NOPPS) | NOPORT(PPS | NOPORT(NOPPS) v v See 124
NOPPS)
PPONLY/[(subopts)] | NOPPONLY [(subopts)] | NOPP v v - See [3d
REDIR | NOREDIR RED I I 4 See [2d
RENT| NORENT NORENT - - See 2d
ROUND(opt) ROUND(N) v v - See fad
SEARCH(opt1,0pt2,...) | NOSEARCH NOSE - v v See fLad
SERVICE(string) | NOSERVICE NOSERV v v w See 22
SEQUENCE | NOSEQUENCE NOSEQ v v - See 43
SEQUENCE(m,n) | NOSEQUENCE V-format: NOSEQ v - See [43
F-format: SEQ(73,80)
SHOWINC | NOSHOWINC NOSHOW v v e See [25
SOM | NOSOM NOSOM v See a9
SOMEINIT | NOSOMEINIT SOMEI I See 124
SOMGS | NOSOMGS NOSOMG I See 124
SOMRO(classname) | NOSOMRO NOSOMR I See 147
SOMVOLATTR | NOSOMVOLATTR NOSOMV v See [L44
SOURCE][(filename)] | NOSOURCE[NOSO v e e See 148
(filename)]
SPILL | NOSPILL SPILL(128) W . - See b5d
SRCMSG | NOSRCMSG NOSRCM I See [151
SSCOMM | NOSSCOMM NOSS e - See k51
START | NOSTART STA | e - See (53

Chapter 6. Compiler Options 61

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are IBM Supplied Default C C++ Accepted More
underlined) by IPA | Information
Link
STRICT | NOSTRICT STRICT v v - See 53
TARGET(suboption) TARG(LE) v - v See 153
TEMPINC[(filename)] | TEMPINC(TEMPINC) for - See 15
NOTEMPINC](filename)] PDS TEMPINC(./tempinc)
for HFS

TERMINAL | NOTERMINAL TERM v - - See 57
TEST[(subopts)] | NOTEST[(subopts)] . C defaultt NOTEST 1/ - - See 54

(HOOK, SYM, BLOCK,

LINE, PATH)

e C++ default:

NOTEST(HOOK)
TUNE(n) TUN(3) » v W See L&l
UNDEFINE(name) no action I I I See &3
UPCONV | NOUPCONV NOUPC v - See [L63
USEPCH](filename)] | NOUSEPCH][(filename)] | NOUSEP v v - See [L64
WSIZEOF| NOWSIZEOF NOWSIZEOF v v - See [Led
XREF | NOXREF NOXR | b See lLed
XSOMINC[(subopts)] | NOXSOMINC NOXS v See [L64

Compatibility Options

[Fable d lists options that are compatible with previous versions of the compiler. Use
these options only if they already exist in your code. For new programs, use the
replacement options that are listed for each of the compatibility options.

Note: Some parameters such as the output data set may differ between the old
option and its replacement option. Read the description of the replacement
option before you use it.

Table 5. Compatibility Compiler Options, Abbreviations, and IBM Supplied Defaults

Accepted
Compiler Option (Abbreviated IBM Supplied by IPA Replacement
names are underlined) Default C C++ |Link Option More Information
DECK | NODECK NODECK v v OBJECT See L6d and 23
HWOPTS(STRING | NOSTRING) | | NOHWO v v ARCH See [zd and 3
NOHWOPTS
OMVS](filename)] | NOOMV'S NOOMVS v - OE See [2dand 27
SYSLIB(pdsname-list) no action I I I SEARCH See [4d and izd
SYSPATH(path1,path2,...) | NOSYS v SEARCH See fiad and 71
NOSYSPATH
USERLIB(pdsname-list) no action L I 4 LSEARCH See 119 and iz3
USERPATH(path1,path2,...) | NOUSER - LSEARCH See [18 and i73
NOUSERPATH

62 0S/390 V2R6.0 C/C++ User's Guide

Compiler Options for File Management

These options specify the data set or HFS directory where the compiler stores
output files, and direct the compiler’s search for include files.

Table 6. Compiler Options for File Management

Option

Description

C++

Accepted
by IPA
Link

More
Information

DECK

Produces an object module, and stores it in the
data set associated with SYSPUNCH. Use
OBJECT instead of DECK.

Pl

See 169 and
25|

FASTTEMPINC

Defers generating object code until the final
version of all template definitions have been
determined. Then, a single compilation pass
generates the final object code, resulting in
improved compilation time when recursive
templates are used in an application.

See

GENPCH

Generates precompiled header files.

See

IPA(CONTROL)

Indicates the name of the control file that
contains additional directives for the IPA Link
step. This option only affects the IPA Link step.

See bod

LSEARCH

Specifies the libraries or disks to be scanned for
user include files.

See 119

MEMORY

Improves compile-time performance by using a
MEMORY file in place of a work file, if possible.

See 124

OBJECT

Produces an object module, and stores it in the
file that you specify, or in the data set
associated with SYSLIN.

See 23

OE

Specifies that file names used in compiler
options and include directives should be
interpreted as HFS file names when the file
name provided is ambiguous. Also specifies that
POSIX.2 standard rules for include file
searching should be used.

See 27

OMVS

The options OMVS and OE perform the same
function. Use the OE option instead of the
OMVS option. Specifies that file names used in
compiler options and include directives should
be interpreted as HFS file names when the file
name provided is ambiguous. Also specifies that
POSIX.2 standard rules for include file
searching should be used.

See 2d and
>3

OPTFILE

Directs the compiler to look for compiler options
in the file specified.

See 29

SEARCH

Specifies the libraries or disks to be scanned for
system include files.

See [[2d

SYSLIB

Specifies the PDSs to be scanned for system
include files. Use SEARCH instead of SYSLIB .

See bad and
bzd

SYSPATH

Specifies search paths to be scanned for
system include files. Use SEARCH instead of
SYSPATH.

See bad and
bz

Chapter 6. Compiler Options 63

Table 6. Compiler Options for File Management (continued)

Option Description C++ ccepted More
by IPA Information
Link
TEMPINC Places template instantiation files in the PDS or I See 58
HFS directory specified.
USEPCH Instructs the compiler to use precompiled - I See [164
header files.
USERLIB Specifies the PDSs to be scanned for your own v e See 119 and
include files. Use LSEARCH instead of W2
USERLIB.
USERPATH Specifies search paths to be scanned for your I See [[19 and
own include files. Use LEARCH instead of bz3

USERPATH.

Options That Control the Compiler Listing

These options control whether the compiler produces a listing, and the kind of

information that goes into the listing.

Table 7. Compiler Options That Control Listings

Option

Description

C++

ccepted
by IPA
Link

More
Information

AGGREGATE

Lists structures and unions, and their sizes. The
IPA Link step accepts but ignores this option.

”

See

ATTRIBUTE

For C++ compile, generates a cross reference
section showing attributes for each symbol and
External Symbol Cross Reference section. For
IPA Link, it also generates the Storage Offset
Listing if IPA objects were created using the C
compiler with XREF, IPA(ATTR), or IPA(XREF)
options and the symbols for the current partition
were not coalesced.

I/

See 3

EXPMAC

Lists all expanded macros. You must use the
SOURCE option with EXPMAC.

See B3

INLINE(,REPORT,))

Generates a report on the status of inlined
functions.

See B9

INLRPT

Generates a report on the status of inlined
functions.

See 02

IPA(MAP)

Generates the following listing sections for the
IPA Link step: Object File Map, Source File
Map, Compiler Options Map, Global Symbols
Map, Partition Map. This option only affects the
IPA Link step.

See 03

LIST

Includes the object module in the compiler
listing, in assembler-like code.

See f1d

OFFSET

Lists offset addresses relative to entry points of
functions. The LIST option must be used with
OFFSET.

See 24

SHOWINC

Lists include files if SOURCE option specified.

See 44

64 0S/390 V2R6.0 C/C++ User's Guide

Table 7. Compiler Options That Control Listings (continued)

Option Description C++ Accepted More
by IPA Information
Link
SOURCE Lists source file. I I See 144
XREF For C/C++, generates a cross reference listing - I See [164

showing file/line definition, reference and
modification information for each symbol. Also
generates the External Symbol Cross
Reference. For IPA Link, generates the External
Symbol Cross Reference, and the Storage
Offset Listing if IPA objects were created using
the C compiler with XREF, IPA(ATTR), or
IPA(XREF) options and the symbols for the
current partition were not coalesced.

Options for Debugging and Diagnosing Errors

These options help you to detect and correct errors in your OS/390 C/C++ program.

Table 8. Compiler Options for Debugging and Diagnostics

Option

Description

C++

Accepted
by IPA
Link

More
Information

CHECKOUT

Gives informational messages for possible
programming errors. The IPA Link step accepts
but ignores this option.

’/

See

EVENTS

Produces an events file that contains error
information and source file statistics. The IPA
Link step accepts but ignores this option.

See B

FLAG

Specifies the lowest severity level to be listed.

See bg

GONUMBER

Generates line number tables for Debug Tool
and error trace backs. The TEST option turns on
GONUMBER.

See b4

INFO

Generates informational messages.

See bg

IPA(DUP)

Indicates whether a message and a list of
duplicate symbols are written to the console
during the IPA Link step. This option only affects
the IPA Link step.

See 03

IPA(ER)

Indicates whether a message and a list of
unresolved symbols are written to the console
during the IPA Link step. This option only affects
the IPA Link step.

See 03

PHASEID

Causes each compiler module (phase) to issue
an informational message which identifies the
compiler phase module name, product id, and
build level.

See 23

SERVICE

Places a string in the object module, which is
displayed in the traceback if the application fails
abnormally.

See 47

SRCMSG

Adds source code lines to diagnostic messages.

See 51

Chapter 6. Compiler Options 65

Table 8. Compiler Options for Debugging and Diagnostics (continued)

Option Description C++ ccepted More
by IPA Information
Link
TERMINAL Directs diagnostic messages to be displayed on I I See 157
the terminal.
TEST Generates information that the Debug Tool v 1/ See 158
needs to debug your program.
Options That Control the Source Code
These options allow you to control your OS/390 C/C++ source code.
Table 9. Summary of Compiler Options Used for Source Code Control
Option Description C++ ccepted More
by IPA Information
Link
HALT Specifies that the compiler stop processing files I I See b7
when it returns an error severity level of n or
above.
LANGLVL Specifies the language standard to be used. I See 107
MARGINS Identifies position of source to be scanned by I I See 121]
the compiler.
NESTINC Specifies the number of nested include files to - - See 123
be allowed.
SEQUENCE Specifies the columns used for sequence I 4 See 143
numbers.
SSCOMM Allows comments to be specified by two slashes I See 151
(/). The IPA Link step accepts but ignores this
option.
UPCONV Preserves unsignedness during OS/390 C/C++ I See 163
type conversions. The IPA Link step accepts but
ignores this option.
WSIZEOF Causes the sizeof operator to return the - I See 169

widened size for function return types

Options That Control the Object Code

Table 10. Summary of Compiler Options Used for Object Code Control

These options are used to control how your OS/390 C/C++ object code is

produced.

Option Description C++ ccepted More
by IPA Information
ALIAS Generates ALIAS binder control statements for See 21
each required entry point.
ANSIALIAS Specifies whether type-based aliasing is to be - I See 22
used during optimization.

66 0S/390 V2R6.0 C/C++ User’s Guide

Table 10. Summary of Compiler Options Used for Object Code Control (continued)

Option Description C C++ Accepted More
by IPA Information

CSECT Instructs the compiler to generate csect names - - I See [zd
in the output object module.

DLL Generates object code for DLLs or DLL - I See B4
applications.

EXECOPS Allows runtime options to be passed to your I I I See B
program.

EXH Controls the generation of C++ exception I See B
handling code.

EXPORTALL Exports all externally defined functions and I I I See
variables.

FLOAT Switches floating-point representation between I I I See b1
IEEE and hexadecimal.

HWOPTS Generates code for different hardware features. I I See [Lzd
Use ARCH instead of this option.

INLINE Inlines user functions into source and helps I I See B9
maximize optimization.

NOINLINE Disables inlining of user functions into source. I I 4 See bd

IPA Instructs the compiler to perform Interprocedural I I I See 103
Analysis (IPA) processing.

IPA(LEVEL) Indicates the level of IPA optimization that the I I I See o3
IPA Link step should perfom.

LIBANSI Indicates whether functions with the name of an I I I See f11d
ANSI C library function are in fact ANSI C
library functions.

LONGNAME Provides support for external names of mixed I I 4 See 114
case and up to 1024 characters long.

MAXMEM Limits the amount of memory used for local I I I See 23
tables of specific, memory intensive
optimization.

OBJECT Produces an object module, and stores it in the - - =3
file that you specify, or in the data set
associated with SYSLIN.

OPTIMIZE Improves runtime performance by introducing I I I See 131
optimizations during code generation.

RENT Generates reentrant code. The IPA Link step I I See f2d
accepts but ignores this option.

ROUND Sets the rounding mode for binary floating point I I 4 See f14d
numbers.

SPILL Specifies the size of the spill area to be used I I 4 See i5d
for compilation.

START Generates a CEESTART whenever necessary. I - I See 152

STRICT Affects the precision of floating point I I I See 53
calculations

TARGET Generates an object module for the targeted I I I See 153
operating system or runtime library.

TUNE Specifies the architecture for which the I I I See 61
execuable program will be optimized.

Chapter 6. Compiler Options

67

Options That Control the Preprocessor

These options specify how the preprocessor runs.

Table 11. Summary of Compiler Options for Preprocessor

Option Description C C++ ccepted More
by IPA Information
Link
ARCHITECTURE | Specifies the architecture for which the I I 4 See 3
executable program instructions are to be
generated.
CONVLIT Turns on string literal codepage conversion. I I 4 See
DEFINE Defines preprocessor macro names. 4 I I See B2
LOCALE Specifies the locale to be used at compile time. I I I See 13
PPONLY Specifies that only the preprocessor is to be run I - I See 134
and not the compiler.
UNDEFINE Removes any value its argument may have. I - % See 163
Options That Control Program Execution
These options control the execution of your program
Table 12. Summary of Compiler Options for Program Execution
Option Description C C++ Accepted More
by IPA Information
Link
ARGPARSE Parses arguments provided on the invocation I I Id See 4
line.
EXECOPS Allows you to specify runtime options on the I I I See
invocation line.
PLIST Specifies that the original operating system - I I See 134
parameter list should be available.
REDIR Allows redirection of stderr, stdin, and stdout ” ” I See [L2d
from the invocation line.
TARGET Generates an object module for the specified e - % See 53

runtime environment.

Options That Control the IPA Object

These options control the content of the IPA object that is produced by the IPA

Compile step.

Table 13. Compiler Options for IPA Object Control

Option Description C C++ IPA More
Information
IPA(ATTRIBUTE) Saves information about symbol storage offsets e - % See o4

in the IPA object file.

68 0S/390 V2R6.0 C/C++ User’s Guide

Table 13. Compiler Options for IPA Object Control (continued)

Option Description C C++ IPA More
Information
IPA(GONUMBER) | Saves source line numbers in the IPA object file v v z/ See 04

without generating line number tables. This
option can only be specified for the IPA Compile
step, if a combined conventional/IPA object file
is requested.

IPA(LIST) Saves source line numbers in the IPA object file I I I See 104
without generating a Pseudo Assembly listing.
This option can only be specified for the IPA
Compile step, if a combined conventional/IPA
object file is requested.

IPA(OBJECT) Indicates whether a conventional (non-IPA)/IPA I I I See [Lod
object is to be produced during the IPA Compile
step.

IPA(OPTIMIZE) Generates information in the IPA object file that I I I See fLod

the compiler option OPT needs during IPA Link
processing. IPA(OPTIMIZE) is the default setting.
If you specify IPA(NOOPTIMIZE), IPA will change
the option to IPA(OPTIMIZE) and issue an
informational message.

IPA(XREF) Saves information about symbol storage offsets I I I See fLod
in the IPA object file.

Options That Control the IPA Link Step

These options control the IPA Link step.

Table 14. Compiler Options for IPA Link Control

Option Description C C++ IPA More
Information
IPA(LINK) Instructs the compiler to perform IPA Link I I I See [Lod
processing.
IPA(NCAL) Indicates whether library searches are - - I See fl0d

performed during the IPA Link step to locate an
object file or files that satisfy unresolved symbol
references within the current set of object
information. This suboption controls both explicit
searches triggered by the LIBRARY IPA Link
control statement, and the implicit SYSLIB
search that occurs at the end of IPA Link step
input processing.

IPA(UPCASE) Determines whether an additional automatic I I I See
library call pass is made for SYSLIB if

unresolved references remain at the end of
standard IPA Link step processing. Symbol
matching is not case-sensitive in this pass.

Chapter 6. Compiler Options 69

Direct-to-SOM Options

These options control the generation of SOM objects from your OS/390 C++ code.

Table 15. Summary of Compiler Options for SOM

Option Description C C++ Accepted More
by IPA Information
Link

SOM Turns on implicit SOM mode, and causes v See [[25
som. hh to be included in a program.

SOMGS Instructs the compiler to disable direct access to I See 144
attributes.

SOMRO Causes the release order to the specified - See 4

classes to be written to standard output.

SOMEINIT Instructs the compiler to initialize SOM classes 4 See 148
“early”, before the main function.

SOMVOLATTR Instructs the compiler to generate volatile _get I See fL4d
and _set methods.

XSOMINC Instructs the compiler to exclude header files I See 167
when implicit SOM mode is turned on.

Portability Options

These options allow you to port your C++ code to the OS/390 C++ compiler.

Table 16. Summary of Compiler Options for Portability

Option Description C C++ Accepted More
by IPA Information
Link
PORT Adjusts the error recovery action that the I See L34
compiler takes when it encounters an ill-formed
#pragma pack directive.

Description of Compiler Options
The following sections describe the compiler options and their usage. Compiler

options are listed alphabetically. Syntax diagrams show the abbreviated forms of the
compiler options.

AGGREGATE | NOAGGREGATE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT. NOAGGREGATE

CATEGORY: Listing

70 0S/390 V2R6.0 C/C++ User's Guide

A\
A

>>—|: GG
NOAGG

The AGGREGATE option instructs the compiler to include a layout of all struct or
union type variables in the compiler listing. Depending on the struct or union
declaration, the maps are generated as follows:

» If the struct or union declaration has a tag, two maps are created: one contains
the packed layout, and the other contains the unpacked layout. Each layout map
contains the offsets and lengths of the structure members and the union
members.

» If the struct or union declaration does not have a tag, one map is generated for
the variable name that is specified on the struct or union declaration.

Effect on IPA Compile Step

The AGGREGATE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the AGGREGATE option, but ignores it.

ALIAS | NOALIAS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I

DEFAULT: NOALIAS

CATEGORY: Object Code Control
> ALI ,
-0
(name)—
NOALl—————

The ALIAS option generates ALIAS control statements that help the binder locate
modules in a load library. The suboption name is assigned to the NAME control
statement

ALIAS (name) If you specify ALIAS(name), the compiler generates the following:
» control statements in the object module.

* a NAME control statement in the form NAME name (R). R indicates
that the binder should replace the member in the library with the
new member.

The compiler generates one ALIAS control statement for every

external entry point that it encounters during compilation. These
control statements are then appended to the object module.

Chapter 6. Compiler Options 71

ALIAS If you specify ALIAS with no suboption, the compiler selects an
existing CSECT name from the program, and nominates it to the
NAME card.

ALIAS() If you use an empty set of parentheses, ALIAS(), or specify
NOALIAS, the compiler does not generate a NAME control statement.

NOALIAS If you specify NOALIAS, the compiler does not generate a NAME
control statement. NOALIAS has the same effect as ALIAS().

If you specify the ALIAS option with LONGNAME, the compiler does not generate an
ALIAS control statement.

For complete details on ALIAS and NAME control statements, see DFSMS/MVS
Program Management.

Effect on IPA Compile Step

If you specify the ALIAS option on the IPA Compile step, the IPA Link step generates
an unrecoverable error.

Effect on IPA Link Step

If you specify the ALIAS option on the IPA Link step, the IPA Link step generates an
unrecoverable error.

ANSIALIAS | NOANSIALIAS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

- -

DEFAULT: ANSIALIAS

CATEGORY: Source Code Analysis

>>—|:ANS
NOANS—|

A\
A

The ANSIALIAS option specifies whether type-based aliasing is to be used during
optimization. That is, the optimizer assumes that pointers can point only to an
object of the same type. Type-based aliasing improves optimization.

The following are not subject to type-based aliasing:

» Signed and unsigned types. For example, a pointer to a signed int can point to
an unsigned int.

» Character pointer types can point to any type.

* Types qualified as volatile or const. For example, a pointer to a const int can
point to an int.

If you specify NOANSIALIAS, the optimizer makes worst-case aliasing assumptions. It

assumes that a given pointer of a given type can point to an external object or any
object whose address is taken, regardless of type.

72 0S/390 V2R6.0 C/C++ User's Guide

Notes:
1. This option only takes effect if the OPTIMIZE option is in effect.
2. If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically turned

off. If you want ANSIALIAS turned on, you must explicitly specify it. Using
LANGLVL (COMMONC) and ANSIALIAS together may have undesirable effects on your

code at a high optimization level. See ELANGLVL" on page 107 for more

information on LANGLVL (COMMONC).

3. A comment that indicates the ANSIALIAS option setting is generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

The ANSIALIAS option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the ANSIALIAS option, but ignores it.

ARCHITECTURE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I I

DEFAULT: ARCHITECTURE(0)

CATEGORY: Object Code Control

A\
A

»»—ARCH—(—n—)

The ARCHITECTURE option specifies the architecture for which the executable
program'’s instructions are to be generated. It allows the optimizer to take
advantage of specific hardware instruction sets. A subparameter specifes the group
to which a model number belongs.

If you specify a group which does not exist or is not supported, the compiler uses
the default, and issues a warning message.

Current groups of models that are supported include the following:

0 Is the default value. It produces code that is executable on all models.
1 Produces code that is optimized for the following models:
+ 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

e 9021-xx1 and 9021-xx2
* 9672-Rx1, 9672-Exx, and 9672-Pxx

2 Produces code that is optimized for the following and follow on models:
* 9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003
3 Produces code that is optimized for the 9672 G5 and follow on models

Chapter 6. Compiler Options 73

Note: Code that is compiled at ARCH(1) runs on machines in the arch(1) group and
later machines, including those in the arch(2) group. It may not run on earlier
machines. Code that is compiled at ARCH(2) may not run on arch(1) or earlier
machines.

Effect on IPA Compile Step

If you specify the ARCHITECTURE option for any compilation unit in the IPA Compile
step, the compiler generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the ARCH option on the IPA Link step, it uses the value of that option
for all partitions. The IPA Link step Prolog and all Partition Map sections of the IPA
Link step listing display that value.

If you do not specify the option on the IPA Link step, the value used for a partition
depends upon the value that you specified for the IPA Compile step for each
compilation unit that provided code for that partition. If you specified the same value
for each compilation unit, the IPA Link step uses that value. If you specified different
values, the IPA Link step uses the lowest level of ARCH.

The level of ARCH for a partition determines the level of TUNE for the Earition. For

more information on the interaction between ARCH and TUNE, see

The Partition Map section of the IPA Link step listing, and the object module display
the final option value for each partition. If you override this option on the IPA Link
step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the option
value that you specified for each IPA object file during the IPA Compile step.

ARGPARSE | NOARGPARSE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v v

DEFAULT: ARGPARSE

CATEGORY: Program Execution

>>—|:ARC
NOARG—|

Y
A

The ARGPARSE option specifies that the arguments supplied on the invocation line
are parsed and passed to the main() routine in the C argument format, commonly

74 0S/390 V2R6.0 C/C++ User's Guide

argc and argv. argc contains the argument count, and argv contains the tokens
after the command processor has parsed the string.

If you specify NOARGPARSE, arguments on the invocation line are not parsed. argc
has a value of 2, and argv contains a pointer to the string.

Note: If you specify NOARGPARSE, you cannot specfiy REDIR. The compiler will turn
off REDIR with a warning since the whole string on the command line is
treated as an argument and put into argv.

This option has no effect under CICS.
Effect on IPA Compile Step

If you specify ARGPARSE for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify this option for both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
applies whether you use ARGPARSE and NOARGPARSE as compiler options, or specify
them using the #pragma runopts directive on the IPA Compile step.

If you specified ARGPARSE on the IPA Compile step, you do not need to specify it
again on the IPA Link step to affect that step. The IPA Link step uses the
information generated for the compilation unit that contains the main() function. If it
cannot find a compilation unit that contains main(), it uses the information
generated by the first compilation unit that it finds.

ATTRIBUTE | NOATTRIBUTE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v

DEFAULT: NOATTRIBUTE

CATEGORY: Listing

ATT
|—(FU LL)—I
NOATT————

v
A

The ATTRIBUTE option produces a Cross Reference listing that shows the attributes
for each symbol, and an External Symbol Cross Reference section.

The ATTRIBUTE(FULL) option produces a listing of all identifiers that are found in
your code, even those that are not referenced. The compiler writes the listing
produced by ATTRIBUTE or ATTRIBUTE(FULL) to a listing file.

The NOATTRIBUTE option does not produce an attribute listing.

Chapter 6. Compiler Options 75

Effect on IPA Compile Step

The ATTRIBUTE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

If you specify the ATTRIBUTE option for the IPA Link step, the IPA Link step
generates an External Symbol Cross Reference listing section. It also generates a
Storage Offset Listing if you created the IPA objects with the C compiler and
specified the XREF, IPA(ATTR), or IPA(XREF) option, and the IPA Link step did not
coalesce the symbols for the current partition.

CHECKOUT | NOCHECKOUT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT: NOCHECKOUT

CATEGORY: Debug/Diagnostic

v
A

»—ECHE—(Y —subopts) |
NOCHE

where:
subopts is one of the suboptions that are shown in fahle 13.

The CHECKOUT option specifies that the compiler is to produce informational
messages that indicate possible programming errors. The messages can help
0S/390 C programmers to debug their programs.

You can specify CHECKOUT with or without suboptions. If you include suboptions, you
can specify any number with commas between them. If you do not include
suboptions, the compiler uses the default for CHECKOUT at your installation.

This table lists the CHECKOUT suboptions, their abbreviations, and the messages they
generate.

Note: Default CHECKOUT suboptions are underlined.
Table 17. CHECKOUT Suboptions, Abbreviations, and Descriptions

CHECKOUT Suboption Abbreviated Name Description

ACCURACY | AC | NOAC Assignments of 1ong values
NOACCURACY to variables that are not Tong
ENUM | NOENUM EN | NOEN Usage of enumerations
EXTERN | NOEXTERN EX | NOEX Unused variables that have

external declarations

76 0S/390 V2R6.0 C/C++ User's Guide

Table 17. CHECKOUT Suboptions, Abbreviations, and Descriptions (continued)

CHECKOUT Suboption Abbreviated Name Description

GENERAL | NOGENERAL GE | NOGE General checkout messages

GOTO | NOGOTO GO | NOGO Appearance and usage of
goto statements

INIT | NOINIT I | NOI Variables that are not
explicitly initialized

PARM | NOPARM PAR | NOPAR Function parameters that are
not used

PORT | NOPORT POR | NOPOR Nonportable usage of the
0S/390 C language

PPCHECK | NOPPCHECK PPC | NOPPC All preprocessor directives

PPTRACE | NOPPTRACE PPT | NOPPT Tracing of include files by the
preprocessor

TRUNC | NOTRUNC TRU | NOTRU Variable names that are
truncated by the compiler

ALL ALL Turns on all of the suboptions
for CHECKOUT

NONE NONE Turns off all of the suboptions

for CHECKOUT

You can specify the CHECKOUT option on the invocation line and on the #pragma
options preprocessor directive. When you use both methods at the same time, the
options are merged. If an option on the invocation line conflicts with an option in the
#pragma options directive, the option on the invocation line takes precedence. The
following examples illustrate these rules.

Source file:
#pragma options (NOCHECKOUT (NONE,ENUM))

Invocation line:
CHECKOUT (GOTO)

Result:
CHECKOUT (NONE,ENUM,GOTO)

Source file:
#pragma options (NOCHECKOUT (NONE,ENUM))

Invocation line:
CHECKOUT (ALL,NOENUM)

Result:
CHECKOUT (ALL,NOENUM)

Note: If you used the CHECKOUT option and did not receive an informational
message, ensure that the setting of the FLAG option is FLAG(I).

The NOCHECKOUT option specifies that the compiler should not generate informational
error messages. Suboptions that are specified in a #pragma

options (NOCHECKOUT (subopts)) directive, or NOCHECKOUT (subopts) apply if CHECKOUT
is specified on the command line.

You can turn the CHECKOUT option off for certain files or statements of your source
program by using a #pragma checkout (suspend) directive. Refer to the 0OS/390
C/C++ Language Reference for more information regarding this pragma directive.

Chapter 6. Compiler Options 77

Effect on IPA Compile Step

The CHECKOUT option is used for source code analysis, and has the same effect on
IPA Compile step processing as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the CHECKOUT option, but ignores it.

CONVLIT | NOCONVLIT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v -

DEFAULT: NOCONV

CATEGORY: Preprocessor

v
A

CONV
NOCONV—| |—(—codepage—)—I

The CONVLIT option changes the assumed codepage for character and string literals
within the compilation unit. You can use an optional suboption to specify the
codepage that you want to use for string literals. If you specify NOCONV or CONV
without a suboption, the default codepage, or the codepage specified by the LOCALE
option is used.

You can also specify a suboption with the NOCONV option. The result of the following
specifications is the same:

» NOCONV(IBM-1027) CONV
» CONV(IBM-1027)

The CONVLIT option affects all the source files that are processed within a
compilation unit, including user header files and system header files. All string
literals within a compilation unit are converted to the specified codepage unless you
use #pragma convlit(suspend) and #pragma convlit(resume) to exclude sections
of code from conversion. See the OS/390 C/C++ Language Reference for more
information on #pragma convlit.

The CONVLIT option only affects string literals within the compilation unit. The
following determines the codepage that the rest of the program uses:

* If you specified a LOCALE, the remainder of the program will be in the codepage
that you specified with the LOCALE option.

 |If you did not specify a LOCALE, the remainder of the program will be in the
default codepage IBM-1047.

The CONVLIT option does not affect the following types of string literals:
« literals in the #include directive

* literals in the #pragma directive

* literals used to specify linkage, for example, extern "C"

78 0S/390 V2R6.0 C/C++ User's Guide

If you specify either SOM or PPONLY with CONVLIT, the compiler ignores CONVLIT.

If you specify the CONVLIT option, the codepage appears after the locale name and
locale code set in the Prolog section of the listing. The option appears in the END
card at the end of the generated object module.

Note: Although you can continue to use the _ STRING_CODE_SET__ macro, you
should use the CONV option instead. If you specify both the macro and the
option, the compiler uses the option regardless of the order in which you
specify them.

Effect on IPA Compile Step

The CONVLIT option only controls processing for the IPA step for which you specify
it.

During the IPA Compile step, the compiler uses the code page that is specified by
the CONVLIT option to convert the character string literals.

Effect on IPA Link Step

The IPA Link step accepts the CONVLIT option, but ignores it.

CSECT | NOCSECT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v - -

DEFAULT: NOCSECT

CATEGORY: Object Code Control

A\
A

CSE
NOCSE—| l—(—quah‘ﬁer—)J

The CSECT option ensures that the object module contains named CSECTs. Use this
option, or the #pragma CSECT directive, if you will be using SMP/E to service your
product, and to aid in debugging your program. See 0S/390 C/C++ Language
Reference for further information on the #pragma CSECT directive.

The NOCSECT option does not name the code, static, or test data sections of your
object module.

The qualifier suboption of the CSECT option allows the compiler to generate long
CSECT names. If the LONGNAME compiler option was not in effect when you specified
CSECT(qualifier), the compiler turns it on, and issues a warning message.

The CSECT option names sections of your object module differently depending on
whether you specified CSECT with or without a qualifier.

Chapter 6. Compiler Options 79

The CSECT option with no qualifier

If you specify the CSECT option without the qualifier suboption, the CSECT option

names the code, static data, and test sections of your object module as csectname,

where csectname is one of the following:

* The member name of your primary source file, if it is a PDS member

* The low-level qualifier of your primary source file, if it is a sequential data set

* The source file name with path information and the right-most extension
information removed, if it is an HFS file. If the file name is more than 8
characters in length, csectname consists of the first 8 file name characters
starting from the left.

code CSECT is named with the source file name in uppercase.
data CSECT is named with the source file name in lower case.

test CSECT When you use the TEST option together with the CSECT option, the
debug information is placed in the test CSECT. The test CSECT is
the static CSECT name with the prefix $. If the static CSECT name
is eight characters long, the rightmost character is dropped. The
test CSECT name is always truncated to eight characters.

For example, if you compile /u/cricket/project/meml.ext.c with
the option CSECT, the test CSECT will have the name $meml.ex

The CSECT option with the qualifier suboption

If you specify the CSECT option with the qualifier suboption, the CSECT option
names the code, static data, and test sections of your object module as
qualifier##tbasename#suffix, where:

qualifier is the suboption you specified as a qualifier

basename is one of the following:

» the member name of your primary source file, if it
is a PDS member

 there is no basename, if your primary source file
is a sequential data set or instream JCL

 the source file name with path information and
the right-most extension information removed, if it
is an HFS file

suffix is one of the following:
C for code CSECT
S for static CSECT
T for test CSECT

For example, if you compile /u/cricket/project/meml.ext.c with the options TEST
and CSECT (example), the compiler constructs the CSECT names as follows:
example#meml.ext#C

example#meml.ext#S
example#meml.ext#T

The qualifier suboption of the CSECT option allows the compiler to generate long
CSECT names. If the compiler option LONGNAME is not in effect when you specify
CSECT(qualifier), the compiler turns it on, and issues a warning message.

80 0S/390 V2R6.0 C/C++ User's Guide

For example, if you compile /u/cricket/project/reallylongfilename.ext.c with
the options TEST and CSECT (example), the compiler constructs the CSECT names as
follows:

example#reallylongfilename.ext#C
example#reallylongfilename.ext#S
example#reallylongfilename.ext#T

When you specify CSECT(qualifier), the code, data, and test CSECTs are always
generated. The test CSECT has content only if you also specify the TEST option.

If you use CSECT("") or CSECT(), the CSECT name has the form basename#sulffix.

Notes:
1. The qualifier suboption takes advantage of the binder's capabilities, and may
not generate names acceptable to the OS/390 Language Environment Prelinker.
2. The # that is appended as part of the #C, #S, or #T suffix is not locale-sensitive.
3. The string that is specified as the qualifier suboption has the following
restrictions:
» Leading and trailing blanks are removed
* You can specify a string of any length. However if the complete CSECT name
exceeds 1024 bytes, it is truncated starting from the left.
4. If the source file is either sequential or instream in your JCL, you must do one
of the following to name your CSECT:
» Specify a non-null suboption for the CSECT compiler option
* Use the #pragma csect directive

Otherwise, you will receive an error message.
Effect on IPA Compile Step

The CSECT option has the same effect on the IPA Compile step (if you specify the
OBJECT suboption of the IPA option) as it does on a regular compilation.

Effect on IPA Link Step

For the IPA Link step, this option has the following effects:

 If you specify the CSECT option without a qualifier, the IPA Link step names all of
the CSECTs that it generates. The IPA Link step determines whether the IPA Link
control file contains CSECT name prefix directives. If you did not specify the
directives, or did not specify enough CSECT entries for the number of partitions,
the IPA Link step automatically generates CSECT name prefixes for the
remaining partitions, and issues a warning each time.

* If you specify CSECT(qualifier), the form of the CSECT name that IPA Link
generates is altered. See L ' ile” for
details.

 |If you do not specify the CSECT option, but you have specified CSECT name
prefix directives in the IPA Link control file, the IPA Link step names all CSECTs
in a partition. If you did not specify enough CSECT entries for the number of
partitions, the IPA Link step automatically generates a CSECT name prefix for
each remaining partition, and issues a warning message each time.

* If you do not specify the CSECT option, and do not specify CSECT name prefix
directives in the IPA Link control file, the IPA Link step does not name the
CSECTs in a partition.

* The IPA Link step ignores the information that is generated by #pragma csect on
the IPA Compile step.

Chapter 6. Compiler Options 81

DEFINE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: no default user definitions

CATEGORY: Preprocessor

»»—DEF— (—~—name)
=def

v
A

The DEFINE option defines preprocessor macros that take effect before the compiler
processes the file. You can use this option more than once.

DEFINE(name)
is equal to the preprocessor directive #define name 1.

DEFINE(name=def)
is equal to the preprocessor directive #define name def.

DEFINE(name=)
is equal to the preprocessor directive #define name.

If the suboptions that you specify contain special characters, see W
Characters” on page 57 for information on how to escape special characters.

Note: There is no command-line equivalent of function-like macros that take
parameters such as the following:

#define max(a,b) ((a)>(b)?(a): (b))

Effect on IPA Compile Step

The DEFINE option is used for source code analysis, and has the same effect on an
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts but ignores the DEFINE option.

DIGRAPH | NODIGRAPH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v

DEFAULT. NODIGRAPH

CATEGORY: Source Code Analysis

82 0S/390 V2R6.0 C/C++ User’s Guide

A\
A

DIGR
NODIGR—I

The DIGRAPH option allows you to use additional digraphs and keywords. A digraph
is a combination of keys that produces a character not available on some
keyboards. shows the digraphs that OS/390 C++ supports:

Table 18. Digraphs

Character Produced

Key Combination
<% {
%> }
< [
>]
%: #
%:%: ##

able 1d shows additional keywords that 0S/390 C++ supports:

Table 19. Additional Keywords

Keyword Characters produced

bitand &

and &&

bitor

or

Xor

compl

and_eq

or_eq

Xor_eq

not

not_eq

Note: Digraphs are not replaced in string literals, comments, or character literals.

For example:
char * s = "<§%>"; // stays "<%%>"

switch (c) {
case '<%' : ... /] stays '<%'
case '%>' : ... // stays '%>'

}

Effect on IPA Compile Step

The DIGRAPH option has the same effect on the IPA Compile step as it does on a
regular compilation.

Chapter 6. Compiler Options

83

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the DIGRAPH option on

that step.
DLL | NODLL
C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v v

DEFAULT: NODLL(NOCBA) for C compile and IPA Link step
DLL(NOCBA) for C++ Compile

CATEGORY: Object Code Control

DLL (CBA) >
NODLL— |—(NOCBA)—|

The DLL option instructs the compiler to produce DLL code. The DLL code can
export or import functions and external variables.

The DLL option has two suboptions:

NOCALLBACKANY
is the default. If you specify NOCALLBACKANY, no changes will be made to the
function pointer in your compile unit. The abbreviation for NOCALLBACKANY is
NOCBA.

CALLBACKANY
If you specify CALLBACKANY, all calls through function pointers will
accommodate function pointers created by older applications compiled
without the DLL option. This accommodation accounts for the incompatibility
of function pointers created with and without the DLL compiler option. The
abbreviation for CALLBACKANY is CBA.

Note: You should write your code according to the rules listed in the chapter
"Building Complex DLLs" in the OS/390 C/C++ Programming Guide, and
compile with the NOCALLBACKANY suboption. Use the suboption CALLBACKANY
only when you have calls through function pointers and C code compiled
without the DLL option. CALLBACKANY causes all calls through function pointers
to incur overhead due to internally-generated calls to library routines that
determine whether the function pointed to is in a DLL (in which case internal
control stuctures need to be updated), or not. This overhead is unnecessary
in an environment where all function pointers were created either in C++
code or in C code compiled with the DLL option.

For information on how to create or use DLLs, and on when to use the appropriate
DLL options and suboptions, see the OS/390 C/C++ Programming Guide.
Notes:

1. You must use the LONGNAME and RENT options with the DLL option. If you use the
DLL option without RENT and LONGNAME, the OS/390 C compiler automatically
turns them on.

84 0S/390 V2R6.0 C/C++ User's Guide

2. 0S/390 C++ code is always DLL code. You cannot specify NODLL for OS/390
C++ code.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The CALLBACKANY
option also affects the regular object module if you request one by specifying the
IPA(OBJECT) option.

Effect on IPA Link Step
The IPA Link step accepts the DLL compiler option, but ignores it.

The IPA Link step uses information from the IPA Compile step to classify an IPA
object module as DLL or non-DLL as follows:

* C code that is compiled with the DLL option is classified as DLL.
* C++ code is classified as DLL
» C code that is compiled with the NODLL option is classified as non-DLL.

Each partition is initially empty and is set as DLL or non-DLL, when the first
subprogram (function or method) is placed in the partition. The setting is based on
the DLL or non-DLL classification of the IPA object module which contained the
subprogram. Procedures from IPA object modules with incompatible DLL values will
not be inlined. This results in reduced performance. For best performance, compile
your application as all DLL code or all non-DLL code.

The IPA Link step allows you to input a mixture of IPA objects that are compiled
with DLL(CBA) and DLL(NOCBA). The IPA Link step does not convert function pointers
from the IPA Objects that are compiled with the option DLL(NOCBA).

You should only export subprograms (functions and C++ methods) or variables that
you need for the interface to the final DLL. If you export subprograms or variables
unnecessarily (for example, by using the EXPORTALL option), you severely limit IPA
optimization. Global variables are not coalesced, and unreachable or 100% inlined
code is not pruned.

EVENTS | NOEVENTS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
- v v

DEFAULT: NOEVENTS

CATEGORY: Debug/Diagnostic

A\
A

EVENT

NOEVENT—| |—(Sequential filename)—I
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

Chapter 6. Compiler Options 85

The EVENTS option creates an events file that contains error information and source
file statistics. The compiler writes the events data to the DD:SYSEVENT ddname, if
you allocated one before you called the compiler. Otherwise, it allocates a data set,
and the name is the file name with SYSEVENT as the lowest-level qualifier.

If you specified a suboption, the compiler uses the data set that you specified, and
ignores the DD:SYSEVENT.

If the source file is an HFS file, and you do not specify the events file name as a
suboption, the compiler writes the events file in the current working directory. The
events file name is the name of the source file with the extension .err.

The compiler ignores #1ine directives when the EVENTS option is active, and issues
a warning message.

For a description of the events file’s layout, see EAppendix 1 | ayout of the Eventd

Effect on IPA Compile Step

The EVENT option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the EVENT option, but ignores it.

EXECOPS | NOEXECOPS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I I

DEFAULT: EXECOPS
CATEGORY: Object Code Control and Program Execution

> EXEC e
NOEXEC—

The EXECOPS option allows you to control whether runtime options will be recognized
at run time without changing your source code. It is equivalent to including a
#pragma runopts (EXECOPS) directive in your source code.

If this option is specified on both the command line and in a #pragma runopts
directive, the option on the command line takes precedence.

Effect on IPA Compile Step

If you specify EXECOPS for any compilation unit in the IPA Compile step, the compiler
generates information for the IPA Link step. This option also affects the regular
object module if you request one by specifying the IPA(OBJECT) option.

86 0S/390 V2R6.0 C/C++ User's Guide

EXH | NOEXH

Effect on IPA Link Step

If you specify the EXECOPS option for the IPA Compile step, you do not need to
specify it again on the IPA Link step. The IPA Link step uses the information
generated for the compilation unit that contains the main() function. If it cannot find
a compilation unit that contains main(), it uses information generated for the first
compilation unit that it finds.

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use EXECOPS and NOEXECOPS as compiler options, or
specify them by using the #pragma runopts directive on the IPA Compile step.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: EXH
CATEGORY: Object Code Control

EXH
NOEXH—|

A\
A

The EXH option controls the generation of C++ exception handling code.

The NOEXH option suppresses the generation of the exception handling code, which
results in code that runs faster, but is not ANSI conformant.

If you compile a source file with NOEXH, active objects on the stack are not
destroyed if the stack collapses in an abnormal fashion. For example, if a C++
object is thrown, or an LE exception or signal is raised, objects on the stack will not
have their destructors run.

If a source file has try/catch blocks or throws objects, you cannot compile it with the
NOEXH option.

Effect on IPA Compile Step

The EXH option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the EXH option for that
step.

Chapter 6. Compiler Options 87

EXPMAC | NOEXPMAC

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: NOEXPMAC

CATEGORY: Listing

> EXP -
[voexp]

The EXPMAC option instructs the compiler to show all expanded macros in the source
listing. If you want to use the EXPMAC option, you must also specify the SOURCE
compiler option to generate a source listing. If you specify the EXPMAC option but
omit the SOURCE option, the compiler issues a warning message, and does not
produce a source listing.

Effect on IPA Compile Step

The EXPMAC option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link Step accepts the EXPMAC option, but ignores it.

EXPORTALL | NOEXPORTALL

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: NOEXPORTALL
CATEGORY: Object Code Control

> EXPO e
NOEXPO—

The EXPORTALL option instructs the compiler to export all external functions and
variables in the compilation unit so that a DLL application can use them. Use this
option if you are creating a DLL and want to export all externally defined functions
and variables. You may not export the main() function.

Notes:

1. If you only want to export some of the externally defined functions and
variables, use #pragma export, or the _Export keyword for C++. For more
information see the OS/390 C/C++ Language Reference.

88 0S/390 V2R6.0 C/C++ User’s Guide

2. For C, you must use the LONGNAME and RENT options with the EXPORTALL option. If
you use the EXPORTALL option without RENT and LONGNAME, the OS/390 C
compiler turns them on.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The EXPORTALL
option also affects the regular object module if you request one by specifying the
IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step accepts the EXPORTALL option, but ignores it.

If you use the EXPORTALL option during the IPA Compile step, you severely limit IPA

optimization. Refer to EDLL | NQDIL” on page 84 for more information about the

effects of this option on IPA processing.

| FASTTEMPINC | NOFASTTEMPINC

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOFASTT

CATEGORY: File Management

A\
A

FASTT
NOFASTT—|

The FASTTEMPINC option may improve template instantiation compilation time when
large numbers of recursive templates are used in an application.

The FASTTEMPINC option defers generating object code until the final version of all
template definitions have been determined. Then, a single compilation pass is made
to generate the final object code. This means that time is not wasted on generating
object code that will be discarded and generated again.

When NOFASTT is used, the compiler generates object code each time a tempinc
source file is compiled. If recursive template definitions in a subsequent tempinc
source file cause additional template definitions to be added to a previously
processed file, an additional recompilation pass is required.

Use FASTT if you have large numbers of recursive templates. If your application has
very few recursive template definitions, the time saved by not doing code
generation may be less than the time spent in source analysis on the additional
template compilation pass. In this case, it may be better to use NOFASTT.

Effect on IPA Compile Step

The FASTT option only affects the processing of source. It has no effect on code
generation; therefore, it has the same effect on IPA Compile as it does on a regular
compilation.

Chapter 6. Compiler Options 89

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the FASTT option for
that step.

FLAG | NOFLAG

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v - W

DEFAULT: FLAG (I)

CATEGORY: Debug/Diagnostic

v
A

»—[FL—(severzty)
NOFLg

The FLAG option specifies the minimum severity level for which you want notification.
You specify the minimum severity level by using the compiler option FLAG
(severity), where severity is one of the following:

I An informational message that is generated by the compiler. This is the
default.
W A warning message that calls attention to a possible error, although the

statement to which it refers is syntactically valid.

E An error message that shows that the compiler has detected an error and
cannot produce an object deck.

S A severe error message that describes an error that forces the compilation
to terminate.

U An unrecoverable error message that describes an error that forces the
compilation to terminate.

If you specified the options SOURCE or LIST, the messages generated by the
compiler appear immediately following the incorrect source line, and in the message

summary at the end of the compiler listing. See ['‘Appendix E O0S/390 C/C+4
Compiler Return Codes and Messages” on page 471 for a list of the messages.

The NOFLAG option is the same as the FLAG(S) option.

Effect on IPA Compile Step

The FLAG option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step uses the FLAG value that you specify for that step.

90 0S/390 V2R6.0 C/C++ User's Guide

| FLOAT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I I I
DEFAULT:

FLOAT (HEX, FOLD, NOMAF, NORRM, NOAFP=)
*dependent on ARCH() Tlevel

CATEGORY: Object Code Control

»>—FLOAT—(——HEX | IEEE) >
FOLD | NOFOLD—
MAF | NOMAF—
RRM | NORRM—
AFP | NOAFP—

The FLOAT option selects the format of floating-point numbers; the format can be
either base 2 IEEE-754 binary format, or base 16 S/390 hexadecimal format. In the
description below, the IEEE-754 binary format is referred to as the binary
floating-point format, and the S/390 hexadecimal format as the hexadecimal
floating-point format. FLOAT has the following suboptions:

HEX | TEEE
DEFAULT: HEX

Specifies the format of floating-point numbers and instructions:

» [IEEE instructs the compiler to generate binary floating-point numbers and
instructions. The unabbreviated form of this suboption is IEEE754.

* HEX instructs the compiler to generate hexadecimal formatted
floating-point numbers and instructions. The unabbreviated form of this
suboption is HEXADECIMAL. In previous releases of OS/390 C/C++, the
floating-point format was always hexadecimal.

FOLD | NOFOLD
DEFAULT: FOLD

Specifies that constant floating-point expressions in function scope are to
be evaluated at compile time rather than at run time. This is known as
folding.

In binary floating-point mode, the folding logic uses the rounding mode set
by the ROUND option.

In hexadecimal floating-point mode, the rounding is always towards zero. If
you specify NOFOLD in hexadecimal mode, the compiler issues a warning
and uses FOLD.

MAF | NOMAF

DEFAULT:
* NOMAF
» If NOSTRICT and FLOAT(IEEE) are specified, MAF is the default.

Chapter 6. Compiler Options 91

Uses floating-point Multiply and Add, and Multiply and Subtract instructions
where possible, instead of the separate Multiply Float, Add Float, or Multiply
Float, Subtract Float instruction pairs. This makes floating-point calculations
faster and more accurate, but the results may not be exactly equivalent to
those produced by the two discrete instructions. This option may affect the
precision of floating-point intermediate results.

Note: The suboption MAF does not have any effect on extended
floating-point operations.

MAF is not available for hexadecimal floating-point mode.

RRM | NORRM

DEFAULT: NORRM

RRM (run-time rounding mode) tells the compiler that the run-time rounding
mode may not be the default, round-to-nearest, and prevents compiler
optimizations that rely on round-to-nearest rounding mode. Use this option if
your program changes the rounding mode by any means. Otherwise, the
program may compute incorrect results.

RRM is not available for hexadecimal floating-point mode.

AFP | NOAFP

DEFAULT:
» If the level of the ARCH option is lower than 3, the default is NOAFP
 If the level of the ARCH option is 3 or higher, the default is AFP

Note: To enable the AFP option, you must apply small programming
enhancements (SPEs) to 0S/390 V2R6.0, and to specific releases of
some software. These SPEs are delivered as program temporary
fixes (PTFs). Consult your System Programmer to ensure that the
SPE PTFs that you require for IEEE binary floating-point support as
documented in the Planning for Installation publication are applied to
your system. The Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point
support on OS/390.

AFP instructs the compiler to generate code which makes full use of the full
complement of 16 floating point registers. These include the four original
floating-point registers, numbered 0, 2, 4, and 6, and the Additional Floating
Point (AFP) registers, numbered 1, 3, 5, and 7 through 15.

The AFP registers are physically available only on the newer S/390
machine models, starting with the processors that are represented by the
ARCH(3) setting. However, when the application executes under OS/390
Version 2 Release 6 on a processor that does not have the AFP registers,
the operating system is able to intercept the use of an AFP register and
emulate the operation such that the AFP register appears to be available to
the application.

Note: This emulation has a significant performance cost to the application’s
execution on the non-AFP processors. This is why the default is
NOAFP when ARCH(2) or lower is specified.

92 0S/390 V2R6.0 C/C++ User's Guide

NOAFP limits the compiler's code generation to using only the original four
floating-point registers, 0, 2, 4, and 6, which are available on all S/390
machine models.

Using IEEE Floating-Point

You should use IEEE floating-point in the following situations:
* you deal with data that are already in IEEE floating-point format

* you need the increased exponent range (see 0S/390 C/C++ Language
Reference for information on exponent ranges with IEEE-754 floating-point)

* you want the changes in programming paradigm provided by infinities and NaN
(not a number)

For more information about the IEEE format, refer to the IEEE 754-1985 |IEEE
Standard for Binary Floating-Point Arithmetic.

When you use IEEE floating-point, make sure that you are in the same rounding
mode at compile time (specified by the ROUND (mode) option), as at run time. Entire
compilation units will be compiled with the same rounding mode throughout the
compilation. If you switch runtime rounding modes inside a function, your results
may vary depending upon the optimization level used and other characterisitics of
your code: switch rounding mode inside functions with caution.

If you have existing data in hexadecimal floating-point (the original base 16 S/390
hexadecimal floating-point format), and have no need to communicate these data to
platforms that do not support this format, there is no reason for you to change to
IEEE floating-point format.

Applications that mix the two formats are not supported.

The binary floating-point instruction set is physically available only on processors
that are part of the ARCH(3) group or higher. You can request FLOAT (IEEE) code
generation for an application that will run on an ARCH(2) or earlier processor, if that
processor runs on the OS/390 Version 2 Release 6 or higher operating system.
This operating system level is able to intercept the use of an "illegal” binary
floating-point instruction, and emulate the execution of that instruction such that the
application logic is unaware of the emulation. This emulation comes at a significant
cost to application performance, and should only be used under special
circumstances. For example, to run exactly the same executable object module on
backup processors within your organization, or because you make incidental use of
binary floating-point numbers.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA Link
step uses information from the IPA Compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same floating-point mode, and
the same values for the FLOAT suboptions, and the ROUND and STRICT options:

Chapter 6. Compiler Options 93

* Floating-point mode (binary or hexadecimal)

The floating-point mode for a partition is set to the floating-point mode (binary or
hexadecimal) of the first subprogram that is placed in the partition. Subprograms
that follow are placed in partitions that have the same floating-point mode; a
binary floating-point mode subprogram is placed in a binary floating-point mode
partition, and a hexadecimal mode subprogram is placed in a hexadecimal mode
partition.

If you specify FLOAT(HEX) or FLOAT(IEEE) during the IPA Link step, the option is
accepted, but ignored. This is because it is not possible to change the
floating-point mode after source analysis has been performed.

The Prolog and Partition Map sections of the IPA Link step listing display the
setting of the floating-point mode.

« AFP | NOAFP

The value of AFP for a partition is set to the AFP value of the first subprogram that
is placed in the partition. Subprograms that have the same AFP value are then
placed in that partition.

You can override the setting of AFP by specifying the suboption on the IPA Link
step. If you do so, all partitions will contain that value, and the Prolog section of
the IPA Link step listing will display the value.

The Partition Map section of the IPA Link step listing and the END information in
the IPA object file display the current value of the AFP suboption.

« FOLD | NOFOLD
Hexadecimal floating-point mode partitions are always set to FOLD.

For binary floating-point partitions, the value of FOLD for a partition is set to the
FOLD value of the first subprogram that is placed in the partition. Subprograms
that have the same FOLD value are then placed in that partition.

You can override the setting of FOLD | NOFOLD by specifying the suboption on the
IPA Link step. If you do so, all binary floating-point mode partitions will contain
that value, and the Prolog section of the IPA Link step listing will display the
value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the FOLD suboption.

« MAF | NOMAF

For IPA object files generated with the FLOAT (IEEE) option, the value of MAF for a
partition is set to the MAF value of the first subprogram that is placed in the
partition. Subprograms that have the same MAF for this suboption are then placed
in that partition.

For IPA object files generated with the FLOAT (IEEE) option, you can override the
setting of MAF | NOMAF by specifying the suboption on the IPA Link step. If you do
so, all binary floating-point mode partitions will contain that value, and the Prolog
section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the MAF suboption.
Hexadecimal mode partitions are always set to NOMAF. You cannot override this
setting.

* RRM | NORRM
For IPA object files generated with the FLOAT(IEEE) option, the value of RRM for a
partition is set to the RRM value of the first subprogram that is placed in the

partition. Subprograms that have the same RRM value are then placed in that
partition.

94 0S/390 V2R6.0 C/C++ User's Guide

For IPA object files generated with the FLOAT (IEEE) option, you can override the
setting of RRM | NORRM by specifying the suboption on the IPA Link step. If you do
so, all binary floating-point mode partitions will contain that value, and the Prolog
section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the RRM suboption.

Hexadecimal mode partitions are always set to NORRM. You cannot override this
setting.

* ROUND option
For IPA object files generated with the FLOAT (IEEE) option, the value of the ROUND
option for a partition is set to the value of the first subprogram that is placed in
the partition.
You can override the setting of ROUND by specifying the option on the IPA Link
step. If you do so, all binary floating-point mode patrtitions will contain that value,
and the Prolog section of the IPA Link step listing will display the value.
For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the ROUND suboption.

Hexadecimal mode partitions are always set to round towards zero. You cannot
override this setting.

« STRICT option

The value of the STRICT option for a partition is set to the value of the first
subprogram that is placed in the partition.

You can override the setting of STRICT by specifying the option on the IPA Link
step. If you do so, all partitions will contain that value, and the Prolog section of
the IPA Link step listing will display the value.

The Partition Map sections of the IPA Link step listing and the object module
display the value of the STRICT option.

Note: The inlining of subprograms (C functions, C++ functions and methods) is
inhibited if the FLOAT suboptions (including the floating-point mode), and the
ROUND and STRICT options are not all compatible between compilation units.
Calls between incompatible compliation units result in reduced performance.
For best performance, compile your applications with consistent options.

| GENPCH | NOGENPCH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v - v

DEFAULT: NOGENPCH

CATEGORY: File Management

A\
A

GENP:

NOGENP—I |—(Sequential filename)—I
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

Chapter 6. Compiler Options 95

The GENP option creates precompiled header files. If you specify the GENP option, the
compiler generates a precompiled header, even if one already exists.

If you specify the GENP and USEP options together, the compiler determines if the file
exists. If it does, the compiler updates the file if necessary, and USEP takes effect. If
it does not exist, the compiler creates the file, and USEP takes effect. If you
consistently use both options, for example by coding them in your JCL, you can
ensure that you are always using current precompiled header files.

If you specify GENP (filename), the compiler places the precompiled header data in
the specified file. If you do not specify a file name for the GENP option, the compiler
uses the SYSCPCH ddname if you allocated one. If you did not allocate SYSCPCH, the
compiler constructs the file name as follows:

» If you are compiling a data set, the compiler uses the source file name to form
the name of the precompiled header file data set. The high-level qualifier is
replaced with the userid under which the compiler is running, and PCH (for C) or
PCHPP (for C++) is appended as the low-level qualifier.

 If the source file is an HFS file, the compiler writes the precompiled header file to
a file that has the name of the source file with a .pch (for C) or .pchpp (for C++)
extension in the current working directory.

For more information on using GENP and USEP together, see Elising the GENP and

Notes:

1. The compiler ignores GENP if you specify the options PPONLY, SHOWINC, or EXPMAC.
For further information on these options, see LFPPONIY | NOPPONILY” an

page 134, ISHOWINC | NOSHOWINC” on page 145, and IEXPMAC |

2. You cannot use a C precompiled header file for C++, or a C++ precompiled
header file for C.

3. If you specify different file names with the GENP and USEP options, the compiler
uses the last specified file name with both options. For further information, see

Effect on IPA Compile Step

The GENP option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link Step accepts the GENP option, but ignores it.

GONUMBER | NOGONUMBER

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
:/ W :/ W w

DEFAULT:. NOGONUMBER

CATEGORY: Debug/Diagnostic

96 0S/390 V2R6.0 C/C++ User's Guide

A\
A

GONUM
NOGONUM—|

The GONUMBER option generates line number tables that correspond to the input
source file. These tables are for use by the Debug Tool and for error trace back
information when an exception occurs.

The compiler turns on this option when you use the TEST option.

Note: When you specify the GONUMBER option, a comment that indicates its use is
generated in your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the GONUMBER option on the IPA Compile step, the compiler saves
information about the source file line numbers in the IPA object file. The GONUMBER
and LIST options use this information during the IPA Link step.

If you do not specify the GONUMBER option on the IPA Compile step, the object file
produced contains the line number information for source files that contain function
begin, function end, function call, and function return statements. This is the
minimum line number information that the IPA Compile step produces. You can then
use the TEST option on the IPA Link step to generate corresponding test hooks

Effect on IPA Link Step

If you specify the GONUMBER option for the IPA Link step, the IPA Link step creates
GONUMBER tables during code generation. The level of detail in these tables
depends on the options that you used for the IPA Compile step :

* If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option on the
IPA Compile step, the GONUMBER tables contain complete information.

* If you did not specify any of these options on the IPA Compile step, the source
file and line number information in the IPA Link listing or GONUMBER tables
consists only of the following:

— function entry, function exit, function call, and function call return source lines.
This is the minimum line number information that the IPA Compile step
produces.

— All other object code statements have the file and line number of the function
entry, function exit, function call, and function call return that was last
encountered. This is similar to the situation of encountering source statements
within a macro.

Refer to linteractions between Compiler Options and IPA Suboptions” on page 57

and LLIST | NOLIST” on page 110 for more information.

HALT(num)
C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I

DEFAULT: HALT(16)

Chapter 6. Compiler Options 97

CATEGORY: Source Code Control

»»>—HALT— (num)

v
A

The HALT option stops compilation, depending on the return code from the compiler.
This option applies to the compilation of all members of a PDS or an HFS directory.
If the return code from compiling a particular member is greater than or equal to the
value num specified in the HALT option, no more members are compiled.

Valid codes for num correspond to return codes from the compiler. See |:Appe—nd.Lx_E|
i “ for a list of

return codes.

Effect on IPA Compile Step

The HALT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The HALT option affects the IPA Link step in a way similar to the way it affects the
IPA Compile step, but the message severity levels may be different. Also, the
severity levels for the IPA Link step and a C++ compilation include the
"unrecoverable” level.

INFO | NOINFO

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOINFO

CATEGORY: Debug/Diagnostic

IN ><

I—(—‘—ALL——)J)
Y _subopts

The INFO option instructs the compiler to generate warning messages. Use subopts
if you want to specify the type of warning messages.

NOIN

If you specify INFO with no suboptions, it is the same as specifying INFO(ALL). The
following is a list of the subopts:

CLS Emits class informational warning messages.
CMP Emits conditional expression check messages.

CND Emits messages on redundancies or problems in conditional expressions.

98 0S/390 V2R6.0 C/C++ User's Guide

CNV
CNS
CPY
EFF
ENU
GNR
GEN
LAN
PAR
POR
PPC
PPT
REA
RET
TRD
UND
USE
VFT
ALL

Emits messages about conversions.

Emits redundant operation on constants messages.

Emits warnings about copy constructors.

Emits information about statements with no effect.

Emits information about ENUM checks.

Emits information about the generation of temporary variables.
Emits message if compiler generates temporaries.

Emits language level checks.

Emits warning messages on unused parameters.

Emits warnings about nonportable constructs.

Emits messages on possible problems with using the preprocessor.
Emits trace of preprocessor actions.

Emits warnings about unreached statements.

Emits warnings about return statement consistency.

Emits warnings about possible truncation of data.

Emits warnings about undefined classes.

Emits information about usage of variables.

Indicates where vftable is generated.

Emits all of the above

no suboptions

Same result as INFO(ALL).

Effect on IPA Compile Step

The INFO option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the INFO option.

INLINE | NOINLINE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v

DEFAULT for C Compile:

If NOOPT is in effect: NOINLINE (AUTO,REPORT,100,1000)

NOOPT is the default for C compile

If OPT is in effect: INLINE(AUTO,NOREPORT,100,1000)

DEFAULT for IPA Link:

If NOOPT is in effect: NOINLINE (AUTO,NOREPORT,1000,8000)
If OPT is in effect: INLINE(AUTO,NOREPORT,1000,8000)

Chapter 6. Compiler Options

99

OPT is the default for IPA Link.
CATEGORY: Object Code Control

INL

NOINL—| |—(

v

|—AUTO—| |—REPORT—|
|—NOAUTO—| |—NOREPORT—|

> >

L])
Tomesrored " Ligmed

The INLINE option instructs the compiler to place the code for selected functions at
the point of call; this is called inlining. 1t eliminates the linkage overhead and
exposes the entire inlined function for optimization by the global optimizer. It has the
following effects:

* The compiler invokes the compilation unit inliner to perform inlining of functions
within the current compilation unit.

 If the compiler inlines all invocations of a static function, it removes the
non-inlined instance of the function.

 If the compiler inlines all invocations of an externally visible function, it does not
remove the non-inlined instance of the function. This allows callers who are
outside of the current compilation unit to invoke the non-inlined instance.

* If you specify INLINE(,REPORT,,) or INLRPT, the compiler generates the Inline
Report listing section.

For more information on optimization and the INLINE option, refer to the section
about optimizing code in the OS/390 C/C++ Programming Guide.

You can specify INLINE without suboptions if you want to use the defaults. You must
include a comma between each suboption even if you want to use the default for
one of the suboptions. You must specify the suboptions in the following order:

AUTO | NOAUTO
The inliner runs in automatic mode and inlines functions within the threshold
and limit.

If you specify NOAUTO, the inliner only inlines those functions specified with
the #pragma inline directive. The #pragma inTine and #pragma noinline
directives allow you to determine which functions are to be inlined and
which are not when the INLINE option is specified. These #pragma directives
have no effect if you specify NOINLINE. See the OS/390 C/C++ Language
Reference for more information on #pragma directives.

The default is AUTO

REPORT | NOREPORT
An inline report becomes part of the listing file. The inline report consists of
the following:
* An inline summary
* A detailed call structure

100 0S/390 V2R6.0 C/C++ User’s Guide

You can obtain the same report if you use the INLRPT and OPT options. For

more information on the inline report, see llnline Report” on page 194,
[inline Report” on page 182, and tinline Report for IPA Inliner” on page 203.

The default is NOREPORT

threshold
The maximum relative size of a function to inline. For C compile, the default
for threshold is 100 Abstract Code Units (ACU) instructions. For the IPA
Link step, the default for threshold is 1000 ACUs. ACUs are proportional in
size to the executable code in the function; the OS/390 C compiler
translates your OS/390 C code into ACUs. The maximum threshold is
INT_MAX, as defined in the header file LIMITS.H. Specifying a threshold of 0
is the same as specifying NOAUTO.

limit ~ The maximum relative size a function can grow before auto-inlining stops.
For C compile, the default for /imit is 1000 ACUs for a function. For the IPA
Link step, the default for /imitis 8000 ACUs for that function. The maximum
for limitis INT_MAX, as defined in the header file LIMITS.H. Specifying a limit
of 0 is equivalent to specifying NOAUTO.

You can specfiy the INLINE | NOINLINE option on the invocation line and in the
#pragma options preprocessor directive. When you use both methods at the same
time, the compiler merges the options. If an option on the invocation line conflicts
with an option in the #pragma options directive, the one on the invocation line takes
precedence.

For example, because you typically do not want to inline your functions when you
are developing a program, you can specify the NOINLINE option on a #pragma
options preprocessor directive. When you want to inline your functions, you can
override the NOINLINE option by specifying INLINE on the invocation line rather than
by editing your source program. The following example illustrates these rules.

Source file:
#pragma options (NOINLINE(NOAUTO,NOREPORT,,2000))

Invocation line:
INLINE (AUTO,,,)

Result:
INLINE (AUTO,NOREPORT,100,2000)
Notes:

1. When you specify the INLINE compiler option, a comment, with the values of the
suboptions, is generated in your object module to aid you in diagnosing your
program.

2. If the compiler option OPT is specified, INLINE becomes the default.

3. Specify the LIST or SOURCE compiler options to redirect the output from the
INLINE(,REPORT,,) option.

4. If you specify INLINE and TEST:
at OPT(0), INLINE is ignored.
at OPT, inlining is done

5. C++ code is always inlined at OPT

6. If you specify NOINLINE, no functions will be inlined even if you have #pragma
inline directives in your code.

Chapter 6. Compiler Options 101

Effect on IPA Compile Step

The INLINE option generates inlined code for the regular compiler object; therefore,
it affects the IPA Compile step only if you specify IPA(OBJECT). If you specify
IPA(NOOBJECT), INLINE has no effect, and there is no reason to use it.

Effect on IPA Link Step

If you specify the INLINE option on the IPA Link step, it has the following effects:

* The IPA Link step invokes the IPA inliner, which inlines subprograms (functions
and C++ methods) in the entire program.

« The IPA Link step uses #pragma inline|noinline directive information and
inline function specifier information from the IPA Compile step for source
program inlining control. Specifying the INLINE option on the IPA Compile step
has no effect on IPA Link step inlining processing.

You can use the IPA Link control file inline and noinline directives to explicitly
control the inlining of subprograms on the IPA Link step. These directives
override IPA Compile step #pragma inline|noinline directives and inline
function specifiers.

» If the IPA Link step inlines all invocations of a function, it removes the non-inlined
instance of the function, unless the function entry point was exported using a
#pragma export directive or the EXPORTALL compiler option, or was retained using
the IPA Link control file retain directive. IPA Link processes static functions and
externally visible functions in the same manner.

The IPA inliner has the inlining capabilities of the compilation unit inliner. In addition,
the IPA inliner detects complex recursion, and may inline it. If you specify the
INLRPT option, the IPA Link listing contains the IPA Inline Report section. This
section is similar to the report that the compilation unit inliner generates. If you
specify NOINLINE(,REPORT,,) or NOINLINE INLRPT, IPA generates an IPA Inline
Report section that specifies that nothing was inlined.

INLRPT | NOINLRPT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I

DEFAULT: NOINLRPT

CATEGORY: Listing

> INLR: >«
NOINLRJ |—(Sequential filename)J
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

If you use the OPTIMIZE option, you can also use INLRPT to specify that the compiler
generate a report as part of the compiler listing. The report provides the status of
functions that were inlined, specifies whether they were inlined or not and displays
the reasons for the compiler’s action.

102 0S/390 V2R6.0 C/C++ User’s Guide

IPA | NOIPA

You can specify filename for the inline report output file. If you do not specify
filename, the compiler uses the SYSCPRT ddname if you allocated one. If you did not
allocate SYSCPRT, the compiler uses the source file name to generate a file name.

The NOINLR option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the INLR option without filename, the
compiler uses the filename that you specified in the earlier specification or NOINLR.
For example,

CXX HELLO (NOINLR(/hello.lis) INLR OPT

is the same as specifying:
CXX HELLO (INLR(/hello.lis) OPT

Note: If you specify filename with any of the SOURCE, LIST, or INLRPT options, all the
listing sections are combined into the last filename specified.

If you specify this multiple times, the compiler uses the last specified option with the
last specified suboption. The following two specifications have the same result:

1.
CXX HELLO (NOINLR(/hello.lis) INLR(/nl.lis) NOINLR(/test.lis) INLR

CXX HELLO (INLR(/test.lis)
Effect on IPA Compile Step

The INLRPT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

If you specify the INLRPT option on the IPA Link step, the IPA Link step listing

contains an IPA Inline Report section. Refer to EINLINE | NOINI INE” on page 99 for

more information about generating an IPA Inline Report section.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I I

DEFAULT: NOIPA

CATEGORY: Object Code Control/IPA Link Control

Chapter 6. Compiler Options 103

IPA

NOIPA—| ,

v
A

Y_(—NOLINK | LINK)
—ATTR | NOATT
—GONUM | NOGONUM
—LIS | NOLIS
—0BJ | NOOBJ
—OPT | NOPT
—XR | NOXR

LEVEL—(0)

—CONTROL | NOCONTROL
I—(—fi Zeid—)J

—DUP | NODUP
—MAP | NOMAP
—NCAL | NONCAL
L_UPCASE | NOUPCASE

The IPA option instructs the compiler to perform Interprocedural Analysis across

compilation units.

The NOIPA option instructs the compiler to perform a regular compilation.

IPA Compile Step Suboptions

IPA(NOLINK) invokes the IPA Compile step. NOLINK is the default suboption of the
IPA option. Only the following IPA suboptions affect the IPA Compile step. You can
specify other IPA suboptions, but they do not affect the IPA Compile step.

ATTRIBUTE | NOATTRIBUTE

GONUMBER |NOGONUMBER

104 0S/390 V2R6.0 C/C++ User’s Guide

Indicates whether the compiler saves information
about symbols in the IPA object file. The IPA Link
step uses this information if you specify the ATTR or
XREF option on that step.

The difference between specifying IPA(ATTR) and
specifying ATTR or XREF is that IPA(ATTR) does not
generate a Cross Reference listing section after IPA
Compile step source analysis is complete. It also
does not generate a Storage Offset or External
Symbol Cross Reference listing section during IPA
Compile step code generation.

The default is IPA(NOATTRIBUTE). The abbreviations
are IPA(ATTR|NOATTR). If you specify the ATTR or
XREF option, it overrides the IPA(NOATTRIBUTE)
option.

Indicates whether the compiler saves information
about source file line numbers in the IPA object file.
The difference between specifying IPA(GONUMBER)
and GONUMBER is that IPA(GONUMBER) does not cause
GONUMBER tables to be built during IPA Compile
step code generation. If the compiler does not build
GONUMBER tables, the size of the object module
is smaller.

LIST | NOLIST

OBJECT | NOOBJECT

OPTIMIZE | NOOPTIMIZE

XREF | NOXREF

Refer to [GONUMBER | NOGONUMBER” on

for information about the effect of this
suboption on the IPA Link step. Refer also to
P . I : ol oDt =
The default is IPA(NOGONUMBER). The abbreviations
are IPA(GONUM|NOGONUM). If you specify the GONUMBER
or LIST option, it overrides the TPA(NOGONUMBER)
option.

Indicates whether the compiler saves information
about source line numbers in the IPA object file.
The difference between specifying IPA(LIST) and
LIST is that IPA(LIST) does not cause the IPA
Compile step to generate a Pseudo Assembly
listing.

Refer to LLIST | NQLIST” on page 110 for

information about the effect of this suboption on the

IPA Link step. Refer also to Llnteractions hetween
Compiler Qptions and 1PA Suboptions” on page 57

The default is IPA(NOLIST). The abbreviations are
IPA(LIS|NOLIS). If you specify the GONUMBER or LIST
option, it overrides the IPA(NOLIST) option.

Indicates whether the IPA Compile step produces a
non-IPA object in addition to the IPA object as part
of the object file.

The default is IPA(OBJECT). The abbreviations are
IPA(0BJ |NOOBJ)

The default is IPA(OPTIMIZE) . If you specify
IPA(NOOPTIMIZE), the compiler issues an
informational message and turns on
IPA(OPTIMIZE). The abbreviations are
IPA(OPT|NOOPT)

IPA(OPTIMIZE) generates information (in the IPA
object file) that will be needed by the OPT compiler
option during IPA Link processing.

If you specify the IPA(OBJECT), the IPA(OPTIMIZE),
and the NOOPTIMIZE option during the IPA Compile
step, the compiler creates a non-optimized object
module for debugging. If you specify the OPT(1) or
OPT(2) option on a subsequent IPA Link step, you
can create an optimized object module without first
rerunning the IPA Compile step.

Indicates whether the compiler save information
about symbols in the IPA object file that will be
used in the IPA Link step if you specify ATTR or XREF
on that step.

The difference between specifying IPA(XREF) and
specifying ATTR or XREF is that IPA(XREF) does not
cause the compiler to generate a Cross Reference
listing section after IPA Compile step source

Chapter 6. Compiler Options 105

analysis is complete. It also does not cause the
compiler to generate a Storage Offset or External
Symbol Cross Reference listing section during IPA
Compile step code generation.

Refer to LXREE | NOXREE" on page 168 for

information about the effects of this suboption on
the IPA Link step.

The default is IPA(NOXREF). The abbreviations are
IPA(XR|NOXR). If you specify the ATTR or XREF
option, it overrides the IPA(NOXREF) option.

IPA Link Step Suboptions

IPA(LINK) invokes the IPA Link step. Only the following IPA suboptions affect the
IPA Link step. If you specify other IPA suboptions, they do not affect the IPA Link
step.

CONTROL[(fileid)] | NOCONTROL[(fileid)]
Specifies whether a file that contains IPA directives is available for
processing. You can specify an optional fileid. If you specify both
IPA(NOCONTROL(fileid)) and IPA(CONTROL), in that order, the IPA Link step
resolves the option to IPA(CONTROL(fileid)).

The default fileid is DD: IPACNTL if you specify the IPA(CONTROL) option.
The default is IPA(NOCONTROL).

DUP | NODUP
Indicates whether the IPA Link step writes a message and a list of duplicate
symbols to the console.

The default is IPA(DUP).

ER | NOER
Indicates whether the IPA Link step writes a message and a list of
unresolved symbols to the console.

The default is IPA(NOER).

LEVEL(0]1)
Indicates the level of IPA optimization that the IPA Link step should perform
after it links the object files into the call graph.

If you specify LEVEL(0), IPA performs function pruning and program
partitioning only. IPA performs alias analysis quickly, with some loss of
precision.

If you specify LEVEL(1), IPA performs all of the optimizations that it does at
LEVEL(0), as well as function inlining and global variable coalescing. IPA
performs more precise alias analysis for pointer dereferences and function
calls.

The compiler option OPTIMIZE that you specify on the IPA Link step controls
subsequent optimization for each partition during code generation.
Regardless of the optimization level you specified during the IPA Compile
step, you can request IPA optimization, regular code generation
optimization, both, or neither, on the IPA Link step.

The default is IPA(LEVEL(1)).

106 0S/390 V2R6.0 C/C++ User’s Guide

MAP | NOMAP
Specifies that the IPA Link step will produce a listing. The listing contains a
Prolog and the following sections:
* Object File Map
* Source File Map
» Compiler Options Map
* Global Symbols Map
» Partition Map for each partition

The default is IPA(NOMAP).

See lsing the IPA |ink Step Listing” on page 193 for more information.

NCAL | NONCAL
Indicates whether the IPA Link step performs an automatic library search to
resolve references in files that the IPA Compile step produces. Also
indicates whether the IPA Link step performs library searches to locate an
object file or files that satisfy unresolved symbol references within the
current set of object information.

This suboption controls both explicit searches triggered by the LIBRARY
IPA Link control statement, and the implicit SYSLIB search that occurs at
the end of IPA Link input processing.

To help you remember the difference between NCAL and NONCAL, you may
wish to think of NCAL as "nocall" and NONCAL as "no nocall”, (or "call").

The default is TPA(NONCAL).

UPCASE | NOUPCASE
Determines whether the IPA Link step makes an additional automatic library
call pass for SYSLIB if unresolved references remain at the end of standard
IPA Link processing. Symbol matching is not case sensitive in this pass.

This suboption provides support for linking assembler language object
routines, without forcing you to make source changes. The preferred
approach is to add #pragma map definitions for these symbols, so that the
correct symbols are found during normal IPA Link automatic library call
processing.

The default is TPA(NOUPCASE). The abbreviations are IPA(UPC|NOUPC).

Refer to the Interprocedural Analysis chapter in the OS/390 C/C++ Programming
Guide for an overview and more details about Interprocedural Analysis.

LANGLVL
C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: LANGLVL(EXTENDED)

CATEGORY: Source Code Control

Chapter 6. Compiler Options 107

»>—LANG— (——ANSI)

v
A

SAA
SAAL2——
COMPAT—
EXTENDED—
COMMONC—

The LANGLVL option defines a macro that specifies a language level. You must then
include this macro in your code to force conditional compilation. For example, with
the use of #ifdef directives. You can write portable code if you correctly code the

different parts of your program according to the language level. You use the macro
in preprocessor directives in header files. The LANGLVL suboptions are:

LANGLVL (ANST)
Indicates language constructs that are defined by ANSI. Some non-ANSI
stub routines will exist even if you specify LANGLVL(ANSI), for compatibility
with previous releases. The macro _ ANSI _ is defined as 1.

Notes:
1. You cannot use the compiler options LANGLVL(ANSI) and NOEXH together,

because NOEXH breaks ANSI conformance. If you specify either of the
following, the compiler issues a warning message to indicate that it
ignores NOEXH:

e NOEXH LANGLVL (ANSI)
o LANGLVL(ANSI) NOEXH

When you specify LANGLVL(ANSI), the compiler can still read and
analyze the Packed keyword in OS/390 C. If you want to make your
code purely ANSI, you should redefine _Packed in a header file as
follows:

#ifdef _ ANSI__
#define _Packed
#endif

The compiler will now see the Packed attribute as a blank when
LANGLVL (ANSI) is specified at compile time, and the language level of
the code will be ANSI.

LANGLVL (COMPAT)
Indicates that code is compiled to be compatible with older levels of C++.
Module initialization occurs in link order. This suboption is only available
under OS/390 C++. The macro _ COMPAT__ is defined as 1.

LANGLVL (COMMONC)
Indicates language constructs that are defined by XPG, many of which
LANGLVL (EXTENDED) already supports. LANGLVL(ANSI) and
LANGLVL (EXTENDED) do not support the following, but LANGLVL (COMMONC)
does:

Unsignedness is preserved for standard integral promotions. That is,
unsigned char is promoted to unsigned int.

Trigraphs within literals are not processed

sizeof operator is permitted on bitfields

Bitfields other than int are tolerated, and a warning message is issued.
Macro parameters within quotation marks are expanded

Macros may be redefined without first being undefined

The empty comment in a function-like macro is equivalent to the
ANSI/ISO token concatenation operator

108 0S/390 V2R6.0 C/C++ User’s Guide

The COMMONC suboption is available only for OS/390 C. The macro
__COMPAT__is defined as 1 when you specify LANGLVL (COMMONC).

If you specify LANGLVL (COMMONC), the ANSIALIAS option is automatically
turned off. If you want ANSIALIAS turned on, you must explicitly specify it

Note: The option ANSIALIAS assumes ANSI conformance code. Using
LANGLVL (COMMONC) and ANSTALIAS together may have undesirable
effects on your code at a high optimization level. See

2 for more information.

LANGLVL (EXTENDED)
Indicates all language constructs available with OS/390 C/C++. Enables
extensions to the ANSI draft. The macro __EXTENDED__is defined as 1.

LANGLVL (SAA)

Indicates language constructs that are defined by SAA. This suboption is

only available under OS/390 C. See the OS/390 C/C++ Language
Reference for more information.

LANGLVL (SAAL2)
Indicates language constructs that are defined by SAA Level 2. This
suboption is only available under OS/390 C. See the 0S/390 C/C++
Language Reference for more information.

Effect on IPA Compile Step

The LANGLVL option has the same effect on the IPA Compile step as it does on
regular compilation

Effect on IPA Link Step

The IPA Link Step accepts but ignores the LANGLVL option.

Chapter 6. Compiler Options

109

LIBANSI | NOLIBANSI

LIST | NOLIST

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e e e e v
DEFAULT: NOLIBANSI
CATEGORY: Code Optimization
> LIB >

NOLIB—|

The LIBANSI option indicates whether the functions with the name of an ANSI C
library function are in fact ANSI C library functions. If you specify LIBANSI, the
compiler generates code that is based on existing knowledge concerning the
behaviour of the ANSI C library function. For example, whether or not any side
effects are associated with a particular system function.

A comment that indicates the use of the LIBANSI option will be generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the LIBANSI option for any compilation unit in the IPA Compile step,
the compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the LIBANSI option for the IPA Compile step, you do not need to
specify it again on the IPA Link step. The IPA Link step uses the information
generated for the compilation unit that contains the main() function, or for the first
compilation unit it finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
applies whether you use LIBANSI and NOLIBANSI as compiler options or specify
them using the #pragma runopts directive (on the IPA Compile step).

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
- - 1/ :/ -
DEFAULT: NOLIST
CATEGORY: Listing

110 0S/390 V2R6.0 C/C++ User's Guide

LIS

NOLIS—-| |-—(Sequential filename)——-|
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

A\
A

The LIST option instructs the compiler to generate a listing of the machine
instructions in the object module (in a format similar to assembler language
instructions) in the compiler listing.

LIST(filename) places the compiler listing in the specified file. If you do not specify a
file name for the LIST option, the compiler uses the SYSCPRT ddname if you
allocated one. Otherwise, the compiler generates a file name as follows:

» If you are compiling a data set, the compiler uses the source file name to form
name of the listing data set. The high-level qualifier is replaced with the userid
under which the compiler is running, and .LIST is appended as the low-level
qualifier.

» If you are compiling an HFS file, the compiler stores the listing in a file that has
the name of the source file with .Ist extension.

The NOLIST option optionally takes a filename suboption. This filename then
becomes the default. If you subsequently use the LIST option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOLIST.
For example, the following specifications have the same effect:

CXX HELLO (NOLIST(/hello.lis) LIST
CXX HELLO (LIST(/hello.lis)

If you specify data set names in an OS/390 C/C++ program, with the SOURCE, LIST
or INLRPT options, all the listing sections are combined into the last data set name
specified.

Notes:

1. Usage of information such as registers, pointers, data areas, and control blocks
that are shown in the object listing are not programming interface information.

2. If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.

LIST(xxx)

Effect on IPA Compile Step

If you specify the LIST option on the IPA Compile step, the compiler saves
information about the source file and line numbers in the IPA object file. This
information is available during the IPA Link step for use by the LIST or GONUMBER
options.

If you do not specify the GONUMBER option on the IPA Compile step, the object file
produced contains the line number information for source files that contain function
begin, function end, function call, and function return statements. This is the
minimum line number information that the IPA Compile step produces. You can then
use the TEST option on the IPA Link step to generate corresponding test hooks

Refer to Llnteractions hetween Compiler Qptions and IPA Subaptions” on page 57

and L " for more information.

Chapter 6. Compiler Options 111

Effect on IPA Link Step

If you specify the LIST option, the IPA Link listing contains a Pseudo Assembly
section for each partition that contains executable code. Data-only partitions do not
generate a Pseudo Assembly listing section.

The source file and line number shown for each object code statement depend on

the amount of detail the IPA Compile step saves in the IPA object file, as follows:

* If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option for the
IPA Compile step, the IPA Link step accurately shows the source file and line
number information.

» If you did not specify any of these options on the IPA Compile step, the source
file and line number information in the IPA Link listing or GONUMBER tables
consists only of the following:

— function entry, function exit, function call, and function call return source lines.
This is the minimum line number information that the IPA Compile step
produces.

— All other object code statements have the file and line number of the function
entry, function exit, function call, and function call return that was last
encountered. This is similar to the situation of encountering source statements
within a macro.

Refer to Llnteractions hetween Compiler Qptions and |PA Suboptions” on page 57

and L " for more information.

LOCALE | NOLOCALE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v v

DEFAULT: NOLOCALE

CATEGORY: Preprocessor

LOC
|—(na'me)—|
NOLOC———

v
A

The LOCALE option specifies the locale to be used by the compiler as the current
locale throughout the compilation unit. To specify a locale, use the following format:

LOCALE(name)

The suboption name indicates the name of the locale to be used by the compiler at
compile time. If you omit name, the compiler uses the current default locale in the
environment. If name does not represent a valid locale name, the compiler ignores
the LOCALE, and assumes NOLOCALE.

NOLOCALE indicates that the compiler only uses the default code page, which is
IBM-1047.

112 0S/390 V2R6.0 C/C++ User's Guide

You cannot use the LOCALE | NOLOCALE option in the OS/390 C #pragma options
directive. You can only specify it on the command line or in the PARMS list in the
JCL.

If you specify the LOCALE option, the locale name and the associated code set
appear in the header of the listing. A locale name is also generated in the object
module.

The LC_TIME category of the current locale controls the format of the time and the
date in the compiler-generated listing file. The identifiers that appear in the tables in
the listing file are sorted as specified by the LC_COLLATE category of the locale
specified in the option.

Note: The formats of the predefined macros _ DATE__, TIME , and
__TIMESTAMP__ are not locale-sensitive.

For more information on locales, refer to the 0OS/390 C/C++ Programming Guide.
Effect on IPA Compile Step

The LOCALE option controls processing only for the IPA step for which you specify it.

During the IPA Compile step, the compiler converts source code using the code
page that is associated with the locale specified by the LOCALE compile-time option.
As with non-IPA compilations, the conversion applies to identifiers, literals, and
listings. The locale that you specify on the IPA Compile step is recorded in the IPA
object file.

You should use the same code page for IPA Compile step processing for all of your
program’s source files. This code page should match the code page of the runtime
environment. Otherwise, your application may not run correctly.

Effect on IPA Link Step

The locale that you specify on the IPA Compile step does not determine the locale
that the IPA Link step uses. The LOCALE option that you specify on the IPA Link step
is used for the following:

* The encoding of the message text and the listing text.

« Date and time formatting in the Source File Map section of the listing and in the
text in the object comment string that records the date and time of IPA Link step
processing.

» Sorting of identifiers in listings. The IPA Link step uses the sort order associated
with the locale for the lists of symbols in the Inline Report (Summary), Global
Symbols Map, and Partition Map listing sections.

If the code page you used for a compilation unit for the IPA Compile step does not
match the code page you used for the IPA Link step, the IPA Link step issues an
informational message.

If you specify the IPA(MAP) option, the IPA Link step displays information about the

LOCALE option, as follows:

* The Prolog section of the listing displays the LOCALE or NOLOCALE option. If you
specified the LOCALE option, the Prolog displays the locale and code set that are
in effect.

» The Compiler Options Map listing section displays the LOCALE option active on
the IPA Compile step for each IPA object. If you specified conflicting code sets

Chapter 6. Compiler Options 113

between the IPA Compile and IPA Link steps, the listing includes a warning
message after each Compiler Options Map entry that displays a conflict.

* The Partition Map listing section shows the current LOCALE option.

LONGNAME | NOLONGNAME

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I v v

DEFAULT for C : NOLONGNAME
DEFAULT for C++ : LONGNAME

CATEGORY: Object Code Control

LO
NOLO—|

The LONGNAME option generates untruncated and mixed case external names in the
object module produced by the compiler for functions with non-C++ linkage.
Functions with C++ linkage are always untruncated and mixed-case external
names. These names may be up to 1024 characters in length. The system binder
recognizes the format of long external names in object modules, but the system
linkage editor does not.

For OS/390 C, if you specify the ALIAS option with LONGNAME, the compiler generates
a NAME control statement, but no ALIAS control statements.

If you use #pragma map to associate an external name with an identifier, the
compiler generates the external name in the object module. That is, #pragma map
has the same behavior for the LONGNAME and NOLONGNAME compiler options. Also,
#pragma csect has the same behavior for the LONGNAME and NOLONGNAME compiler
options.

When you specify NOLONGNAME, only functions that do not have C++ linkage are
given truncated and uppercase names.

A comment that indicates the setting of the LONGNAME option will be generated in
your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

You must specify either the LONGNAME compiler option or the #pragma 1ongname
preprocessor directive for the IPA Compile step (unless you are using the c89
utility). Otherwise, the compiler issues an unrecoverable error diagnostic message.

Effect on IPA Link Step

The IPA Link step ignores this option if you specify it, and uses the LONGNAME option
for all partitions it generates.

114 0S/390 V2R6.0 C/C++ User's Guide

LSEARCH | NOLSEARCH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I

DEFAULT: NOLSEARCH

CATEGORY: File Management

»—[LSE—(—path) ><
NOLSE

The LSEARCH option directs the preprocessor to look for the user include files in the
specified libraries.

The suboption path specifies one of the following:
* The name of a partitioned or sequential data set that contains user include files.
* An HFS path that contains user include files.

A search path that is more complex. See tAdditional Syntax” an page 114 for

details.

The #include "filename" format of the #include C/C++ preprocessor directive

indicates user include files. See lUsing Include Files” on page 244 for a description

of the #include preprocessor directive.

For further information on library search sequences, see [Search Sequences foi

Searching for PDS or PDSE files

Example

You coded your include files as follows:

#include "sub/fred.h"
#include "fred.inl"

You specified LSEARCH as follows:
LSEARCH(USER.+, 'USERID.GENERAL.+")

The compiler uses the following search sequence to look for your include files:

1. First, the compiler looks for user/sub/fred.h in this data set:
USERID.USER.SUB.H(FRED)

2. If that PDS member does not exist, the compiler looks in the data set:
USERID.GENERAL.SUB.H(FRED)

3. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

4. Next, the compiler looks for fred.inl in the data set:
USERID.USER. INL(FRED)
5. If that PDS member does not exist, the compiler will look in the data set:

Chapter 6. Compiler Options 115

USERID.GENERAL.INL(FRED)

6. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

Searching for HFS Files

The compiler forms the search path for HFS files by appending the path and name
of the #include file to the path that you specified in the LSEARCH option.

Example 1

You code #include "sub/fred.h" and specify:
LSEARCH (/u/mike)

The compiler looks for the include file /u/mike/sub/fred.h.
Example 2

You specify your header file as #include "fred.h", and your LSEARCH option as:
LSEARCH(/u/mike, ./sub)

The compiler uses the following search sequence to look for your include files:
1. The compiler looks for fred.h in:
/u/mike/fred.h
2. If that HFS file does not exist, the compiler looks in:
./sub/fred.h
3. If that HFS file does not exist, the compiler looks in the libraries specified on the
USERLIB DD statement.

4. If USERLIB DD is not allocated, the compiler follows the search order for system
include files.

The NOLSEARCH option instructs the preprocessor to search only those libraries that
are specified on the USERLIB DD statement. A NOLSEARCH option cancels all previous
LSEARCH specifications, and the compiler uses any LSEARCH options that follow it.
When you specify more than one LSEARCH option, the compiler uses all the libraries
in these LSEARCH options to find the user include files.

Note: If the filename in the #include directive is in absolute form, the compiler

does not perform a search. See tDetermining whether the File Name is id
Bhbsolute Form” on page 251 for more details on absolute #include filename.

Additional Syntax

LSE—(—Y opt)
L,
NOLSE

Y
A

You must use the double slashes (//) to specify data set library searches when you
specify the 6 compiler option. (You may use them regardless of the 6 option).

116 0S/390 V2R6.0 C/C++ User's Guide

The USERLIB ddname is considered the last suboption for LSEARCH, so that
specifying LSEARCH (X) is equivalent to specifying LSEARCH (X,DD:USERLIB).

Chapter 6. Compiler Options 117

Parts of the #include filename are appended to each LSEARCH opt to search for the
include file. opt has the format:

»—_L’_J#qualifier |:+:‘ |__| ><
+
L Lo L
Y __directory
S
../
J—
—DD: name
_(fname. suffix)=LIB(—Y—subopt)

opt specifies one of the following:
* The name of a partitioned or sequential data set that contains user include files

* An HFS path name that should be searched for the include file. You can also use
. to specify the current directory and ../ to specify the parent directory for your
HFS file.

» A DD statement for a sequential data set or a partitioned data set. When you
specify a ddname in the search and the include file has a member name, the
member name of the include file is used as the name for the DD: name search
suboption, for example:

LSEARCH (DD:NEWLIB)
#include "a.b(c)"

The resulting file name is DD:NEWLIB(C).

» A specification of the form (fname.suffix) = (subopt,subopt,...) where
— fname is the name of the include file, or *
— suffix is the suffix of the include file, or *
— subopt indicates a subpath to be used in the search for the include files that
match the pattern of fname.suffix. There should be at least one subopt. The
possible values are:

- LIB([pds,...]) where each pds is a partitioned data set name. They are
searched in the same order as they are specified.

There is no effect on the search path if no pds is specified, but a warning is
issued.

- LIBs are cumulative; for example, LIB(A),LIB(B) is equivalent to LIB(A,
B).

- NOLIB specifies that all LIB(...) previously specified for this pattern should
be ignored at this point.

When the #include filename matches the pattern of fname.suffix, the search
continues according to the subopts in the order specified. An asterisk (*) in fname
or suffix matches anything. If the compiler does not find the file, it attempts other
searches according to the remaining options in LSEARCH.

118 0S/390 V2R6.0 C/C++ User’s Guide

Specifying Hierarchical File System Files

When specifying Hierarchical File System (HFS) library searches, do not put double
slashes at the beginning of the LSEARCH opt. Use pathnames separated by slashes
(/) in the LSEARCH opt for an HFS library. When the LSEARCH opt does not start with
double slashes, any single slash in the name indicates an HFS library. If you do not
have path separators (/), then setting the OE compile option on indicates that this is
an HFS library; otherwise the library is interpreted as a data set. See

BEARCH and | SEARCH” on page 253 for additional information on HFS files.

The opt specified for LSEARCH is combined with the filename in #include to form the
include file name, for example:

LSEARCH(/u/mike/myfiles)
#include "new/headers.h"

The resulting HFS file name is /u/mike/myfiles/new/headers.h.

Specifying Sequential Data Sets and PDSs

Use an asterisk (*) or a plus sign (+) in the LSEARCH opt to specify whether the
library is a sequential or partitioned data set.

Partitioned Data Set (PDS): When you want to specify a set of PDSs as the
search path, you add a period followed by an plus sign (.+) at the end of the last
qualifier in the opt. If you do not have any qualifier, specify a single plus sign (+) as
the opt. The opt has the following syntax for specifying partitioned data set:

PP—I———[—’ — + - I_, J >«

v

qualifier
L.

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks around a single plus sign (+)
indicate that the filename that is specified in #include is an absolute partitioned
data set.

When you do not specify a member name with the #incTude directive, for example,
#include "PR1.MIKE.H", the PDS name for the search is formed by replacing the
plus sign with the following parts of the filename of the #include directive:

* For the PDS file name:
1. All the paths and slashes (slashes are replaced by periods)
2. All the periods and qualifiers after the leftmost qualifier

» For the PDS member name, the leftmost qualifier is used as the member name

See the first example in [lahle 20 on page 120.

However, if you specified a member name in the filename of the #include directive,
for example, #include "PR1.MIKE.H(M1)", the PDS name for the search is formed
by replacing the plus sign with qualified name of the PDS. See the second example
in

Chapter 6. Compiler Options 119

See [EFarming Data Set Names with | SEARCH | SEARCH Options” on page 24§ for

more information on forming PDS names.

Note: To specify a single PDS as the opt, do not specify a trailing asterisk (*) or
plus sign (+). The library is then treated as a PDS but the PDS name is
formed by just using the leftmost qualifier of the #include filename as the
member name. For example:

LSEARCH (AAAA.BBBB)
#include "sys/ff.gg.hh"

Resulting PDS name is
userid.AAAA.BBBB (FF)

Also see the third example in ffable 2d.

Examples: The following example shows you how to specify a PDS search path:

Table 20. Partitioned Data Set Examples

include Directive LSEARCH option Result

#include "PR1.MIKE.H" LSEARCH('CC.+) 'CC.MIKE.H(PR1)’
#include "PR.KE.H(M1)" LSEARCH('CC.+) 'CC.PR.KE.HM1)
#include "A.B” LSEARCH(CC) userid.CC(A)
#include "A.B.D" LSEARCH(CC.+) userid.CC.B.D(A)
#include "a/b/dd.h” LSEARCH('CC.+) 'CC.A.B.H(DDY
#include "a/dd.ee.h” LSEARCH('CC.+) "CC.A.EE.H(DDY’
#include "a/b/dd.h” LSEARCH('+) 'A.B.H(DDY
#include "a/b/dd.h” LSEARCH(+) userid.A.B.H(DD)
#include "A.B(C)” LSEARCH(D.+) 'D.A.B(C)

Sequential Data Set: When you want to specify a set of sequential data sets as

the search path, you add a period followed by an asterisk (.*) at the end of the last
qualifier in the opt. If you do not have any qualifiers, specify one asterisk (*) as the
opt. The opt has the following syntax for specifying a sequential data set:

* >

L. X

1,0]

H

qualifier
L. .

v

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks (') around a single asterisk
(*) means that the file name that is specified in #incTude is an absolute sequential
data set.

The asterisk is replaced by all of the qualifiers and periods in the #include filename
to form the complete name for the search (as shown in the following table).

Examples: The following example shows you how to specify a search path for a
sequential data set:

120 0S/390 V2R6.0 C/C++ User’s Guide

Table 21. Sequential Data Set Examples

include Directive LSEARCH option Result

#include "A.B” LSEARCH(CC.*) userid.CC.A.B
#include "a/b/dd.h” LSEARCH('CC.*) 'CC.DD.H’
#include "a/b/dd.h” LSEARCH(™*) 'DD.H’
#include "a/b/dd.h” LSEARCH(¥) userid.DD.H

Note: If the trailing asterisk is not used in the LSEARCH opt, then the specified library
is a PDS:
#include "A.B"
LSEARCH('CC")

Result is 'CC(A) ' which is a PDS.

Effect on IPA Compile Step

The LSEARCH option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the LSEARCH option, but ignores it.

MARGINS | NOMARGINS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v
DEFAULT for C++: NOMARGINS
0S/390 C++
> MAR ,
NOMAR—|

The MARGINS option specifies the columns in the input record that are to be scanned
for input to the compiler. The compiler ignores text in the source input that does not
fall within the range that is specified on the MARGINS option.

In an OS/390 C++ program, the MARGINS option specifies that columns 1 through 72
in the input record are to be scanned for input to the compiler. The compiler ignores
any text in the source input that does not fall within that range.

If the MARGINS option is specified along with the SOURCE option in an OS/390 C
program, only the range specified on the MARGINS option is shown in the compiler
source listing.

You can use the MARGINS and SEQUENCE options together. The MARGINS option is
applied first to determine which columns are to be scanned. The SEQUENCE option is

Chapter 6. Compiler Options 121

then applied to determine which of these columns are not to be scanned. If the
SEQUENCE settings do not fall within the MARGINS settings, the SEQUENCE option has no
effect.

When a source (or include) file is opened, it initially gets the margins and sequence
specified on the command line (or the defaults if none was specified). You can reset
these settings by using #pragma margins or #pragma sequence at any point in the
file. When an #include file returns, the previous file keeps the settings it had when
it encountered the #include directive.

The NOMARGINS option specifies that the entire input source record is to be scanned
for input to the compiler.

Options for OS/390 C

DEFAULT for C:
e F-format: MARGINS (1,72)
e V-format: NOMARGINS

CATEGORY: Source Code Control
0S/390 C

MAR—(m,n) ><
NOMAR

In an OS/390 C program, the MARGINS option has the following additional syntax:
MARGINS (m,n)

where:

m specifies the first column of the source input that contains valid OS/390 C
code. The value of m must be greater than 0 and less than 32761.

n specifies the last column of the source input that contains valid OS/390 C
code. The value of n must be greater than m and less than 32761. An
asterisk (*) can be assigned to n to indicate the last column of the input
record. If you specify MARGINS (9,*), the compiler scans from column 9 to
the end of the record for input source statements.

Notes:
1. The MARGINS option does not reformat listings.

2. If your program uses the #include preprocessor directive to include OS/390 C
library header files and you want to use the MARGINS option, you must ensure
that the specifications on the MARGINS option does not exclude columns 20
through 50. That is, the value of m must be less than 20, and the value of n must
be greater than 50. If your program does not include any OS/390 C library
header files, you can specify any setting you want on the MARGINS option when
the setting is consistent with your own include files.

Effect on IPA Compile Step

The MARGINS option is used for source code analysis, and has the same effect on
the IPA Compile step as it does on a regular compilation.

122 0S/390 V2R6.0 C/C++ User’s Guide

Effect on IPA Link Step

The IPA Link step accepts the MARGINS option, but ignores it.

MAXMEM | NOMAXMEM

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v v

DEFAULT: MAXMEM (2097152), or MAXMEM (), or MAXMEM (0)

CATEGORY: Object Code Control

»—[MAXM— (—size—)
NOMAXM—|

A\
A

When compiling with OPT, the MAXMEM(size) option limits the amount of memory
used for local tables of specific, memory intensive optimizations to size kilobytes.
The valid range for size is 0 to 2097152. You can use asterisk as a value for size
MAXMEM(=*), to indicate the highest possible value, which is also the default.
NOMAXMEM, MAXMEM(0), and MAXMEM(*) are equivalent. Use the MAXMEM option if you
want to specify a memory size of less value than the default.

If the memory specified by the MAXMEM option is insufficient for a particular
optimization, the compilation is completed in such a way that the quality of the
optimization is reduced, and a warning message is issued.

When a large size is specified for MAXMEM, compilation may be aborted because of
insufficient virtual storage, depending on the source file being compiled, the size of
the subprogram in the source, and the virtual storage available for the compilation.

The advantage of using the MAXMEM option is that, for large and complex
applications, the compiler produces a slightly less-optimized object module and
generates a warning message, instead of terminating the compilation with an error
message of “insufficient virtual storage”.

Notes:

1. The limit that is set by MAXMEM is the amount of memory for specific
optimizations, and not for the compiler as a whole. Tables that are required
during the entire compilation process are not affected by or included in this limit.

2. Setting a large limit has no negative effect on the compilation of source files
when the compiler needs less memory.

3. Limiting the scope of optimization does not necessarily mean that the resulting
program will be slower, only that the compiler may finish before finding alll
opportunities to increase performance.

4. Increasing the limit does not necessarily mean that the resulting program will be
faster, only that the compiler may be able to find opportunities to increase
performance.

Chapter 6. Compiler Options 123

Effect on IPA Compile Step

If you specify the MAXMEM option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

The option value you specify on the IPA Compile step for each IPA object file
appears in the IPA Link step Compiler Options Map listing section.

Effect on IPA Link Step

If you specify the MAXMEM option on the IPA Link step, the value of the option is
used. The IPA Link step Prolog and Partition Map listing sections display the value
of the option.

If you do not specify the option on the IPA Link step, the value it uses for a partition
is the maximum MAXMEM value you specified for the IPA Compile step for any
compilation unit that provided code for that partition. The IPA Link Step Prolog
listing section does not display the value of the MAXMEM option, but the Partition Map
listing section does.

MEMORY | NOMEMORY

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I e

DEFAULT: MEMORY
CATEGORY: File Management

MEM ><
NOMEM—|

The MEMORY option specifies that the compiler is to use a MEMORY file in place of a
work-file if possible. See the OS/390 C/C++ Programming Guide for more
information on memory files.

This option increases compilation speed, but you may require additional memory to
use it. If you use this option and the compilation fails because of a storage error,
you must increase your storage size or recompile your program using the NOMEMORY
option.

Effect on IPA Compile Step

The MEMORY compiler option has the same effect on the IPA Compile step as it does
on a regular compilation.

Effect on IPA Link Step

The MEMORY option has the same effect on the IPA Link step as it does on a regular
compilation. If the IPA Link step fails due to an out-of-memory condition, provide
additional virtual storage. If additional storage is unavailable, specify the NOMEMORY
option.

124 0S/390 V2R6.0 C/C++ User’s Guide

NESTINC | NONESTINC

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e e e
DEFAULT: NONESTINC
CATEGORY: Source Code Control
»—ENEST—(num) ><
NONEST

The NESTINC option specifies the number of nested include files to be allowed in
your source program. You can specify a limit of any integer from O to SHRT_MAX,
which indicates the maximum limit, as defined in the header file LIMITS.H. To
specify the maximum limit, use an asterisk (*). If you specify an invalid value, the
compiler issues a warning message, and uses the default limit, 255.

Specifying NONESTINC is equivalent to specifying NESTINC (255).

Note: If you use heavily nested include files, your program requires more storage
to compile.

Effect on IPA Compile Step

The NESTINC option is used for source code analysis, and has the same effect on
the IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the NESTINC option, but ignores it.

OBJECT | NOOBJECT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v - -

DEFAULT: 0BJECT

CATEGORY: File Management and Object Code Control

A\
A

0BJ
NOOBJ—| |—(Sequential filename)J

Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

The 0BJECT option specifies whether the compiler is to produce an object module.

Chapter 6. Compiler Options 125

You can specify OBJECT (filename) to place the object module in that file. If you do
not specify a file name for the 0BJECT option, the compiler uses the SYSLIN ddname
if you allocated it. Otherwise, the compiler generates a file name as follows:

» If you are compiling a data set, the compiler uses the source file name to form
the name of the object module data set. The high-level qualifier is replaced with
the userid under which the compiler is running, and .OBJ is appended as the
low-level qualifier.

» If you are compiling an HFS file, the compiler stores the object module in a file
that has the name of the source file with an .0 extension.

The NOOBJ option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the 0BJ option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOBJ .
For example, the following specifications have the same result:

CXX HELLO (NOOBJ(/hello.obj) OBJ

CXX HELLO (0BJ(/hello.obj)

If you specify 0BJ and NOOBJ multiple times, the compiler uses the last specified
option with the last specified suboption. For example, the following specifications
have the same result:

CXX HELLO (NOOBJ(/hello.obj) OBJ(/nl.obj) NOOBJ(/test.obj) OBJ
CXX HELLO (OBJ(/test.obj)

If you request a listing by using the SOURCE, INLRPT, or LIST option, and you also
specify 0BJECT, the name of the object module is printed in the listing prolog.

0S/390 C: For OS/390 C programs, see [Iahle 22 on page 169 for a description of
the relationship between the 0BJECT and DECK compiler options.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.

OBJECT (xxx)

Effect on IPA Compile Step

The 0BJECT suboption directs the IPA Compile step to generate an IPA or a
combined IPA/conventional object module. IPA Compile uses the same rules as the
regular compile to determine the file name or data set of the object module it
generates. If you specify NOOBJECT and NODECK, the IPA Compile step suppresses
object output, but performs all analysis and code generation processing (other than
writing object records).

Note: You should not confuse the 0BJECT compiler option with the 0BJECT suboption
of the IPA option. Refer to EIPA | NQIPA” on page 103 for information about
the IPA(OBJECT) option.

Effect on IPA Link Step

This option also affects the IPA Link step. If you specify both OBJECT and DECK on
the IPA Link step, IPA issues a warning message and stores the object module in
the data set you specified on the SYSLIN DD name.

c89 does not normally keep the object file output from the IPA Link step, as the
output is an intermediate file in the link-edit phase processing. To find out how to

126 0S/390 V2R6.0 C/C++ User’s Guide

OE | NOOE

make the object file permanent, refer to the { _TMPS} environment variable
information in the c89 section of the OS/390 UNIX System Services Command
Reference.

Note: The OBJECT compiler option is not the same as the 0BJECT suboption of the

IPA option. Refer to HLRA | NOQIPA” on page 103 for information about the

IPA(OBJECT) option.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v

DEFAULT: NOOE

CATEGORY: Source Code Control

v
A

OE
NOOE—| |—(—fi lename—)J

Notes:

1. To compile new applications, you should use this option instead of OMVS |
NOOMVS.

2. Diagnostics and listing information will refer to the file name that is specified for
the OE option (in addition to the search information).

The OE option specifies that the compiler use the POSIX.2 standard rules for
searching for files specified with #include directives. These rules state that the
current path of the file presently being processed is the path used as the starting
point for searches of include files contained in that file.

The NOOE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OE option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOE. For
example, the following specifications have the same result:

CXX HELLO (NOOE(/hello.c) OE
CXX HELLO (OE(/hello.c)

If you specify OE and NOOE multiple times, the compiler uses the last specified option
with the last specified suboption. For example, the following specifications have the
same result:

CXX HELLO (NOOE(/hello.c) OE(/nl.c) NOOE(/test.c) OE
CXX HELLO (OE(/test.c)

When the OE option is in effect and the main input file is an HFS file, the path of
filename is used instead of the path of the main input file name. If the file names
indicated in other options appear ambiguous between OS/390 and HFS, the
presence of the OE option tells the compiler to interpret the ambiguous names as
HFS file names. User include files that are specified in the main input file are
searched starting from the path of filename. If the main input file is not an HFS file,
filename is ignored.

Chapter 6. Compiler Options 127

For example, if the compiler is invoked to compile HFS file /a/b/hello.c it
searches directory /a/b/ for include files specified in /a/b/hello.c, in accordance
with POSIX.2 rules . If the compiler is invoked with the 0E(/c/d/hello.c) option for
the same source file, the directory specified as the suboption for the OE option,
/c/d/, is used to locate include files specified in /a/b/hello.c.

Effect on IPA Compile Step

The OE compiler option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

On the IPA Link step, the OE option controls the display of file names.

OFFSET | NOOFFSET

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
:/ :/ :/

DEFAULT: NOOFFSET

CATEGORY: Listing

v
A

OF
NOOF—|

The OFFSET option instructs the compiler to display, in the pseudo-assembly listing
generated by the LIST option, the offset addresses relative to the entry point or start
of each function.

If you use the OFFSET option, you must also specify the LIST option to generate the
pseudo-assembly listing. If you specify the OFFSET option but omit the LIST option,
the compiler generates a warning message, and does not produce a
pseudo-assembly listing.

The NOOFFSET option specifies that the compiler is to display, in the
pseudo-assembley listing generated by the LIST option, the offset addresses
relative to the beginning of the generated code and not the entry point.

Effect on IPA Compile Step

If you specify the IPA(OBJECT) option (that is, if you request code generation), the
OFFSET option has the same effect on the IPA Compile step as it does on a regular
compilation.

Effect on IPA Link Step
If you specify the LIST option during IPA Link, the IPA Link listing will be affected (in

the same way as a regular compilation) by the OFFSET option setting in effect at that
time.

128 0S/390 V2R6.0 C/C++ User’s Guide

The OFFSET option that you specified on the IPA Compile step has no effect on the
IPA Link step.

OMVS | NOOMVS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
- - v

Default: NOOMVS

CATEGORY: Source Code Control

»> OMVS »><
—|: |—(—filename—)J

NOOMVS

In the OS/390 C environment, OMVS is a synonym for the OE option. Use the OE
option, because it provides greater flexibility and you can use it for both OS/390 C
and OS/390 C++.

You can specify filename which is the name of a partitioned or sequential data set
that contains user include files. For more information on OE, refer to

Effect on IPA Compile Step

The OMVS compiler option has the same effect on the IPA Compile step as it does on
a regular compilation.

Effect on IPA Link Step

On the IPA Link step, the OMVS option controls the display of file names.

OPTFILE | NOOPTFILE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: NOOPTFILE
CATEGORY: File Management

> OPTF >
NOOPTF—I |—(fiZename)—|

The OPTFILE option directs the compiler to look for compiler options in the file
specified by filename.

Chapter 6. Compiler Options 129

You can specify any valid filename, including a DD name such as (DD:MYOPTS). The
DD name may refer to instream data in your JCL. If you do not specify filename,
the compiler uses DD:SYSOPTF.

The NOOPTF option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OPTF option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOPTF.
For example, the following specifications have the same result:

CXX HELLO (NOOPTF(/hello.opt) OPTF

CXX HELLO (OPTF(/hello.opt)

The options are specified in a free format with the same syntax as they would have
on the command line or in JCL. The code points for the special characters If, lv,
and |t are whitespace characters. Everything that is specified in the file is taken to
be part of a compiler option (except for the continuation character), and
unrecognized entries are flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than

72, columns 73 to the end-of-line are treated as sequence numbers and are

ignored.

Notes:

1. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the file
that is specified by another OPTFILE option, it is ignored.

2. If you specify NOOPTFILE after a valid OPTFILE, it does not undo the effect of the
previous OPTFILE. This is because the compiler has already processed the
options in the options file that you specified with OPTFILE. The only reason to
use NOOPTFILE is to specify an option file name that a later specification of
OPTFILE can use.

3. If the file cannot be opened or cannot be read, a warning message is issued
and the OPTFILE option is ignored.

4. The options file can be an empty file.

5. You can use an option file only once in a compilation. For example, if you use
the following options:

OPTFILE(DD:OF) OPTFILE

the compiler processes the option OPTFILE(DD:0F), but the second option
OPTFILE is not processed. A diagnostic message is produced, because the
second specification of OPTFILE uses the same option file as the first.

You can specify OPTFILE more than once in a compilation, if you use a different
options file with each specification. For example:

OPTFILE(DD:0F) OPTFILE(DD:0F1)

Examples
1. Suppose that you use the following JCL:
// CPARM='SO OPTFILE(PROJIOPT) EXPORTALL'

If the file PROJ1OPT contains OBJECT LONGNAME, the effect on the compiler is the
same as if you specified the following:

// CPARM='SO OBJECT LONGNAME EXPORTALL'
2. Suppose that you include the following in the JCL:

130 0S/390 V2R6.0 C/C++ User’s Guide

// CPARM='0OBJECT OPTFILE(PROJLOPT) LONGNAME OPTFILE(PROJ20PT) LIST'

If the file PROJ1OPT contains SO LIST and the file PROJ20PT contains GONUM, the
net effect to the compiler is the same as if you specified the following:

// CPARM='OBJECT SO LIST LONGNAME GONUM LIST'
If a F80 format options file looks like this:

LIST 00000010

INLRPT 00000020

MARGINS 00000030
OPT 00000040
XREF 00000050

The compile has the same effect as if you specified the following options on the
command line or in a PARMS= statement in your JCL:

LIST INLRPT MARGINS OPT XREF
4. The following example shows how to use the options file as an instream file in

JCL:
//COMP EXEC CBCC,
// INFILE="<userid>.USER.CXX(LNKLST) ",
// OUTFILE='<userid>.USER.OBJ(LNKLST),DISP=SHR ',
// CPARM="OPTFILE(DD:OPTION) "
//OPTION DD DATA,DLM=@@
LIST
INLRPT

MARGINS

OPT

XREF
ee

Effect on IPA Compile Step

The OPTFILE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The OPTFILE option has the same effect on the IPA Link step as it does on a regular
compilation.

OPTIMIZE | NOOPTIMIZE

C C++

Special IPA Processing
IPA Compile IPA Link
v v v v I

Accepted by
IPA Link

DEFAULT:
e C and C++ compile:
e IPALink: OPTIMIZE

NOOPTIMIZE

CATEGORY: Object Code Control

Chapter 6. Compiler Options 131

v
A

0PT—(level)
NOOPTQ

The OPTIMIZE option instructs the compiler to optimize the generated machine
instructions to produce a faster running object module. This type of optimization can
also reduce the amount of main storage that is required for the generated object
module. Using OPTIMIZE will increase compile time over NOOPTIMIZE and may have
greater storage requirements. During optimization, the compiler may move code to
increase run time efficiency; as a result, statement numbers in the program listing
may not correspond to the statement numbers used in runtime messages.

A list of the valid suboptions for OPT and their decscriptions follow: /evel can have
the following values:

0 Indicates that no optimization is to be done; this is equivalent to
NOOPTIMIZE. You should use this option in the early stages of your
application development since the compilation is efficient but the execution
is not. This option also allows you to take full advantage of the debugger.

1 The optimization done at OPTIMIZE(1) and at OPTIMIZE(2) is identical.

2 Indicates that global optimizations are to be performed. You should be
aware that the size of your functions, the complexity of your code, the
coding style, and the conformance to the ANSI standard may affect the
global optimization of your program. You should have at least 8MB of
memory to compile at this optimization level.

no level
OPTIMIZE specified with no level defaults to OPTIMIZE(2).

Inlining of functions in conjunction with other optimizations provides optimal run time

performance. See EINLINE | NOINIINE” on page 99 for more information about the

INLINE option and the OS/390 C/C++ Programming Guide for more information
about optimization.

If you specify OPTIMIZE with TEST, you can only set breakpoints at function call,
function entry, function exit, and function return points.

The option INLINE is automatically turned on when you specify OPTIMIZE, unless
you have explicitly specified the NOINLINE option.

A comment that notes the level of optimization will be generated in your object
module to aid you in diagnosing your program.

Effect of ANSIALIAS: When the ANSIALIAS option is specified, the optimizer
assumes that pointers can point only to objects of the same
type, and performs more aggressive optimization. However,
if this assumption is not true and ANISALIAS is specified,
wrong program code could be generated. If you are not
sure, use NOANSIALIAS. For more information, see

Effect on IPA Compile Step

On the IPA Compile step, all values (except for (0)) of the OPTIMIZE compiler option
and the OPT suboption of the IPA option have an equivalent effect.

132 0S/390 V2R6.0 C/C++ User’s Guide

| PHASEID

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA option in
[u for information about using the OPTIMIZE option under
IPA.

Effect on IPA Link Step

OPTIMIZE(2) is the default for the IPA Link step, but you can specify any level of
optimization.

If you specify OPTIMIZE(1) or OPTIMIZE(2) for the IPA Link step, but only
OPTIMIZE(0) for the IPA Compile step, your program may be slower or larger than if
you specified OPTIMIZE(1) or OPTIMIZE(2) for the IPA Compile step. This situation
occurs because the IPA Compile step does not perform as many optimizations if
you specify OPTIMIZE(0).

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA option in
[r for information about using the OPTIMIZE option under
IPA.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v

DEFAULT: NOPHASEID

CATEGORY: Debug/Diagnosic

»—[PHASE ID <
NOPHAS EID—|

If you specify the PHASEID option, it causes each compiler module (phase) to issue
an informational message as the phase begins execution. This message identifies
compiler phase module name, product id, and build level. Use the PHASEID option to
assist you with determining the maintenance level of each compiler
component(phase).

The compiler issues a separate CBC0000(l) message each time compiler execution
causes a given compiler module(phase) to be entered. This may be many times for
a given compilation.

The FLAG option has no effect on the PHASEID informational message.

Effect on IPA Compile Step

The PHASEID option has the same effect on the IPA Compile Step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step uses the PHASEID option that you specify for that step.

Chapter 6. Compiler Options 133

PLIST

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I v

DEFAULT: PLIST (HOST)

CATEGORY: Program Execution

0S

When compiling main() programs, use the PLIST option to direct how the
parameters from the caller are passed to main().

If you specify PLIST(HOST), the parameters are presented to main() as an argument
list (argv, argc).

If you specify PLIST(0S), the parameters are passed without restructuring, and the
standard calling conventions of the operating system are used. See the 0S/390
Language Environment Programming Guide for details on how to access these
parameters.

If you are compiling a main() program to run under IMS, you must specify the
PLIST(0S) and TARGET(IMS) options together.

Effect on IPA Compile Step

If you specified PLIST for any compilation unit in the IPA Compile step, it generates
information for the IPA Link step. This option also affects the regular object module
if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify PLIST for the IPA Compile step, you do not need to specify it again on
the IPA Link step. The IPA Link step uses the information generated for the
compilation unit that contains the main() function, or for the first compilation unit it
finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use PLIST as a compiler option or specify it using the
#pragma runopts directive (on the IPA Compile step).

PORT | NOPORT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT: NOPORT (NOPPS)

134 0S/390 V2R6.0 C/C++ User’s Guide

CATEGORY: Portability

A\
A

PORT
NOPORT—l |—(PPS

)]
NOPPS]

The PORT option allows you to adjust the error recovery action that the compiler
takes when it encounters an ill-formed #pragma pack directive. When you specify
PORT (PPS), the compiler uses the strict error recovery mode. When you specify any
other value for either PORT or NOPORT, the compiler uses the default error recovery
mode. When you specify PORT a suboption, the suboption setting is inherited from
the default setting or from previous PORT specifications.

Default Error Recovery

When the default error recovery mode is active, the compiler recovers from errors in
the #pragma pack directive as follows:

» #pragma pack(first_value

— |If first_value is a valid S/390 value for #pragma pack, packing is done as
specified by first_value. The compiler detects the missing closing parentheses
and issues a warning message

— |If first_value is not a valid S/390 value for #pragma pack, no packing changes
are made. The compiler ignores the #pragma pack directive and issues a
warning message

» #pragma pack(first_value bad_tokens

— |If first_value is a valid S/390 value for #pragma pack, packing is done as
specified by first_value. If bad_tokens is invalid, the compiler detects it and
issues a warning message.

— |If first_value is not a valid S/390 value for #pragma pack, no packing changes
will be performed. The compiler will ignore the #pragma pack directive and
issue a warning message

» #pragma pack(valid value) extra trailing tokens
The compiler ignores the extra text and does not issue a message

Strict Error Recovery

To use the compiler’s strict error recovery mode, you must explicitly request it by
specifying PORT (PPS).

When the strict error recovery mode is active, if the compiler detects errors in the
#pragma pack directive, it ignores the pragma and does not make any packing
changes. For example, for any of the following specifications of the #pragma pack
directive:

#pragma pack(first_value
#pragma pack(first_value bad_tokens
#pragma pack(valid value) extra_trailing tokens

Effect on IPA Compile Step

The PORT option is used for source code analysis, and has the same effect on the
IPA compile step as it does on a regular compile.

Chapter 6. Compiler Options 135

Effect on IPA Link Step

The IPA link step accepts the PORT option but ignores it.

PPONLY | NOPPONLY

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v

DEFAULT: NOPPONLY

CATEGORY: Preprocessor

PP
NOPP— L EE— J
(—Y—filename)

COMMENTS—
NOCOMMENTS—
LINES
NOLINES——
— |
*

v
A

The PPONLY option specifies that only the preprocessor is to be run against the
source file. This output of the preprocessor consists of the original source file with
all the macros expanded and all the include files inserted. It is in a format that can
be compiled.

The suboptions are:

COMMENTS | NOCOMMENTS The COMMENTS suboption preserves comments in the
preprocessed output. The default is NOCOMMENTS.
LINES | NOLINES The LINES suboption issues #line directives at

include file boundaries, block boundaries and where
there are more than 3 blank lines. The default is
NOLINES.

filename The name for the pre-processed output file. The
filename may be a data set or an HFS file. If you
do not specify a file name for the PPONLY option, the

SYSUT10 ddname is used if it has been allocated. If

SYSUT10 has not been allocated, the file name is

generated as follows:

» If a data set is being compiled, the name of the
pre-processed output data set is formed using
the source file name. The high-level qualifier is
replaced with the userid under which the
compiler is running, and .EXPAND is appended
as the low-level qualifier.

 If the source file is an HFS file, the
pre-processed output is written to an HFS file
that has the source file name with .i extension.

136 0S/390 V2R6.0 C/C++ User’s Guide

n If a parameter n, which is an integer between 2 and
32760 inclusive, is specified, all lines are folded at
column n.

* If an asterisk (*) is specified, the lines are folded at
the maximum record length of 32760. Otherwise, all
lines are folded to fit into the output file, based on
the record length of the output file.

The PPONLY suboptions are cumulative. If you specify suboptions in multiple
instances of PPONLY and NOPPONLY, all the suboptions are combined and used for the
last occurrence of the option. For example, the following three specifications have
the same result:

CXX HELLO (NOPPONLY(/aa.exp) PPONLY(LINES) PPONLY(NOLINES)
CXX HELLO (PPONLY(/aa.exp,LINES,NOLINES)

CXX HELLO (PPONLY(/aa.exp,NOLINES)

All #1ine and #pragma preprocessor directives (except for margins and sequence
directives) remain. When you specify PPONLY (*), #11ine directives are generated to
keep the line numbers generated for the output file from the preprocessor similar to
the line numbers generated for the source file. All consecutive blank lines are
suppressed.

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If you
specify the SHOWINC, XREF, AGGREGATE, or EXPMAC options with the PPONLY option, the
compiler issues a warning, and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag directives in
the source file are suppressed. The compiler generates its #pragma filetag
directive at the first line in the preprocessed output file in the following format:

??=pragma filetag ("locale code page")

where ??7=is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE option.
For more information on locales, refer to the 0S/390 C/C++ Programming Guide.

The NOPPONLY option specifies that both the preprocessor and the compiler are to be
run against the source file.

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.
Effect on IPA Compile Step

The PPONLY has the same effect on the IPA Compile step as it does on a regular
compilation. It processes source code, then causes the compiler to stop processing
before it begins the IPA Compile step. You should not use this option for the IPA
Compile step.

Effect on IPA Link Step

The IPA Link step accepts the PPONLY option, but ignores it.

Chapter 6. Compiler Options 137

REDIR | NOREDIR

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: REDIR
CATEGORY: Program Execution

> RED e
NORED—

The REDIR option directs the compiler to create an object module that, when linked
and run, allows you to redirect stdin, stdout and stderr for your program from the
command line.

Effect on IPA Compile Step

If you specify the REDIR option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the REDIR option for the IPA Compile step, you do not need to specify
it again on the IPA Link step. The IPA Link step uses the information generated for
the compilation unit that contains the main() function, or for the first compilation unit
it finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use REDIR and NOREDIR as compiler options or specify
them using the #pragma runopts directive (on the IPA Compile step).

138 0S/390 V2R6.0 C/C++ User’s Guide

RENT | NORENT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I I

DEFAULT: NORENT
CATEGORY: Object Code Control

RENT ,a
NORENT—

The RENT option specifies that the compiler is to take code that is not naturally
reentrant and make it reentrant. Refer to the OS/390 Language Environment
Programming Guide for a detailed description of reentrancy.

If you use the RENT option, the Linkage Editor cannot directly process the object
module that is produced. You must use either the binder, which is described in
[Chapter 12_Rinding QS/390 C/C++ Programs” on page 289, or the prelinker, which
is described in tAppendix A Prelinking and | inking OS/390 C/C++ Programs” orl

Notes:

1. Whenever you specify the RENT compiler option, a comment that indicates its
use is generated in your object module to aid you in diagnosing your program.

2. 0S/390 C++ code always uses constructed reentrancy.

3. RENT variables reside in the modifiable writable static area for both OS/390 C
and OS/390 C++ programs.

4. NORENT variables reside in the code area (which may be write protected) for both
0S/390 C and OS/390 C++ programs.

The NORENT option specifies that the compiler is not to specifically generate
reentrant code from non-reentrant code. Any naturally reentrant code remains
reentrant.

Effect on IPA Compile Step

If you specify RENT or use #pragma strings(readonly) or #pragma
variable(RENT|NORENT) during the IPA Compile step, the information in the IPA
object file reflects the state of each symbol.

Effect on IPA Link Step

If you specify the RENT option on the IPA Link step, it ignores the option. The
reentrant/nonreentrant state of each symbol is maintained during IPA optimization
and code generation.

If you generate an IPA Link listing by using the LIST or MAP compiler option, the IPA
Link step generates a Partition Map listing section for each partition. If any symbols
within a partition are reentrant, the options section of the Partition Map displays the
RENT compiler option.

Chapter 6. Compiler Options 139

| ROUND

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I v

DEFAULT: ROUND(N)

CATEGORY: Object Code Control

=

»»—ROUND—(

) »<
<

< =

o

The ROUND (mode) option sets the rounding mode for floating-point compilations at
compile time where mode can be one of the following:

N round to the nearest representable number
M round towards minus infinity

P round towards plus infinity

yA round towards zero

ROUND() is the same as ROUND(N)

The ROUND (mode) option only applies to IEEE floating-point mode. In hexadecimal
mode, the rounding is always towards zero. If you specify ROUND (mode) in
hexadecimal floating-point mode, where mode is not Z, the compiler ignores

ROUND (mode) and issues a warning.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The ROUND option
also affects the regular object module if you request one by specifying the
"IPA(OBJECT)" option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these section is a partition. The IPA Link
step uses information from the IPA Compile step to ensure that an object is

included in a compatible partition. Refer to the LELOAT” an page 91l for further
information.

SEARCH | NOSEARCH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT:. NOSEARCH

140 0S/390 V2R6.0 C/C++ User’s Guide

CATEGORY: File Management

> SE—(—Y opt) ><
L,
NOSE

The SEARCH option directs the preprocessor to look for system include files in the
specified libraries. System include files are those files that are associated with the
#include <f11ename> form of the #include preprocessor directive. See

! for a description of the #include preprocessor directive.

For further information on library search sequences, see LSearch Sequences foi

”

The suboptions for the SEARCH option are identical to those for the LSEARCH option,
as described on page ELSEARCH | NOI SEARCH” on page 115,

The SYSLIB ddname is considered the last suboption for SEARCH, so that specifying
SEARCH (X) is equivalent to specifying SEARCH (X,DD:SYSLIB).

Any NOSEARCH option cancels all previous SEARCH specifications, and any SEARCH
options that follow it are used. When more than one SEARCH compile option is
specified, all libraries in the SEARCH options are used to find the system include files.

The NOSEARCH option instructs the preprocessor to search only those libraries that
are specified on the SYSLIB DD statement.

Notes:

1. SEARCH allows the compiler to distinguish between header files that have the
same name but reside in different data sets. If NOSEARCH is in effect, the compiler
searches for header files only in the data sets concatenated under the SYSLIB
DD statement. As the compiler includes the header files, it uses the first file it
finds, which may not be the correct one. Thus the build may encounter
unpredictable errors in the subsequent link-edit or bind, or may result in a
malfunctioning application.

2. If the filename in the #include directive is in absolute form, searching is not

performed. See [Determining whether the File Name is in Absolute Form” od

for more details on absolute #include filename.

Effect on IPA Compile Step

The SEARCH option is used for source code searching, and has the same effect on
an IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SEARCH option, but ignores it.

Chapter 6. Compiler Options 141

SERVICE | NOSERVICE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I v

DEFAULT: NOSERVICE
CATEGORY: Debug/Diagnostic

»»—SERV—(—string—) >

The SERVICE option places a string in the object module. The string is loaded into
memory when the program is executing. If the application fails abnormally, the
string is displayed in the traceback.

For OS/390 C, you can also specify this option in the source file by using the
#pragma options directive. If the SERVICE option is specified both on a #pragma
options directive and on the command line, the option that is specified on the
command line will be used.

You must enclose your string within opening and closing parentheses. You do not
need to include the string in quotes.

The following restrictions apply to the string specified:

* The string cannot exceed 64 characters in length. If it does, excess characters
are removed, and the string is truncated to 64 characters. Leading and trailing
blanks are also truncated.

» All quotes that are specified in the string are removed.

» All characters, including DBCS characters, are valid as part of the string provided
they are within the opening and closing parentheses.

» Parentheses that are specified as part of the string must be balanced. That is, for
each opening parentheses, there must be a closing one.

* When using the #pragma options directive (C only), the text is converted
according to the locale in effect.
* Only characters which belong to the invariant character set should be used, to

ensure that the signature within the object module remains readable across
locales.

Effect on IPA Compile Step

The SERVICE option has the same effect on the IPA Compile step (if you request
code generation by specifying the OBJECT suboption of the IPA option) as it does on
a regular compilation.

Effect on IPA Link Step

If you specify the SERVICE option on the IPA Compile step, or specify #pragma
options (SERVICE) in your code, it has no effect on the IPA Link step. Only the
SERVICE option you specify on the IPA Link step affects the generation of the service
string for that step.

142 0S/390 V2R6.0 C/C++ User’s Guide

SEQUENCE | NOSEQUENCE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I

CATEGORY: Source Code Control

DEFAULT for C++ NOSEQUENCE

> SEQ »><
NOSEQ—|

The SEQUENCE option defines the section of the input record that is to contain
sequence numbers. No attempt is made to sort the input lines or records into the
specified sequence or to report records out of sequence.

For OS/390 C++ programs of variable file length, the SEQUENCE option defines
columns 73 through 80 of the input record to contain sequence numbers. No
attempt is made to sort the input lines or records into those columns or to report
records out of sequence.

Options for OS/390 C

DEFAULT
» for C(F-Format): SEQUENCE (73,80)
» for C(V-Format): NOSEQUENCE

> SEQ—(m,n) <
NOSEQ4

Under OS/390 C the SEQUENCE option has the additional syntax:
SEQUENCE (m,n)

where:

m Specifies the column number of the left-hand margin. The value of m must
be greater than 0 and less than 32767.

n Specifies the column number of the right-hand margin. The value of n must

be greater than m and less than 32767. An asterisk (*) can be assigned to n
toindicate the last column of the input record. Thus, SEQUENCE (74,*) shows
that sequence numbers are between column 74 and the end of the input
record.

Note: If your program uses the #include preprocessor directive to include OS/390
C library header files and you want to use the SEQUENCE option, you must
ensure that the specifications on the SEQUENCE option do not include any
columns from 20 through 50. That is, both m and n must be less than 20, or
both must be greater than 50. If your program does not include any OS/390
C library header files, you can specify any setting you want on the SEQUENCE
option when the setting is consistent with your own include files.

Chapter 6. Compiler Options 143

Effect on IPA Compile Step

The SEQUENCE option is used for source code analysis, and has the same effect on
an IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SEQUENCE option, but ignores it.

144 0s/390 V2R6.0 C/C++ User’s Guide

SHOWINC | NOSHOWINC

SOM | NOSOM

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I

DEFAULT: NOSHOWINC
CATEGORY: Listing

> SHOW ,a
NOSHOW—

The SHOWINC option instructs the compiler to show, in both the compiler listing and
the pseudo-assembler listing, all include files processed. In the listing, the compiler
replaces all #include preprocessor directives with the source that is contained in
the include file. This option only applies if you also specify the SOURCE option.

Effect on IPA Compile Step

The SHOWINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SHOWINC option, but ignores it.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOSOM

CATEGORY: Direct-to-SOM

> SOM ><

NOSOM

The SOM option turns on implicit SOM mode, and also causes the file <som.hh> to
be included. It is equivalent to placing #pragma SOMAsDefault(on) at the start of the
translation unit.

All classes are implicitly derived from SOMObject until a #pragma SOMAsDefault(off)
is encountered.

For further details see the 0OS/390 C/C++ Programming Guide.

Chapter 6. Compiler Options 145

Effect on IPA Compile Step

The SOM option has the same effect on the IPA Compile step as it does on a regular
compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOM option for that
step.

SOMEINIT | NOSOMEINIT

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT:. SOMEINIT

CATEGORY: Direct-to-SOM

v
A

SOMEI
NOSOMEI—|

The SOMEINIT option instructs the compiler to initialize SOM classes early, before
the main function. This reduces the size of the generated object module, by
avoiding unnecessary checks to determine whether or not the SOM class is
initialized.

With either the SOMEINIT or NOSOMEINIT option in effect, any reference to a static
member of a SOM class initializes the class early.

This option has no effect if SOM mode is off.
Effect on IPA Compile Step

The SOMEINIT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMEINIT option
for that step.

SOMGS | NOSOMGS

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

‘/

DEFAULT: NOSOMGS

CATEGORY: Direct-to-SOM

146 0S/390 V2R6.0 C/C++ User’s Guide

A\
A

SOMG
NOSOMG—I

The SOMGS option instructs the compiler to disable direct access to attributes.
Instead, the get and set methods are used. This is equivalent to specifying #pragma
SOMNoDataDirect(on) as the first line of the translation unit.

The default NOSOMGS means that the direct data access method will be used. This
option has no effect if SOM mode is off.

Effect on IPA Compile Step

The SOMGS option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMSGS option for

that step.
SOMRO | NOSOMRO
C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
[
DEFAULT: NOSOMRO
CATEGORY: Direct-to-SOM

»> SOMR— (—X—C++ ClassName) | ><
NOSOMR:

The SOMRO option instructs the compiler to write the release order of the specified
classes to standard output in the form of a SOMReleaseOrder pragma. You can
capture the output from this option when developing new SOM classes, and include
the pragma in the class definition.

The SOMRO option has no effect if SOM mode is off.
For more information, see the 0OS/390 C/C++ Programming Guide.
Effect on IPA Compile Step

The SOMRO option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMRO option for
that step.

Chapter 6. Compiler Options 147

SOMVOLATTR | NOSOMVOLATTR

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

’/

DEFAULT: NOSOMVOLATTR
CATEGORY: Direct-to-SOM

> SOMV <
NOSOMY—]

The SOMVOLATTR option tells the compiler to generate volatile versions of the SOM
attribute _get and _set methods.

The following example shows the differences between the _get and _set methods
generated by OS/390 C++ without SOMVOLATTR, and the get and _set methods
generated by OS/390 C++ with SOMVOLATTR. For example, consider the following
class:
class Temp : public SOMObject {
public:

int a;

#pragma SOMAttribute(a);
}s

The OS/390 C++ compiler without the SOMVOLATTR option generates the following
function signatures for the accessor methods:

int Temp:: get a ()
void Temp:: set a (int)

The OS/390 C++ compiler with the SOMVOLATTR option generates the following
function signatures for the accessor methods:

int Temp:: get_a () const volatile
void Temp:: set a (int) volatile

Effect on IPA Compile Step

The SOMVOLATTR option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMVOLATTR option
for that step.

SOURCE | NOSOURCE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: NOSOURCE

148 0S/390 V2R6.0 C/C++ User’s Guide

CATEGORY: Listing

SO

NOSO—| |—(Sequential filename)J
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

A\
A

The SOURCE option generates a listing that shows the original source input
statements plus any diagnostic messages.

If you specify SOURCE(filename), the compiler places the listing in the file that you
specified. If you do not specify a file name for the SOURCE option, the compiler uses
the SYSCPRT ddname if you allocated one. Otherwise, the compiler constructs the file
name as follows:

» If you are compiling a data set, the compiler uses the source file name to form
the name of the listing data set. The high-level qualifier is replaced with the
userid under which the compiler is running, and .LIST is appended as the
low-level qualifier.

« if the source file is an HFS file, the listing is written to a file that has the name of
the source file with a .Ist extension in the current working directory.

The NOSOURCE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the SOURCE option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOSOURCE.
For example, the following specifications have the same result:

CXX HELLO (NOSO(/hello.Tlis) SO
CXX HELLO (SO(/hello.lis)

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:

CXX HELLO (NOSO(/hello.1is) SO(/nl.Tis) NOSO(/test.lis) SO

CXX HELLO (SO(/test.1is)

Notes:

1. If you specify data set names with the SOURCE, LIST, or INLRPT option, the
compiler combines all the listing sections into the last data set name specified.

2. If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.

SOURCE (xxx)

Effect on IPA Compile Step

The SOURCE option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SOURCE option, but ignores it.

Chapter 6. Compiler Options 149

SPILL | NOSPILL

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I v

DEFAULT: SPILL(128)

CATEGORY: Object Code Control

> SP >«
>—[NOS P—|

The SPILL option specifies the size of the spill area to be used for the compilation.
When too many registers are in use at once, the compiler dumps some of the into
temporary storage that is called the spill area.

You may have to expand the spill area; if so, you will receive a compiler message
telling you the size to which you should increase the spill area. Once you know the
spill area that your source program requires, you can add a #pragma

options (SPILL(size)) directive to your source. The maximum spill area size is
3900. Typically, you will only need to specify this option when compiling very large
programs with OPTIMIZE.

Notes:

1. There is an upper limit of 4096 bytes for the combined area for your spill area,
local variables and arguments passed to called functions at OPT. For best use of
your stack, do not pass large arguments, such as structures, by value.

2. If you specify NOSPILL, the compiler defaults to SPILL(128).

Effect on IPA Compile Step

If you specify the SPILL option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the SPILL option for the IPA Link step, it uses the value of the option
that you specify. The IPA Link step Prolog and Partition Map listing sections display
the value of the option that you specify.

If you do not specify the option for the IPA Link step, the value used for a partition
is the maximum SPILL option that you specified during the IPA Compile step for any
compilation unit that provides code for that partition. The Prolog section of the IPA
Link step listing does not display the value of the option, but the Partition Map
listing section does.

The option value that you specified for each IPA object file on the IPA Compile step
appears in the IPA Link step Compiler Options Map listing section.

150 0S/390 V2R6.0 C/C++ User’s Guide

SRCMSG | NOSRCMSG

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOSRCMSG
CATEGORY: Debug/Diagnostic

> SRCM e

NOSRCMJ

The SRCMSG option adds the corresponding source code lines to the diagnostic
messages that are written to stderr. A finger line with a pointer to the column
position may also be shown.

NOSCRCMSG indicates that the source lines are not added to the diagnostic messages.
Effect on IPA Compile Step

The SRCMSG option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SRCMSG option.

SSCOMM | NOSSCOMM

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT: NOSSCOMM

CATEGORY: Source Code Control

> SS »<
b_[NOSS—l

The SSCOMM option instructs the C compiler to recognize two slashes (/) as the
beginning of a comment terminates at the end of the line. It will continue to
recognize /* */ as comments.

If you include your OS/390 C program in your JCL stream DLM, be sure to change
the delimiters so that your comments are recognized as OS/390 C comments and
not as JCL statements. For example:

//COMPILE.SYSIN DD DATA,DLM=@@

#include <stdio.h>
void main(){

Chapter 6. Compiler Options 151

// 05/390 C comment
printf("hello world\n");
// A nested 0S/390 C /* =/ comment

}
ee

//* JCL comment
NOSSCOMM indicates that /* */ is the only valid comment format.

C++ Note: You can include the same delimiter in your JCL for C++ source code,
however you do not need to use the SSCOMM option.

Effect on IPA Compile Step

The SSCOMM option is used for source code analysis, and has the same effect on the
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SSCOMM option, but ignores it.

START | NOSTART

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e e e e v
DEFAULT: START
CATEGORY: Object Code Control
> STA ><

NOSTA—|

The START option specifies that CEESTART is to be generated whenever necessary.
NOSTART indicates that CEESTART is never to be generated.

Whenever you specify the START compiler option, a comment that indicates its use
will be generated in your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the START option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step uses the value of the START option that you specify for that step.
It does not use the value that you specify for the IPA Compile step.

152 0S/390 V2R6.0 C/C++ User’s Guide

| STRICT | NOSTRICT

TARGET

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e e e e e
DEFAULT: STRICT
CATEGORY: Object Code Control
> STRICT »a

NOSTRICT—|

The STRICT option instructs the compiler to perform computational operations in a
rigidly defined order so that the results are always determinable and recreatable.

NOSTRICT allows the compiler to reorder certain computations for better
performance. However, the end result may not be exactly the same as when STRICT
is specified.

In IEEE floating-point mode, NOSTRICT turns on FLOAT (MAF) unless you explicitly
specify FLOAT (NOMAF).

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA Link
step uses information from the IPA Compile step to ensure that an object is
included in a compatible partition. See LELOAT” on page 91 for more information on
the effect of the STRICT option on the IPA Link step.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
- v - v v

DEFAULT: TARGET(LE, CURRENT)

CATEGORY: Program Execution and Object Code Control

Chapter 6. Compiler Options 153

»>—TARGET— (—Y) ><
LE
IMS
CURRENT
0SV1R2

The TARGET option specifies the runtime environment and OS/390 release for which
the object module is to be generated. To use this option, select a runtime
environment of either LE or IMS. Then select the OS/390 Release, CURRENT or
0SV1R2. If you do not select a runtime environment or OS/390 Release the default is
TARGET (LE,CURRENT) .

TARGET() Generates object code to run under OS/390 Language
Environment. It is the same as TARGET (LE,CURRENT).

The following suboptions target the Runtime Environment:

TARGET(LE) Generates object code to run under OS/390 Language
Environment. This is the default.

TARGET (IMS) Generates object code to run under the Information Management
System(IMS) subsystem. If you are compiling the main program,
you must also specify the PLIST(0S) option.

For more information about these suboptions refer to the topic
TARGET Runtime Environment Suboptions (LE,IMS).

The following suboptions target the OS/390 Release at program runtime:

TARGET (CURRENT)
Generates object code to run under the current version of OS/390.
This is the default.

TARGET (0OSV1R2)
Generates object code to run under OS/390 Version 1 Release 2
and subsequent releases.

For more information about these suboptions refer to [TARGET OS/390 Releasd

The compiler generates a comment that indicates the value of TARGET in your object
module to aid you in diagnosing problems in your program.

If you specify the TARGET compile option more than once, the compiler uses the last
set of specified suboptions.

TARGET 0OS/390 Release Suboptions (CURRENT, OSV1R2)

The Target(OSV1R2) compiler option will allow you to generate code that can be
executed on a OS/390 Version 1 Release 2 system and subsequent versions. In
order to use this compiler option, you must utilize data sets for the Language
Environment and Class Libraries from the appropriate level of OS/390.

154 0s/390 V2R6.0 C/C++ User’s Guide

For example, to generate code to execute on an OS/390 V1R3 system, use V1R3
Language Environment and Class Library datasets during the assembly, compilation
and link-edit phases of application development on the OS/390 V2R6 system.

This compiler option will not allow you to exploit new functions provided on the
higher level OS/390 system, but rather allow you to build an application on a higher
level OS/390 system and execute on a lower level system.

Restrictions for C/C++: All input libraries used during the application build

process must be the appropriate level for the target OS/390 system.

* These system input libraries include any LE or C++ libraries, such as header,
object and Load Module (SCEEKLED) libraries.

* Ensure that any other libraries incorporated in the application, are compatible
with the target OS/390 system.

While there are no restrictions on the use of ARCH and TUNE with TARGET,a ensure
that the level specified is consistent with the target hardware.

TARGET Suboption Restrictions
CURRENT None.
0SV1R2 * The macro _TARGET_LIB_is set to X'21020000’. The _BFP_ (add

work macro) is not defined.

* The compiler disables the language feature Tong long and
issues error messages if encountered in the source code.

» The compiler ignores the following options and issues a warning

message:
FLOAT() Default behaviour is FLOAT (HEX).
ROUND () Default behaviour is ROUND(N).

DLL(CBA) Default behaviour is DLL(NOCBA) .

Restrictions for C: TARGET(0SV1R2) is not permitted in a #pragma options directive.

If you specify TARGET(0SV1R2) on the command line, and one or more of the
disallowed options appears in a #pragma directive, the compiler issues a warning
message and disables the option.

Effect on IPA Compile Step: If you specify the TARGET option for any compilation
unit in the IPA Compile step, the compiler generates information for the IPA Link
step. This option also affects the regular object module if you request one by
specifying the IPA(OBJECT) option.

The user is responsible for ensuring that all IPA Object files are compiled with the
appropriate header library files.

Effect on IPA Link Step: If you specify TARGET on the IPA Link step, it overrides
the TARGET value that you specified for the IPA Compile step.

The IPA Link step accepts the CURRENT and 0SV1R2 suboptions. However, when
using TARGET suboptions ensure that:

» All IPA Obiject files are compiled with the appropriate TARGET suboption and
header files

Chapter 6. Compiler Options 155

» All non-IPA object files are compiled with the appropriate TARGET suboption and
header files

* All other input libraries are compatible with the specified OS/390 runtime release
TARGET Runtime Environment Suboptions (LE,IMS)

The TARGET Runtime Enivronment Suboption allows you to select a runtime
environment of either LE or IMS.

Effect on IPA Compile Step: If you specify the TARGET option for any compilation
unit in the IPA Compile step, the compiler generates information for the IPA Link
step. This option also affects the regular object module if you request one by
specifying the IPA(OBJECT) option.

Effect on IPA Link Step: If you specify TARGET on the IPA Link step, it has the

following effects:

* It overrides the TARGET value that you specified for the IPA Compile step.

* It overrides the value that you specified for #pragma runopts (ENV). If you specify
TARGET(LE) or TARGET(), the IPA Link step sets the value of #pragma
runopts (ENV) to OS/390. If you specify TARGET (IMS), the IPA Link step sets the
value of #pragma runopts(ENV) to IMS.

* |t may override the value that you specified for #pragma runopts(PLIST) or the
PLIST compiler option. If you specify TARGET(LE) or TARGET(), and you set the
value set for the PLIST option to something other than HOST, the IPA Link step
sets the values of #pragma runopts(PLIST) and the PLIST compiler option to IMS.
If you specify TARGET (IMS), the IPA Link step unconditionally sets the values of
the PLIST compiler option and #pragma runopts (PLIST) to IMS.

TEMPINC | NOTEMPINC

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

‘/

DEFAULT: PDS TEMPINC(TEMPINC) or HFS directory TEMPINC(./tempinc)

CATEGORY: File Management

> TEMPINC e
NOTEMPINC—| |—(location)—|

TEMPINC(location) places all template instantiation files into /ocation, which may be a
PDS or an HFS directory. If you do not specify a location, the compiler places all
template instantiation files in a default location. If the source resides in a data set,
the default location is a PDS with a low-level qualifier of TEMPINC. The high-level
qualifier is the userid under which the compiler is running. If the source resides in
an HFS file, the default location is the HFS directory ./tempinc.

The NOTEMPINC option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the TEMPINC option without a filename
suboption, then the compiler uses the filename that you specified in the earlier
NOTEMPINC. For example, the following specifications have the same result:

156 0S/390 V2R6.0 C/C++ User’s Guide

CXX HELLO (NOTEMPINC(/hello) TEMPINC

CXX HELLO (TEMPINC(/hello)

If you specify TEMPINC and NOTEMPINC multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:

CXX HELLO (NOTEMPINC(/hello) TEMPINC(/nl) NOTEMPINC(/test) TEMPINC
CXX HELLO (TEMPINC(/test)

If you have large numbers of recursive templates, consider using FASTT. See

LEASTTEMPINC | NOFASTTEMPINC” on page 89 for details.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.

TEMPINC (xxx)

Effect on IPA Compile Step

The TEMPINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the TEMPINC option for
that step.

TERMINAL | NOTERMINAL

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I e I

DEFAULT. TERMINAL

CATEGORY: Debug/Diagnostic

>> TERM <
—[NOTERM—l

The TERMINAL option directs all of the compiler’s diagnostic messages to stderr.

If you specify NOTERMINAL, then no diagnostic messages are sent to stderr. Under
0S/390 batch, the default for stderr is SYSPRINT.

If you specify the PPONLY option, the compiler turns on TERM.
Effect on IPA

The TERMINAL option affects both the IPA Compile and the IPA Link steps in the
same way that it affects a regular compilation.

Chapter 6. Compiler Options 157

TEST | NOTEST

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I I I

CATEGORY: Debug/Diagnostic

DEFAULT:

NOTEST (HOOK)

0OS/390 C /C++

A\
A

TEST
NOTEST—|

()
i:HOOKﬂ
NOHOOK

The TEST suboptions that are common to C compile, C++ compile, and IPA Link

steps are:

HOOK | NOHOOK

When NOOPT is in effect

When OPT is in effect

HOOK

* For C++ compile, generates all
possible hooks

For C compile, generates all
possible hooks based on current
settings of BLOCK, LINE, and PATH
suboptions.

For IPA Link, generates Function

Entry, Function Exit, Function

Call, and Function Return hooks
e For C++ compile, generates

symbol information

For C compile, generates

symbol information unless NOSYM

is specified

For IPA Link, does not generate

symbol information

Generates Function Entry,
Function Exit, Function Call and
Function Return hooks

Does not generate symbol
information

NOHOOK

* Does not generate any hooks

e For C++ compile, generates
symbol information.

For C compile, generates
symbol information based on the
current settings of SYM and BLOCK

For IPA Link, does not generate
any symbol information

* Does not generate any hooks

» Does not generate symbol
information

The TEST suboptions generate symbol tables and program hooks that the Debug
Tool needs to debug your program. The choices you make when compiling your
program affect the amount of Debug Tool function available during your debugging

session.

158 0S/390 V2R6.0 C/C++ User’s Guide

Trace Program Execution: To look at the flow of your code to aid in problem
determination, use the HOOK suboption with OPT in effect. Function entry, function
exit, function call, and function return hooks are generated. No symbol information
is generated.

When NOOPT is in effect, and you use the HOOK suboption, the debugger runs slower,
but all the Debug Tool commands such as AT ENTRY * are available.

Using TEST | NOTEST: For OS/390 C compile, you can specify the TEST | NOTEST
option on the command line and in the #pragma options preprocessor directive.
When you use both methods, the option on the command line takes precedence.
For example, if you usually do not want to generate debugging information when
you compile a program, you can specify the NOTEST option on a #pragma options
preprocessor directive. When you do want to generate debugging information, you
can then override the NOTEST option by specifying TEST on the command line rather
than editing your source program. Suboptions that you specified in a #pragma
options(NOTEST) directive, or with the NOTEST compiler option, are used if TEST is
subsequently specified on the command line.

If you specify the NOTEST option, debugging information is not generated.

You can use the CSECT option with the TEST option to place your debug information
in a named CSECT. This enables the compiler and linker to collect the debug
information in your module together which may improve the runtime performance of
your program.

If you specify the INLINE and TEST compiler options when NOOPTIMIZE is in effect,
INLINE is ignored.

If you specify the TEST option, the compiler turn on GONUMBER.

Note: To debug the following types of code, use the latest Remote Debugger
available from the OS/390 C/C++ Beta site at
http://www.software.ibm.com/ad/c390/cmvsbeta.htm:

* |EEE code
» code that uses the long long data type
e code that runs in a POSIX environment

Additional OS/390 C Compile Syntax

DEFAULT for C compile : NOTEST (HOOK,SYM,BLOCK,LINE,PATH)

TEST (—~) ><
NOTEST—l SYM—

BLOCK—

LINE—|

PATH—

In addition to HOOK and NOHOOK, the following suboptions are available for C code.
You can use these suboptions along with the HOOK suboption for finer control when
debugging your program (default suboptions are underlined):

Chapter 6. Compiler Options 159

SYM[NOSYM Generates symbol table information

BLOCK | NOBLOCK Generates symbol information for nested blocks

LINE | NOLINE Generates line number hooks

PATH | NOPATH Generates path breakpoints

ALL Is equivalent to TEST (HOOK,SYM,BLOCK,LINE,PATH)

NONE Is equivalent to TEST
(HOOK,NOSYM,NOBLOCK,NOLINE,NOPATH)

Additional OS/390 C Compile suboptions

The TEST suboptions BLOCK, LINE,and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks which are used to instruct the Debug Tool where to gain control of your
program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. The Debug Tool uses the symbol tables to obtain
information about the variables in the program.

SYM Generates symbol tables in the program’s object output that gives you
access to variables and other symbol information.

* You can reference all program variables by name, allowing you to
examine them or use them in expressions.

* You can use the Debug Tool command GOTO to branch to a label
(paragraph or section name).

BLOCK Inserts only block entry and exit hooks into your program’s object output. A
block is any number of data definitions, declarations, or statements that are
enclosed within a single set of braces. BLOCK also creates entry hooks and
exit hooks for nested blocks. If SYM is enabled, symbol tables are generated
for variables local to these nested blocks.

* You can only gain control at entry and exit of blocks.

* Issuing a command such as STEP causes your program to run, until it
reaches the exit point.

LINE Generates hooks at most executable statements. Hooks are not generated
for the following:
» Lines that identify blocks (lines that contain braces)
* Null statements
* Labels
« Statements that begin in an #include file.

PATH Generates hooks at all path points.

» This option does not influence the generation of entry and exit hooks for
nested blocks. You must specify the BLOCK suboption if you desire such
hooks.

* The Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, the Debug Tool
gains control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

* The Debug Tool command GOTO is valid only for statements and labels
that coincide with path points.

160 0S/390 V2R6.0 C/C++ User’s Guide

TUNE

ALL Inserts block and line hooks, and generates symbol table. Hooks are
generated at all statements, all path points (if-then-else, calls, and so on),
and all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE Generates all compiled-in hooks only at function entry and exit points. Block
hooks and line hooks are not inserted, and the symbol tables are
suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

For more information on debugging your program, see the Debug Tool User’s Guide
and Reference .

Effect on IPA Compile Step

On the IPA Compile step, you can specify all of the TEST suboptions that are
appropriate for the language of the code that you are compiling. However, they
affect processing only if you requested code generation, and only the conventional
object file is affected. If you specify the NOOBJECT suboption of the IPA compiler
option on the IPA Compile step, the IPA Compile step ignores the TEST option.

Effect on IPA Link Step

The IPA Link step supports only the TEST, TEST(HOOK), TEST(NOHOOK), and NOTEST
options. If you specify TEST(HOOK) or TEST, the IPA Link step generates function call,
entry, exit, and return hooks. It does not generate symbol table information. If you
specify NOTEST, the IPA Link step does not generate any debugging information. If
you specify TEST(NOHOOK), the IPA Link step generates limited debug information
without any hooks. If you specify any other TEST suboptions for the IPA Link step, it
turns them off and issues a warning message.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
- v v v -

DEFAULT: TUNE(3). If TUNE level is lower than ARCH, TUNE is forced to ARCH.

CATEGORY: Object Code Control

A\
A

»»—TUN(n)

The TUNE option specifies the architecture for which the executable program will be
optimized. The option will allow the optimizer to take advantage of architectural
differences such as scheduling of instructions.

You specify the group to which a model number belongs as a sub-parameter. If you
specify a model which does not exist or is not supported, a warning message is
issued stating that the suboption is invalid and that the default will be used.

Current models that are supported:

Chapter 6. Compiler Options 161

0 This option generates code that is executable on all models, but it will not
be able to take advantage of architectural differences on the models
specified below.

1 This option generates code that is executable on all models but is optimized
for the following models:

* 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

* 9021-xx1 and 9021-xx2

2 This option generates code that is executable on all models but that is
optimized for the following and follow on models:

* 9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003
* 9672-Rx1, 9672-Exx, and 9672-Pxx

3 This option is the default. Produces code that is optimized for the 9672 G5
models

A comment that indicates the level of the TUNE option will be generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the TUNE option for any compilation unit in the IPA Compile step, the
compiler saves information for the IPA Link step. This option also affects the regular
object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the TUNE option for the IPA Link step, it uses the value of the option
you specify. The value you specify appears in the IPA Link step Prolog listing
section and all Partition Map listing sections.

If you do not specify the option on the IPA Link step, the value it uses for a partition
depends upon the TUNE option you specified during the IPA Compile step for any
compilation unit that provided code for that partition. If you specified the same TUNE
value for all compilation units, the IPA Link step uses that value. If you specified
different TUNE values, the IPA Link step uses the highest value of TUNE.

If the resulting level of TUNE is lower than the level of ARCH, TUNE is set to the level of
ARCH.

The Partition Map section of the IPA Link step listing, and the object module display
the final option value for each partition. If you override this option on the IPA Link
step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the value of
the TUNE option that you specified on the IPA Compile step for each object file.

162 0S/390 V2R6.0 C/C++ User’s Guide

UNDEFINE

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
e I I

DEFAULT: no action

CATEGORY: Preprocessor

»»—UNDEF— (—YX—name)

A\
A

UNDEFINE(name) removes any value that name may have and makes its value
undefined.

For example, if you set 0S2 to 1 with DEF(0S2=1), you can use UNDEF(0S2) option to
remove that value.

Effect on IPA Compile Step

The UNDEFINE option is used for source code analysis, and has the same effect on
the IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the UNDEFINE option, but ignores it.

UPCONV | NOUPCONV

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT: NOUPCONV

CATEGORY: Source Code Control

>> UPC <
_[NOUPC—l

The UPCONV option causes the OS/390 C compiler to follow unsignedness preserving
rules when doing OS/390 C/C++ type conversions; that is, when widening all
integral types (char, short, int, Tong). Use this option when compiling older
0S/390 C/C++ programs that depend on the older conversion rules.

Whenever you specify the UPCONV compiler option, a comment noting its use will be
generated in your object module to aid you in diagnosing your program.

Chapter 6. Compiler Options 163

Effect on IPA Compile Step

The UPCONV option is used for source code analysis, and has the same effect on the
IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts UPCONV option, but ignores it.

USEPCH | NOUSEPCH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v -

DEFAULT: NOUSEPCH

CATEGORY: File Management

v
A

USEP

NOUSEP—| |—(Sequential filename)J
Partitioned data set
Partitioned data set (member)—
Hierarchical filename
Hierarchical directory

The USEP option instructs the compiler to use precompiled header files. If you use
USEP alone, the compiler searches for the specified file and uses it. If the file you
specified does not exist, the compiler continues with a normal compilation.

If you specify the GENP and USEP options together, the compiler determines if the last
file that is specified exists. If it does, the compiler updates the file if necessary, and
USEP takes effect. If it does not exist, the compiler creates the file, and USEP takes
effect. If you consistently use both options, for example by coding them in your JCL,
you can ensure that you are always using current precompiled header files.

If you specify USEP(filename) or GENP(filename) USEP, the compiler uses the
specified name for the precompiled header file. If you do not specify a filename for
either option, the compiler uses the SYSCPCH ddname if you allocated one.
Otherwise, the compiler constructs the file name as follows:

» If you are compiling a data set, the compiler uses the source file name to form
the name of the precompiled header file data set. The high-level qualifier is
replaced with the userid under which the compiler is running, and PCH (for C) or
PCHPP (for C++) is appended as the low-level qualifier.

 If the source file is an HFS file, the precompiled header file name is formed using
the name of the source file with a .pch (for C) or .pchpp(for C++) extension in
the current working directory.

For more information on using GENP and USEP together, see tlsing the GENP and

Notes:
1. The compiler ignores this option if you specify the options PPONLY, SHOWINC, or
EXPMAC.

164 0S/390 V2R6.0 C/C++ User’s Guide

2. You cannot use a C precompiled header file for C++, or a C++ precompiled
header file for C.

3. If you specify different file names with the GENP and USEP options, the file name
that is specified last is used with both options.

Effect on IPA Compile Step

The USEP option is used for source code analysis, and has the same effect on the
IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the USEP option, but ignores it.

WSIZEOF | NOWSIZEOF

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: NOWSIZEOF
CATEGORY: Source Code Control

> WSIZEOF . ,e
NOWSIZEOF

When you use the WSIZEOF option, sizeof returns the size of the widened type for
function return types instead of the size of the original return type. For example, if
you compile the following program with the WSIZEOF option, the value of i is 4.

char foo();
i = sizeof foo();

C/C++ compilers prior to and including C/C++ MVS/ESA Version 3 Release 1
returned the size of the widened type instead of the original type for function return

types.

The OS/390 C/C++ compiler now gives i the value 1, which is the size of the
original type char.

If your source code depends on the behavior of the old compilers, use the WSIZEOF
option to return the size of widened type for function return types.

The WSIZEOF option has exactly the same effect as putting a #pragma wsizeof (on)
at the beginning of your source file. For more information on #pragma wsizeof(on),
see 0S/390 C/C++ Language Reference .

You cannot specify the WSIZEOF option in a #pragma options directive.

Effect on IPA Compile Step

The WSIZEOF option has the same effect on the IPA Compile step that it does on a
regular compilation.

Chapter 6. Compiler Options 165

Effect on IPA Link Step

The IPA Link step accepts the WSIZEOF option, but ignores it.

XREF | NOXREF

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
v v v v v

DEFAULT: NOXREF

CATEGORY: Listing

v
A

XR
NOXR—|

The XREF option generates a cross-reference listing that shows file definition, line
definition, reference, and modification information for each symbol. It also generates
the External Symbol Cross Reference.

For C, a separate offset listing of the variables will appear after the cross reference
table.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results:

XREF (xxx)
Effect on IPA Compile Step

For C, if you specify the XREF, IPA(ATTRIBUTE), or IPA(XREF) option for the IPA
Compile step, the compiler saves symbol storage offset information in the IPA object
file. No such information is produced for the regular object module that is produced
by using IPA(OBJECT). The XREF|NOXREF compiler option and #pragma

options (XREF|NOXREF) have the same effect on IPA.

For C++, this option has the same effect on the IPA Compile step as it does on a
regular C++ compilation.

Effect on IPA Link Step

If you specify the XREF option for the IPA Link step, it generates an External Symbol
Cross Reference listing section for each partition.

The IPA Link step creates a Storage Offset listing section if you created your IPA

objects with the C compiler and the XREF, IPA(ATTR), or IPA(XREF) option, and if IPA
did not coalesce the symbols for the current partition.

166 0S/390 V2R6.0 C/C++ User's Guide

XSOMINC | NOXSOMINC

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOXSOMINC

CATEGORY: Direct-to-SOM

»—[xs (—)
NOXS—| I—suboption—|

A\
A

The XSOMINC option allows you to exclude header files when implicit SOM mode is
turned on. By excluding header files, you prevent the classes in those header files
from deriving from the SOMobject class when implicit SOM mode is turned on. You
can exclude header files for sets of partitioned data sets (PDSs) or Hierarchical File
System (HFS) directories.

suboption may be one of the following:

* A set of partitioned data sets that are specified as data set qualifiers followed by
a plus sign. If the OE compiler option is in effect, you must prefix the first data set
qualifier with a double slash (//). The double slash is optional if you do not
specify the OE option.

* An HFS directory or directories. The directory name must end with a slash. If you
do not specfiy an ending slash, the compiler appends one.

The following examples illustrate the use of the different suboptions:
Example 1- set of PDSs, quotes used around qualifiers

If you specify the following, any PDS name that starts with the qualifiers
myuserid.TEST is excluded:

XSOMINC ('myuserid.TEST.+')

For example, the compiler excludes the following data sets:
myuserid.TEST

myuserid.TEST.CXXHDR

Example 2- set of PDSs, no quotes used around qualifiers

If you do not use single quotes around the data set qualifiers, the compiler prefixes
the data set qualifiers with your default high-level qualifier.

For example, if you specify XSOMINC (TEST.+), and your default high-level qualifier is
myuserid, the compiler excludes the following data sets:

myuserid.TEST
myuserid.TEST.CXXHDR

Chapter 6. Compiler Options 167

Example 3-absolute HFS file name

If you specify an absolute HFS file name (one with a directory name) on an
#include statement, the compiler compares that name against the suboptions
specified on the XSOMINC option. If the directory names match, the compiler
excludes the classes in the specified file.

For example, if you specify XSOMINC(/dirname/) and #include "/dirname/a.h", the
directory names match, and the compiler excludes /dirname/a.h.

Example 4-relative HFS file name

If you specify a relative HFS file name (one without a directory name) on a #include
statement, the compiler combines this file name with the suboptions specified for
the SEARCH or LSEARCH options. The compiler compares the resulting file name to
what you specified for the XSOMINC option, and if the directory names match,
excludes the file.

For example, if you specify the following:

XSOMINC (/dirname/)
LSEARCH(/dirname/)

#include "new/a.h."

The resulting file name is /dirname/new/a.h. The directory name matches what you
specified on the XSOMINC option, and the compiler excludes the file.

If you specify XSOMINC more than once, the compiler will use all of the XSOMINC
suboptions to determine what to exclude. If you specify the NOXSOMINC option, the
compiler does not use previously specified XSOMINC options. However, the compiler
will use XSOMINC options that you specify after the NOXSOMINC option.

Although the default is NOXSOMINC, system programmers should set the default to
XSOMINC (//'high-level-qualifier.SCEEH.+ '), which instructs the compiler to
exclude classes in all standard OS/390 C/C++ header files from inheriting from
SOMobject when implicit SOM mode is on.

This option has no effect if implicit SOM mode is off.
Effect on IPA Compile Step

The XSOMINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the XSOMINC option for
that step.

Description of Compatible Compiler Options

The following section describes compiler options which are compatible with previous
versions of the compiler. Use these options only if they are already in your code.
For new programs, you should use the replacement option that is listed in
m. Compiler options are listed alphabetically. The syntax diagrams show
the abbreviated forms of the compiler options.

168 0S/390 V2R6.0 C/C++ User’s Guide

Note: Some parameters such as the output data set may differ between the option
that is described and its replacement option. Read the description of the
replacement option before you use it.

DECK | NODECK

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I

DEFAULT: NODECK
CATEGORY: File Management

> DECK ,e
NODECK

The DECK option specifies whether the compiler is to produce an object module and
store it in the data set defined by the SYSPUNCH DD statement. For new OS/390
C/C++ programs, use the OBJECT option. [fahle 23 details the relationship between
the DECK and OBJECT options. For a description of OBJECT see m

Table 22. Relationship between DECK and OBJECT
DECK | NODECK OBJECT |

Option NOOBJECT Option Result

NODECK OBJECT Object module is generated and stored in
data set defined by SYSLIN DD

DECK OBJECT Object module is generated. It is stored in

data set defined by SYSLIN DD. A warning
will be issued.

NODECK NOOBJECT No object module is generated

DECK NOOBJECT Object module is generated and stored in
data set defined by SYSPUNCH DD

Note: The defaults are OBJECT and NODECK

Effect on IPA Compile Step

The DECK option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The DECK option has the same effect on the IPA Compile step as it does on a
regular compilation. The DECK option only affects the step on which it is specified, so
if you specify it for the IPA Compile step, it has no effect on the IPA Link step.

Chapter 6. Compiler Options 169

HWOPTS | NOHWOPTS

SYSLIB

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I v
DEFAULT: NOHWOPTS

CATEGORY: Preprocessor

»—|:Hw0
NOHWQ————

Note: The ARCH option has replaced the HWOPTS option. HWOPTS (STRING) maps to

(STR)
|—(NOSTR)—|

ARCH(1), and HWOPTS (NOSTRING) maps to ARCH(0). If you specify both HWOPTS

and ARCH, ARCH takes effect. Use the ARCH option instead of HWOPTS when

compiling new OS/390 C programs.

See lARCHITECTURE” on page 73

The HWOPTS option specifies whether the compiler is to generate code to take

advantage of different hardware. Suboptions are:

STRING

NOSTRING

Creates code for hardware that has Logical String
Assist (LSA). On such hardware, built-in functions

will have better performance if you select this
option.

Creates code for hardware that does not have LSA.

Effect on IPA Compile Step

If you specify the HWOPTS option for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.
Effect on IPA Link Step

The HWOPTS option has the same effect on the IPA Link step as the ARCH(1) option.

Refer to LARCHITECTURE” on page 73 for more information.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
1/ 1/ -
DEFAULT: no action

CATEGORY: File Management

170 0S/390 V2R6.0 C/C++ User’s Guide

»>—SYSL—(—pdsnames-1list—)

A\
A

Note: When compiling new OS/390 C/C++ applications, use SEARCH instead of
SYSLIB.

The SYSLIB option specifies a list of PDSs that contain system header files. The
PDSs in the list are dynamically allocated to the SYSLIB DD name. If you already
have a SYSLIB ddname specified, the compiler uses that ddname instead of the list
that you specified, and issues a warning message.

If you want to override the default SYSLIB that the CC exec allocated, you must
allocate the ddname SYSLIB before you invoke CC. If the ddname SYSLIB is not
already allocated before you invoke the CC exec, CC will allocate the default SYSLIB.
If you invoke CC with the SYSLIB compiler option, the compiler ignores the option
specification, and CC will allocate the default SYSLIB CEE.SCEEH.H and
CEE.SCEEH.SYS.H.

Effect on IPA Compile Step

The SYSLIB option is used for source code analysis, and has the same effect on the
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SYSLIB option, but ignores it.

SYSPATH | NOSYSPATH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

DEFAULT: NOSYSPATH

CATEGORY: File Management

> SYS »><
|—(—pach ist—)J

NOSYS

Note: When compiling new OS/390 C++ applications or for HFS searching, use
SEARCH instead of SYSPATH. If you use both SEARCH and SYSPATH, the compiler
uses the option that you specified last, and ignores the other.

The SYSPATH option specifies pathnames. The compiler uses these pathnames to
construct names of PDSs that it will search for system header files. In addition,
0S/390 C++ supports SYSLIB ddnames so that header files can be searched in
exactly the same way they are in OS/390 C. The compiler uses SYSLIB to search
for include file after it performs a search using the OS/390 C++ SYSPATH directive.

Chapter 6. Compiler Options 171

USERLIB

You must specify each path in the SYSPATH compiler option as a sequence of
directory names that are separated by a slash (/). The directory name must be one
of the following:

* Avalid PDS qualifier that does not contain a dot (.)
e The current directory (.)
e The parent directory (..)

The following are all valid path names:
* /cbc/cxxproto

* /Usr/Include

* /tcpip/include

* /dept120/../usr/include/.

* local /include

Note: /deptl120/../usr/include/. resolves to the same path as /usr/include

If an include file begins with a slash (/), it is considered absolute ; otherwise, it is
considered relative . A relative file uses the SYSPATH information, in addition to itself,
to build a PDS member name, whereas an absolute file does not require the
SYSPATH information. An absolute file is considered explicit, and the compiler does
not perform a search.

A SYSPATH of /CBC/SCBCH tells the compiler to search for the following:
* *_h files in 'CBC.SCBCH.H'

e *.c files in 'CBC.SCBCH.C'

e *.in] files in 'CBC.SCBCH.INL'

For additional information see tlsing Include Files” on page 2486

To reset the current syspath information, you must specify NOSYSPATH followed by
SYSPATH. You must specify NOSYSPATH to reset your installation-defined SYSPATH.

Effect on IPA Compile Step

The SYSPATH option has the same effect on the IPA Compile step as it has on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SYSPATH option for
that step.

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link
I I I

DEFAULT: no action

CATEGORY: File Management

172 0S/390 V2R6.0 C/C++ User’s Guide

»»—USERL—(—pdsnames-1ist—)

A\
A

Note: When compiling new OS/390 C/C++ applications, use the LSEARCH option
instead of USERLIB. If you use both LSEARCH and USERLIB, the compiler uses
the option that you specified last, and ignores the other.

The USERLIB option specifies a list of PDSs that contain user header files. The
PDSs in the list are dynamically allocated to the USERLIB ddname. If you already
have a USERLIB ddname specified, the compiler uses that ddname instead of the
list that you specified, and issues a warning.

Effect on IPA Compile Step

The USERLIB option is used for source code analysis, and has the same effect on
the IPA Compile step as it has on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the USERLIB option, but ignores it.

USERPATH | NOUSERPATH

C C++ Accepted by Special IPA Processing
IPA Link IPA Compile IPA Link

7

DEFAULT: NOUSERPATH

CATEGORY: File Management

USER:
I—(—pathlist—)J
NOUSER:

A\
A

Note: When compiling new OS/390 C++ applications or for HFS searching, use
LSEARCH instead of USERPATH. If you use both LSEARCH and USERPATH, the
compiler uses the option that you specified last, and ignores the other.

The USERPATH option specifies paths to search for user-defined header files. The
compiler uses these pathnames to construct names of PDSs that it searches for
your header files. The USERPATH option only applies to searches for PDSs.

You must specify each file in the USERPATH compiler option as a sequence of
directory names that are separated by a slash (/). The directory name must be one
of the following:

» Avalid PDS qualifier that does not contain a dot (.)

* The current directory (.)

* The parent directory (..)

The following are all valid path names:
» /Usr/Include
 /[tepip/include

Chapter 6. Compiler Options 173

* /dept120/../usr/include/.
* local /include

Note: /deptl20/../usr/include/. resolves to the same path as /usr/include

If an include file begins with a slash (/), it is absolute ; otherwise, it is relative . A
relative file uses the USERPATH information, in addition to itself, to build a PDS
member name, whereas an absolute path does not require the USERPATH
information. If an OS/390 format is used, the file is explicit and no additional
searching is performed.

For example, a USERPATH of /USER/HEADERS instructs the compiler to search for the
following:

*.h files in 'USER.HEADERS.H'

*.c files in '"USER.HEADERS.C'

*.in1 files in '"USER.HEADERS.INL'

You can also use the LSEARCH option to control the search for include files. For

additional information, see tlsing Include Files” an page 246,

Effect on IPA Compile Step

The USERPATH option has the same effect on the IPA Compile step as it has on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the USERPATH option
for that step.

Using the OS/390 C Compiler Listing

If you select the SOURCE or LIST option, the compiler creates a listing that contains
information about the source program and the compilation. If the compilation
terminates before reaching a particular stage of processing, the compiler does not
generate corresponding parts of the listing. The listing contains standard information
that always appears, together with optional information that is supplied by default or
specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all
compiler diagnostic messages to your terminal. The TERMINAL option directs only the
diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming interface
and is subject to change.

IPA Considerations
The listings that the IPA Compile step produces are basically the same as those
that a regular compilation produces. Any differences are noted throughout this
section.
The IPA Link step listing has a separate format from the listings mentioned above.

Many listing sections are similar to those that are produced by a regular compilation

174 0S/390 V2R6.0 C/C++ User’s Guide

or the IPA Compile step with the IPA(OBJECT) option specified. Refer to [Using thd
LPA Link Step | isting” on page 193 for information about IPA Link step listings.

Example of an OS/390 C Compiler Listing

m shows an example of an OS/390 C compiler listing.
15647A01 V2 R6 MOO 05/390 C 'TSCTEST.OSV2REMO. SCBCSAM (CBC3UAAM) ! 05/25/1998 17:14:44 Page 1

* ok ok ok ok PROLOG * ok ok ok ok

Compile Time Library : 22060000
Command options:
Program name. : 'TSCTEST.OSV2R6MO.SCBCSAM(CBC3UAAM) '
Compiler options. : *NOGONUMBER *NOALIAS *NODECK *NORENT *TERMINAL ~ *NOUPCONV *SOURCE *LIST
: *XREF *AGGR *NOPPONLY ~ *NOEXPMAC ~ *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM
: *NOLONGNAME *START *EXECOPS *ARGPARSE ~ *NOEXPORTAL *NODLL (NOCALLBACKANY)
: *NOLIBANSI *NOWSIZEOF =*REDIR *ANSIALIAS

: *TUNE(3) *ARCH(0) *SPILL(128) *MAXMEM(2097152)

: *TARGET(LE) *FLAG(I) *NOTEST (SYM, BLOCK, LINE,PATH,HOOK) ~ *NOOPTIMIZE
: *INLINE(AUTO,REPORT,100,1000) *NESTINC(255)

: *NOCHECKOUT (NOPPTRACE, PPCHECK,GOTO,ACCURACY , PARM, NOENUM,

: NOEXTERN, TRUNC, INIT,NOPORT,GENERAL)

: *FLOAT (HEX,FOLD,NOAFP) *STRICT

: *NOCSECT
: *NOEVENTS
: *0BJECT
: *NOGENPCH
: *NOUSEPCH
: *NOOPTFILE
: *NOSERVICE
: *NOOE
: *NOIPA
: *SEARCH(//'CEE.SCEEH.+")
: *NOLSEARCH
: *NOLOCALE *HALT(16) *PLIST(HOST)
Language Tevel. : *EXTENDED
Source margins. :
Varying length. : 1 - 32767
Fixed length. :1-72
Sequence columns. :
Varying length. : none
Fixed length. :73 - 80
*** %% END OF PROLOG ***xx
15647A01 V2 R6 MOO 0S/390 C 'TSCTEST.0OSV2R6MO.SCBCSAM(CBC3UAAM) 05/25/1998 17:14:44 Page 2
* k *x k * SOURCE * k *x *k *
LINE STMT SEQNBR INCNO

1 #include <stdio.h> 1
2 2
3 #include "cbc3uaan.h" 3
4 4
5 void convert(double); 5
6 6
7 int main(int argc, char **argv) 7
8 8
9 double c_temp; 9
10 10
11 1 if (argc == 1) { /* get Celsius value from stdin */ 11
12 int ch; 12
13 13
14 2 printf("Enter Celsius temperature: \n"); 14
15 15
16 3 if (scanf(” %f", &c_temp) != 1) {
17 4 printf("You must enter a valid temperature\n"); 17
18 } 18
19 else { 19
20 5 convert(c_temp); 20
21 } 21
22 22
23 else { /* convert the command-line arguments to Fahrenheit */ 23
24 int i; 24
25 25

Figure 15. Example of an OS/390 C listing (Part 1 of 6)

Chapter 6. Compiler Options 175

26 6 for (i = 1; i < argc; ++i) {

27 7 if (sscanf(argv[i], "%f", &c_temp) != 1)

28 8 printf("%s is not a valid temperature\n",argv[i]);
29 else

30 9 convert(c_temp);

31 }

32 }

33 }

34

35 void convert(double c_temp) {

36 10 double f_temp = (c_temp * CONV + OFFSET);

37 11 | printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);
38

x %% %% END OF SOURCE % %%«

15647A01 V2 R6 MOO 0S/390 C 'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

* ok ok kK K INCLUDES * ok ok ok ok
INCLUDE FILES --- FILE# NAME

1 TSCTEST.CEE180.SCEEH.H(STDIO)

2 TSCTEST.CEE180.SCEEH.H(FEATURES)

3 TSCTEST.OSV2R6MO.SCBCSAM(CBC3UAAN)

* %% %% END OF INCLUDES *xx*x
15647A01 V2 R6 MOO 0S/390 C 'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM) '

**% %% CROSS REFERENCE LISTING

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

_valist 1-1:116 Class = typedef, Length = 8
Type = array[2] of pointer to unsigned char
1-1:119, 1-1:273, 1-1:274, 1-1:275

__abend 1-1:529 Type = struct with no tag in union at offset 0
_alloc 1-1:539 Type = struct with no tag in union at offset 0
__amrc_ptr 1-1:561 Class = typedef, Length = 4

Type = pointer to struct _ amrctype
__amrc_type 1-1:557 Class = typedef, Length = 220

Type = struct __amrctype

1-1:561
vprinif Class = extern

Type = function returning int

1-1:274
vsprintf Class = extern

Type = function returning int

1-1:275
FILE 1-1:73 Class = typedef, Length = 4

Type = struct _ ffile
1-1:227, 1-1:228, 1-1:229

, 1-1:230, 1-1:231, 1-1:232, 1-1:233, 1-1:234, 1-1:235, 1-1:237
1-1:238, 1-1:239, 1-1:241, 1-1:242, 1-1:243, 1-1:244, 1-1:245, 1-1:246, 1-1:247, 1-1:249
, 1-1:262, 1-1:263, 1-1:270, 1-1:272, 1-1:273, 1-1:474, 1-1:475

1-1:250, 1-1:255, 1-1:260
1-1:476, 1-1:478, 1-1:568

05/25/1998 17:14:44

05/25/1998 17:14:44

* k ok kK *

#%%%% END OF CROSS REFERENCE LISTING * %% %%

Figure 15. Example of an OS/390 C listing (Part 2 of 6)

176 0S/390 V2R6.0 C/C++ User’s Guide

Page

3

4

15647A01 V2 R6 MOO 0S/390 C 'TSCTEST.OSV2R6MO. SCBCSAM(CBC3UAAM) ! 05/25/1998 17:14:44 Page 15
**x*%* STRUCTURE MAPS % *=x
Aggregate map for: Total size: 8 bytes
;;%%aé;ké§;£§ﬁé ..
0ffset Length Member Name
Bytes(Bits) Bytes(Bits)
0 4 _fin
4 4 __recnum
Aggregate map for: Total size: 4 bytes
L LLLLLEEERERERREES
Offset Length Member Name
Bytes(Bits) Bytes(Bits)
0 4 __error
0 4 __abend
0 2 __syscode
2 2 _rc
0 4 _ feedback
0 1 __fdbk_fill
1 1 _rc
2 1 ~ftned
3 1 ~fdbk
0 4 _alloc
0 2 __svc99_info
2 2 __svc99_error
**x*x*%x END OF STRUCTURE MAPS
15647A01 V2 R6 MOO 0S/390 C 'TSCTEST.0SV2R6MO. SCBCSAM(CBC3UAAM) ! 05/25/1998 17:14:44 Page 28
*%x %% MESSAGE SUMMARY ** % %%
Total Informational (00) Warning(10) Error(30) Severe Error(40)
0 0 0 0 0
#%x %% END OF MESSAGE SUMMARY * % * % *
Figure 15. Example of an OS/390 C listing (Part 3 of 6)
Chapter 6. Compiler Options 177

15647A01 V2 R6 MOO 0S/390 C

Reason: P
F
A
Action: I
L
T
C
N
]
Status: D
R
A
E
Calls/I
Called/I

Reason Action

A I
A T,N
Mode = AUTO

15647A01 V2 R6 MOO 0S/390 C

'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

InTine Report (Summary)

: #pragma noinline was specified for this routine

: #pragma inline was specified for this routine

: Automatic inlining

: No reason

: Routine is inlined at least once

: Routine is initially too large to be inlined

: Routine expands too large to be inlined

: Candidate for inlining but not inlined

: No direct calls to routine are found in file (no action)

: Some calls not inlined due to recursion or parameter mismatch
: No action

: Internal routine is discarded

: A direct call remains to internal routine (cannot discard)
: Routine has its address taken (cannot discard)

: External routine (cannot discard)

: Status unchanged

: Number of calls to defined routines / Number inline

: Number of times called / Number of times inlined

Status Size (init) Calls/I Called/I Name

E 16 0 2/2 convert
E 114 (78) 2/2 0 main

Inlining Threshold = 100 Expansion Limit = 1000
'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

Inline Report (Call Structure)

Defined Function ¢ convert
Calls To : 0
Called From(2,2) : main(2,2)

Defined Function
Calls To(2,

Called From

: main
2) : convert(2,2)
: 0

Figure 15. Example of an OS/390 C listing (Part 4 of 6)

178 0S/390 V2R6.0 C/C++ User’s Guide

05/25/1998 17:14:44

05/25/1998 17:14:44

Page

Page

29

30

15647A01 V2 R6
OFFSET OBJECT

000000
000004
000008
00000E

15647A01 V2 R6
OFFSET OBJECT

000018
00001C
000020
000024
000028
00002C
000030
000031
000034
000036
000038
00003C
000040
000044
000048
00004C
000050

000058
000058
00005C
000060
000064
000068
00006C
000070
000072
000074
000078
00007A

000338

000338

000348
00034C
000350
000354
000358
00035C

FIF9
FOF5
F1F7
FOF2

1CCE
0000
0000
0000
FFFC
0000
90

0000
0040
0012
0000
5000
0000
3826
4009
0000
0004

47F0
01C3
0000
FFFF
47F0
58F0
184E
05EF
0000
07F3
90EB

411CCCCC ccceeece

0300
FFFF
0000
FFFF
0000
0000

MO 0S/390 C

CODE

FOF8
F2F5
F1F4
FOF6

MO 0S/390 C

CODE

A106
02F0
0000
0000
0000
0000

00

0000
00E9
0040
0000
00EO
0000

*kkk

F022
C5C5
00D8
FFCO
FOO1
C31C

0000
DOOC

2202
FCB8
0000
FCB8
0000
0000

F4F4
FOFO

'TSCTEST.O0SV2R6MO . SCBCSAM(CBC3UAAM) '

LINE# FILE# PSEUDO ASSEMBLY
Timestamp and Version Information
=C'1998'
=C'0525"
=C'171444"
=C'020600"
Timestamp and Version End

'TSCTEST.0SV2R6MO . SCBCSAM(CBC3UAAM) ' :

LINE# FILE# PSEUDO ASSEMBLY

PPAl: Entry Point Constants

Fo
=F'-262144"
Fo
=AL1(144)
=AL3(0)

AL2(4),C'main'

PPAl End

00001 * #include <stdio.h>

00002 *

00003 * #include "cbc3uaan.h"

00004 *

00005 % void convert(double);

00006 *

00007 * int main(int argc, char **argv)

00007 main DS 0D

00007 B 34(,r15)
CEE eyecatcher
DSA size
=A(PPA1-main)

00007 B 1(,r15)

00007 L r15,796(,r12)

00007 LR rd,rl4

00007 BALR rl4,rl5
=F'0'

00007 BR r3

00007 STM rl14,r11,12(r13)

End of Literals

Floating point

Size of dynamic storage: 192

**% Size of executable code: 162

Constant Area

42200000 00000000 [P |

PPA2: Compile Unit Block
=F'50340354'
=A(CEESTART-PPA2)
=F'0'
=A(TIMESTMP-PPA2)
=F'0'
=F'o'

PPA2 End

Figure 15. Example of an OS/390 C listing (Part 5 of 6)

05/25/1998 17:14:44 Page

LISTING

Compiled Year
Compiled Date MMDD
Compiled Time HHMMSS
Compiler Version

main 05/25/1998 17:14:44 Page

LISTING

Flags

No PPA3

No EPD

Register save mask
Member flags

Flags

Callee's DSA use/8
Flags

0ffset/2 to CDL
Reserved

CDL function length/2
CDL function EP offset
CDL prolog

CDL epilog

CDL end

General purpose registers used: 1101100000111111
registers used: 1010101000000000
Size of register spill area: 128(max) 0(used)

Flags
No PPA4

No primary
Flags

Chapter 6. Compiler Options

31

32

179

15647A01 V2

15647A01 V2

15647A01 V2

IDENTIFIER

argc
argv
c_temp
i
c_temp

f_temp

R6 MOO 0S/390 C

NAME TYPE 1D

PC 1
MAIN LD 0
CEESGOO3 ER 3
SCANF ER 5
CEESTART ER 7
EDCINPL ER 9

R6 MOO 0S/390 C

'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

EXTERN
ADDR LENGTH

000000 000360
000058 000001
000000
000000
000000
000000

EXTERNAL

ORIGINAL NAME

main

convert

CEESGO03

printf

scanf

sscanf

CEESTART

CEEMAIN

EDCINPL

R6 MOO 0S/390 C
DEFINITION
7-0:7
7-0:7
9-0:9
24-0:24
35-0:35
36-0:36

* * %

*

AL SYMBOL DICTIONARY

NAME TYP

PC
CONVERT LD
PRINTF ER
SSCANF ER
CEEMAIN SD

ER

MAIN
'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

E

ID ADDR LENGTH

2 000000 000090
0 000288 000001
4 000000
6 000000
8 000000 00000C
10 000000

SYMBOL CROSS REFERENCE

EXTERNAL SYMBOL NAME

MAIN
CONVERT
CEESGOO3
PRINTF
SCANF
SSCANF
CEESTART
CEEMAIN
EDCINPL

'TSCTEST.OSV2R6MO . SCBCSAM(CBC3UAAM)

xxxx%x ST
ATTRIBUTES
<SEQNBR>-<
Class = pa
Class = pa
Class = au
Class = au
Class = pa
Class = au

** END O
* Kk x * END

ORAGE OFFSET
FILE NO>:<FILE LINE NO>
rameter, Location
rameter, Location
tomatic, Location
tomatic, Location
rameter, Location
tomatic, Location

LISTING %

o(r1),
4(rl),
176(r13),
184(r13),
0(r1),
176(r13),

F STORAGE OFFSET LISTING

OF COMPILATION

Figure 15. Example of an OS/390 C listing (Part 6 of 6)

0S/390 C Compiler Listing Components

* ok ok ok *

05/25/1998 17:14:44 Page 38

05/25/1998 17:14:44 Page 39

05/25/1998 17:14:44 Page 40

* *

Length =
Length =
Length =
Length =

Length =

® o &~ o »

Length =

* ok ok ok Kk

The following sections describe the components of a C compiler listing. These are
available for regular and IPA compilations. Differences in the IPA versions of the

listings are noted. tUsing the IPA | ink Step | isting” on page 193 describes

IPA-specific listings.

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the name of the data set or HFS file containing the source
code, the date and time compilation began (formatted according to the current
locale), and the page number.

Note:

If the name of the data set or HFS file that contains the source code is

greater than 32 characters, it is truncated. Only the rightmost 32 characters
appear in the listing.

180 0S/390 V2R6.0 C/C++ User’s Guide

Prolog Section

The Prolog section provides information about the compile-time library, file
identifiers, compiler options, and other items in effect when the compiler was
invoked.

All options except those with no default (for example, DEFINE) are shown in the
listing. Any problems with the compiler options appear after the body of the Prolog
section.

IPA Considerations: If you specify IPA suboptions that are irrelevant to the IPA
Compile step, the Prolog does not display them. If IPA processing is not active, IPA
suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler
options that generate them.

Source Program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text
after the #include directives.

Includes Section

The compiler generates the Includes Section when you use include files, and
specify the options SOURCE, LIST, or INLRPT.

Cross-Reference Listing

The XREF option generates a cross-reference table that contains a list of the
identifiers from the source program and the line numbers in which they appear.

Structure and Union Maps

You obtain structure and union maps by using the AGGREGATE option. The table

shows how each structure and union in the program is mapped. It contains the

following:

* Name of the structure or union and the elements within the structure or union

» Byte offset of each element from the beginning of the structure or union, and the
bit offset for unaligned bit data.

* Length of each element

» Total length of each structure, union, and substructure.

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compiler option, preprocessor error
messages appear immediately after the source statement in error. You can generate
your own messages in the preprocessing stage by using the #error preprocessor
directive. For information on #error, see the OS/390 C/C++ Language Reference.

If you specify the compiler options CHECKOUT or INFO(), the compiler will generate
informational diagnostic messages.

Chapter 6. Compiler Options 181

For_ more information on the compiler messages, see 'ELAG | NOFI AG” on page 94
, and |EEEEEE;§ E' 552555 EZE ++ EEEE iEE EEE;:EE E;Jdes and Messages” o

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Inline Report

If you specify the OPTIMIZE and INLINE(,REPORT,,) options, or the OPTIMIZE and
INLRPT options, an Inline Report is included in the listing. This report contains an
inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined
function.

The summary contains information such as:
* Name of each defined function. Function names appear in alphabetical order.

* Reason for action on a function:

A #pragma noinline was specified for the function.
A #pragma inline was specified for the function.
Auto-inlining acted on the function.

There was no reason to inline the function.

» Action on a function:
— Function was inlined at least once.
— Function was not inlined because of initial size constraints.
— Function was not inlined because of expansion beyond size constraint.
— Function was a candidate for inlining, but was not inlined.
— Function was a candidate for inlining, but was not referenced.
— The function is directly recursive, or some calls have mismatching parameters.

» Status of original function after inlining:
Function is discarded because it is no longer referenced and is defined as
static internal.
— Function was not discarded for various reasons :
- Function is external. (It can be called from outside the compilation unit.)
- Some call to this function remains.
- Function has its address taken.

* |Initial relative size of function (in Abstract Code Units (ACU)).
* Final relative size of function (in ACUs) after inlining.

* Number of calls within the function and the number of these calls that were
inlined into the function.

* Number of times the function is called by others in the compile unit and the
number of times the function was inlined.

* Mode that is selected and the value of threshold and limit specified for the
compilation.

The detailed call structure contains specific information of each function such as:
* Functions that it calls

* Functions that call it

* Functions in which it is inlined.

182 0S/390 V2R6.0 C/C++ User’s Guide

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a function with
automatic storage increases the automatic storage of the function it is being inlined
into by more than 4K, a message is generated.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module
in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the
line number of inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External
Symbol Dictionary lists the names that the compiler generates for the output object
module. It includes address information and size information about each symbol.

External Symbol Cross Reference Listing

The XREF compiler option generates the External Symbol Cross Reference section.
It shows the original name and corresponding mangled name for each symbol.

Storage Offset Listing

If you specify the XREF option, the listing file includes offset information of identifiers.

Using the OS/390 C++ Compiler Listing

If you select the SOURCE, INLRPT, or LIST option, the compiler creates a listing that
contains information about the source program and the compilation. If the
compilation terminates before reaching a particular stage of processing, the
compiler does not generate corresponding parts of the listing. The listing contains
standard information that always appears, together with optional information that is
supplied by default or specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all
compiler diagnostic messages to your terminal. The TERMINAL option directs only the
diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming interface
and is subject to change.

IPA Considerations

The listings that the IPA Compile step produces are basically the same as those
that a regular compilation produces. Any differences are noted throughout this
section.

The IPA Link step listing has a separate format from the listings mentioned above.
Many listing sections are similar to those that are produced by a regular compilation
or the IPA Compile step with the IPA(OBJECT) option specified. Refer to mﬁ

LPA Link Step |isting” on page 193 for information about IPA Link step listings.

Chapter 6. Compiler Options 183

Example of an OS/390 C++ Compiler Listing

Eigure 16 shows an example of a 0S/390 C++ compiler listing. Vertical ellipses

indicate sections that have been truncated.

5647A01 V2 R6 MOO 0S/390 C++ 'TS14576.CXX(CBC3UBRC) '
* ok ok ok ok PROLOG * ok ok ok ok
Compiler options. : ANSIALIAS ARGPARSE NODIGRAPH
: NOEXPMAC NOEXPORTALL NOFASTTEMPINC
¢ LIST LONGNAME NOMARGINS
: REDIR NOSEQUENCE NOSHOWINC
: NOSOMVOLATTR SOURCE NOSRCMSG
: XREF NOATTRIBUTE
: ARCH(0) FLAG(I) HALT (16)
: PLIST(HOST) SPILL(128) TARGET (LE)
: NOCSECT
: DLL(NOCALLBACKANY)
: FLOAT (HEX,FOLD,NOAFP) STRICT
: NOINFO
: NOIPA
: NOGENPCH
: LANGLVL(EXTENDED) NOTEST (HOOK)
: NOLOCALE
: NOOE
: NOPORT
: NOPPONLY
: NOSERVICE
: TEMPINC

: NOUSEPCH
5647A01 V2 R6 MOO 0S/390 C++ 'TS14576.CXX(CBC3UBRC) '
* Kk ok Kk * SOURCE * Kk ok Kk *
1] //
2 | // Sample Program: Biorhythm
3 | // Description : Calculates biorhythm based on the current
41 // system date and birth date entered
51 //
6
7 | #include <iostream.h>
8 | #include <iomanip.h>
9 | #include <stdio.h>
10 | #include <math.h>
11 | #include <time.h>
12
13 | #include "cbc3ubrh.h" // Biorhythn Class and Date Class
14
15 | int main(void) {
16 BioRhythm bio;
17 int code;
18
19 if (!'bio.ok()) {
20 cerr << "Error in birthdate specification - format is yyyy/mm/dd";
21 code = 8;
22
23 else {
24 cout << bio; // write out birthdate for bio
25 code = 0;
26
27 return(code);
28 |}
29
30 |static ostream& operator<<(ostream& os, BioRhythm& bio) {
31 0s << "Total Days : " << bio.AgeInDays() << "\n";
32 0s << "Physical : " << bio.Physical() << "\n";
33 0s << "Emotional : " << bio.Emotional() << "\n";
34 0s << "Intellectual: " << bio.Intellectual() << "\n";
35
36 return(os);
37 }

: OPTFILE(DD:0OPTS)
: SEARCH(//'CEE.SCEEH.+',//'CBC.SCLBH.+")

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 1 of 7)

184 0S/390 V2R6.0 C/C++ User’s Guide

NOEVENTS
NOGONUMBER
MEMORY
NOSOM
START

07/16/1998 12:39:09

EXECOPS EXH
INLRPT NOLIBANSI
OBJECT NOOFFSET
SOMEINIT NOSOMGS
TERMINAL NOWSIZEOF

MAXMEM(2097152) NESTINC(255) OPTIMIZE(1)

TUNE(3)

07/16/1998 12:39:09

38

39 | Date::Date() {

40 time_t 1Time;

41 struct tm *newTime;

42

43 time(&1Time);

44 newTime = gmtime(&1Time);

45

46 curYear = newTime->tm_year + 1900;

47 curDay = newTime->tm yday + 1;

48 | }

49

50 | BirthDate::BirthDate(const char *birthText) {
51 strcpy (text, birthText);

52 |}

53

54 | BirthDate::BirthDate() {

55 cout << "Please enter your birthdate in the form yyyy/mm/dd\n";
56 cin >> setw(datelLen+l) >> text;

57 }

58

59 | Date::DaysSince(const char *text) {

60

61 int year, month, day, totDays, delim;

62 int daysInYear = 0;

63

64 int rc = sscanf(text, "%4d%c%2d%c%2d",
65 &year, &delim, &month,
66 &delim, &day);

67 --month;

68 if (rc 1=5 || year <0 || year > 9999
69 month < 0 month > 12
70 day <1 day > 31
71 day > numDays[month]) {
72 return(-1);

73

74 else {

75 for (int i=0;i<month;++i) {

76 | daysInYear += numDays[i];

77

78 daysInYear += day;

79 }

80

81 totDays = (curDay - daysInYear) + (curYear - year)=365 - 1;
82

83 // now, correct for leap year

84

85 if (((year % 4 == 0 & year % 100 != 0) ||
86 (year % 400 == 0)) && month <= 2) {
87 ++totDays;

88 }

89

90 for (int i=year+l; i < curYear; ++i) {
91 if((1%4==08 %100 !=0) || i% 400 == 0) {
92 ++totDays;

93 }

94 }

95 return(totDays);

9 | }

#x %%+ END OF SOURCE * %% *%

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 2 of 7)

Chapter 6. Compiler Options 185

5647A01 V2 R6 MOO 0S/390 C++

'TS14576.CXX(CBC3UBRC) * 07/16/1998 12:39:09

* %% %% CROSS REFERENCE LISTING ****xx

_valist :

2:116 (D) 2:119 (R) 2:273 (R) 2:274 (R) 2:275 (R)
_amrc_type :

2:553 (D) 2:557 (R)
__amrc2_type :

2:566 (D) 2:570 (R)
_ device_t :

2:382 (D) 2:430 (R)
_ fabs :

11:74 (R)

*%**x%* END OF CROSS REFERENCE LISTING * %% %%
5647A01 V2 R6 MOO 0S/390 C++ 'TS14576.CXX (CBC3UBRC) ' 07/16/1998 12:39:09

TSCTEST.
TSCTEST.
TSCTEST.
TSCTEST.
TSCTEST.
TSCTEST.
TSCTEST.

* kK ok Kk Kk

INCLUDES

* ok ok ok *

OSV2R6MO. SCLBH. H(IOSTREAM)

CEE190.SCEEH.
CEE190.SCEEH.
CEE190.SCEEH.
CEE190.SCEEH.
CEE190.SCEEH.
CEE190.SCEEH.

H(STDIO)
H(FEATURES)
H(MEMORY)
H(STRING)
H(WCHAR)
H(TIME)

TSCTEST.
TSCTEST.
TSCTEST.
TSCTEST.
TS14576.

0SV2R6MO. SCLBH. H(IOMANIP)
0SV2R6MO. SCLBH. H(I0STREAM)
0SV2R6MO. SCLBH . H (GENERIC)
CEE190.SCEEH. H(MATH)
H(CBC3UBRH)

* k ok Kk Kk

=
NHOOONOUTRWN

END OF INCLUDES

* k ok Kk *

5647A01 V2 R6 MOO 0S/390 C++

* k X k%

'TS14576.CXX(CBC3UBRC) '
MESSAGE SUMMARY * % % * %

07/16/1998 12:39:09

TOTAL UNRECOVERABLE SEVERE ERROR WARNING
(U) () (g) (W)

0 0 0 0

INFORMATIONAL
(1)

*x% %% END OF MESSAGE SUMMARY

* kK ok k%

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 3 of 7)

186 0S/390 V2R6.0 C/C++ User’s Guide

5647A01 V2 R6 MOO 0S/390 C++

'TS14576.CXX(CBC3UBRC) * 07/16/1998 12:39:09

InTine Report (Summary)

Reason: P : #pragma noinline was specified for this routine
F : #pragma inline was specified for this routine
A : Automatic inlining
- : No reason
Action: I : Routine is inlined at Teast once
L : Routine is initially too large to be inlined
T : Routine expands too large to be inlined
C : Candidate for inlining but not inlined
N : No direct calls to routine are found in file (no action)
U : Some calls not inlined due to recursion or parameter mismatch
- : No action
Status: D : Internal routine is discarded
R : A direct call remains to internal routine (cannot discard)
A : Routine has its address taken (cannot discard)
E : External routine (cannot discard)
- : Status unchanged
Calls/I : Number of calls to defined routines / Number inline
Called/I : Number of times called / Number of times inlined

Reason Action Status

MMM oOMETNTM>>N>
e L T e R e R

OO OOl M1 OFmmom

26

138 (17)
99 (31)
47 (16)
37 (9)
21

179 (62)
30

215 (44)
17

12

216

34 (10)
34 (10)
34 (10)

Size (init) Calls/I Called/I Name

0 2/2 Date::Date()

2/2 1/1 BioRhythm: :BioRhythm()

2/2 1/1 BirthDate::BirthDate()

1/1 0 BirthDate::BirthDate(const charx)
1/1 0 BioRhythm::_dftdt()

0 2/2 BioRhythm:: BioRhythm()

3/3 1/0 operator<<(ostream&,BioRhythm&)

0 1/1 operator>>(istream&,const smanip_int&)
3/2 0 main

0 3/3 BioRhythm::Cycle(int)

1/0 1/1 BirthDate: :Days01d()

0 1/0 Date::DaysSince(const charx)

1/1 1/1 BioRhythm: :Emotional ()

1/1 1/1 BioRhythm: :Intellectual()

1/1 1/1 BioRhythm: :Physical ()

Mode = AUTO Inlining Threshold = 100 Expansion Limit = 2000

5647A01 V2 R6 MOO 0S/390 C++

Defined Function
Calls To
Called From(2,2)

Defined Function
Calls To(2,2)
Called From(1,1)

Defined Function
Calls To(2,2)
Called From(1,1)

Defined Function
Calls To(1,1)
Called From

'TS14576.CXX(CBC3UBRC) ' 07/16/1998 12:39:09

Inline Report (Call Structure)

: Date::Date()
: 0

. BirthDate::

: BioRhythm::
: BirthDate::
: main(1,1)

: BirthDate::
: Date::Date(
: BioRhythm::

: BirthDate::
: Date::Date(
0

5647A01 V2 R6 MOO 0S/390 C++

BirthDate() (1,1) BirthDate::BirthDate(const charx)(1,1)
BioRhythm()
BirthDate()(1,1) BirthDate::Days01d()(1,1)

BirthDate()
)(1,1) operator>>(istream&,const smanip_int&)(1,1)
BioRhythm() (1,1)

BirthDate(const charx)

)(1,1)

'TS14576.CXX(CBC3UBRC) ' 07/16/1998 12:39:09

InTine Report (Additional Information)

INFORMATIONAL CBC5052: Function specified is (or grows) too large to be inlined: operator<<(ostream&,BioRhythm&

INFORMATIONAL CBC5052: Function specified is (or grows) too large to be inlined: Date::DaysSince(const charx)

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 4 of 7)

Chapter 6. Compiler Options

187

5647A01 V2 R6 MOO 0S/390 C++ 'TS14576.CXX(CBC3UBRC) ' 07/16/1998 12:39:09

OFFSET OBJECT

CODE

LINE# FILE# PSEUDO ASSEMBLY LISTING

Timestamp and Version Information

000000 F1F9 F9F8 =C'1998' Compiled Year
000004 FOF7 F1F6 =C'0716' Compiled Date MMDD
000008 F1F2 F3F9 FOF9 =C'123909"' Compiled Time HHMMSS
000OOE FOF2 FOF6 FOFO =C'020600" Compiler Version
Timestamp and Version End
5647A01 V2 R6 MOO 0S/390 C++ 'TS14576.CXX(CBC3UBRC) ': operator>>(is...) 07/16/1998 12:39:09
7
OFFSET OBJECT CODE LINE# FILE# PSEUDO ASSEMBLY LISTING
PPAl: Entry Point Constants
000018 1CCE Al109 =F'483303689" Flags
00001C 0000 OF88 =A(PPA2-operator>>(istream&,const smanip_int&))
000020 0000 0000 =F'0' No PPA3
000024 0000 0000 =F'0' No EPD
000028 FFOO 0000 =F'-16777216" Register save mask
00002C 0000 0001 =F'1' Member flags
000030 EO =AL1(224) Flags
000031 0000 01 =AL3(1) Callee's DSA use/8
000034 0040 =H'64" Flags
000036 0012 =H'18' 0ffset/2 to CDL
000038 0000 0000 =F'0' O0ffset of state variable
00003C 5000 0041 =F'1342177345' CDL function length/2
000040 0000 0060 =F'96' CDL function EP offset
000044 1826 0000 =F'405143552" CDL prolog
000048 200A 0037 =F'537526327" CDL epilog
00004C 0000 0000 =F'0’ CDL end
000050 0026 xx** AL2(38),C'operator>>(istream&,const smanip_int&)'
PPA1 End
operator>>(istream&,const smanip_int
&
000078 00138 8 DS 0D
000078 47F0 F0O1 00138 8 B 1(,rl5)
00007C 01C3 ChC5 CEE eyecatcher
000080 0000 00C8 DSA size
000084 FFFF FFAQ =A(PPAl-operator>>(istream&,const smanip_int&))
000088 90E5 DOOC 00138 8 STM rl14,r5,12(r13)
00008C 58E0 DO4C 00138 8 L r14,76(,r13)
000090 4100 EOC8 00138 8 LA r0,200(,rl4)
000094 5500 (314 00138 8 CL r0,788(,r12)
000098 4140 FO4C 00138 8 LA r4,76(,r15)
00009C 47D0 FO3A 00138 8 BNH 58(,rl15)
0000A0 58F0 C31C 00138 8 L r15,796(,r12)
0000A4 184E 00138 8 LR r4,rla
0000A6 O5EF 00138 8 BALR rl4,rl15
0000A8 0000 0008 =F'8’
0000AC 0540 00138 8 BALR rd,r0
00OOAE 4140 4016 00138 8 LA r4,22(,rd)
0000B2 5000 EOQ4C 00138 8 ST r0,76(,rl4)
0000B6 9210 E000 00138 8 MVI 0(r14),16
0000BA 50D0 E004 00138 8 ST r13,4(,rl14)
000OBE 5800 DO14 00138 8 L r0,20(,r13)
0000C2 18DE 00138 8 LR ri3,rl4
0000C4 End of Prolog

*%% General purpose registers used: 1111110000001111
**% Floating point registers used: 1010101000000000
#xx Size of register spill area: 128(max) 0(used)
*#%% Size of dynamic storage: 200

*#*x% Size of executable code: 130

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 5 of 7)

188 0S/390 V2R6.0 C/C++ User’s Guide

5647A01 V2 R6 MOO 0S/390 C++

EXTERNAL

TYPE ID ADDR

SD 1 000000
PR 2 000000
PR 3 000000
PR 4 000000
PR 5 000000
PR 6 000000
PR 7 000000
PR 8 000000
SD 9 000000
LD 0 000078
LD 0 000448
LD 0 000640
LD 0 000758
LD 0 0009A0
LD 0 000B40

ER 10 000000
ER 11 000000
ER 12 000000
ER 13 000000
UR 14 000648
UR 15 000000
UR 16 000000
UR 17 000000
UR 18 000000
UR 19 000000
UR 20 000000
ER 21 000000
UR 22 000000
UR 23 000000
UR 24 000000
UR 25 000000
UR 26 000000
UR 27 000000
UR 28 000000
UR 29 000000
ER 30 000000
SD 31 000000
SD 32 000000
ER 33 000000
ER 34 000000

LENGTH

001018
000058
000004
000004
000030
000004
000004
000004
000008
000001
000001
000001
000001
000001
000001

000008
00000C

'TS14576.CXX(CBC3UBRC) *

07/16/1998 12:39:09

SYMBOL DICTIONARY

NAME

@STATICP

@STATIC
datelen__4Date
numMonths__4Date
numDays__4Date
pCycle__9BioRhythm
eCycle__9BioRhythm
iCycle__9BioRhythm
@@DLLI

__rs__ FR7istreamRC10smanip_int
main

__ct_ 4DateFv
DaysSince__4DateFPCc
_ ct_ 9BirthDateFv
__ct_ 9BirthDateFPCc
CEESGOO3

CBCSGOO3
DaysSince__4DateFPCc
@@TRT

@STATICP

sscanf
__1s__7ostreamFd
CEETDSIN

fmod
__1s__7ostreamFi
cerr

@ETRGLOR

_dl__FPv

cin

cout

gmtime
__rs__7istreamFPc
setw__ Fi
__Is__7ostreamFPCc
time

CEESTART

@@PPA2

CEEMAIN

EDCINPL

main

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 6 of 7)

Chapter 6. Compiler Options

189

5647A01 V2 R6 MOO 0S/390 C++
EXTERNAL
ORIGINAL NAME

OSTATICP

@@EDLLI

operator>>(istream&

,const smanip_int&)

main

Date::Date()
Date::DaysSince(const charx)
BirthDate::BirthDate()
BirthDate::BirthDate(const charx)

'TS14576.CXX(CBC3UBRC) *

07/16/1998 12:39:09
CROSS REFERENCE
EXTERNAL SYMBOL NAME

@STATICP
@@DLLI
rs FR7istreamRC10smanip_int

main

_ ct_ 4DateFv

DaysSince__4DateFPCc

_ ct_ 9BirthDateFv
ct_ 9BirthDateFPCc

CEESGO03 CEESGOO3
CBCSGOO3 CBCSGOO3

@@TRT QE@TRT

sscanf sscanf

ostream: :operator<<(double) __Is__7o0streamFd
_ sin CEETDSIN

fmod fmod

ostream: :operator<<(int) __1s__7o0streamFi
cerr cerr

@ETRGLOR @@ETRGLOR
operator delete(void«) _dl__FPv

cin cin

cout cout

gmtime gmtime

istream: :operator>>(charx) __rs__7istreamFPc
setw(int) setw_ Fi
ostream: :operator<<(const charx) __Is__7o0streamFPCc
time time

CEESTART CEESTART

@@PPA2 @@PPA2

CEEMAIN CEEMAIN

EDCINPL EDCINPL

* ok ok x * END

COMPILATION * %% %%

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 7 of 7)

0S/390 C++ Compiler Listing Components

38

The following sections describe the components of a C++ compiler listing.These are
available for regular_ and IPA compilations. Differences in the IPA versions of the
listings are noted. LLUsI i isting” describes
IPA-specific listings.

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the name of the data set or HFS file containing the source
code, the date and time compilation began (formatted according to the current
locale), and the page number.

Note: If the name of the data set or HFS file that contains the source code is
greater than 32 characters, it is truncated. Only the rightmost 32 characters
appear in the listing.

Prolog Section

The Prolog section provides information about the compile-time library, file
identifiers, compiler options, and other items in effect when the compiler was
invoked.

All options except those with no default (for example, DEFINE) are shown in the
listing. Any problems with the compiler options appear after the body of the Prolog
section.

190 0S/390 V2R6.0 C/C++ User’s Guide

IPA Considerations: If you specify IPA suboptions that are irrelevant to the IPA
Compile step, the Prolog does not display them. If IPA processing is not active, IPA
suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler
options that generate them.

Source Program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text
after the #include directives.

Cross-Reference Listing

The option XREF generates a cross-reference table that contains a list of the
identifiers from the source program. The table also displays a list of reference,
modification, and definition information for each identifier.

The option ATTR generates a cross-reference table that contains a list of the
identifiers from the source program, with a list of attributes for each identifier.

If you specify both ATTR and XREF, the cross-reference listing is a composite of the
two forms. It contains the list of identifiers, as well as the attribute and reference,
modification, and definition information for each identifier. The list is in the form:

identifier : attribute

n:m (x)
where:
n corresponds to the file number from the INCLUDE LIST. If the identifier is
from the main program, n is 0.
m corresponds to the line number in the file n.
X is the cross reference code. It takes one of the following values:
R - referenced
D - defined
M - modified

together with the line numbers in which they appear.
Includes Section

The compiler generates the Includes Section when you use include files, and
specify the options SOURCE, LIST, or INLRPT.

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compiler option, preprocessor error
messages appear immediately after the source statement in error. You can generate
your own messages in the preprocessing stage by using #error. For information on
#error, see the OS/390 C/C++ Language Reference.

If you specify the compiler options FLAG(I), CHECKOUT or INFO(), the compiler will
generate informational diagnostic messages.

Chapter 6. Compiler Options 191

For a description of compiler messages, see [Appendix E 0S/390 C/C++ Compiled

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Inline Report

If the OPTIMIZE and INLRPT options are specified, an Inline Report will be included in
the listing. This report contains an inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined
function.

The summary contains information such as:
* Name of each defined function. Function names appear in alphabetical order.

* Reason for action on a function:
— A #pragma noinline was specified for that function. The P indicates that
inlining could not be performed.
— A #pragma inline was specified for that function. The F indicates that the
function was declared inline.
— Auto-inlining acted on that function.
— There was no reason to inline the function.

» Action on a function:
— Function was inlined at least once.
— Function was not inlined because of initial size constraints.
— Function was not inlined because of expansion beyond size constraint.
— Function was a candidate for inlining, but was not inlined.
— Function was a candidate for inlining, but was not referenced.
— This function is directly recursive, or some calls have mismatching
parameters.

» Status of original function after inlining:
— Function is discarded because it is no longer referenced and is defined as
static internal.
— Function was not discarded for various reasons :
- Function is external. (It can be called from outside the compilation unit.)
- Some call to this function remains.
- Function has its address taken.

* Initial relative size of function (in Abstract Code Units (ACU)).
* Final relative size of function (in ACUSs) after inlining.

¢ Number of calls within the function and the number of these calls that were
inlined into the function.

* Number of times the function is called by others in the compile unit and the
number of times this function was inlined.

* Mode that is selected and the value of threshold and limit specified for this
compilation.

The detailed call structure contains specific information of each function such as:
* What functions it calls

* What functions call it

* In which functions it is inlined.

192 0S/390 V2R6.0 C/C++ User’s Guide

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

There may be additional messages as a result of the inlining. For example, if
inlining a function with automatic storage would increases the automatic storage of
the function it is being inlined into by more than 4K, a message is emitted.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module
in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the
line number of any inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External
Symbol Dictionary lists the names that the compiler generates for the output object
module. It includes address information and size information about each symbol.

External Symbol Cross Reference Listing

The ATTR or XREF compiler options generate the External Symbol Cross Reference
section. It shows the original name and corresponding mangled name for each
symbol For additional information on mangled names, see [Chapter 18 Filted

Using the IPA Link Step Listing

The IPA Link step generates a listing file if you specify any of the following options:

+ ATTR

e INLINE(,REPORT,,)

e INLRPT

» IPA(MAP)

e LIST

* XREF

Note: IPA does not support source listings or source annotations within Pseudo
Assembly listings. The Pseudo Assembly listings do display the file and line

number of the source code that contributed to a segment of pseudo
assembly code.

Example of an IPA Link Step Listing
Eigure 17 an page 194 shows an example of an IPA Link step listing.

Chapter 6. Compiler Options 193

15647A01 V2 R6 MOO 0S/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)" 06/22/1998 15:13:03 Page 1

* Kk ok Kk * PROLOG * Kk ok Kk *

Compile Time Library : 22060000
Command options:
Primary input name. : 'TSIPA.TEST.LINKCNTL(INCLCNTL)'
Compiler options. : *xIPA(LINK,MAP,NOREFMAP,LEVEL(1),DUP,ER,NONCAL,NOUPCASE,NOCONTROL) *NOGONUMBER
: *NOALIAS
: *NODECK *TERMINAL *LIST *XREF *NOATTR *NOOFFSET *MEMORY
: *NOCSECT
: *FLAG(I) *NOTEST (NOSYM,NOBLOCK,NOLINE,NOPATH,HOOK) *OPTIMIZE(1)
: *INLINE (AUTO,REPORT,1000,8000)
: *OBJECT *OPTFILE(DD:OPTION) *NOSERVICE ~ *NOOE *NOLOCALE
*HALT (16)
: *IPADBG (TRACETPO)
* %% %% END OF PROLOG ***xxx
15647A01 V2 R6 MOO 0S/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 2
x k% *x OBJECT FILE MAP **%xx*
*0RIGIN IPA FILE ID FILE NAME
P 1 TSIPA.TEST.LINKCNTL(INCLCNTL)
PI Y 2 TSIPA.TEST.PASS1.0BJ(INCLMAIN)
PI Y 3 TSIPA.TEST.PASS1.0BJ(INCLRTN1)
x PI Y 4 TSIPA.TEST.PASS1.0BJ(INCLRTN2)
ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE IN=internal
A=automatic call U=UPCASE automatic call R=RENAME card L=C Library
***** END OF OBJECT FILE MAP ****x*
15647A01 V2 R6 MOO 0S/396 C/C++ IPA "TSIPA.TEST.LINKCNTL(INCLCNTL)"' 06/22/1998 15:13:03 Page 3
* %% %% COMPILER OPTIONS MAP ****x*
SOURCE FILE ID COMPILE OPTIONS
1 *NOALIAS *ANSIALIAS ~ *ARCH(0) *ARGPARSE *NODLL (NOCALLBACKANY) *ENV (MVS) *EXECOPS
*FLOAT (HEX, FOLD,NOAFP)
*NOGONUMBER ~ *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI ~ *NOLIST
*MAXMEM (2097152)
*QOPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF
2 *NOALIAS *ANSIALIAS ~ *ARCH(0) *ARGPARSE *NODLL (NOCALLBACKANY) *ENV (MVS) *EXECOPS
*FLOAT (HEX, FOLD,NOAFP)
*NOGONUMBER ~ *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI ~ *NOLIST
*MAXMEM (2097152)
*QPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF
3 *NOALIAS *ANSIALIAS ~ *ARCH(0) *ARGPARSE *NODLL (NOCALLBACKANY) *ENV (MVS) *EXECOPS
*FLOAT (HEX, FOLD,NOAFP)
*NOGONUMBER ~ *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI ~ *NOLIST
*MAXMEM (2097152)
*QPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF

**%%%% END OF COMPILER OPTIONS MAP xxxx=x

Figure 17. Example of an IPA Link Step Listing (Part 1 of 7)

194 0S/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 MOO 0S/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)'

Reason: P
F
A
C
N
Action: I
L
T
C
N
U
Status: D
R
A
E
Calls/I
Called/I

Reason Action

* %% %% TINLINE REPORT *x*x%x

IPA Inline Report (Summary)

: #pragma noinline was specified for this routine

. #pragma inline was specified for this routine

: Automatic inlining

: Partition conflict

: Not IPA Object

: No reason

: Routine is inlined at least once

: Routine is initially too large to be inlined

: Routine expands too large to be inlined

: Candidate for inlining but not inlined

: No direct calls to routine are found in file (no action)

: Some calls not inlined due to recursion or parameter mismatch
: No action

: Internal routine is discarded

: A direct call remains to internal routine (cannot discard)
: Routine has its address taken (cannot discard)

: External routine (cannot discard)

: Status unchanged

: Number of calls to defined routines / Number inline

: Number of times called / Number of times inlined

Status Size (init) Calls/I Called/I Name

A N - 76 (44) 2/2 0 main
A I D 0 (24) 0 1/1 Incl_Rtnl
A I D 0 (8) 0 1/1 Incl_Rtn2
Mode = AUTO InTining Threshold = 1000 Expansion Limit = 8000
15647A01 V2 R6 MOO 0S/390 C/C++ IPA '"TSIPA.TEST.LINKCNTL(INCLCNTL)"'
IPA Inline Report (Call Structure)
Defined Subprogram : main

Calls To(2,

Called From

2) : Incl_Rtn2(1,1)
Incl_Rtnl(1,1)
: 0

Defined Subprogram : Inc1_Rtn2
Calls To : 0

Called From(1,1) : main(1,1)

Defined Subprogram : Incl_Rtnl
Calls To : 0

Called From(1,1) : main(1,1)

* %% %% END OF INLINE REPORT %% xx

Figure 17. Example of an IPA Link Step Listing (Part 2 of 7)

06/22/1998 15:13:03 Page 4

06/22/1998 15:13:03 Page 5

Chapter 6. Compiler Options

195

15647A01 V2 R6 MOO 0S/390 C/C++ IPA

* ok ok ok K%

PARTITION O

PARTITION CSECT NAMES:
Code: none
Static: none
Test: none

PARTITION DESCRIPTION:
Initialization data partition

COMPILER OPTIONS FOR PARTITION O:

*NOALIAS *ARCH (0) *ARGPARSE *NOCSECT
*IPA(LINK)
*NOLIBANSI *NOLOCALE *LONGNAME *MAXMEM (2097152)
*START
*STRICT *NOTEST *TUNE(3)
SYMBOLS IN PARTITION 0:
*TYPE FILE ID SYMBOL
D 1 gbl
TYPE: F=function D=data

SOURCE FILES FOR PARTITION 0:

*0RIGIN FILE ID SOURCE FILE NAME
P 1 TSIPA.TEST.C(INCLMAIN)
ORIGIN: P=primary input PI=primary INCLUDE

* kK ok Kk *

END OF

PARTITION

*NODLL

Par

MAP

PARTITION

Figure 17. Example of an IPA Link Step Listing (Part 3 of 7)

196 0S/390 V2R6.0 C/C++ User’s Guide

tition 0

* ok ok ok *

*ENV (MVS) *EXECOPS

*OPTIMIZE (1) *PLIST(HOST) *REDIR

MAP

* k Kk Kk Kk

*FLOAT (HEX, FOLD,NOAFP)

*NORENT

06/22/1998 15:13:03 Page 6

*NOGONUMBER
*SPILL(128)

15647A01 V2 R6 MOO 0S/390 C/C++ IPA
OFFSET OBJECT CODE LINE# FIL

15647A01 V2 R6 MOO 0S/390 C/C++ IPA

E
TYPE ID ADDR
SD 1 00000
SD 2 00000

15647A01 V2 R6 MOO 0S/390 C/C++ IPA
EXTE
ORIGINAL NAME
@STATICP
gbl
15647A01 V2 R6 MOO 0S/390 C/C++ IPA
* % *

IDENTIFIER DEFINITION

gbl 5-1:5

* ok ok ok K*

15647A01 V2 R6 MOO 0S/390 C/C++ IPA

* ok Kk

PARTITION 1 OF 1
PARTITION
Actual:
Limit:

SIZE:
1116
102400

PARTITION
Code:
Static:
Test:

CSECT NAMES:
none
none
none

PARTITION DESCRIPTION:
Primary partition

COMPILER OPTIONS FOR PARTITION 1:
*NOALIAS *ARCH (0) *ARGPARS
*IPA(LINK)
*NOLIBANSI
*START
*STRICT

*NOLOCALE *LONGNAM

*NOTEST *TUNE(3)
SYMBOLS IN PARTITION 1:

*TYPE FILE ID
F 1

SYMBOL
main

TYPE: F=function D=data

SOURCE FILES FOR PARTITION 1:

*0RIGIN FILE ID SOURCE FILE
P 1 TSIPA.TEST.

P 2 TSIPA.TEST.

P 3 TSIPA.TEST.
ORIGIN: P=primary input PI=pri
* k kx Kk * E

Partition 0 06/22/1998 15:13:03 Page 7
E# PSEUDO ASSEMBLY LISTING
Partition 0 06/22/1998 15:13:03 Page 8
XTERNAL SYMBOL DICTIONARY
LENGTH NAME
0 000000 OSTATICP
0 000004 gbl
Partition 0 06/22/1998 15:13:03 Page 9
RNAL SYMBOL CROSS REFERENCE
EXTERNAL SYMBOL NAME
OSTATICP
gb1
Partition 0 06/22/1998 15:13:03 Page 10
**% STORAGE OFFSET LISTING ** %% x
ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>
Class = external definition, Location = CSECT GBL, Length = 4
END OF STORAGE OFFSET LISTING * % * %%
Partition 1 06/22/1998 15:13:03 Page 11
% PARTITION MAP **x %% x
E *NOCSECT *NODLL *ENV (MVS) *EXECOPS *FLOAT (HEX, FOLD,NOAFP) *NOGONUMBER
E *MAXMEM(2097152) *OPTIMIZE (1) *PLIST(HOST) *REDIR *NORENT *SPILL(128)

NAME
C(INCLMAIN)
C(INCLRTN1)
C(INCLRTN2)

mary INCLUDE

ND OF PARTITION MAP % xx

Figure 17. Example of an IPA Link Step Listing (Part 4 of 7)

Chapter 6. Compiler Options

197

15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 12

OFFSET OBJECT CODE LINE# FILE# PSEUDO ASSEMBLY LISTING
Timestamp and Version Information

000000 F1F9 FIF8 =C'1998' Compiled Year

000004 FOF6 F2F2 =C'0622' Compiled Date MMDD

000008 F1F5 FOF4 F5F4 =C'150454' Compiled Time HHMMSS

00000E FOF2 FOF6 FOFO =C'020600' Compiler Version
Timestamp and Version End

15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1: main 06/22/1998 15:13:03 Page 13

OFFSET OBJECT CODE LINE# FILE# PSEUDO ASSEMBLY LISTING
PPAl: Entry Point Constants

000018 1CCE Al06 =F'483303686 ' Flags

00001C 0000 0ODO =A(PPA2-main)

000020 0000 0000 =F'0' No PPA3

000024 0000 0000 =F'0' No EPD

000028 FFOO 0000 =F'-16777216' Register save mask

00002C 0000 0000 =F'o' Member flags

000030 90 =AL1(144) Flags

000031 0000 00 =AL3(0) Callee's DSA use/8

000034 02C0 =H'704' Flags

000036 0012 =H'18' 0ffset/2 to CDL

000038 0000 0000 =F'0' Reserved

00003C 5000 0061 =F'1342177377"' CDL function length/2

000040 0000 0040 =F'64' CDL function EP offset

000044 3824 0000 =F'941883392' CDL prolog

000048 4009 0058 =F'1074331736' CDL epilog

00004C 0000 0000 =F'0' CDL end

000050 0004 xxxx AL2(4),C'main'
PPAl End

000058 00010 1 main DS 0D

000058 47F0 F0O22 00010 1 B 34(,rl5)

00005C 01C3 (C5Ch5 CEE eyecatcher

000060 0000 00CO DSA size

000064 FFFF FFCO =A(PPA1l-main)

000068 47F0 FOO1 00010 1 B 1(,rl5)

00006C 58FO C31C 00010 1 L r15,796(,r12)

000070 184E 00010 1 LR rd,rld

000072 O5EF 00010 1 BALR rl4,rl5

000074 0000 0000 =F'0'

000078 07F3 00010 1 BR r3

00007A 90E5 DOOC 00010 1 STM rl4,r5,12(r13)

00007E 58EQ DO4C 00010 1 L rl4,76(,r13)

000082 4100 EOCO 00010 1 LA r0,192(,rl4)

000086 5500 C314 00010 1 CL r0,788(,r12)

00008A 4130 FO3A 00010 1 LA r3,58(,rl5)

00008E 4720 FO14 00010 1 BH 20(,r15)

000092 5000 EO4C 00010 1 ST r0,76(,rl4)

000096 9210 E00O 00010 1 MVI 0(rl4),16

00009A 50D0 EO004 00010 1 ST r13,4(,rl4)

00009E 18DE 00010 1 LR ri3,rl4

0000A0 End of Prolog

0000A0 00014 1 e1L2 DS OH

0000A0 4150 0001 00016 1 LA r5,1

0000A4 5050 D098 00016 1 ST r5,@PARM.i2(,r13,152)

0000A8 5810 308E 00010 2+ L r1,=A(gbh1)(,r3,142)

0000AC 5800 1000 00010 2+ L r0,gb1(,r1,0)

0000B0 1C40 00010 2+ MR rd,r0

0000B2 1805 00010 2+ LR rd,r5

0000B4 5000 1000 00010 2+ ST r0,gb1(,r1,0)

0000B8 5800 D098 00012 2+ L r0,@PARM. i2(,r13,152)

0000BC 8900 0001 00012 2+ SLL r0,1

0000CO0 5000 DOIC 00012 2+ ST r0,@IRET1(,r13,156)

0000C4 5000 DOAG 00012 2+ ST ro,k(,r13,160)

0000C8 4100 0000 00018 1 LA ro,0

Figure 17. Example of an IPA Link Step Listing (Part 5 of 7)

198 0S/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6
OFFSET OBJECT

0000CC
0000D0
0000D0
0000D4
0000D8
0000DC
0000EO
0000E4
0000E6
0000E8
0000EC
0000F0
0000F4
0000F8
0000FC
000100
000104
000108

000108
000108
00010A
00010E
000112
000116
000118

00011A
00011A
00011C
000120
000124

000124

000128
00012C
000130
000134
000138
00013C

5000

5800
5000
5800
5000
5850
1C40
1805
5000
5000
5800
4A00
5000
5500
4740
58F0

180D
58D0
58E0
9825
051E
0707

0001
0000
0000

0000

0300
FFFF
0000
FFFF
0000
00600

MOO 0S/390 C/C++ IPA

CODE
DOA4

DOAC
DOA8
DOAO
DOBO
DOA8

DOB4
DOAO
DOA4
3088
DOA4
308A
303E
DOAO

D004
DOOC
DO1C

000A
0000

0000

2202
FED8
0000
FED8
0000
0000

Partition 1: main

LINE# FILE# PSEUDO ASSEMBLY LISTING

00018 1 ST r0,eCIve(,rl3,164)
00018 1 Q1L4 DS OH
00019 1 L r0,j(,rl3,172)
00019 1 ST r0,@PARM.i0(,r13,168)
00019 1 L r0,k(,r13,160)
00019 1 ST r0,@PARM. j1(,r13,176)
00008 3 0+ L r5,0PARM.i0(,r13,168)
00008 3 0+ MR r4,r0
00008 3 0+ LR ro,r5
00008 3 0+ ST r0,@IRETO(,r13,180)
00008 3 0+ ST ro,k(,r13,160)
00008 3 0+ L r0,eCIve(,rl3,164)
00008 3 0+ AH ro,=H'1"
00008 3+ ST r0,eCIVO(,r13,164)
00008 3 0+ CL ro,=F'10"
00008 3 0+ BL e1L4
00022 1 L r15,k(,r13,160)
00022 1 elL24 DS OH
Start of Epilog
00022 1 LR rd,rl3
00022 1 L r13,4(,r13)
00022 1 L r14,12(,r13)
00022 1 LM r2,r5,28(r13)
00022 1 BALR rl,rld
00022 1 NOPR 7
Start of Literals
=H'1l'
=F'10'
=A(gb1)

End of Literals

**%* General purpose registers used: 1101110000001111
**% Floating point registers used: 0000000000000000
*x%x Size of register spill area: 128(max) 0(used)
*x% Size of dynamic storage: 192

**% Size of executable code: 194

PPA2: Compile Unit Block

=F'50340354"' Flags
=A(CEESTART-PPA2)

=F'0' No PPA4
=A(TIMESTMP-PPA2)

=F'0' No primary
=F'0’ Flags

PPA2 End

Figure 17. Example of an IPA Link Step Listing (Part 6 of 7)

06/22/1998 15:13:03 Page 14

Chapter 6. Compiler Options

199

15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1

EXTERNAL SYMBOL DICTIONARY

TYPE ID ADDR LENGTH NAME

SD 1 000000 000140 @STATICP

LD 0 000058 000001 main

ER 2 000000 CEESGOO3

ER 3 000000 gbl

ER 4 000000 CEESTART

SD 5 000000 000008 @@PPA2

SD 6 000000 00000C CEEMAIN

ER 7 000000 EDCINPL

ER 8 000000 main

15647A01 V2 R6 MOO 0S/396 C/C++ IPA Partition 1

EXTERNAL SYMBOL CROSS REFERENCE

ORIGINAL NAME EXTERNAL SYMBOL NAME

OSTATICP @STATICP
main main
CEESGO03 CEESGO03
gbl gbl
CEESTART CEESTART
@@PPA2 @@PPA2
CEEMAIN CEEMAIN
EDCINPL EDCINPL

15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1

x%%* STORAGE OFFSET LISTING
IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>
gb1 5-1:5 Class = external reference, Location = CSECT GBL,
k 12-1:12 Class = automatic, Location = 160(r13),
j 12-1:12 Class = automatic, Location = 172(r13),
koK ok ok END OF STORAGE OFFSET LIST
15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1
x%**x SOURCE FILE MAP ** %% %
OBJECT SOURCE
*0RIGIN FILE ID FILE ID SOURCE FILE NAME
P 2 1 TSIPA.TEST.C(INCLMAIN)
- Compiled by 5647A01 V2 R6 M0O® 0S/390 C
on 06/22/1998 15:04:54
P 3 2 TSIPA.TEST.C(INCLRTN1)
- Compiled by 5647A01 V2 R6 MOO 0S/390 C
on 06/22/1998 15:05:05
P 4 3 TSIPA.TEST.C(INCLRTN2)
- Compiled by 5647A01 V2 R6 M0O® 0S/390 C
on 06/22/1998 15:05:13
ORIGIN: P=primary input PI=primary INCLUDE
xx%%% END OF SOURCE FILE MAP * %% xx*
15647A01 V2 R6 MOO 0S/390 C/C++ IPA Partition 1
* %k x % MESSAGE SUMMARY %% % % %
TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL
U (S) (E) (W) (1)
0 0 0
xx % %% END OF MESSAGE SUMMARY * %% x*
koK ok ok END OF COMPILATION * %% **

Figure 17. Example of an IPA Link Step Listing (Part 7 of 7)

IPA Link Step Listing Components

06/22/1998 15:13:03 Page 15

06/22/1998 15:13:03 Page 16

06/22/1998 15:13:03 Page 17

* k ok Kk *

Length
Length

Length

ING

* *k k k %

06/22/1998 15:13:03 Page 18

06/22/1998 15:13:03 Page 19

The following sections describe the components of an IPA Link step listing.

200 0S/390 V2R6.0 C/C++ User’s Guide

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the central title area, the date and time compilation began
(formatted according to the current locale), and the page number.

In the following listing sections, the central title area will contain the primary input
file identifier:

* Prolog

* Object File Map

» Source File Map

» Compiler Options Map

* Global Symbols Map

* Inline Report

* Messages

* Message Summary

In the following listing sections, the central title area will contain the phrase Partition
nnnn, where nnnn specifies the partition number:
» Partition Map

In the following listing sections, the title contains the phrase Partition nnnn:name.
nnnn specifies the partition number, and name specifies the name of the first function
in the partition:

* Pseudo Assembly Listing

* External Symbol Cross Reference

» Storage Offset Listing

Prolog Section

The Prolog section of the listing provides information about the compile-time library,
file identifiers, compiler options, and other items in effect when the IPA Link step
was invoked.

The listing displays all compiler options except those with no default (for example,
ARCHITECTURE). If you specify IPA suboptions that are irrelevant to the IPA Link step,
the Prolog does not display them. Any problems with compiler options appear after
the body of the Prolog section and before the End of Prolog section.

Object File Map

The Object File Map displays the names of the object files that were used as input
to the IPA Link step. Specify any of the following options to generate the Object File
Map:

» IPA(MAP)

e LIST

Other listing sections, such as the Source File Map, use the File ID numbers that
appear in this listing section.

HFS file names that are too long to fit into a single listing record continue on
subsequent listing records.

Chapter 6. Compiler Options 201

Source File Map

The Source File Map listing section identifies the source files that are included in
the object files. The IPA Link step generates this section if you specify any of the
following options:

« IPA(MAP)

e LIST

The IPA Link step formats the compilation date and time according to the locale you
specify with the LOCALE option in the IPA Link step. If you do not specify the LOCALE
option, it uses the default locale.

This section appears near the end of the IPA Link step listing. If the IPA Link step
terminates early due to errors, it does not generate this section.

Compiler Options Map

The Compiler Options Map listing section identifies the compiler options that were
specified during the IPA Compile step for each compilation unit that is encountered
when the object file is processed. For each compilation unit, it displays the final
options that are relevant to IPA Link step processing. You may have specified these
options through a compiler option or #pragma directive, or you may have picked
them up as defaults.

The IPA Link step generates this listing section if you specify the IPA(MAP) option.
Global Symbols Map

The Global Symbols Map listing section shows how global symbols are mapped into
members of global data structures by the global variable coalescing optimization
process.

Each global data structure is limited to 16 MB by the OS/390 object architecture. If
an application has more than 16 MB of data, IPA Link must generate multiple global
data structures for the application. Each global data structure is assigned a unique
name.

The Global Symbols Map includes symbol information and file name information
(file name information may be approximate). In addition, line number information is
available for C compilations if you specified any of the following options during the
IPA Compile step:

* XREF
» IPA(XREF)
* XREF(ATTRIBUTE)

The IPA Link step generates this listing section if you specify the IPA(MAP) option.
Inline Report for IPA Inliner
The Inline Report describes the actions that are performed by the IPA Inliner. The

IPA Link step generates this listing section if you specify the INLINE(,REPORT,,),
NOINLINE(,REPORT,,), or INLRPT option.

202 0S/390 V2R6.0 C/C++ User’s Guide

This report is similar to the one that is generated by the non-IPA inliner. In the IPA
version of this report, the term 'subprogram' is equivalent to a C/C++ function or a
C++ method. The summary contains information such as:

* Name of each defined subprogram. IPA sorts subprogram names in alphabetical
order.

* Reason for action on a subprogram:
— You specified #pragma noinline for the subprogram.
— You specified #pragma inline for the subprogram.
— The IPA Link step performed auto-inlining on the subprogram.
— There was no reason to inline the subprogram.
— There was a partition conflict.
— The IPA Link step could not inline the object module because it was a non-IPA
object module.

» Action on a subprogram:
— IPAinlined subprogram at least once.
— IPA did not inline subprogram because of initial size constraints.
— IPA did not inline subprogram because of expansion beyond size constraint.
— Subprogram was a candidate for inlining, but IPA did not inline it.
— Subprogram was a candidate for inlining, but was not referenced.
— The subprogram is directly recursive, or some calls have mismatched
parameters.

» Status of original subprogram after inlining:
— |IPA discarded the subprogram because it is no longer referenced and is
defined as static internal.
— IPA did not discard the subprogram, for various reasons :
- Subprogram is external. (It can be called from outside the compilation unit.)
- Subprogram call to this subprogram remains.
- Subprogram has its address taken.

 Initial relative size of subprogram (in Abstract Code Units (ACUS)).

* Final relative size of subprogram (in ACUSs) after inlining.

* Number of calls within the subprogram and the number of these calls that IPA
inlined into the subprogram.

* Number of times the subprogram is called by others in the compile unit and the
number of times IPA inlined the subprogram.

* Mode that is selected and the value of threshold and limit you specified for the
compilation.

Static functions whose names are not unique within the application as a whole will
have names prefixed with nnnn:, where nnnn is the source file number.

The detailed call structure contains specific information of each subprogram such
as:

* Subprograms that it calls

* Subprograms that call it

* Subprograms in which it is inlined.

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a subprogram
with automatic storage increases the automatic storage of the subprogram it is
being inlined into by more than 4K, the IPA Link step issues a message.

Chapter 6. Compiler Options 203

This report may display information about inlining specific subprograms, at the point
at which IPA determines that inlining is impossible.

The counts in this report do not include calls from non-IPA to IPA programs.

Note: Even if the IPA Link step did not perform any inlining, it generates the IPA
Inline Report if you request it.

Partition Map

The Partition Map listing section describes each of the object code partitions the
IPA Link step creates. It provides the following information:

* The reason for generating each partition

* How the code is packaged (the CSECTS)

* The options used to generate the object code

* The function and global data included in the partition

* The source files that were used to create the partition

The IPA Link step generates this listing section if you specify either of the following
options :

o IPA(MAP)

e LIST

The Pseudo Assembly, External Symbol Dictionary, External Symbol Cross
Reference, and Storage Offset listing sections follow the Partition Map listing
section for the partition, if you have specified the appropriate compiler options.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the current
partition of the object module, in a form similar to assembler language.

This pseudo assembly listing displays the source statement line numbers and the
line number of inlined code to aid you in debugging inlined code. Refer to
EGONUMBER | NOGONUMBER” an page 96, FIPA | NOIPA” on page 103, and
[LIST | NOI IST” on page 110 for information about source and line numbers in the

listing section.

External Symbol Dictionary

The External Symbol Dictionary lists the names that the IPA Link step generates for
the current partition of the object module. It includes address information and size
information about each symbol.

External Symbol Cross Reference Listing

The IPA Link step generates this section if you specify the ATTR or XREF compiler
option. It shows how the IPA Link step maps internal and ESD names for external
symbols that are defined or referenced in the current partition of the object module.

Storage Offset Listing
The Storage Offset listing section displays the offsets for the data in the current

partition of the object module. This section only displays variable information from C
compilation units.

204 0S/390 V2R6.0 C/C++ User’s Guide

If you specify the XREF, IPA(XREF), or IPA(ATTRIBUTE) option along with the
IPA(OBJECT) option for the IPA Compile step, and the compilation unit includes
variables, the IPA Link step may generate a Storage Offset listing.

If you specify the XREF option on the IPA Link step, and any of the compilation units
that contributed variables to a particular partition had storage offset information
encoded in the IPA object file, the IPA Link step generates a Storage Offset listing
section for that partition.

The Storage Offset listing displays the variables that IPA did not coalesce. The
symbol definition information appears as file#:1ine#.

Messages

If the IPA Link step detects an error, or the possibility of an error, it issues one or
more diagnostic messages, and generates the Messages listing section. This listing
section contains a summary of the messages that are issued during IPA Link step
processing.

The IPA Link step listing sorts the messages by severity. The Messages listing
section displays the listing page number where each message was originally
shown. It also displays the message text, and optionally, information relating the
error to a file name, line (if known), and column (if known).

For more information on compiler messages, see [ELAG | NOEL AG” on page 9,
Wﬂ&%ﬂd&mﬂmﬁg&m

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Chapter 6. Compiler Options 205

206 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 7. Binder Options and Control Statements

This chapter describes only the binder options, suboptions, and control statements
that are considered important for a C or C++ programmer. For a detailed description
of all the binder options and control statements, see DFSMS/MVS Program
Management.

Binder Options

The binder processes options from left to right. If you specify a binder option more

than once, the binder uses the last, or rightmost option. The default options used by
the OS/390 C/C++ supplied cataloged procedures, the CXXBIND REXX exec, and the
89, cc, and c++ utilities are indicated only where they differ from the binder default.

ALIASES(ALL | NO)

DEFAULT: ALIASES(NO)

The ALIASES(ALL) option instructs the binder to create hidden aliases for all
externally defined symbols (functions and variables). Hidden aliases are marked as
"not executable”, to prevent an unintentional load and execution. These aliases
might not be visible to some system utilities. Also, if the target of an ALIAS control
statement is a symbol, the binder does not mark the alias as hidden.

The binder does not create hidden aliases if ALIASES(NO) is in effect, or if the

module is saved in a PM2 or earlier format. See LCQMPAT(PM1 | PM2 | PM3 |
CURRENT | CURR)” an page 208 for information on setting the compatibility format.

Hidden aliases are for autocall purposes only. See EGenerating Aliases fod
E L Al (L s)

CALL(YES | NO)

DEFAULT: CALL(YES)

Note: If you use the -r option with c89, cc or c++, the binder uses the
CALL(NO)option.

The CALL(YES) option specifies that the binder should search the libraries that are

defined by the DD SYSLIB to find symbol definitions (see t'Einal Autocall Processing

The CALL(NO) option instructs the binder not to perform final autocall processing of
the libraries that are defined by DD SYSLIB to resolve unresolved references.

CASE(UPPER | MIXED)
Binder DEFAULT: CASE (UPPER)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the c89, cc, and c++ utilities is CASE (MIXED).

© Copyright IBM Corp. 1996, 1999 207

The CASE option controls the binder’s sensitivity to case. When you specify
CASE (MIXED):

* The binder distinguishes between uppercase characters and lowercase
characters, and treats two strings as different if their cases do not match exactly.

* The binder does not convert lowercase characters to uppercase in names that
are encountered in input modules, control statements, and call parameters.

When you specify CASE(UPPER), the binder converts all lowercase characters to
uppercase during processing.

Note: OS/390 C++ does not support the CASE(UPPER) option. Use CASE(MIXED) for
C++ code.

COMPAT(PM1 | PM2 | PM3 | CURRENT | CURR)
DEFAULT: COMPAT (CURRENT)

The COMPAT option specifies the compatibility level of the binder. If you do not
specify it, the default is COMPAT (CURRENT), which is the current level of the binder.
For OS/390 C/C++ code you cannot specify a compatibility level lower than PM3.

DYNAM(DLL | NO)

Binder DEFAULT: DYNAM(NO)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the c89, cc, and c++ utilities is DYNAM(DLL).

The DYNAM option specifies whether the binder should enable the resultant module
for DLL-type dynamic binding. You must specify DYNAM(DLL) if the program object is
to be a DLL or will need to load DLLs. If you specify DYNAM(DLL), the binder does
the following:

* Creates the Import/Export Table in section IEWBCIE of class B_IMPEXP. This
element contains information about imported and exported symbols that is
necessary to support run-time library dynamic linking and loading.

» Performs DLL-specific bind processing: that is, generates linkage areas
(descriptors) in class C_WSA for run-time library fixup.

Import/export tables and the definition side-deck are not created if you specify
DYNAM(NO), or if it is in effect by default. If you specify DYNAM(DLL), the binder RES
option is disabled. DLL-enabled modules require PM3 program objects. If you
attempt to save them in down-level program objects or load modules using COMPAT,
the binder issues a severity 12 error, and does not save the module.

LET(0 | 4]8]12)
DEFAULT: LET(4)
The LET option specifies that a generated program object should be marked as
executable even if the return code is not zero: for example, if symbols are
unresolved. For example, LET(4) marks the generated program object as

executable even if there are errors of severity 4 or less. LET is the equivalent of
LET(8).

208 0S/390 V2R6.0 C/C++ User’s Guide

LIST(OFF | STMT | SUMMARY | NOIMP | ALL)

MAP(YES | NO)

OPTIONS

DEFAULT: LIST(SUMMARY)

The LIST option specifies the type of information that is written to the binder map.
Use one of the following suboptions:

ALL produces a listing of individual function calls, save summary, control
statements, and messages

SUMMARY produces a listing of the summary information which includes
processing options, module attributes, save summary, and the entry
point summary, and echoes IMPORT control statements.

NOIMP produces the same output as SUMMARY, but does not echo IMPORT
control statements.

STMT produces a listing of control statements and binder messages

OFF produces a listing that contains only binder messages.

Note: The binder map contains a summary of the modules only if you specify the
suboptions SUMMARY, ALL, or NOIMP.

NOLIST is equivalent to LIST(OFF).

DEFAULT: MAP(NO)

The option MAP(YES) instructs the binder to write a printed map of the program
object to DD SYSPRINT. The option MAP(NO) specifies that the binder does not
generate a map.

This option specifies the DDname of a file that contains other options. For example,
OPTIONS=0PT1 specifies that further options should be read from the DDname OPTL1.
This option is useful if the length of the PARM keyword in your JCL is longer that 100
characters.

REUS(NONE | SERIAL | RENT)

Binder DEFAULT: REUS (NONE)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the ¢89, cc, and c++ utilities is REUS (RENT).

If you use the -g option with c89, cc, or c++, the binder uses the option
REUS (SERIAL).

The REUS option specifies the reusability of the output program object. For C/C++
code these are the suboptions that you are most likely to use:

RENT specifies that other users or programs can share a read-only copy
of the code.
NONEL specifies that the code cannot be shared. Use this option if you

Chapter 7. Binder Options and Control Statements 209

have NORENT variables which are modified during program
execution. Such a program object cannot be in the LPA or ELPA.

If you built a DLL with REUS(NONE), any program that links to the
DLL will get a new load of both the code and data (C_WSA). This
may be a problem if other DLLs in the same program share this

DLL. See tNon-reentrant DLL Problems” on page 333,

SERIAL specifies that a single user can share the code, but it is loaded into
a modifiable area of storage. Use this option if you have NORENT
variables that are modified during program execution. Such a
program object cannot be in the LPA or ELPA.

If you built a DLL with REUS (SERIAL), any program within a single
Language Environment enclave that links to that DLL will share the
same code and data (C_WSA).

UPCASE(YES | NO)

DEFAULT: UPCASE(NO)

The UPCASE option specifies that some additional rename processing is to be done.
You should not confuse this option with the CASE(UPPER) option.

UPCASE by itself is equivalent to UPCASE(YES). The UPCASE(YES) option enforces the

uggercase mapping of some symbol names. See fRename Pracessing” od

for its effect.

If you use the UPCASE option, external symbols in C programs are no longer
case-sensitive. The binder does not support the use of the UPCASE option with C++
code. Therefore, you should use the RENAME control statement rather than the
UPCASE option.

XREF(YES | NO)
DEFAULT: XREF(NO)
The XREF(YES) option instructs the binder to generate a cross-reference list of data

variables. If the XREF(NO) option is in effect, the binder does not generate a
cross-reference list of data variables.

Binder Control Statements

Binder control statements specify how the binder processes its input.

The important binder control statements for a C/C++ programmer are the following
(this is not a complete list):

* AUTOCALL

e ENTRY

« INCLUDE

e IMPORT

* LIBRARY

* NAME

* RENAME

210 0S/390 V2R6.0 C/C++ User’s Guide

You can place the control statements in a permanent data set that has the attributes
RECFM=F or RECFM=FB, and LRECL=80.

If all of the information does not fit on one control statement, you can use one or
more continuations. You must put a non-blank character in column 72 if you need to
continue a control statement on the next record. The first column of the continued
card that follows must be blank, and the statement must continue in column 2. The
binder ignores leading blanks unless they are in a quoted string. You may optionally
enclose a named token in single quotes.

You can specify input files on the INCLUDE, LIBRARY, and AUTOCALL statements as
HFS pathnames rather than DD names. Pathnames can be distinguished from DD
names by the preceding "/”, which indicates an absolute pathname, or "./”, which
indicates a relative pathname.

AUTOCALL Control Statement

ENTRY Control

The AUTOCALL control statement causes the binder to perform an immediate
(incremental) library search on the named library. Incremental autocall attempts to
resolve any unresolved symbols at this point in the processing, using a single
library or library concatenation. The binder searches the library before it processes
more primary or secondary input.

The AUTOCALL control statement has the following syntax:

»»>—AUTOCALL—Library

A\
A

library If library identifies the DD name of the library or library concatenation, it
cannot exceed 8 bytes in length.

If library identifies an HFS filename, it cannot exceed 1024 bytes. The
binder assumes that the file is an archive file. If it is an HFS directory file,
then for purposes of symbol resolution, the binder uses the filenames of the
files in the directory in the same way as it uses PDSE aliases and member
names.

During incremental autocall, the binder ignores LIBRARY control statements and the
CALL option.

Statements
The ENTRY control statement specifies the entry point for program execution.

The ENTRY control statement has the following syntax:

»»—ENTRY—name »><

name The name of the entry point for execution when the program is loaded.

By default, the program entry point for a C or C++ application is CEESTART. The
program entry point is nominated in one of three ways (listed from weakest to
strongest nomination).

1. The name of the first section that is processed by the binder

Chapter 7. Binder Options and Control Statements 211

2. The name that is nominated in the object module (CEESTART for C/C++
main())
3. The name explicitly specified on an ENTRY control statement

IMPORT Control Statements

The IMPORT control statement describes an external function or variable to be
imported, and the name of the DLL that contains its definition. The DLL name can
be a PDS or PDSE member, or an HFS filename. The function or variable should
be one that is being exported by a DLL.

If you do not specify DYNAM(DLL), the binder ignores the IMPORT control statement.

The IMPORT control statement has the following syntax:

v
A

»—IMPORT—[CODE ,dll-name—, identifier
DATA

CODE | DATA Specifies the type of contents of the module that the imported
symbol represents. A function and a variable cannot have the same
name.

dll-name The directory name (primary member or alias) or HFS filename of
the load module or program object that contains the imported
function or variable. The maximum length of a dll-name is 1024
characters. The maximum length of an HFS filename is 255 bytes.

identifier The name of the symbol (function or variable) that is to be
imported. The name cannot be longer than 1024 characters. If the
symbol has a C++ mangled name, then you must use the mangled
name on the IMPORT statement. If the identifier contains lowercase
letters, you must specify the binder option CASE (MIXED).

Typically, a DLL has an associated definition side-deck of IMPORT control
statements, which you include when you import functions or variables from that
library. You can edit the records in the side file, or substitute your own IMPORT
control statements so that some symbols are imported from DLLs in a different
library.

If your program exports symbols, the binder may also generate an output file of

corresponding IMPORT control statements. See [Qutput IMPORT Statements” on

INCLUDE Control Statements

You typically place INCLUDE control statements in DD SYSLIN to include multiple
program objects, load modules, or object modules in primary input.

The INCLUDE control statement has the following syntax:

212 0S/390 V2R6.0 C/C++ User’s Guide

»»—INCLUDE ddname
l—fi Zename—| L ’7,— J
—)

(—~—membe r—

filename is the name of the file to be included.
ddname is a DD name associated with a file to be included.
member is the member of the DD to be included.

The binder attempts to read the file that is specified.
LIBRARY Control Statement

You can use the LIBRARY control statement to resolve conflicts that you cannot
resolve by changing the order of libraries in the SYSLIB concatenation.

To specify that the binder should never search for an unresolved reference
neversrch, use the following syntax for the LIBRARY control statement:

»»>—| IBRARY—*— (—Y—neversrch) ><

neversrch The binder never searches for the reference that you marked as
neversrch, on this bind step or on future rebinds.

To specify that the binder should not search for an unresolved reference nosrch,
use the following syntax for the LIBRARY control statement:

»»—| IBRARY— (—Y—nosrch) >

nosrch An external reference which may be unresolved at the end of SYSLIN
processing. Automatic library call in SYSLIB does not search for such
references on this bind step. Case-sensitivity is maintained you enclose
nosrch in single quotes.

To direct the binder to search for an unresolved reference srch in a particular
library, use the following syntax of the LIBRARY control statement:

»»—| IBRARY—ddname— (—~—srch)

A\
A

ddname The name of a DD that defines a library (PDS or PDSE), or a
concatenation of one or more PDS or PDSEs.

srch An external reference which may be a variable or a function.
Should this symbol be unresolved after SYSLIN is processed, and

Chapter 7. Binder Options and Control Statements 213

library search is requested, the libraries pointed to by SYSLIB are
not searched. Rather, the library (PDS or PDSE) that is defined by
ddname will be searched for an alias or a member of name srch.
See |[Generating Aliases for Automatic 1 ibrary Call (Library Search)]
W. If the binder finds the member, it reads it as input to
the bind step. If you enclose srch in single quotes, the search is
case-sensitive.

For example, if you have a program that has both Fortran and C code, both
libraries define the member ABS and COS. You want the member COS from the
Fortran library, and the member ABS from the C library. Your LIBRARY control
statement would be similar to the following:

LIBRARY DDFORT(COS)
LIBRARY DDCLIB(ABS)

If you do not use the LIBRARY control statement, you will get both members from the
C library or both members from the Fortran library.

NAME control statement

The NAME control statement specifies the name of the program object that is output
to SYSLMOD. The NAME control statement has the following syntax:

»>—NAME—member_name >
L r)
member_name A PDS or PDSE library member name, or an HFS
file name.
R If you use the option R and the name that you

specify already exists, the binder will replace the
existing member with the output program object.

The output from the binder can be a single program object, or multiple program
objects generated by using multiple NAME control statements.

RENAME Control Statement

The RENAME control statement requests the binder to rename the references to a
symbol that remains unresolved at the end of the first pass of final autocall

processing of SYSLIB. See LEinal Autocall Processing (SYSLIBY' on page 314,

You can use the RENAME control statement to resolve case differences in function
names.

The RENAME control statement has the following syntax:

»»—RENAME—o [d-name—, new-name >«

old-name The function to be renamed. Maximum length is 1024.

new-name The name to which old-name may be changed. Maximum length is
1024.

214 0S/390 V2R6.0 C/C++ User’s Guide

When the binder reads a RENAME control statement, it adds the request to the list of
such requests. Nothing else is done until rename processing. See

Chapter 7. Binder Options and Control Statements 215

216 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 8. Runtime Options

This chapter describes how to specify runtime options and #pragma runopts
preprocessor directives available to you with OS/390 C/C++ and OS/390 Language
Environment. For a detailed description of the OS/390 Language Environment
runtime options and information about how to apply them in different environments,
refer to the OS/390 Language Environment Programming Reference.

Specifying Runtime Options

To allow your application to recognize runtime options, either the EXECOPS compiler
option, or the #pragma runopts(execops) directive must be in effect. The default
compiler option is EXECOPS.

You can specify runtime options as follows:

* At execution time in one of the following ways:

On the GPARM option of the IBM-supplied cataloged procedures

On the option list of the TSO CALL command

On the PARM option of the EXEC PGM=your-program-name JCL statement

On the exported _CEE_RUNOPTS environment variable under the OS/390 shell

» At compile time, on a #pragma runopts directive in your main program

If EXECOPS is in effect, use a slash '/’ to separate runtime options from arguments
that you pass to the application. For example:

GPARM="'STORAGE (FE,FE,FE) /PARM1,PARM2 ,PARM3"

If EXECOPS is in effect, Language Environment interprets the character string that
precedes the slash as runtime options. It passes the character string that follows
the slash to your application as arguments. If no slash separates the arguments,
Language Environment interprets the entire string as an argument.

If EXECOPS is not in effect, Language Environment passes the entire string to your
application.

If you specify two or more contradictory options (for example in a #pragma runopts
statement), the last option that is encountered is accepted. Runtime options that
you specify at execution time have higher precedence than those specified at
compile time.

For more information on the precedence and specification of runtime options for
applications that are compiled with the OS/390 Language Environment, refer to the
0S/390 Language Environment Programming Reference.

Using the #pragma runopts Preprocessor Directive

You can use the #pragma runopts preprocessor directive to specify OS/390
Language Environment runtime options. You can also use #pragma runopts to
specify the compiler options ARGPARSE, ENV, PLIST, REDIR, and EXECOPS. If you
specify the compiler option, it has precedence over the #pragma runopts directive.

When the runtime option EXECOPS is in effect, you can specify runtime options at

execution time, as previously described. These options override runtime options that
you compiled into the program by using the #pragma runopts directive.

© Copyright IBM Corp. 1996, 1999 217

The #pragma runopts directive can appear in any file: main, include, or source. You
can specify multiple runtime options per directive or multiple directives per
compilation unit. If you want to specify the ARGPARSE or REDIR options, the #pragma
runopts directive must be in the same compilation unit as main(). Neither runtime
option has an effect on programs invoked under the OS/390 shell. This is because
the shell program handles the parsing and redirection of command line arguments
within that environment.

When you specify multiple instances of #pragma runopts in separate compilation
units, the compiler generates a CSECT for each compilation unit that contains a
#pragma runopts directive. When you link multiple compilation units that specify
#pragma runopts, the linkage editor takes only the first CSECT, thereby ignoring
your other option statements. Therefore, you should always specify your #pragma
runopts directive in the same source file that contains the function main().

For more information on the #pragma runopts preprocessor directive, see the
0S/390 C/C++ Language Reference.

218 0S/390 V2R6.0 C/C++ User’s Guide

Part 3. Compiling, Binding, and Running OS/390 C/C++
Programs

This part describes how to compile, bind, and run an OS/390 C/C++ program using
0S/390 Language Environment in the following sections:

© Copyright IBM Corp. 1996, 1999 219

220 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 9. Compiling

This chapter describes how to compile your program with the OS/390 C/C++
compiler and OS/390 Language Environment. For specific information about

compiler options see ['Chapter 6. Compiler Options” on page 585.

The OS/390 C/C++ compiler analyzes the source program and translates the
source code into machine instructions that are known as object code.

You can perform regular compilations under OS/390 batch, TSO, or the OS/390
shell.

Compiling with IPA

If you request Interprocedural Analysis (IPA) through the IPA compiler option, the
compilation process changes significantly. IPA instructs the compiler to optimize
your OS/390 C/C++ program across compilation units, and to perform optimizations
that are not otherwise available with the OS/390 C/C++ compiler. You should refer
to the OS/390 C/C++ Programming Guide for an overview of IPA processing before
you invoke the compiler with the IPA compiler option.

Differences between the IPA compilation process and the regular batch or c89
compilation process are noted throughout this chapter.

m shows the flow of processing for a regular compilation:

Invocation parameters

v

Compiler

<« Source file(s)
Analysis phase —» Listing sections
—» Messages

Code generation —>» Object module(s)
ghase —» Listing sections
P —» Messages

Figure 18. Flow of regular compiler processing

IPA processing consists of two separate steps, called the IPA Compile step and the
IPA Link step.

The IPA Compile Step

The IPA Compile step is similar to a regular compilation.

You invoke the IPA Compile step for each source file in your application by
specifying the IPA(NOLINK) compiler option. The output of the IPA Compile step is

© Copyright IBM Corp. 1996, 1999 221

an IPA-optimized or a combined IPA-optimized and conventional object. Eigure 19
shows the flow of IPA Compile step processing:

Invocation parameters
(IPA or IPA(NOLINK),
other suboptions may be

specified)
Compiler
_ <« Source file(s)
Analysis phase ——» Listing sections
—» Messages
IPA object creation —» |PA object(s)

Code generation —» Listing sections
haseg(o tional) Messages
P P —» Regular object(s)

Figure 19. IPA Compile step processing

The same enviornments that support a regular compilation also support the IPA
Compile step.

The IPA Link Step

The IPA Link step is similar to the binding process.

Specify the IPA(LINK) compiler option to invoke the IPA Link step once for your

program as a whole. Eigure 20 on page 223 shows the flow of IPA Link step

processing:

222 0S/390 V2R6.0 C/C++ User’s Guide

Invocation parameters
(IPA(LINK, CONTROL(dsn))
(other IPA suboptions may be

specified)
Compiler
<«— Primary input file (object)
IPA object <—— IPAcontrol file
link phase <— Secondary input (object, load module)
——» Listing sections
—» Messages
Analysis/ ———>» Listing sections
optimization phase —» Messages
Code generation ——>» Listing sections
phase —» Messages
—» Final object code

Figure 20. IPA Link step processing

Only ¢89, c++ and OS/390 batch (without the ISPF interface) support the IPA Link

step. Refer to Lt
m for information about the IPA Link step.

Input to the OS/390 C/C++ Compiler

The following sections describe how to specify input to the OS/390 C/C++ compiler
for a regular compilation, or the IPA Compile step. For information about input for
the IPA Link step, refer to |‘(‘hapfpr 11_Using the IPA | ink Step with OS/390 CIC+4

If you are compiling an OS/390 C++ program or an OS/390 C program, input for the
compiler consists of the following:

* Your OS/390 C/C++ source program

* The OS/390 C/C++ standard header files including IBM-supplied Class Library
header files

* Your header files

When you invoke the OS/390 C/C++ compiler, the operating system locates and
runs the compiler. To run the compiler, you need these default data sets supplied by
IBM:

» (BC.SCBCCMP

» CEE.SCEERUN

The locations of the compiler and the runtime library were determined by the
system programmer who installed the product. The compiler and library should be
in the STEPLIB, JOBLIB, LPA, or LNKLST concatenations. LPA can be from either

Chapter 9. Compiling 223

Primary Input

specific modules (IEALPAxx) or a list (LPALSTxx). See the cataloged procedures

shipped with the product in [Appendix D. IBM Supplied Cataloged Procedures and
REXX EXECs” an page 457.

HFS file names: Unless they appear in JCL, file names which contain the special
characters blank, backslash, and double quote must escape
these characters. The escape character is backslash (\).

For an OS/390 C++ or OS/390 C program (except for the IPA Link step), the
primary input to the compiler is the data set that contains your C/C++ source
program. If you are running the compiler in batch, identify the input source program
with the SYSIN DD statement. You can do this by either defining the data set that
contains the source code or by placing your source code directly in the JCL stream.
In TSO or in OS/390 UNIX System Services, identify the input source program by
name as a command line argument. The primary input source file can be any one
of the following:

* A sequential data set

* A member of a partitioned data set

* All members of a partitioned data set

* A hierarchical file system (HFS) file

* All HFS files in an absolute directory

Secondary Input

For an OS/390 C++ or OS/390 C program (except for the IPA Link step), secondary
input to the compiler consists of data sets that contain #include files. If you are
compiling a new OS/390 C/C++ program, use the LSEARCH compiler option instead
of USERPATH and USERLIB, and SEARCH instead of SYSPATH and SYSLIB. SEARCH and
LSEARCH provide greater flexibility in names and locations of #include files.

For more information on the use of these compiler options, see [LSEARCH |

NOI SEARCH” an page 115 and ESEARCH | NOSEARCH” on page 14d. For more
information on naming #include files, see ISpecifying Include File Names” od

. For information on how the compiler searches for #include files, see
Seamhjequencm_taunchm&Euﬁlan_page_ZSAl For more information on include
files, refer to EUsing Include Files” on page 248

Output from the Compiler

You can specify compiler output files as one of the following:
A sequential data set

A member of a partitioned data set

A partitioned data set

A hierarchical file system (HFS) file

An HFS directory

agprwNE

For valid combinations of input file types and output file types, refer to fable 25 od

224 0S/390 V2R6.0 C/C++ User’s Guide

Specifying Output Files

You can use compile options to specify compilation output files as follows:

Table 23. Compile Options That Provide Output File Names

Output File Type

Compiler Option

Object Module

OBJECT((filename)

Listing File

SOURCE (filename), LIST(filename),
INLRPT(filename)

Preprocessor Output

PPONLY (filename)

Template Output

TEMPINC(location)

Precompiled Header Output

GENPCH(location)

When compiler options that generate output files are specified without suboptions to
identify the output files, and the ddnames are not allocated, the output file names
are generated based on the name of the source file. For data sets, the compiler
generates a low-level qualifier by appending a suffix to the data set name of the

source, as m showns.

For example, under TSO, the compiler generates the object file
'userid.TEST.SRC.0BJ' if you compile the following:

cc TEST.SRC (0BJ

The compiler generates the object file 'userid.TEST.SRC.0BJ(HELLO) " if you
compile the following:

cc 'hlqual.TEST.SRC(HELLO)' (OBJ

If you compile source from HFS files without specifying output filenames in the
compiler options, the compiler writes the output files are to the current working
directory. The compiler does the following to generate the output file names:

* appends a suffix, if it does not exist
* replaces the suffix, if it exists
The following default suffixes are used:

Table 24. Default Suffixes for Output File Types

Output File Type. DS/390 File HFS File
Object Module OBJ 0

Listing File LIST Ist
Preprocessor Output EXPAND i

Template Output TEMPINC Jtempinc
Precompiled Header Output |PCH, PCHPP .pch, .pchpp

Notes:

1. Output files default to the HFS directory if the source resides in the HFS, or to
the OS/390 data set if the source resides in a data set.

2. If you have specified the OF option, see EQE | NOQE” on page 127 for a

description of the default naming convention.

3. If you supply inline source in your JCL, you must provide a file name for the
output, or route it to the job log. The compiler will not generate an output file
name automatically. You can specify a file name either as a suboption for a
compiler option, or on a ddname in your JCL.

Chapter 9. Compiling 225

4. |If you are using #pragma options to specify a compile-time option that generates
an output file, you must use a ddname to specify the output file name. The
compiler will not automatically generate file names for output that is created by
#pragma options.

Listing Output

To create a listing file that contains source, object or inline reports use the SOURCE,
LIST, or INLRPT compile options. The listing includes the results of the default or
specified options of the CPARM parameter (that is, the diagnostic messages and the
object code listing). If you specify filename with two or more of these compile
options, the compiler combines the listings and writes them to the last file specified
in the compile options. If you did not specify filename, the listing will go to the
SYSCPRT DD name, if you allocated it. Otherwise, the compiler generates a default
file name as described in ELIST | NOQLIST” on page 11d.

Object Module Output

To create an object module and store it on disk or tape, you can use either the
OBJECT or DECK (C only) compiler options.

If you do not specify filename with the 0BJECT option, the compiler stores the object
code in the file that you define in the SYSLIN DD statement. With the DECK compiler
option, the compiler uses the file that you define in the SYSPUNCH DD. If you did not
specify a suboptions, and did not allocate SYSLIN, the compiler generates a default

file name, as described in EFQRIECT | NOORIECT” aon page 125,

Differences in Object Modules under IPA: The object module that a regular
compilation generates is different from the object module that the IPA Compile step
generates. The IPA Compile step and regular compilation both produce an object
module for each source file successfully processed. For the IPA Compile step,
however, the output is an IPA-optimized object file, or a combined IPA/conventional
object file (if you do not specify the NOOBJECT suboption of the IPA compiler option).
You can use the object file that the IPA(NOLINK,NOOBJECT) compiler option creates
as input to the IPA Link step only. It contains an external reference to @eDOIPA,
which remains unresolved until IPA Link step processes the file. If you attempt to
bind an IPA object file that was created by using the IPA(NOLINK,NOOBJECT) option,
the binder issues an error message.

Refer to EValid Input/Output File Types” an page 227 for information about valid

input/output file types.

Preprocessor Output

If you specify filename with the PPONLY compile option, the compiler writes the
preprocessor output to that file. If you do not specify filename with the PPONLY
option, the compiler stores the preprocessor output in the file that you define in the
SYSUT10 DD statement. If you did not allocate SYSUT10, the compiler generates a

default file name, as described in lPRQNLY | NOPPQNLY” on page 136.

Template Instantiation Output

If you specify location, which is either an HFS directory or a PDS, with the TEMPINC
compile option, the compiler writes the template instantiation output to that location.
If you do not specify location with the TEMPINC option, the compiler stores the
TEMPINC output in the file that is associated with the TEMPINC DD name. If you did

226 0S/390 V2R6.0 C/C++ User’s Guide

not allocate DD: TEMPINC, the compiler determines a default destination for the

template instantiation files. See [TEMPINC | NOTEMPINC” on page 156 for more

information on this default.

Valid Input/Output File Types

Depending on the type of file that is used as primary input, certain output file types
are allowed. The following table describes these combinations of input and output

files:

Table 25. Valid Combinations of Source and Output File Types

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
HFS File, for
example a/b/c.o

Output Specified as
HFS Directory, for
example a/b

creates PDS and
member

3. If PDS exists and
member also
exists, overwrites it

Sequential 1. Iffile exists as a 1. 1f PDS does not |1. If the directory | NOt supported
Data Set, for sequential data set, exist, creates the does not exist,
example A.B overwrites it PDS and adds a compilation fails
2. |If file does not exist, member into the | |f the directory
creates sequential data data set exists but the file
set 2. If PDS exists and does not exist,
3. Otherwise compilation mgmber does not creates file
fails exist, adds 3. If the file exists,
member in the overwrites the
PDS file.
3. If PDS and
member both
exist, then
overwrites the
member.
A memt_)er ofa |1 If the file exists as a 1. If PDS does not 1. If directory does |1. If directory does
PDS using sequential data set, exist, creates PDS not exist, not exist,
(member), for overwrites it and member compilation fails compilation fails
:)‘(S?E?Ie 2. |If the file exists as a 2. If PDS exists and |2. If directory exists |2. If directory exists
PDS, creates or member does not and the file with and the file with
overwrites member exist, adds the specified the filename
3. If file does not exist, member filename does not MEMBER.ext does

exist, creates file

3. If the directory
exists and the file
exists, overwrites
file

not exist, creates
file

3. |If directory exists
and the file with
the filename
MEMBER.ext also
exists, overwrite
file

Chapter 9. Compiling

227

Table 25. Valid Combinations of Source and Output File Types (continued)

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
HFS File, for
example a/b/c.o

Output Specified as
HFS Directory, for
example a/b

All members |1 f file exists as a PDS, | Not Supported Not Supported 1. If directory does
of a PDS, for creates or overwrites not exist,
example A.B members compilation fails
2. If file does not exist, 2. |If directory exists
creates PDS and and the files with
members the filenames
3. Otherwise compilation MEMBER. ext do not
fails exist, creates files
3. |If directory exists
and the files with
the filenames
MEMBER. ext exist,
overwrites them
HFS file, for 1. Iffile exists as a 1. If PDS does not |1. If the directory 1. If the directory
example sequential data set, exist, creates the does not exist, does not exist,
/a/b/d.c overwrites it PDS and stores a

2. If file does not exist,
creates sequential data
set

3. Otherwise compilation
fails

member into the
data set

2. If PDS exists and
member does not
exist, then add the
member in the
PDS

3. If PDS and
member both
exist, then
overwrites the
member.

compilation fails

2. If the directory
exists but the file
does not exist,
creates file

3. If the file exists,
overwrites the
file.

compilation fails

2. If the directory
exists and the file
does not exist,
creates it

3. |If the directory
exists and the file
exists, overwrites it

HFS Directory,
for example
a/b/

Not supported

Not supported

Not supported

1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the files
to be written do
not exist, creates
them

3. If the directory
exists and the files
to be written
already exist,
overwrites them

Compiling Under OS/390 Batch

To compile your OS/390 C/C++ source program under OS/390 batch, you can
either use cataloged procedures that IBM supplies, or write your own JCL

statements.

228 0S/390 V2R6.0 C/C++ User’s Guide

Using Cataloged Procedures for OS/390 C

You can use one of the following IBM-supplied cataloged procedures. Each
procedure includes a compilation step to compile your program.

EDCC Compile

EDCCB Compile and bind

EDCCBG Compile, bind and run

EDCI Run the IPA Link step

EDCCLIB Compile and maintain an object library
EDCCL Compile and link-edit

EDCCPLG Compile, prelink, link-edit, and run
EDCCLG Compile, link-edit, and run

IPA Considerations

Only the EDCC procedure applies to the IPA Compile step. Only the EDCI procedure
applies to the IPA Link step.

To run the IPA Compile step, use the EDCC procedure, and ensure that you specify
the IPA(NOLINK) or IPA compiler option. Note that you must also specify the
LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, you must run the IPA Compile step for
each source file in your program, and the IPA Link step once for the entire program.
Once you have successfully created an IPA-optimized object module, you must bind
it to create the final executable.

Using Cataloged Procedures for OS/390 C++

You can use one of the following cataloged procedures that IBM supplies. Each
procedure includes a compilation step to compile your program.

CBCC Compile

CBCCB Compile and bind

CBCCBG Compile, bind, and run

CBCBG Bind and run

CBCI Run the IPA Link step

CBCCL Compile, prelink, and link
CBCCLG Compile, prelink, link, and run

See [Appendix D 1BM Supplied Cataloged Praocedures and REXX FXFCs” onl

for more information on cataloged procedures.

IPA Considerations

Only the CBCC procedure applies to the IPA Compile step. Only the CBCI procedure
applies to the IPA Link step.

To run the IPA Compile step, use the CBCC procedure, and ensure that you specify
the IPA(NOLINK) or IPA compiler option. Note that you must also specify the
LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, you must run the IPA Compile step for
each source file in your program, and the IPA Link step once for the entire program.
Once you have successfully created an IPA-optimized object module, you must bind
it to create the final executable.

Chapter 9. Compiling 229

Using Special Characters

When invoking the compiler directly, if a string contains a single quote () it should
be written as two single quotes (") as in:

//COMPILE EXEC PGM=CBCDRVR,PARM='OPTFILE(''USERID.OPTS'")"

If you are using the same string to pass a parameter to a JCL PROC, use four
single quotes ("), as follows:

//COMPILE EXEC CBCC,CPARM='OPTFILE(''''USERID.OPTS'''")"

A backslash need not precede special characters in HFS file names that you use in
DD cards. For example:

//SYSLIN DD PATH='/u/userl/obj 1.0’

A backslash must precede special characters in HFS file names that you use in the
PARM statement. For example:

//STEP1 EXEC PGM=CBCDRVR,PARM='/u/userl/obj\ 1l.o'

Using Your Own JCL

The following example shows sample JCL for compiling an OS/390 C program:

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CBCDRVR,

// PARM='/SEARCH(''CEE.SCEEH.+'"') NOOPT SO OBJ OPTFILE(DD:CPATH)'
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR

// DD DSNAME=CBC.SCBCCMP,DISP=SHR

//SYSLIN DD DSNAME=MYID.MYPROG.0BJ (MEMBER) ,DISP=SHR
//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.h>

int main(void)
{

/* comment x/

}
ee

//SYSUT1 DD DSN=...
//SySUT4 DD DSN=...

/1%

Figure 21. JCL for Compiling an OS/390 C Program (for NOOPT, SOURCE, and OBJ)

The following example shows sample JCL for compiling an OS/390 C++ program:

230 0S/390 V2R6.0 C/C++ User’s Guide

//jobname JOB acctno,name...
//COMPILE EXEC PGM=CBCDRVR,
// PARM='/CXX SEARCH(''CEE.SCEEH.+'',''CBC.SCLBH.+'"'),NOOPT,S0,0BJ'
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CBC.SCBCCMP,DISP=SHR
//SYSLIN DD DSN=MYID.MYPROJ.OBJ,DISP=SHR
//SYSPRINT DD SYSOUT=+
//SYSIN DD DATA,DLM=@@
#include <stdio.h>
#include <iostream.h>

int main(void)
{

// comment

}
ee

//SYSUT1 DD DSN=...
//SYSUT4 DD DSN=...

/1%

Figure 22. JCL for Compiling an OS/390 C++ Program (for NOOPT, SOURCE, and OBJ)

Use JCL to define your jobs and job steps to the operating system. Describe the
steps you want the operating system to perform, and specify the resources that are
required by the job. The JCL statements that are essential for running an OS/390
C/C++ job are:

» A JOB statement that identifies the start of the job

* An EXEC statement that identifies a job step and the program to be executed
either directly or by a cataloged procedure

* DD (data definition) statements that identify the input/output facilities that the
program that is executed in the job step requires

» JES control statements that provide information to the Job Entry Subsystem

For more information about JCL, refer to the publications that are listed in the
0S/390 Information Roadmap.

Specifying Source Files

For non-HFS files, use this format of the SYSIN JCL:
//SYSIN DD DSNAME=dsname ,DISP=SHR

If you specify a PDS without a member name, all members of that PDS are
compiled.

Note: If you specify a PDS as your primary input, you must specify either a PDS or
an HFS directory for your output files.

For HFS files, use this format of the SYSIN JCL:
//SYSIN DD PATH='pathname'

You can specify compilation for a single file or all source files in an HFS directory,
for example:

Chapter 9. Compiling 231

//SYSIN DD PATH='/u/david'
//* A1l files in the directory /u/david are compiled

Note: If you specify an HFS directory as your primary input, you must specify an
HFS directory for your output files.

When you place your source code directly in the input stream, use the SYSIN DD
statement as follows:

//SYSIN DD DATA,DLM=@@

rather than:
//SYSIN DD *

When you use the DD * convention, the first C/C++ comment statement that starts
in column 1 will terminate the input to the compiler. This is because /*, the
beginning of an OS/390 C/C++ comment, is also the default delimiter.

Note: To treat columns 73 through 80 as sequence numbers, use the SEQUENCE
compiler option.

For more information about the DD * convention, refer to the publications that are
listed in the OS/390 Information Roadmap.

Specifying Include Files

Use the SEARCH option to specify system include files, and the LSEARCH option to
specify your include files. For example:

//C EXEC PGM=CBCDRVR,PARM='/CXX SEARCH(''CEE.SCEEH.+'',''CBC.SCLBH.+'"')"

You can also use the SYSLIB and USERLIB DD statements (note that the SYSLIB DD
statement has a different use if you are running the IPA Link step). To specify more
than one library, concatenate multiple DD statements as follows:

//SYSLIB DD DSNAME=USERLIB,DISP=SHR
// DD DSNAME=DUPX,DISP=SHR

Note: If the concatenated data sets have different block sizes, either specify the
data set with the largest block size first, or use the DCB=dsname
subparameter on the first DD statement. For example:

//USERLIB DD DSNAME=TINYLIB,DISP=SHR,DCB=BIGLIB
// DD DSNAME=BIGLIB,DISP=SHR

where BIGLIB has the largest block size. For rules regarding concatenation
of data sets in JCL, refer to the OS/390 C/C++ Programming Guide .

Specifying Output Files

You can specify output file names as suboptions to the compiler. You can direct the
output to a PDS member as follows:

// CPARM="'LIST(MY.LISTINGS (MEMBER1))"'

You can direct the output to an HFS file as follows:
// CPARM="LIST(./1istings/memberl.1st)"

You can also use DD statements to specify output file names.

232 0S/390 V2R6.0 C/C++ User’s Guide

To specify non-HFS files, use DD statements with the DSNAME parameter. For
example,

//SYSLIN DD DSN=USERID.TEST.OBJ(HELLO),DISP=SHR

To specify HFS directories or files, use DD statements with the PATH parameter.
//SYSLIN DD PATH='/u/david/test.o',PATHOPTS (OWRONLY,OCREAT,0TRUNC)

on PATH and PATHOPTS parameters.

Note: Use the PATH and PATHOPTs parameters when specifying HFS files in the DD
statements. For additional information on these parameters, refer to the list
of publications in OS/390 Information Roadmap .

If you do not specify the output filename as a suboption, and do not allocate the

associated ddname, the compiler generates a default output file name. These are

the two situations in which the compiler will not generate a default file name:

* You supply instream source in your JCL.

* You are using #pragma options to specify a compile-time option that generates
an output file.

Compiling Under TSO

You can invoke the OS/390 C/C++ compiler under TSO in any of the following
ways:

* Foreground execution from TSO READY

* Foreground execution from the ISPF command line or the ISPF menu option 6
» Foreground execution from ISPF menu option 4

» Foreground execution from an ISPF edit session

» Background execution (batch) from ISPF menu option 5

All methods of foreground execution call the CC or CXX REXX EXECs supplied by
IBM.

Note: To run the compiler under TSO, you must have access to the runtime
libraries. To ensure that you have access to the runtime library and compiler,
do one of the following:

» If you are running under ISPF in the foreground, concatenate the libraries to
ISPLLIB.

* Have your system programmer add the libraries to the LPALST or LPA.
* Have your system programmer add the libraries to the LNKLST.

» Have your system programmer change the LOGON PROC so the libraries are added
to the STEPLIB for the TSO session.

* Have your system programmer customize the REXX EXEC CBC3CO0O0E, which is
called by the CC, CXX, and other EXECs to set up the environment.

Using the CC and CXX REXX EXECs

You can use the CC REXX EXEC to invoke the OS/390 C compiler, and the CXX
REXX EXEC to invoke the OS/390 C++ compiler. These REXX EXECs share the
same syntax:

Chapter 9. Compiling 233

v
A

LL/_ch t?
CXX -filename

CJ —
Y __option
where
% ensures that the REXX EXEC CC is invoked, not the OS/390 UNIX
System Services cc utility.
option is any valid compiler option
filename can be one of the following:

A sequential data set

A member of a partitioned data set
All members of a partitioned data set
A hierarchical file system (HFS) file
All HFS files in a directory

agprwNE

If filename is not immediately recognizable as an HFS file or data
set, it is assumed to be a data set. Prefix the file name with // to
identify it as a data set, and with ./ or / to identify it as an HFS file.
For more information on file naming considerations refer to the
0S/390 C/C++ Programming Guide.

If you invoke either CC or CXX with no arguments or with only a single question
mark, the appropriate preceding syntax diagram is displayed.

If you are using #pragma options to specify a compile-time option that generates an
output file, you must use a ddname to specify the output file name. The compiler
will not automatically generate file names for output that is created by #pragma
options.

Unless CBC3COOE has been customized, the default SYSLIB for CC is CEE.SCEEH.H,
and CEE.SCEEH.SYS.H concatenated. If you want to override the default SYSLIB that
is allocated by the CC exec, you must allocate the ddname SYSLIB before you
invoke CC. If you did not allocate the ddname SYSLIB before you invoked CC EXEC,
the CC EXEC allocates the default SYSLIB.

Specifying Sequential and Partitioned Data Sets

To specify a sequential or partitioned data set for your source file use the following
syntax:

»> Y qualifier >
L0 0] PSRN
DD: ddname
|—dd :—| |—(—member—)J

Note: If you use the leading single quote to indicating a fully qualified data set
name, you must also use the trailing single quote.

234 0S/390 V2R6.0 C/C++ User’s Guide

Specifying HFS Files or Directories

You can use the CC or CXX REXX EXECs to compile source code that is stored in
HFS files and directories. Use the following syntax when specifying HFS file or
directory as your input or output file:

E——m —

v

>

v
A

pathname

If you specify an HFS directory, all the source files in that directory are compiled. In
the following example all the files in /u/david/src are compiled:

CC /u/david/src

When the file name contains the special characters double quote, blank or
backslash, you must precede these characters with a backslash, as follows:

CC /u/david/db\ 1.c
CC file\"one

When you use the CC or CXX REXX EXEC, you must use unambiguous HFS source
file names. For example, the following input files are HFS files:

CXX ./test/hello.c

CC /u/david/test/hello.c

CXX test/hello.c

CC ///hello.c
CC ../test/hello.c

If you specify a filename that does not include pathnames with single slashes, the
compiler treats the file as a non-HFS file. The compiler treats the following input
files as non-HFS files:

CXX hello.c
CC //hello.c

Using Special Characters

When HFS file names contain the special characters blank, backslash, and double
quote, you must precede the special character with a backslash(\).

When suboptions contain the special characters left bracket (, right bracket),
comma, backslash, blank and double quote, you must precede these characters
with a double backslash(\\) to ensure that they are interpreted correctly, as in:

def(errno=\\(*__errno\\(\\)\\))

Note: Under TSO, you must precede special characters by a backslash \ in both
file names and options.

Specifying Compiler Options under TSO

When you use REXX EXECs supplied by IBM, you can override the default
compiler options by specifying the options directly on the invocation line after an
open left parenthesis (. The following example specifies, multiple compiler options
with the sequential file STUDENT.GRADES.CXX:

Chapter 9. Compiling 235

CXX 'STUDENT.GRADES.CXX'
(LIST,TEST,
LSEARCH (MASTER. STUDENT, COURSE . TEACHER) ,
SEARCH(VGM9. FINANCE, SYSABC.REPORTS) ,
0BJ (' GRADUATE . GRADES . 0BJ (REPORT) ')

e LSummary of Compiler Qptions” on page 5d for more information on compiler

options.

Using ISPF to Invoke the Compiler

Under TSO, you can use ISPF foreground and batch compile panels to start the
0OS/390 C/C++ compiler. You can use online help with these panels.

Note: You cannot use ISPF to invoke the IPA Link step.

Foreground Processing
1. Select the Foreground option (4) from the ISPF-PDF PRIMARY OPTION MENU. The
FOREGROUND SELECTION PANEL is presented.

2. Select the IBM 05/390 C/C++ option (19). The 0S/390 C/C++ FOREGROUND
UTILITIES panel is presented, as shown in

COMMAND ===
Select a function from the 1ist below.
Enter either the selection number or the command name.

1 CC 0S/390 C Compiler
2 CXX 0S/390 C++ Compiler

-

Figure 23. Foreground IBM OS/390 C/C++ Utility Panel

3. Select 1 to get the FOREGROUND 0S/390 C COMPILE panel, or select 2 to get the
FOREGROUND 0S/390 C++ COMPILE panel as shown in Eigure 24 on page 237,

4. Enter information such as your source data, password, object data set name,
compiler options, and additional input libraries (as necessary).

236 0S/390 V2R6.0 C/C++ User’s Guide

Command ===>

ISPF Library:
Project ===> USERID
Group ===> DEV e E EEEE>
Type ===> (XX
Member ===> * (Blank or pattern for member selection 1ist)

(* for entire PDS)

Other Partitioned or Sequential Data Set:
Data Set Name ===>

Data Set Password ===> (If password protected) H
Compiler Options:
===>
=> SEARCH('CEE.SCEEH.+','CBC.SCLBH.+")
> USERPATH(/USERID/DEV/INCL)

> OPT

momnomwonon

nm o ouwouon

nonououl
\

\

- /

Figure 24. Foreground IBM OS/390 C++ Compile Panel

The ISPF Library field is used if you do not specify a data setin B .
Input to the compiler is either a member of an ISPF library, a member of
a partitioned data set, or a sequential data set. Fill in the Project,
Group, Type, and Member fields. To can compile the entire PDS, place an
asterisk (*) in the member field.

Note: If the source data set is partitioned and you did not specify a
member, you are presented with a member list from which to
choose the desired member.

2| Use the Other Partitioned or Sequential Data Set field if your input
source is one of the following:
* a sequential data set
* a PDS with a number of qualifiers not equivalent to three.

If you specify data sets in both and B the data set that you
specified in this field is used. To compile an entire PDS of source
instead of an individual PDS member, enter the PDS name followed by
(*). You can specify a member of a PDS by entering the member name
in parentheses after the data set name.

If any of your data sources are password protected, you must specify
the password in the Data Set Password field.

4] Use the Compiler Options field, specify the compiler options that you
want to use. For a complete list of compiler options, see Mﬁ

Chapter 9. Compiling 237

————————————————————— Foreground 0S/390 C++ Compile ---=--=----—--—————- -
COMMAND ===>

Input Source ===> 'USERID.DEV.CXX"'

Qutput Data Sets:

Listing ==> g
(enter * to specify terminal)
Object == A
PPonly ===>
Tempinc ===>] [only appears on the 05/390 C++ panel]
- J

Figure 25. Foreground IBM OS/390 C++ Compile Panel (2)

Note for OS/390 C: The only difference in the appearance of the panels for
0S/390 C is in the heading, and the absence of the
Tempinc option.
5. Enter names of the desired output data sets.

B Use the Listing field to specify a name for the listing data set. If you
leave this field blank, the compiler generates a default name. See
'Specifying Qutput Files” on page 229 for information on the defaults. To
generate a listing data set, you must specify the compiler option SOURCE
or LIST under Compiler Options.

6 | Use the Object Data Set field to specify a name for the object data set.
If you leave this field blank, the compiler generates a default name. See

tSpecifying Output Files” an page 225 for information on the defaults.

Use the PPonly field to specify a name for the PPONLY data set. If you
leave this field blank, the compiler generates a default name. You can
also specify the LINES or COMMENTS suboptions in this field. See
EPPQNLY | NOPPQNLY” on page 136 for more information.

B For OS/390 C++, use the Tempinc field to specify a PDS name for the
template instantiation files. If you leave this field blank, the PDS is given
the name TEMPINC.

6. Press Enter to invoke the foreground processing program.

HFS Note: You cannot use HFS files as input to the ISPF panels, but you can
target your output to HFS files through the compiler options.

Batch Processing

Use the batch option to invoke the compiler as a batch job. JCL is generated for the
job on the basis of the information you enter on the batch processing panels, and
the job is submitted for execution.

When you choose the batch option from the ISPF-PDF PRIMARY OPTION MENU, the

BATCH SELECTION PANEL is shown. Notice the SOURCE DATA ONLINE option and the
JOB STATEMENT INFORMATION area at the bottom of this panel.

238 0S/390 V2R6.0 C/C++ User’s Guide

The SOURCE DATA ONLINE option specifies whether or not to check if the data set is
available. If you specify YES, ISPF checks to see if the data set exists. If it does not
exist, you receive an ISPF message to indicate that the data set was not
catalogued. If you specify NO, ISPF does not check for the data set.

The JOB STATEMENT INFORMATION consists of four lines for JCL card images. These
lines are submitted as part of the batch job, so you must follow all the rules of JCL.

Alternatively, choose the IBM 0S/390 C/C++ Compiler option to show the BATCH IBM
0S/390 C/C++ COMPILE panels. These panels are similar to the FOREGROUND IBM
0S/390 C/C++ COMPILE panels. Most of the fields, such as the ISPF library, Other
Partitioned, or Sequential Data Set, and Compiler Options behave the same
way. See lEareground Pracessing” an page 238 for descriptions.

The Batch option does not support passwords. If your input or output data sets are
password protected, use the Foreground option. If you submit a job that includes a
password-protected data set, the system operator is requested to enter the required
password.

Use the Listing Data Set and SYSOUT Class fields to send the compiler’s list output
directly to a SYSOUT queue or into a data set. If you fill in both fields, the value for
SYSOUT Class is used.

Enter the source information and other parameters that this panel requires, and
press <ENTER>. This generates the JCL, and submits the job.

If your system programmer has not provided a default search option for the C++
compiler, variable CBCCXOPT in CBC.SCBCUTL (CBC3COOE), or you want to modify it, you
should enter it under Compiler Options. For example, "SEARCH('CEE190.SCEEH.+')".

Compiling and Binding under the OS/390 Shell

An 0OS/390 UNIX C/C++ program with source code in HFS files or data sets must
be compiled to create output object files residing either in HFS files or data sets.

You can compile and bind application source code at one time, or compile the
source and then bind at another time with other application source files or compiled
objects.

The c89, ct++, and cc utilities invoke the binder by default, unless the output file of
the link-editing phase (-0 option) is a PDS, in which case they use the Prelinker.

Use the c89 utility to compile and bind a OS/390 UNIX System Services C
application program from the OS/390 shell. The syntax is:

c89 [-options ...] [file.c ...] [file.a ...] [file.o ...] [-1 libname]

where:

options are c89 options.

file.c is a source file. Note that C source files have a file extension of
lowercase c.

file.o is an object file.

file.a is an archive file.

Chapter 9. Compiling 239

libname is an archive library.

The c89 utility supports IPA. For information on how to invoke the IPA Compile step

from c89, refer to Flnvoking IPA from the ¢89 Utility” on page 242,

You can also use the cc exec to compile a OS/390 UNIX System Services C
application program from the OS/390 shell. For more information, see 0S/390 UNIX
System Services Command Reference .

Use the c++ utility to compile and bind an OS/390 UNIX System Services C++
application program from the OS/390 shell. The syntax for c++ is:

c++ [-options ...] [file.C ...] [file.a ...] [file.o ...] [-1 libname]

where:

options are C++ options.

file.C is a source file. Note that C++ files have a file extension of
uppercase C.

file.o is an object file.

file.a is an archive file.

libname is an archive library.

Another name for the c++ utility is cxx. The cxx utility and the c++ utility are
identical. You can use cxx instead of c++ in all the examples that are shown in this
section.

For a complete list of c++ options, and for more information on cxx, see OS/390
UNIX System Services Command Reference.

Note: You can compile and bind application program source and objects from
within the shell using the ¢89 or c++ utility. If you use either of these utilities,
you must keep track of and maintain all the source and object files for the
application program. You can use the make utility to maintain your OS/390
UNIX System Services application source files and object files automatically
when you update individual modules. The make utility runs c¢89 and c++ for
you.

For more information on using the make utility, see 'Chapter 21. Archive and Makd
Utilities” on page 395 and OS/390 UNIX System Services Programming Tools.

To compile source files without binding them, enter the ¢89 or c++ command with
the -c option to create object file output. Use the -o option to specify placement of
the application program executable file to be generated. The placement of the
intermediate object file output depends on the location of the source file:

» If the OS/390 C/C++ source module is an HFS file, the object file is created in
the working directory.

» If the OS/390 C/C++ source module is a data set, the object file is created as a
data set. The object file is placed in a data set with the qualified name of the
source and identified as an object.

For example, if the OS/390 C/C++ source is in the sequential data set
LANE.APPROG.USERSRC.C, the object is placed in the data set
LANE.APPROG.USERSRC.0BJ. If the source is in the partitioned data set (PDS)
member 'OLSEN.IPROGS.C(FILSER)', the object is placed in the PDS member
"OLSEN.IPROGS.OBJ(FILSER)".

240 0S/390 V2R6.0 C/C++ User’s Guide

Note: When the OS/390 C/C++ source is located in an OS/390 PDS member,
you should specify double-quote characters around the qualified data set
name. For example:

c89 -c "//'OLSEN.IPROGS.C(FILSER)""

If the filename is not bracketed by quotes, the parentheses around the
member name in the fully qualified PDS name would be subject to special
shell parsing rules.

Since the data set name is always converted to uppercase, you can specify it in
lowercase or mixed case.

» Compiling OS/390 C application source to produce only object files. c89
recognizes that a file is an OS/390 C source file by the .c suffix for HFS files,
and the .C low-level qualifier for data sets. c89 recognizes that a file is an object
file by the .o suffix for HES files, and the .0BJ low-level qualifier for data sets.

— To compile OS/390 C source to create the default object file usersource.o in
your working HFS directory, specify:

c89 -c usersource.c

— To compile OS/390 C source to create an object file as a member in the PDS
'"KENT.APPROG.0BJ', specify:

c89 -c "//'kent.approg.c(usersrc)

» Compiling OS/390 C++ application source to produce only object files. c++
recognizes that a file is an OS/390 C++ source file by the .C suffix for HFS files,
and the .CXX low-level qualifier for data sets. c++ recognizes that a file is an
object file by the .o suffix for HFS files, and the .0BJ low-level qualifier for data
sets.

— To compile OS/390 C++ source to create the default object file usersource.o
in your working HFS directory, specify:

ct++ -c usersource.C

— To compile OS/390 C++ source to create an object file as a member in the
PDS 'JONATHAN.APPR0G.OBJ', specify:

c++ -c "//'jonathan.approg.CXX(usersrc)'"

» Compiling and binding application source to produce an application executable
file.

— To compile an application source file to create the object file usersource.o in
the HFS working directory and the executable file mymod.out in the /app/bin
directory, specify:
c89 -o /app/bin/mymod.out usersource.c

— To compile the OS/390 C source member MAINBAL in the PDS
"CLAUDIO.PGMS.C', and bind it to produce the application executable file
/u/claudio/myappls/bin/mainbal.out, specify:
c89 -0 /u/claudio/myappls/bin/mainbal.out "//'claudio.pgms.C(MAINBAL)"'"

0S/390 C++ Note:

To use the TSO utility OGET to copy a C++ HFS listing file to a
VBA data set, you must add a blank to any null records in the
listing file. Use the awk command as follows:

c++ -cV mypgm.C | awk '/ ["$1/ {print} /°$/ {printf "%s \n", $0}'
> mypgm.1st

Chapter 9. Compiling 241

Compiling and Binding in One Step with c89 and c++ (or cxx)

To compile and bind a OS/390 UNIX System Services C/C++ application program in
one step to produce an executable file, specify ¢89 or ct++ without specifying the -c
option. You can use the -o option with the command to specify the name and
location of the application program executable file to be created. The c++ and cxx
utilities are identical. You can use cxx instead of c++ in all the examples that are
shown in this section.

The c89, c++, and cc utilities invoke the binder by default, unless the output file of
the link-editing phase (-0 option) is a PDS, in which case they use the Prelinker.

» To compile and bind an application source file to create the default executable
file a.out in the HFS working directory, specify:

c89 usersource.c
ct++ usersource.C

» To compile and bind an application source file to create the mymod.out executable
file in your /app/bin directory, specify:

c89 -0 /app/bin/mymod.out usersource.c
c++ -0 /app/bin/mymod.out usersource.C

* To compile and bind several application source files to create the mymod.out
executable file in your /app/bin directory, specify:

c89 -o /app/bin/mymod.out usrsrc.c otsrc.c "//'MUSR.C(PWAPP)"'"
c++ -0 /app/bin/mymod.out usrsrc.C otsrc.C "//'MUSR.C(PWAPP)'"

* To compile and bind an application source file to create the MYLOADMD member of
your 'APPROG.LIB' PDS, specify:

c89 -0 "//'APPROG.LIB(MYLOADMD)'" usersource.c
c++ -0 "//'APPROG.LIB(MYLOADMD)'" usersource.C

* To compile and bind an application source file with several previously compiled
object files to create the executable file zinfo in your /prg/1ib HFS directory,

specify:

c89 -o /prg/lib/zinfo usrsrc.c xstobj.o "//'MUSR.0BJ(PWAPP)'"
c++ -0 /prg/lib/zinfo usrsrc.C xstobj.o "//'MUSR.0BJ(PWAPP)'"

» To compile and bind an application source file and capture the listings from the
compile and bind steps into another file, specify:

c¢89 -V barryl.c > barryl.lst
ct+ -V barryl.C > barryl.lst

Invoking IPA from the c89 Utility

You can invoke the IPA Compile Step, the IPA Link step, or both from the c89 utility.
The step that you invoke depends upon the invocation parameters and type of files
specified. To invoke IPA, you must specify the I phase indicator along with the W
option of the c89 utility. You can specify IPA suboptions as comma-separated
keywords.

242 0S/390 V2R6.0 C/C++ User’s Guide

If you invoke the c89 utility by specifying the -c compiler option and at least one
source file, c89 automatically specifies IPA(NOLINK) and automatically invokes the
IPA Compile step. For example, the following command invokes the IPA Compile
step for the source file hello.c :

c89 -c -WI,noobject hello.c

If you invoke c89 with at least one source file for compilation and any number of
object files, and do not specify the -c option, c89 invokes the IPA Compile step
once for each compilation unit. It then invokes the IPA Link step once for the entire
program, and then invokes the binder. For example, the following command invokes
the IPA Compile step and the bind while creating program foo:

c89 -o foo -WI,object foo.c

Refer to the 0S/390 UNIX System Services Command Reference for more
information about the c89 utility.

Specifying Options for the IPA Compile Step: When using the c89 utility, you
can pass options to the IPA Compile step, as follows:

* You can pass IPA compiler option suboptions by specifying -WI,, followed by the
suboptions.

* You can pass compiler options by specifying -Wc,, followed by the options.

Using the make Utility

You can use the make utility to control the build of your OS/390 UNIX System
Services C/C++ applications. The make utility calls the c89 utility by default to
compile and bind the programs that the previously created makefile specifies.

For example, to create myappl you compile and bind two source parts mymain.c and
mysub.c. This dependency is captured in makefile /u/jake/myapp1/Makefile. No
recipe is specified, so the default makefile rules are used. If myappl was built and a
subsequent change was made only to mysub.c, you would specify:

cd /u/jake/myapp]l
make

The make utility sees that mysub.c has changed, and invokes the following
commands for you:

c89 -0 -c mysub.c
c89 -0 myappl mymain.o mysub.o

Note: The make utility requires that application program source files that are to be
“maintained” through use of a makefile reside in HFS files. To compile and
bind OS/390 C/C++ source files that are in data sets, you must use the c89
utility directly.

See the 0S/390 UNIX System Services Command Reference for a description of
the make utility. For a detailed discussion on how to create and use makefiles to
manage application parts, see the OS/390 UNIX System Services Programming
Tools.

Chapter 9. Compiling 243

Using Feature Test Macros

Many of the symbols that are defined in headers are “protected” by a feature test
macro. These “protected” symbols are invisible to the application unless the user
defines the feature test macro with #define, using either of the following methods:

* In the source code before including any header files

* On the compilation command

Note that the LANGLVL compiler option does not define or undefine these macros.

[fable 2d summarizes the relationships between the feature test macros and the
standards. ‘Yes’ indicates that a feature test macro makes visible the symbols that
are related to a standard.

Table 26. Feature Test Macros and Standards

Feature Test Macro POSIX .1 POSIX POSIX POSIX |XPG4 .2 |XPG4 .2
la 2 A4a Ext

_POSIX_SOURCE Yes

_POSIX1_SOURCE 1 Yes

_POSIX1_SOURCE 2 Yes Yes

_POSIX_C_SOURCE 1 |Yes

_POSIX_C_SOURCE 2 |Yes Yes

_XOPEN_SOURCE Yes Yes Yes

_XOPEN_SOURCE Yes Yes Yes Yes

_EXTENDED 1

_OPEN_SYS Yes Yes Yes Yes

_OPEN_SYS_IPC Yes Yes Yes

_EXTENSIONS

_OPEN_SYS_PTY Yes Yes Yes Yes Yes

_EXTENSIONS

_OPEN_THREADS Yes Yes Yes

_OPEN_SOURCE 1 Yes Yes Yes Yes

_OPEN_SOURCE 2 or Yes Yes Yes Yes Yes Yes

_ALL_SOURCE

_OE_SOCKETS Yes Yes

_OPEN_SYS _SOCK_EXT |Yes Yes Yes Yes

_ALL_SOURCE_NO_THREX&s Yes Yes Yes Yes

_OPEN_SOURCE 3 Yes Yes Yes Yes Yes Yes

The OS/390 C/C++ compiler supports the following feature test macros:

« _POSIX_SOURCE

When defined to any value with #define, it indicates that symbols that are
required by POSIX.1 are made visible. Additional symbols can be made visible if

POSIX.1 explicitly allows the symbol to appear in the header in question.

« _POSIX1_SOURCE

— When defined to 1, it has the same meaning as _POSIX_ SOURCE.

244 0S/390 V2R6.0 C/C++ User’s Guide

— When defined to 2, both the POSIX.1la symbols and the POSIX.1 symbols are
made visible. Additional symbols can be made visible if POSIX.1la explicitly
allows the symbol to appear in the header in question.

_POSIX C_SOURCE

— When defined to 1, it indicates that symbols required by POSIX.1 are made
visible. Additional symbols can be made visible if POSIX.1 explicitly allows the
symbol to appear in the header in question.

— When defined to 2, both the POSIX.1 and POSIX.2 symbols are made visible.
Additional symbols can be made visible if POSIX.2 explicitly allows the symbol
to appear in the header in question.

_OPEN_SYS

When defined to 1, this indicates that symbols required by POSIX.1, POSIX.1a,

and POSIX.2 are made visible. Any symbols defined by the OPEN_THREAD macro

are also made visible. Additional symbols can be made visible if any of these
standards explicitly allows the symbol to appear in the header in question or if
the symbol is defined to be an extension.

_OPEN_THREADS

When defined to 1, this indicates that symbols required by POSIX.1, POSIX.1a,
and POSIX.4a are made visible.

_XOPEN_SOURCE

Defines the functionality defined in the XPG/4 standard dated July 1992.
_XOPEN_SOURCE_EXTENDED

When defined to 1, this defines the functionality defined in the XPG/4 standard

plus the set of “Common APIs for UNIX-based Operating Systems”, April, 1994,
draft.

_OPEN_SYS_IPC_EXTENSIONS

Defines extensions to the X/Open InterProcess Communications functions. When
_OPEN_SYS_IPC_EXTENSIONS is defined, the POSIX.1, POSIX.1a, and the XPG4
symbols are visible. This macro should be used in conjunction with
_XOPEN_SOURCE.

_OPEN_SYS_PTY_EXTENSIONS

Defines extensions to the X/Open Pseudo TTY functions. When
_OPEN_SYS_PTY_EXTENSIONS is defined, the POSIX.1, POSIX.la, XPG4, and XPG4.2
symbols are visible. This macro should be used in conjunction with
_XOPEN_SOURCE_EXTENDED defined to 1.

_OPEN_SOURCE

When defined to 1, this defines all of the functionality that was available on
0S/390 OpenEdition in MVS 5.1. This macro is equivalent to specifying
_OPEN_SYS.

When defined to 2, this defines all of the functionality that is available on OS/390
OpenEdition in MVS 5.2.2, including XPG4, XPG4.2, and all of the extensions.
_ALL SOURCE

Defines all of the functionality that is available on OS/390 UNIX System Services,
including XPG4, XPG4.2, and all of the extensions. In addition, defining
_ALL_SOURCE makes visible a number of symbols which are not permitted under
ANSI, POSIX or XPG4, but which are provided as an aid to porting C-language
applications to OS/390 UNIX System Services.

_OPEN_DEFAULT

When defined to 0, and if no other feature test macro is defined, then all symbols
will be visible. If in addition to _OPEN_DEFAULT only POSIX and/or XPG4 feature

Chapter 9. Compiling 245

test macros are defined, then only the symbols so requested will be visible.
Otherwise, additional symbols (e.g., those visible when the LANGLVL (EXTENDED)
compiler option is specified), may be exposed.

When defined to 1, this provides the base level of 0S/390 UNIX System Services
functionality, which includes POSIX.1, POSIX.1a, and POSIX.2.

- _OE_SOCKETS

Defines a BSD-like socket interface for the function prototypes and structures
involved. This can be used with _XOPEN_SOURCE_EXTENDED 1 and the XPG4.2
socket interfaces will be replaced with the BSD-like interfaces.

* OPEN_MSGQ_EXT

Defines an interface which enables use of select(), selectex() and pol1() to
monitor message and file descriptors.

+ _MSE_PROTOS
The MSE_PROTOS feature test macro does the following:

1. Selects behavior for a multibyte extension support (MSE) function declared in
wchar.h as specified by ISO/IEC 9899:1990/Amendment 1:1994 instead of
behavior for the function as defined by CAE Specification, System Interfaces
and Headers, Issue 4, July 1992 (XPG4)

2. Exposes declaration of an MSE function declared in wchar.h which is
specified by ISO/IEC 9899:1990/Amendment 1:1994 but not by XPG4.

* _ALL_SOURCE_NO_THREADS

Provides the same function as ALL_SOURCE, except it does not expose threading
services (_OPEN_THREADS).

* _VARARG_EXT_

Allows users of the va_arg, va_end, and va_start macros to define the va_list
type differently.

* _OPEN_SYS_SOCK_EXT

Defines the interface for function prototypes and structures for the extended
sockets and bulk mode support.

* _SHARE_EXT_VARS

Provides access to an application’s POSIX and XPG4 external variables from a
dynamically loaded module such as a DLL.

Using Include Files

The #include preprocessor directive allows you to retrieve source statements from
secondary input files and incorporate them into your C/C++ program.

0S/390 C/C++ Language Reference describes the #include directive. Its syntax is:

»»—#include <—L—_|—filename— ><
_|: //
”—L—_I—fi lename—"
/]

The angle brackets specify system include files, and double quotation marks specify
user include files.

When you use the #include directive, you must be aware of the following:

246 0S/390 V2R6.0 C/C++ User’s Guide

* The library search sequence, the search order that C/C++ uses to locate the file.

See l'Search Sequences for Include Files” on page 254 for more information on

the library search sequence.
* The file-naming conversions that C/C++ performs.

* The area of the input record that contains sequence numbers when you are
including files with different record formats. See the 0OS/390 C/C++ Language
Reference for more information on #pragma sequence.

Specifying Include File Names

You can use the SEARCH and LSEARCH compiler options to specify search paths for
system include files and user include files. For more information on these options,
see LLSEARCH | NOLSEARCH” an page 115 and FSEARCH | NOSEARCH" od

You can specify filename of the #include directive in the following format:

F/ B

»>—#include v v
|—//J |—pathJ |—qualifier‘J

Y _qualifier
L] |—(—rnember—)J L

—DD:ddname
|—(—member—)J

The leading double slashes (//) not followed by a slash (in the first character of
filename) indicate that the file is to be treated as a non-HFS file, hereafter called a
data set.

Note:

=

filename immediately follows the double slashes (//) without spaces.

2. Absolute data set names are specified by putting single quotation marks
() around the name. Refer to the above syntax diagram for this
specification.

3. Absolute HFS filenames are specified by putting a leading slash (/) as
the first character in the file name.

4. ddnames are always considered absolute.

Forming File Names

Refer to l'Determining whether the File Name is in Absolute Form” on page 251 for

information on absolute file names. When the compiler performs a library search, it
treats filename as either an HFS file name or a data set name. This depends on
whether the library being searched is HFS or MVS. If the compiler treats filename
as an HFS file name, it does not perform any conversions on it. If it treats filename
as a data set name, it performs the following conversion:

e For the first format:

Chapter 9. Compiling 247

F/ B

Y v <
|—path—| |—quaZ ifz'er—l

=

qualifier and path are uppercased

each qualifier and path is truncated to 8 characters

3. invalid characters and characters not valid for a data set name are converted
to at signs (@, hex 7c)

¢ For the second format:

N

»— Y qualifier ’ ><
|—(—member—)J

1. qualifier and member are uppercased
2. invalid characters are converted to at signs (@, hex 7c)

¢ For the third format:

»>—DD:ddname ><
|—(—member—)—I

1. DD:, ddname, and member are uppercased
2. invalid characters are converted to at signs (@, hex 7c)

Forming Data Set Names with LSEARCH | SEARCH Options

When the filename specified in the #include directive is not in absolute form, the
compiler combines it with different types of libraries to form complete data set
specifications. These libraries may be specified by the LSEARCH or SEARCH compiler
options. When the LSEARCH or SEARCH opt indicates a data set then depending on
whether it is a ddname, sequential data set, or PDS, different parts of filename are
used to form the ddname or data set name.

Forming DDname
The leftmost qualifier of the filename in the #include directive is used when the
filename is to be a ddname. For example:

Invocation:
SEARCH(DD:SYSLIB)

Include directive:
#include "sys/afile.g.h"

Resulting ddname:
DD:SYSLIB(AFILE)
Forming Sequential Data Set Names

You specify libraries in the SEARCH | LSEARCH options as sequential data sets by
using a trailing period followed by an asterisk (.*), or by a single asterisk (*). See
[Specifying Sequential Data Sets and PDSs” an page 119 to understand how to

248 0S/390 V2R6.0 C/C++ User’s Guide

specify sequential data sets. All qualifiers and periods (.) in filename are used for
sequential data set specification. For example:

Invocation:
SEARCH (AA. %)

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
userid.AA.AFILE.G.H

Forming PDS Name with LSEARCH | SEARCH + Specification

To specify libraries in the SEARCH and LSEARCH options as PDSs, use a period that is
followed by a plus sign (.+), or a single plus sign (+). See ESpecifying Sequential
Data Sets and PDSs” on page 119 to understand how PDSs are specified. When
this is the case then all the paths, slashes (replaced by periods), and any qualifiers
following the leftmost qualifier of the filename are appended to form the data set
name. The leftmost qualifier is then used as the member name. For example:

Invocation:
SEARCH('AA.+")

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA.SYS.G.H(AFILE)
and

Invocation:
SEARCH('AA.+")

Include directive:
#include "sys/bfile"

Resulting fully qualified data set name:
AA.SYS(BFILE)

Forming PDS with LSEARCH | SEARCH Options With No +

When the LSEARCH or SEARCH option specifies an OS/390 library but it neither ends
with an asterisk (*) nor a plus sign (+), it is treated as a PDS. The leftmost qualifier
of the filename in the #include directive is used as the member name. For
example:

Invocation:
SEARCH('AA")

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA(AFILE)

Examples Of Forming Data Set Names

The following table gives the original format of the filename and the resulting
converted name when you specify the NOOE option:

Chapter 9. Compiling 249

Table 27. Include filename Conversions When NOOE Is Specified

#include Directive |Converted Name

Example 1. This filename is absolute because single quotation marks (') are used. It is a
sequential data set. A library search is not performed. LSEARCH is ignored.

#include "'USER1.SRC.MYINCS'" | USER1.SRC.MYINCS

Example 2. This filename is absolute because single quotation marks (’) are used. The
compiler attempts to open data set COMIC/BOOK.OLDIES.K and fails because it is not a
valid data set name. A library search is not performed when filename is in absolute form.
SEARCH is ignored.

#include <'COMIC/BOOK.OLDIES.K'> COMIC/BOOK.OLDIES.K

Example 3.

SEARCH(LIB1.*,L1B2.+,LIB3) #include |. first optin SEARCH SEQUENTIAL FILE =
"sys/abc/xx" userid.LIB1.XX

e second optin SEARCH PDS =
userid.LIB2.SYS.ABC(XX)

* third optin SEARCH PDS = userid.LIB3(XX)

Example 4.

SEARCH(LIB1.*,L1B2.+,L1B3) #include |. first optin SEARCH SEQUENTIAL FILE =
"Sys/ABC/xx.x" userid.LIB1.XX.X

* second optin SEARCH PDS =
userid.LIB2.SYS.ABC.X(XX)

 third opt in SEARCH PDS = userid.LIB3(XX)

Example 5.
SEARCH(LIB1.*,L1B2.+,LIB3) #include |. first optin SEARCH SEQUENTIAL FILE =
<sys/name_1> userid.LIB1.NAME@1
* second optin SEARCH PDS =
userid. SYS(NAME@1)

* third optin SEARCH PDS =
userid LIB3(NAME@1)

Example 6.

SEARCH(LIBL.*,L1B2.+,LIB3) #include |. first optin SEARCH SEQUENTIAL FILE =
<Name2/App1.App2.H> userid.LIB1.APP1.APP2.H

* second optin SEARCH PDS =
userid.LIB2.NAME2.APP2. H(APP1)

« third optin SEARCH PDS = userid.LIB3(APP1)

Example 7. The PDS member named YEAREND of the library associated with the ddname
PLANLIB is used. A library search is not performed when filename in the #include directive
is in absolute form (ddname is used). SEARCH is ignored.

#include <dd:planlib(YEAREND)> DD:PLANLIB(YEAREND)

Search Sequence

The following diagram describes the compiler’s file searching sequence:

250 0S/390 V2R6.0 C/C++ User’s Guide

Start

Ignore
SEARCH/LSEARCH
& POSIX.2 rules;
search file directly

#include filename
is absolute

This opt
of SEARCH/LSEARCH
is DS

#include filename
preceded by /I

Figure 26. Overview of Include File Searching

Create lgnore Create
dataset thisgsearch HFS file
path opt path
& search & search

Yes
More opt
No
End of
SEARCH/
LSEARCH
processing
The compiler opens the file without library search when the file name that is

specified in #include is in absolute form. This also means that it bypasses
the rules for the SEARCH and LSEARCH compiler options, and for POSIX.2.

See Eigure 27 an page 254 for more information on absolute file testing.

2| When the file name is not in absolute form, the compiler evaluates each
option in SEARCH and LSEARCH to determine whether to treat the file as a
data set or an HFS file search. The LSEARCH/SEARCH opt testing here is

described in Eigure 28 on page 253.

3] When the #incTude file name is not absolute, and is preceded by exactly
two slashes (//), the compiler treats the file as a data set. It then bypasses
all HFS file options of the SEARCH and LSEARCH options in the search.

Determining whether the File Name is in Absolute Form

The compiler determines if the file name that is specified in #include is in absolute
form as follows:

Chapter 9. Compiling 251

No

Yes

filename
enclosed by

single quotes

filename
starts with
DD:

Yjs

¢ Yes

Absolute
dataset

Yes

OE

filename
starts with

/

filename
preceded
by //

dataset

fil]
engfgfgéeby Absolute filename E
single guotes HFS file starts with
gle q /
Yes
filename No dataset
starts with but not
DD: absolute

Not absolute

dataset Absolute

HFS file

A

or HFS file

Figure 27. Testing If filename Is In Absolute Form

2]

The compiler first checks whether you specified OE.

When you specify OE, if double slashes (//) do not precede filename, and
the file name starts with a slash (/), then filename is in absolute form and
the compiler opens the file directly as an HFS file. Otherwise, the file is not
an absolute file and each opt in the SEARCH or LSEARCH compiler option
determines if the file is treated as an HFS or data set in the search for the
include file.

When OE is specified, if double slashes (/) precede filename, and the file
name starts with a slash (/), then filename is in absolute form and the
compiler opens the file directly as an HFS file. Otherwise, the file is a data
set, and more testing is done to see if the file is absolute.

If filename is enclosed in single quotation marks ('), then it is an absolute
data set. The compiler directly opens the file and ignores the libraries that
are specified in the LSEARCH or SEARCH options.

If you used the ddname format of the #include directive, the compiler uses
the file associated with the ddname and directly opens the file as a data
set. The libraries that are specified in the LSEARCH or SEARCH options are
ignored.

If none of the above conditions are true then filename is not in absolute
format and each opt in the SEARCH or LSEARCH compiler option determines if
the file is an HFS or a data set and then searched for the include file.

If none of the above conditions are true, then filename is a data set, but it is

252 0S/390 V2R6.0 C/C++ User’s Guide

not in absolute form. Only opts in the SEARCH or LSEARCH compiler option
that are in data set format are used in the search for include file.

For example:
Options specified:

OE

Include Directive:

#include "apath/afile.h" NOT absolute, HFS/MVS (no starting slash)
#include "/apath/afile.h" absolute HFS, (starts with 1 slash)
#include "//apath/afile.h.c" NOT absolute, MVS (starts with 2 slashes)
#include "a.b.c" NOT absolute, HFS/MVS (no starting slash)
#include "///apath/afile.h" absolute HFS, (starts with 3 slashes)
#include "DD:SYSLIB" NOT absolute, HFS/MVS (no starting slash)
#include "//DD:SYSLIB" absolute, MVS (DD name)

#include "a.b(c)" NOT absolute, HFS/MVS (no starting slash)
#include "//a.b(c)" NOT absolute, 0S/MVS (PDS member name)

Using SEARCH and LSEARCH

When the file name in the #include directive is not in absolute form, the opfts in
SEARCH are used to find system include files and the opts in LSEARCH are used to find
user include files. Each opt is a library path and its format determines if it is an HFS
path or a data set path:

For each opt in
SEARCH/LSEARCH

opt
preceded
by //

OE
specified

opt
start with
/

HFS path

data set
> path

Figure 28. Determining if the SEARCH/LSEARCH opt is an HFS path

Note:
1. If optis preceded by double slashes (/) and opt does not start with a
slash (/), then this path is a data set path.
2. If optis preceded by double slashes (//) and opt starts with a slash (/),
then this path is an HFS path.
3. If optis not preceded by double slashes (//) and opt starts with a slash
(/), then this path is an HFS path.

Chapter 9. Compiling 253

4. If optis not preceded by double slashes (//), opt does not start with a
slash (/) and NOOE is specified then this path is a data set path.

For example:

SEARCH(./PATH) is an explicit HFS path

OE SEARCH(PATH) is treated as an HFS path
NOOE SEARCH (PATH) is treated as a non-HFS path
NOOE SEARCH(//PATH) is an explicit non-HFS path.

When combining the library with the file name specified on the #include directive, it
is the form of the library that determines how the include file name is to be
transformed. For example:

Options specified:
NOOE LSEARCH(Z, /u/myincs, (*.h)=(LIB(macl)))
Include Directive:
#include "apath/afile.h"
Resulting fully qualified include names:
1. userid.Z(AFILE) (Z is non-HFS so filename is treated as non-HFS)

2. /u/myincs/apath/afile.h (/u/myincs is HFS so filename is treated as HFS)
3. userid.MAC1.H(AFILE) (afile.h matches =.h)

An HFS path specified on a SEARCH or LSEARCH option only combines with the file
name specified on an #include directive if the file name is not explicitly stated as
being MVS only. A file name is explicitly stated as being MVS only if two slashes (//)
precede it, and filename does not start with a slash (/). For example:

Options specified:
OE LSEARCH(/u/myincs, q, //w)
Include Directive:
#include "//file.h"
Resulting fully qualified include names

userid W(FILE)

/u/myincs and q would not be combined with //file.h because both paths are
HFS and //file.h is explicitly MVS.

The order in which options on the LSEARCH or SEARCH option are specified is the
order that is searched.

See L ” and ESEARCH | NOSEARCH” od

w for more information on these compiler options.

Search Sequences for Include Files

The status of the OE option affects the search sequence.

254 0S/390 V2R6.0 C/C++ User’s Guide

With the NOOE option

Search Sequences for include files are used when the include file is not in absolute
form. L ini i IS | ”
describes the absolute form of include files.

If the include filename is not absolute, the compiler performs the library search as
follows:

* For system include files:
1. The search order as specified on the SEARCH option, if any.
2. The libraries specified on the SYSLIB DD statement

* For user include files:
1. The directory of the file that contains the #include directive
2. When the containing file is HFS, the search order as specified on the LSEARCH
option, if any
3. The libraries specified on the USERLIB DD statement
4. The search order for system include files

The example below shows an excerpt from a JCL stream, that compiles a C
program for a user whose user prefix is JONES:

//COMPILE EXEC PROC=EDCC,

/] CPARM="SEARCH(''''BB.D'"'"'",BB.F),LSEARCH(CC.X)"
//SYSLIB DD DSN=JONES.ABC.A,DISP=SHR

/] DD DSN=ABC.B,DISP=SHR

//USERLIB DD DSN=JONES.XYZ.A,DISP=SHR

/] DD DSN=XYZ.B,DISP=SHR

//SYSIN DD DSN=JONES.ABC.C(D),DISP=SHR

The search sequence that results from the preceding JCL statements is:

Table 28. Order of Search for Include Files

Order of Search For System Include Files For User Include Files
First BB.D JONES.CC.X
Second JONES.BB.F JONES.XYZ.A
Third JONES.ABC.A XYZ.B

Fourth ABC.B BB.D

Fifth JONES.BB.F

Sixth JONES.ABC.A
Seventh ABC.B

With the OE option

Search Sequences for include files are used when the include file is not in absolute

form. [Determining whether the File Name is in Absolute Form” on page 257

describes the absolute form of an include file.

If the include filename is not absolute, the compiler performs the library search as
follows:

* For system include files:
1. The search order as specified on the SEARCH option, if any
2. The libraries specified on the SYSLIB DD statement

Chapter 9. Compiling 255

* For user include files:

1. If you specfied OE with a file name and the file being processed is an HFS file
and a main source file, the directory of the file containing the #include
directive

2. The search order as specified on the LSEARCH option, if any

3. The libraries specified on the USERLIB DD statement

4. The search order for system include files

For example, given a file /r/you/cproc.c that contains the following #include
directives:

#include "/u/usr/headerl.h"
#include "//aa/bb/header2.x"
#include "common/header3.h"
#include <header4.h>

And the following options:

OE(/u/crossi/myincs/cproc)
SEARCH(//V.+, /new/incl, /new/inc2)
LSEARCH(// (*.x)=(11b(AAA)), /c/cl, /c/c2)

The include files would be searched as follows:

Table 29. Examples of Search Order for 0S/390 UNIX

#include Directive Filename Files in Search Order

Example 1. This is an absolute pathname, so no search is performed.

#include "/u/usr/headerl.h" | 1. /ulusr/header.h

Example 2. This is a data set (starts with //) and is treated as such.

"llaa/bb/header2.x” 1. userid. AAA(HEADER?2)

2. DD:USERLIB(HEADER?2)

3. userid.V.AA.BB.X(HEADER2)
4. DD:SYSLIB(HEADER2)

Example 3. This is a OS/390 UNIX System Services system include file with a relative path
name. The sear ch starts with the directory of the parent file or the name specified on the
OE option if the parent is the main source file (in this case the parent file is the main source
file so the OE suboption is chosen i.e. /u/crossi/myincs).

"common/header3.h” 1. /ulcrossi/myincs/common/header3.h
/c/cl/common/header3.h
/c/c2/lcommon/header3.h
DD:USERLIB(HEADER3)
userid.V.COMMON.H(HEADER3)
/new/incl/common/header3.h
/new/inc2/common/header3.h
DD:SYSLIB(HEADER3)

ONogOr~wN

Example 4. This is a OS/390 UNIX System Services system include file with a relative path
name. The search follows the order of suboptions of the SEARCH option.

<header4.h> 1. useridV.H(HEADER4)
2. /new/incl/common/header4.h
3. /newl/inc2/common/header4.h
4. DD:SYSLIB(HEADER4)

256 0S/390 V2R6.0 C/C++ User’s Guide

Compiling OS/390 C Source Code Using the SEARCH option

The following data sets contain the commonly-used system header files for C: *
* CEE.SCEEH.H (standard header files)

e CEE.SCEEH.SYS.H (standard system header files)

e CEE.SCEEH.ARPA.H (standard internet operations headers)

» CEE.SCEEH.NET.H (standard network interface headers)

* CEE.SCEEH.NETINET.H (standard internet protocol headers)

To specify that the compiler search these data sets, code the option:
SEARCH('CEE.SCEEH.+")

IBM supplies this option as input to the Installation and Customization of the
compiler. Your system programmer can modify it as required for your installation.

The cataloged procedures, REXX EXECs, and panels that are supplied by IBM for
C specify the following data sets for the SYSLIB ddname by default:

* CEE.SCEEH.H (standard header files)

e CEE.SCEEH.SYS.H (standard system header files)

This is supplied for compatibility with previous releases, and will be overridden if
SEARCH() is used as described above.

Compiling OS/390 C++ Source Code Using the SEARCH option

The following data sets contain the commonly-used system header files for 0S/390
C++: 1

» CEE.SCEEH.H (standard header files)

» CEE.SCEEH.SYS.H (standard system header files)

» CEE.SCEEH.ARPA.H (standard internet operations headers)
* CEE.SCEEH.NET.H (standard network interface headers)

e CEE.SCEEH.NETINET.H (standard internet protocol headers)
» CBC.SCLBH.H (class library header files)

* CBC.SCLBH.HPP (class library header files)

* CBC.SCLBH.C (class library template definition files)

* CBC.SCLBH.INL (class library inline definition files)

To specify that the compiler search these data sets, code the option:
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+")

IBM supplies this option as input to the installation and customization of the
compiler. Your system programmer can modify it as required for your installation.

1. The high-level qualifier may be different at your installation.

Chapter 9. Compiling 257

258 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 10. Using Precompiled Headers

You can improve your compile time by using precompiled headers (PCH). Use the
options GENP and USEP together to automatically create and maintain precompiled
header files for your application. If you use these options consistently, the compiler
creates precompiled header files if they do not exist, and attempts to use them if
they do. When you change a source file, the compiler automatically regenerates the
precompiled version the next time you compile your program.

The compiler generates a precompiled object for the first initial sequence of
#include directives. The next time you compile, this object can be used wherever
that initial sequence appears. The precompiled object is not re-interpreted every
time it is included, since the precompiled object is only used in cases where the
context is the same. For example, same language, same beginning sequence of
#include directives, same options, and macro definitions.

To get the most benefit from this method, use the same initial sequence of headers
wherever possible. The more files that share the same initial sequence, the greater

the |mErovement in your compile time. See EQrganizing Your Saurce Files” od

for tips on getting the most improvement.

Note: A precompiled header may not be reused although a matching initial
sequence is found. Usage also depends on the availability of consistent
address locations between compilations as described in ERestrictions” an

. Compile time improvement is of a statistical nature. For example,
when doing a large number of compilations in an application build, you can
obtain overall improvement even though individual compiles may not benefit
to the same degree.

Determining the Initial Sequence

The initial sequence of headers which consists of directives in the primary source
file, can consist of the following:

* #include directives
 Comments

* #error directives
Null directives

» False conditional compilation blocks beginning with #elif or #else. In the
following example, the headers a.h, b.h, and c.h are included in the initial
sequence. The header d.h is not.

#define foo
#undef goo
#if foo
#include "a.h"
#include "b.h"
#elif
else

#else
else

© Copyright IBM Corp. 1996, 1999 259

#endif

#include "c.h"

#if goo
#include "d.h"

e #endif directives

Only comments, #define, #undef, and #if can precede the first #include directive.
For C programs, #pragma directives are also allowed. If anything else precedes the
#include directive, the compiler will not create or attempt to use precompiled
headers with that source file.

Any one of the following terminates the initial sequence:

* The compiler detects any construct not in the initial sequence list as described
above.

* The compiler detects #pragma hdrstop after a #include directive. In this instance
all #include directives that follow #pragma hdrstop directive will not be part of the
initial sequence.

* The compiler detects #pragma hdrstop before the first #include directive. In this
instance, there is no initial sequence, and the compiler does not create a
precompiled header.

Any #include directives after the initial sequence are not precompiled: they will be
compiled every time you compile the source file.

When a header contains conditional compilation directives to prevent it from being
included a second time, it is only counted once in the initial sequence, even if it

appears multiple times. Eigure 29 an page 261 illustrates how the initial sequence

can vary, depending on whether any macros are defined on the command line.

260 0S/390 V2R6.0 C/C++ User’s Guide

hl.h

int hl;
include "h3.h"

h2.h
int h2;
h3.h

#ifndef H3_H
#define H3_H
int h3;

#endif

main.c

/* Comments are 0K =/
#define M 1
#undef N
#if F
int f(int);
#endif
#if STDIO
#include <stdio.h>
#endif
#include "hl.h"

/* Comments are 0K */
#include "h2.h"
#include "h3.h"
main() {

sider the following code sequence:

Figure 29. Initial Sequence Based on Defined Macros

The following table shows three different initial sequences as a result of different
compile-time options as input.

Table 30. Initial Sequence Based on Macros

Macros Resulting Initial Sequence

Defined

None "h1.h", "h2.h", "h3.h"

STDIO <stdio.h>, "h1.h”, "h2.h", "h3.h"

F No initial sequence (because the prototype int f(int); occurs before any
#include directives)

Although h3.h is included twice (once in main.c and once in hl.h), only the first
#include directive is considered in the initial sequence. The second #include
directive does not take effect because of the conditional compilation directive in

h3.h.

Chapter 10. Using Precompiled Headers 261

Matching the Initial Sequence

Once the precompiled initial sequence is created, other compilation units in
subsequent compiles can use it. Another compilation unit can use the precompiled
initial sequence under the following conditions:

* The compilation unit has a matching initial sequence of #include directives. The
compilation unit can have a longer initial sequence, as long as the first part of the
sequence matches. Any #include directives beyond the initial matching portion
are compiled normally.

* The include files that make up the precompiled header object have not changed.
The compiler checks the modification date of each include file.

* Any macros that were expanded or tested while generating the precompiled
header object are defined with the same replacement tokens. The compiler
checks macro names that are:

— Defined before the start of the initial sequence, using the #define directive or
the def compile time option.

— Undefined before the start of the initial sequence, with the #undef directive or
the undef compile time option.

— Predefined by the compiler.

If the macro was not expanded or tested during the precompile, then its status
does not matter, and does not have to match.

* No additional macros have been defined.

» Compiler option specifications must match exactly. You must specify them in the
same way during both compilations. The only exceptions are the GENP and USEP
options; in this case, the filename suboption must also be the same.

* Under OS/390 C, the same #pragma directives, if any, before the first #include.
The specifications and order of the #pragma directives must be the same.

262 0S/390 V2R6.0 C/C++ User’s Guide

Example - Reusing Sequences

hl.h

#if TEST
int hl;
#endif

h2.h

int h2 = M+5;
progl.c

#undef X
#include "hl.h"

#include "h2.h"
funcl() {

}

prog2.c
#define X 1
#include "hl.h"

#include "h2.h"
func2() {

Given the following two compilation units, progl.c, and prog2.c and two header
files h1.h and h2.h:

Figure 30. Example of Reusing Initial Sequence

The file prog2.c can use the precompiled header object from progl.c under the

following conditions:

* The macro TEST has the same definition in both progl.c and prog2.c, or is not
defined in both.

* Macro M has the same definition in both progl.c and prog2.c, or is not defined in
both.

* No additional macros have been defined in prog2.c (whether they are used or
not).

The different definitions of macro X in progl.c and prog2.c do not matter, since X is
never tested or expanded.

Using the GENP and USEP Compiler Options

You can specify GENP or USEP with a suboption. If you do not specify a suboption ,
and did not allocate DD SYSCPCH, a filename is generated based on the source file
name. The default suffixes are as follows:

Source file type MVS File HFS File
C Source file PCH pch

Chapter 10. Using Precompiled Headers 263

Source file type MVS File HFS File
C++ Source file PCHPP pchpp

When you specify GENP and USEP together, the last file name that is specified will be
used. If you compile your program as follows, the compiler uses the PCH name
MY .PCH:

CC HELLO.PDSSRC(MEM1) (GENPCH(TEST.PCH) GENPCH(MY.PCH) USEPCH(MY.PCH)

The compiler then does the following:

» If MY.PCH exists and is current, the compiler uses it if the initial sequence matches
the source initial sequence.

= If MY.PCH exists and is not current, the compiler regenerates it.

* If MY.PCH does not exist, the compiler generates it.

Depending on how source files are organized, a header file can be part of more
than one PCH file. It could be tedious to keep track of changes to the header files
and to keep the corresponding PCH files up-to-date. By consistently using GENP and
USEP options together as described above, you can automatically maintain and use
a current precompiled header.

Notes:
1. You cannot use the same precompiled header files for C and C++ programs.

2. To create a precompiled header file, you must have write access to the data
sets or directories you specify. To use a precompiled header, you must have
read permission for that file.

3. Precompiled header files do not appear in any listing files. An informational
message is printed if the compiler does not use the precompiled header file.

Using an Alternative Initial Sequence

Because of the restrictions on reusing precompiled headers (the same sequence of
headers, and the same context in terms of macro names and options), you can
create and keep more than one precompiled header object. You can then use the
one that suits your particular compilation.

You can specify the name of an alternate precompiled header file to use, or an
alternate directory to search. Use the filename suboption of the GENP and USEP
compiler options on the command line, or on the CPARM parameter of your JCL.

Restrictions

To use an existing precompiled header file, the compiler needs the same address
location that was used when the file was created. If this address location is not
available, the compiler will not use the precompiled header file. It will compile all the
#include files, ignoring the USEP option.

You can increase the probability of accessing the required address location by

following these rules:

* The compile time options must be the same during the generation and reuse of
precompiled header files. Put the options into a file, and use the compiler option
OPTFILE to ensure that you use consistent options to generate and reuse
precompiled header files.

* For C, any #pragma directives that appear before the Initial Sequence must be
the same during the generation and reuse of precompiled headers. To ensure

264 0S/390 V2R6.0 C/C++ User’s Guide

that your #pragma directives are consistent for all compilations, put them inside a
header file whenever possible. These #pragma directives need not be processed
again in the reuse compile, since they are inside a header file that is part of the
Initial Sequence. This improves the compile time.

» For C++, you cannot use a #pragma directive before the Initial Sequence.

* Maintain a consistent runtime environment when you invoke the compiler. You
can do this by using the same runtime options (i.e. the compiler as an
application, options like HEAP, STACK, etc), and the same region size. If you are
working from OE by using the OMVS shell, start the shell up directly from TSO,
instead of from ISPF. This will free more memory for the compiler.

There is no guarantee that you can use precompiled header files between different

runtime environments. For example, between TSO and batch, or between different

user sites or OS/390 installations. The available address locations may also change
after a system reconfigeration.

In addition, timestamp information must be available for the #include header files;
otherwise the compiler may not create or use the precompiled header file. This is
because the compiler needs the timestamp information to check whether a
precompiled header file is up-to-date. Make sure that timestamp information is
available in the system headers, which reside in system partition data sets and in
the HFS directory /usr/1pp .

Because timestamp information is not available in sequential data sets, avoid using
these for header files if you want to use the precompiled header feature. The
precompiled header itself can be a sequential data set.

Organizing Your Source Files

To take full advantage of precompiled headers, you may need to reorganize your

source files. There are two strategies that you can use to organize your source

files. Use the one that best suits your application environment:

* Along initial sequence of headers. This method limits the number of source files
that can reuse it, but provides significant improvement for those files.

* A short initial sequence of headers that are shared by many source files. This
method increases the number of source files that can reuse it, but the
performance improvement for any one compile is not as significant.

If your source has an initial sequence of header files which is common to all
members in a PDS or directory, then generating and using one PCH file for the
entire PDS of directory has the greatest potential performance benefit.

Set up the PCH as follows:

1. Compile a single member from the PDS or directory with GENP and
USEP(filename(member)). This can be a dummy source file with only the Initial
Sequence of header files. The purpose here is to let the compiler check whether
the precompiled header file exists and is up-to-date, and to create or refresh it if
necessary.

2. Compile the entire directory with USEP(fi1ename(member)). You must specify the
PCH file name, including the member name if the PCH is in a PDS, with the
USEP option.

Note: If you specify GENP at this point, a the compiler generates a PCH for each
member in the directory.

Chapter 10. Using Precompiled Headers 265

Use the following hints and suggestions to organize your source files.

Common Header File

Create a common header file which has #include directives for those header files
that are shared by many different compilation units. #include this common header
file as the first header file in each primary source file, followed immediately by
#pragma hdrstop. The common headers will participate in the precompiled header
file while the other headers will be compiled normally.

Global PCH File for the Entire Directory

Create a global header file which has #include directives for every header in your
application, and include it in each primary source file. This means that a particular
source file may not use all headers in the global header file.

One PCH file for Each Member of the Directory

If your source has a different initial sequence of header files for each member in
a directory, you can generate and use one PCH file for each member by always
compiling with GENP and USEP. The first time you compile this directory, the
compilation will create a PCH file for each member. Subsequent compiles will reuse
the PCH files, thereby improving your compile time.

You do not have to specify the PCH filename; you can use the defaults. If you do
specify a PCH file name, it should be a PDS or an HFS directory. If you specify a
sequential file, PDS member or HFS file, the compiler uses this name for the output
of each PCH. If this happens, the PCH for each compile unit overwrites the
previous PCH, and only the PCH for the last compile unit remains at the end.

266 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 11. Using the IPA Link Step with OS/390 C/C++
Programs
This chapter shows how to use the IPA (Interprocedural Analysis) Link step with
your OS/390 C/C++ program. Before reading this chapter, refer to the 0S/390
C/C++ Programming Guide for an overview of IPA.

The IPA(LINK) option triggers IPA Link step processing.

IPA Linking Your Program

The IPA Link step combines IPA object files that are created by the IPA Compile
step with non-IPA object files and information from load module library members.
The IPA Link step optionally performs IPA and code generation optimizations, and
generates the final code and data for your program. You must bind the resulting
object module to create the executable program.

The entry point of your application must be an IPA object file.

Typically, 0S/390 C/C++ applications contain references to 0OS/390 Language
Environment library functions, as well as interface routines for products such as
CICS and DB2. These object module and load module libraries must be available to
the IPA Link step for symbol resolution. The IPA Link step extracts all required
object information from these libraries to form part of the object module it
generates. If external references remain unresolved after the link portion of the IPA
Link step has completed, processing terminates before optimization or code
generation of the final object code. OS/390 Version 2 Release 4 has introduced the
SCEELKEX library, which is a LONGNAME object version of a large portion of the
Language Environment function library. When you IPA Link your application
program, place the SCEELKEX library ahead of the SCEELKED library in the
search order. This will preserve long runtime function names in the object module
and listings that IPA Link generates.

You should specify the libraries that are described in the previous paragraph in your
bind step. During IPA Link step processing with IPA(NONCAL) in effect, IPA resolves
object information for explicit runtime symbols. The IPA Link step produces
additional, implicit references to external runtime symbols during code generation.
Although the IPA Link step will search for explicit runtime references, it does not
search for implicit runtime references.

To avoid problems with unresolved implicit runtime references, ensure that the
runtime object module and load module libraries are available to the binder. Also,
check the binder listings and messages to make sure that all your symbols are
resolved.

If you use the prelinker, make sure that the runtime object module libraries are
available to the prelinker, and that the runtime object module and load module
libraries are available to the Linkage Editor. The Object Resolution Warnings section
of the Prelinker Map and the Linkage Editor Map display unresolved references, as
follows:

© Copyright IBM Corp. 1996, 1999 267

WARNING EDC4015: Unresolved references are detected:
CEEBETBL CEEROOTA EDCINPL

IPA object modules contain longnames, and may be included in object libraries for
easy automatic library call resolution.

For information on creating object libraries in OS/390 C/C++, refer to W‘
j i ility” . For information on binding object modules under
0S/390 UNIX System Services, refer to EChapter 12_Rinding QS/390 C/C+4

Using DD Statements for the Standard Data Sets

The IPA Link step uses certain ddnames. [fable 31 lists these ddnames, along with
their types and functions. For details on the attributes of specific data sets see

Table 31. Data Sets Used by the IPA Link Step

ddname |Type Function

SYSIN?® Input Primary input

STEPLIB*® Utility Location of

Library the OS/390 C/C++ compiler (which provides the

IPA Link step) and the OS/390 Language Environmen
data sets

SYSLIB Library Data set for runtime library (SCEELKEX,SCEELKED)
2

Optional data sets for secondary input
4

SYSLIN?® Output Output data
set for the object module,
if the OBJECT
compiler option is specified

SYSPUNCH? Output Output data set for the object module, if the DECK
and NOOBJECT compiler options are specified

sysouTt* Output Destination of diagnostic messages
generated by the IPA Link step
SYSCPRT# Output IPA Link step listing, generated if the IPA(MAP),
LIST, or XREF option
is specified.
User-specified® Input Additional object modules and load modules
SYSUTL, Output Work data sets
SYSUT4-9,
SYsSuT14*

268 0S/390 V2R6.0 C/C++ User’s Guide

Table 31. Data Sets Used by the IPA Link Step (continued)

ddname Type Function
Notes:
1 Required data set

2 Required for library runtime routines

As required by the program:
* Program parts in object library or load module library format

» DLL IMPORT side-decks generated by the binder, which define function or
variable interfaces of a DLL referenced by the current application
4 Optional data set
5 Optional data sets, if the compiler and runtime library are installed in the LPA or
ELPA. To save resources and improve compile time, especially in OS/390 UNIX
System Services, do not unnecessarily specify data sets on the STEPLIB DD
name.

3

Primary Input (SYSIN)

Primary input to the IPA Link step must be one or more separately compiled object
modules or IPA Link control statements. You can specify this input in a sequential
data set, a member of a partitioned data set, or an in-line object module (DD *).

Location of Compiler and OS/390 Language Environment Library

(STEPLIB)

To IPA Link your program, the system must find the data sets that contain the

compiler, and the data sets that contain the OS/390 Language Environment runtime
library. If the runtime library is installed in the LPA or ELPA, it is found automatically.
Otherwise, SCEERUN must be in the JOBLIB or STEPLIB. For information on the search

order, see [Chapter 14_Running an QS/390 C/C++ Application” on page 33§.

Secondary Input (SYSLIB)

Secondary input to the IPA Link step consists of object modules, or load modules
that are not part of the primary input data set but are to be included in the user
executable program. These may be included either:

» Explicitly, as a result of processing an IPA Link control INCLUDE statement.
» Implicitly, as a result of automatic call library processing. This can be due to
either
— Processing a library specified on an IPA Link control LIBRARY statement

— Searching the libraries that are allocated to SYSLIB (once the IPA Link step
has processed all primary input)

The automatic call library is used to resolve external symbols that are currently
unresolved.

The call libraries that are used as input to the IPA Link step normally include the
0S/390 Language Environment libraries. If required, include additional call libraries
such as SYS1.LINKLIB, a private program library, or a subroutine library to resolve
all external references to your application.

If you are IPA Linking an application that imports symbols from a DLL, you must
INCLUDE its definition side-deck on the SYSLIB or other user DD name. The IPA

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 269

Link step uses the definition side-deck to resolve external symbols for functions and
variables that your application imports. If you call more than one DLL, you need to
INCLUDE a definition side-deck for each.

You can use the SYSLIB DD statement to concatenate multiple object module
libraries and load module libraries. For more information on concatenating data
sets, see page ka2

Notes:
1. All secondary input data sets for the IPA Link step must be cataloged.

2. The IPA Link step supports PDS format load module libraries only. It does not
support Program Objects that are in PDSE format, or OS/390 UNIX System
Services HFS executable files.

Output (SYSLIN or SYSPUNCH)

The IPA Link step generates a single object module. If you specify the 0BJECT
compiler option, the IPA Link step stores the object module in the data set that is
referenced by the SYSLIN DD name. If you specify the DECK and NOOBJECT compiler
options, the IPA Link step stores the object module in the data set that is referenced
by the SYSPUNCH DD name.

Destination of Errors Generated by the IPA Link Step (SYSOUT)

If the IPA Link step encounters problems, it generates diagnostic messages and
places them in the SYSOUT data set.

Listing (SYSCPRT)

If you specify the ATTRIBUTE, IPA(MAP), LIST, or XREF compiler option, the IPA Link
step writes a listing to the SYSCPRT file name. The options have the following
purposes:

ATTRIBUTE Causes IPA Link to generate an External Symbol Cross-Reference
listing section for each partition. The IPA Link step may also
generate a Storage Offset Listing if you specified the XREF,
IPA(ATTRIBUTE), or IPA(XREF) option specified during the IPA
Compile step.

IPA(MAP) Provides information about the object and source files that are
included as input to the IPA Link step, and information about the
partitions that it generates.

LIST Causes IPA Link to generate a Pseudo Assembly listing for each
partition, showing the code and data that are generated in each
partition.

XREF Causes an IPA Link to generate an External Symbol
Cross-Reference listing section to each partition. The IPA Link step
may also generate a Storage Offset Listing if you specify the XREF,
IPA(ATTRIBUTE), or IPA(XREF) option specified during the IPA
Compile step.

Refer to Llsing the IPA | ink Step Listing” an page 193 for more information about

listings that the IPA Link step generates.

270 0S/390 V2R6.0 C/C++ User’s Guide

Temporary Workspaces for the IPA Link Step (SYSUTX)

The IPA Link step requires data sets for use as temporary workspaces. You define
these data sets by DD statements with the names SYSUT1, SYSUT4—9, and
SYSUT14. These data sets must be on direct access devices.

IPA Link Step Input

Primary Input

Input to the IPA Link step can be:
* Object records, which can be:

— One or more IPA object modules

— IPA Link control statements
0S/390 Language Environment stub routines
Other object libraries and load module libraries
* The IPA Link step control file

Unresolved references or undefined writable static objects often result if you give
the IPA Link step object modules produced with a mixture of inconsistent options.
For example, RENT, NORENT, or DLL.

Note: The IPA Link step will not accept as input a program object that is produced
by the binder.

Primary input to the IPA Link step consists of a sequential data set (file) that
contains one or more separately compiled object modules or IPA Link control
statements. Specify the primary input data set through the SYSIN DD name.

Note: If you used the OS/390 Release 2 C/C++ compiler to create an IPA or
combined IPA/conventional object module, and specified the OPTIMIZE (0)
and IPA(NOOPTIMIZE) compiler options, your object module is incompatible
with a later release of the OS/390 C/C++ IPA Link step. You must recompile
your source code with a later release of the OS/390 C/C++ IPA Compile step
before attempting to use the current release of the OS/390 C/C++ IPA Link
step.

Refer to [Ohject Record Formats” on page 275 for more information about the

different types of object records.

IPA Linking Multiple Object Modules

0OS/390C/C++ generates a CEESTART CSECT at the beginning of the object
module in two situations:

» For a source program that contains the main() function, as long as you have not
specified the NOSTART compiler option.

» For a source program containing a function for which a #pragma Tinkage (name,
FETCHABLE) preprocessor directive applies.

When you IPA Link multiple object modules into a single object module, the binder
resolves the entry point of the resulting object module to the external symbol

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 271

CEESTART. If you want to control the entry point of the object module, use the
ENTRY binder control statement or the c89 "-e” option.

For the IPA Link step, object modules containing the main() function or #pragma
fetchable function must be IPA object files. If these object files are IPA Linked with
other object modules produced by C, assembler, or other languages, the IPA object
file containing the main() or #pragma fetchable function must be the first module to
receive control. You must also ensure that the entry point of the resulting load
module is resolved to the external symbol CEESTART. To ensure this, you can include
the following binder ENTRY control statement in the input to the binder:

ENTRY CEESTART

If you are building a DLL with IPA, you must use the ENTRY control statement as
described above.

Secondary Input

Secondary input to the IPA Link step consists of object modules, or load modules
that are not part of the primary input data set but are to be included in the object
module. They may be included either:

» Explicitly, as a result of processing an IPA Link control INCLUDE statement.

* Implicitly, as a result of automatic call library processing. This can be due to
either

— Processing a library specified on an IPA Link control LIBRARY statement

— Searching the libraries that are allocated to SYSLIB (once the IPA Link step
has processed all primary input)

The automatic call library is used to resolve external symbols that are currently
unresolved. The IPA Link step locates the library member in which the external
symbols are defined, extracts the corresponding object information, and
incorporates it in the output object module.

The automatic call library may include:

» Object module libraries. These may contain IPA object files or non-1PA object
modules, and may contain the records of IPA Link control statements.

These libraries may be:
— PDS libraries

— PDSE libraries

— archive libraries

Note: You do not normally use control statement records within secondary input
with the c89 utility. The c89 utility allocates libraries that are passed in the
¢89 invocation. You cannot allocate additional user autocall libraries with
user-specified DD names.

¢ Load module libraries

» 0S/390 Language Environment libraries, if any of the OS/390 Language
Environment library functions are needed to resolve external references

Refer to lQbject Record Farmats” on page 275 for more information about the

different types of object records.

Note: You can concatenate PDS, PDSE, and load module libraries together.
However, you cannot concatenate archive libraries to other library types.

272 0S/390 V2R6.0 C/C++ User’s Guide

Specify the standard secondary input data sets with a SYSLIB DD statement. You
can also explicitly reference secondary input, through IPA Link control statements.

Additional Object Modules and Load Modules as Input

You can explicitly reference secondary input through INCLUDE or LIBRARY control
statements.

Use the INCLUDE statement to specify additional object information from object
modules or load modules that you want included in the final object module.

Use the LIBRARY statement to specify additional libraries to be searched for object
information from object modules or load modules to be included in the final object
module. The IPA Link step only uses data sets that are specified by the LIBRARY

statement if there are unresolved references once it has processed all other input.

When the IPA Link step encounters an INCLUDE statement, it incorporates the data
sets that the statement specifies. If you specify the IPA(NONCAL) option, the IPA Link
step performs a library search for currently unresolved symbols when it encounters
a LIBRARY statement. If the processing of subsequent INCLUDE or LIBRARY
statements results in new or unresolved symbols, the IPA Link step does not search
a previously encountered library again. You need to specify another LIBRARY
statement that points to the same library so that IPA Link searches it again.

Uppercase Name Resolution with the IPA(UPCASE) Option

If you specify the IPA(UPCASE) option, the IPA Link step makes an additional
automatic library call pass against the SYSLIB DD statement. In this situation,
symbol matching is case-insensitive. The purpose of this IPA(UPCASE) option is to
provide support for linking assembler object routines without source changes. It is
preferable to add #pragma map definitions for these symbols, so that IPA Link finds
the correct symbols during normal automatic library call processing.

Processing the IPA Link Automatic Library Call

The IPA Link step uses the following process to resolve a referenced and currently
undefined symbol, if you have specified the IPA(NONCAL) compiler option:

» If the data set contains a C370LIB directory created using the OS/390 C/C++
Object Library Utility, and the C370LIB directory shows that a defined symbol by
that name exists (with a case-insensitive exact match), the IPA Link step reads
the PDS member containing that symbol.

» If the data set does not contain a C370LIB directory created using the OS/390
C/C++ Object Library Utility and the reference is not to static external data, the
IPA Link step reads the member or alias with the same name (with a
case-sensitive exact match).

If unresolved symbols remain after IPA Link step has processed user input, and you
specified the NONCAL option, the IPA Link step searches the files allocated to the
SYSLIB DD name, as follows:

1. It searches for a case-insensitive exact match in the C370LIB and non-C370LIB
libraries that are concatenated to the SYSLIB DD name, as described above.

2. If the symbol remains unresolved, IPA searches OS/390 Language Environment
for a library function with the same name as the symbol. (You must include the
Language Environment stub library in the SYSLIB concatentation).

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 273

3. If the symbol is still unresolved, and you have specified the IPA(UPCASE) option,
IPA searches using the uppercased name.

For more information about the OS/390 C/C++ Object Library Utility, see

mmemmwwm—pw z .

References to Currently Undefined Symbols (External
References)

If the IPA Link step finds unresolved references to external symbols after it has
completed the link portion of its processing, it issues a diagnostic message and
terminates processing.

Library Routine Considerations

0S/390 Language Environment contains runtime libraries for all Language
Environment-enabled languages: C, C++, COBOL, FORTRAN, and PL/I. For
detailed instructions on linking and running OS/390 C/C++ programs under OS/390
Language Environment, refer to the OS/390 Language Environment Programming
Guide.

0S/390 Language Environment is dynamic. That means that many of the functions,
such as library functions, are not physically stored as a part of your executable
program. Instead, only a small portion of code, known as a stub routine, is stored
with your executable program. This results in a smaller executable module. There is
a stub routine for each library function. Each stub routine has:

* The same name as the library function that it represents

* Enough code to locate the actual library function at run time

The C stub routines are in the file CEE.SCEELKED, or CEE.SCEELKEX. For detailed
information on the runtime libraries see 0OS/390 UNIX System Services Command
Reference.

Using DLLs

If you are building an application that imports symbols from a DLL, your input to the
IPA Link step must include the definition side-deck that the binder produced when
the DLL was built.

The IPA Link step uses longnames to resolve exported and imported symbols when
it generates an object module for an application that is compiled with the DLL
compiler option.

For information on how to create a DLL or an application that uses DLLs, see the
0S/390 C/C++ Programming Guide.

Object File Formats

The High Level Assembler (HLASM) and other OS/390 compilers and language
translators generate two object file formats:

Object File Format
The standard S/370 "TEXT" object format, packaged as fixed-length 80 byte
records. Extensions to the basic format support long external symbols when
the OS/390 C/C++ compiler LONGNAME option is in effect. IPA Link accepts
input in object file format. The OS/390 C/C++ compiler only produces files
that are in object file format.

274 0S/390 V2R6.0 C/C++ User’s Guide

Generalized Object File Format (GOFF)
A hierarchical object file format that was introduced with HLASM R2, and
the OS/390 Binder. IPA Link does NOT supported this format as input.

Refer to DFSMS/MVS Program Management for more information on object file
formats.

Object Record Formats

There are two basic types of object records which may be present in a file of object
file format.

Binary Object Records

Binary object records provide information about your program. The records may
include IPA object information, or code and data generated through the OBJECT
suboption of the IPA compiler option during the IPA Compile step.

The records include the following types:
« ESD
e XSD
o« TXT
« END
* RLD

The OS/390 C/C++ compiler or an equivalent language translator may generate
these object records.

IPA Link Control Statements

You can also specify control statement records as input. These statements can
include the following types:

* INCLUDE
e LIBRARY
* RENAME
e IMPORT
e ALIAS

* NAME

The INCLUDE and LIBRARY control statements explicitly identify secondary input files.

IPA Link control statements are contiguous records that you can specify in an object
file or in a DD * stream. The syntax and format of these control statements are
similar to those that the binder uses. The logical records can span multiple
fixed-block, 80 column wide physical records.

You can specify blank records and comment control statements (those starting with
an asterisk in column 1), but the IPA Link step ignores them.

The following table shows the format of records:

Table 32. IPA Link Control Statements

Start Column End Column Field Length Description

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 275

Table 32. IPA Link Control Statements (continued)

1 1 1 Record type indicator
* blank-Control
* 0X02-Binary
e "*"-Comment

2 71 70 Record data

72 72 1 Control statement

continuation indicator

* EBCDIC blank
character-No continuation
(required for last record)

* non-blank EBCDIC
character-Continuation

73 80 8 Record sequence number
(optional field, contents not
verified)

You can delimit character strings with blanks, commas, or parentheses. If character
strings contain imbedded blanks, you must enclose the strings in single quotes. If
you want to enclose a name in single quotation marks, and it contains a single
guotation mark, replace the single quotation mark with two adjacent ones. For
example, if you want the name SymboTNameWithAQuote'InTheMiddle, specify it as
follows: 'SymbolNameWithAQuote''InTheMiddle'.

All 70 data characters of a control statement are significant. Control statements
continue in column 2 (IPA conforms to the same convention as the Program
Management Binder).

The IPA Link step performs syntax checking on the object records. If it finds an
error, it issues a diagnostic message and indicates the location of the error.
Records cannot continue past the end of an object file.

The following sections describe the IPA Link control statements.

IMPORT Control Statement: The IMPORT control statement has the following

syntax:
»»—IMPORT CODE L1-name function ><
'—dl1-name—" '—function—'
DATA l1-name variabl e—_l—
'—dl1-name—" '—variable—'
dll-name The directory name (primary member or alias) or HFS filename of
the load module or program object that contains the imported
function or variable. The maximum length of a dll-name is 1024
characters. The maximum length of an HFS filename is 255 bytes.
variable An exported variable name. It is a mixed-case longname.
function An exported function name. It is a mixed-case longname.

The IPA Link step processes IMPORT statements. It passes the binder the
statements that represent entry points that are present within the DLL.

276 0S/390 V2R6.0 C/C++ User’s Guide

INCLUDE Control Statement: The INCLUDE control statement has the following

syntax:
»»—INCLUDE ddname (member) ><
'—ddname—' s
Y ' member—'
ddname a ddname associated with a file to be included.
member the member of the DD to be included.

The IPA Link step attempts to read the DD or member of the DD (whichever you
specify), and if successful, resolves the INCLUDE request.

Note: The IPA Link step removes the INCLUDE control statement and does not place
it in the IPA Link output object module.

LIBRARY Control Statement: The LIBRARY control statement has the following
syntax:

»>—LIBRARY name
'—name—"

v
A

name The name of a DD that defines a library. This could be a
concatenation of one or more libraries that were created with or
without the Obiject Library Utility.

Note: The IPA Link step removes the LIBRARY control statement and does not place
it in the IPA Link output object module.

The IPA Link Step Control File

The IPA Link Step control file is a fixed-length or variable-length format file that
contains additional IPA processing directives. The CONTROL suboption of the IPA
compiler option identifies this file.

The IPA Link step issues an error message if any of the following conditions exist in
the control file:

* The control file directives have invalid syntax.
* There are no entries in the control file.
* Duplicate names exist in the control file.

You can specify the following directives in the control file:

csect=csect_names Supplies information that the IPA Link step uses to
name the CSECTSs for each partition that it creates.
The csect_names parameter is a comma-separated
list of tokens that is used to construct CSECT
names.

The behavior of the IPA Link steps varies
depending upon whether you specify the CSECT
option with a qualifier.

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 277

inline= name[,name]

278 0S/390 V2R6.0 C/C++ User’s Guide

* If you do not specify the CSECT option with a
qualifier , the IPA Link step does the following:

— Truncates each name prefix or pads it at the
end with @ symbols, if necessary, to create a
7 character token

— Uppercases the token
— Adds a suffix to specify the type of CSECT, as

follows:

C code

S static data
T test

 If you specify the CSECT option with a non-null
qualifier , the IPA Link step does the following:
— Uppercases the token
— Adds a suffix to specify the type of CSECT, as
follows where nameprefix is the qualifier you

specified for CSECT and qualifier is the name
you specified in the IPA Link Step Control

File:

qualifier#fnameprefix#C code
qualifier#fnameprefix#S static data
qualifier#fnameprefix#T test

* If you specify the CSECT option with a null
qualifier , the IPA Link step does the following:
— Uppercases the token
— Adds a suffix to specify the type of CSECT, as

follows where nameprefix is the qualifier you
specified for CSECT:

nameprefix#C code
nameprefix#S static data
nameprefix#T test

The IPA Link step issues an error message if you
specify the CSECT compiler option but no control file,
or did not specify any csect directives in the control
file. In this situation, IPA generates a CSECT name
and an error message for each partition.

The IPA Link step issues a warning or error
message (depending upon the value of the CSECT
option) if you specify CSECT name prefixes, but the
number of entries in the csect _names list is fewer
than the number of partitions that IPA generated. In
this situation, for each unnamed partition, the IPA
Link step generates a CSECT name prefix with
format @CSnnnn, where nnnn is the partition humber.
If you specify the CSECT option, the IPA Link step
also generates an error message for each unnamed
partition. Otherwise, the IPA Link step generates a
warning message for each unnamed partition.

Specifies a list of functions that are desirable for the
compiler to inline. The functions may or may not be
inlined.

inline= name[,name] from name[,name]

noinline= name[,name]

Specifies a list of functions that are desirable for the
compiler to inline, if the functions are called from a
particular function or list of functions. The functions
may or may not be inlined.

Specifies a list of functions that the compiler will not
inline.

noinline= name[,name] from name[,name]

exits= name[,name]

lowfreq= name[,name]

Specifies a list of functions that the compiler will not
inline, if the functions are called from a particular
function or list of functions.

Specifies names of functions that represent
program exits. Program exits are calls that can
never return, and can never call any procedure that
was compiled with the IPA Compile step.

Specifies names of functions that are expected to
be called infrequently. These functions are typically
error handling or trace functions.

partition=small| medium|large|unsigned-integer

safe=name[,name]

isolated= name[,name]

pure= name[,name]

Specifies the size of each program partition that the
IPA Link step creates. The size of the partition is
directly proportional to the time that is required to
perform code generation, and the quality of the
generated code. When partition sizes are large, it
usually takes longer to complete the code
generation, and the quality of the generated code is
usually better.

For a finer degree of control, you can use an
unsigned-integer value to specify the partition size.
The integer is in ACUs (Abstract Code Units), and
its meaning may change between releases. You
should only use this integer for very short term
tuning efforts, or when the number of partitions (and
therefore the number of CSECTs in the output
object module) must remain constant.

The size of a CSECT cannot exceed 16 MB.
The default for this directive is medium.

Specifies a list of "safe" functions. These are
functions that do not indirectly call a visible (not
missing) function either through a direct call or a
function pointer.

Specifies a list of "isolated" functions. These are
functions that do not directly reference global
variables accessible to visible functions. IPA
assumes that functions that are bound from shared
libraries are isolated.

Specifies a list of "pure” functions. These are
functions that are safe and isolated and do not
indirectly alter storage accessible to visible
functions. A "pure" function has no observable

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 279

unknown= name[,name]

missing=attribute

retain= symbol-list

280 0S/390 V2R6.0 C/C++ User’s Guide

internal state. This means that the returned value
for a given invocation of a function is independent
of any previous or future invocation of the function.

Specifies a list of "unknown" functions. These are
functions that are not safe, isolated, or pure.

Specifies the characteristics of "missing" functions.
There are two types of "missing" functions:

* Functions dynamically linked from another DLL
(defined using an IPA Link IMPORT control
statement)

* Functions that are statically available but not
compiled with the IPA option

IPA has no visibility to the code within these
functions. You must ensure that all user references
are resolved at IPA Link time with user libraries or
runtime libraries.

The default setting for this directive is unknown. This
instructs IPA to make pessimistic assumptions
about the data that may be used and modified
through a call to such a missing function, and about
the functions that may be called indirectly through
it.

You can specify the following attributes for this
directive:

safe Specifies that the missing functions
are "safe". See the description for
the safe directive, above.

isolated Specifies that the missing functions
are "isolated". See the description
for the isolated directive, above.

pure Specifies that the missing functions
are "pure". See the description for
the pure directive, above.

unknown Specifies that the missing functions
are "unknown". See the description
for the unknown directive, above.
This is the default attribute.

Specifies a list of exported functions or variables
that the IPA Link step retains in the final object
module. The IPA Link step does not prune these
functions or variables during optimization.

Output from the IPA Link Step

You can specify output from the IPA Link step as one of the following:
A sequential data set

A member of a partitioned data set

A partitioned data set

A hierarchical file system (HFS) file

An HFS directory

arwdE

Output may be either an object module or a listing.

For valid combinations of input and output file types, refer to [lable 25 an page 227.

Specifying Output Files

You can use compiler options to specify the output files for IPA Link, as follows:

Table 33. Compiler Options That Provide Output File Names

Output File Type Compiler Option
Object Module OBJECT((filename)
Listing File LIST(filename)

If you specify compiler options that generate output files but do not specify the
suboptions to identify the output files or allocate the ddnames, the IPA Link step
generates the output file names based on the input file name. For data sets, the
IPA Link step uses the userid under which the compiler is running as the high-level
Eualifier. It generates the low-level qualifier by appending a suffix, as shown in

. OS/390 creates HFS files in the current working directory.

The IPA Link step uses the following default suffixes:

Table 34. Default Suffixes for Output File Types

Output File Type. MVS File HFS File

Output from IPA Compile OBJ 0

Step

Listing File LIST Ist

Output from IPA Link Step IPA I (for c89 batch) or o
(otherwise)

Refer to the 0OS/390 UNIX System Services Command Reference for more
information about default suffixes.

Note: Output files default to the HFS directory if the input resides in the HFS, or to
the MVS file if the input resides in a data set.

If you use the ¢89 utility to compile HFS source files and perform an IPA Link in one
invocation, and do not specify output filenames in the compiler options, the compiler
writes output files to the current working directory. It generates output file names by:

* Appending a suffix, if it does not exist
* Replacing the suffix, if it exists

as shown in fahle 34. For example, the following command generates the IPA
Compile step object file ./hell0.0 and the IPA Link step object file ./hell0.1:

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 281

cc /user/tullio/hello.c

The IPA Link step object file ./hello.I is temporary, but you can use environment
variables to make it permanent. Refer to the OS/390 Shells and Utilities manual for
more information.

Notes:

1. If you have specified the OE option, see EQE | NOQE” an page 127 for a
description of the default naming convention.

2. If you supply the primary input file inline in your JCL, you must provide a file
name for the output, or route it to the job log. The compiler will not generate an
output file name automatically. You can specify a file name either as a suboption
for a compiler option, or on a ddname in your JCL.

Listing Output

To create a listing file that contains source, object or inline reports, use one of the
following:

» the MAP suboption of the IPA option

* the AGGREGATE option

* the LIST option

* the INLINE(,REPORT,,) option

« the XREF option

The IPA Link Step listing contains several individual listing sections that are only
generated if required. Unresolved requests generate error or warning messages in
the listing.

The listing includes the results of the default or specified options of the IPARM
parameter (that is, the diagnostic messages and the object code listing). If you
specified filename with two or more of these compile options, the IPA Link step
combines the listings and writes them to the last file named. If you did not specify
any suboptions, the IPA Link step writes the listing to the SYSCPRT DD name, if you
have allocated it. Otherwise, the IPA Link step generates a default file name as

described in ELIST | NOLIST” on page 11d.

Object Module Output

To create an object module and store it on disk or tape, you can use either the
OBJECT or DECK compiler option.

If you do not specify a filename with the OBJECT compiler option, the IPA Link step
stores the object code in the file that you defined in the SYSLIN DD statement. With
the DECK and NOOBJECT compiler options, the IPA Link step uses the file that you
defined in the SYSPUNCH DD. If you did not specify any suboptions, and did not
allocate SYSLIN, the IPA Link step generates a default file name as described in
LQBIECT | NOOBIECT" on page 124

You must use the binder (or the prelinker, followed by the linkage-editor) to process
the object module from the IPA Link step. You should not use the output object
module from one IPA Link step as input to another IPA Link step.

282 0S/390 V2R6.0 C/C++ User’s Guide

Mapping Static Symbol Names

Static symbols (such as C static functions) within a compilation unit are not exposed
as external symbols if an application program is built using the non-IPA compilation
process.

The IPA Link merges and optimizes the IPA object information, and splits it into
partitions for final code and data generation. The partitioning process must flexibly
assign the code and data from the original Compilation Units to their final partition
based on how they are used within the application.

As the IPA Link step reads IPA object modules, it assigns each static static symbol
a unique name and promotes it to an external symbol. This prevents static symbols
from constraining the partitioning. IPA Link generates the unique name by adding a
prefix to the original static name, as follows:

@n@original_name
where n is the object file id number. Refer to the Object File Map section of

the llsing the IPA | ink Step Listing” on page 193 for details.

If an object file defines multiple static symbols with the same name, IPA Link
generates the unique name for the subsequent symbols as follows:

@n@m@original_name

where:
n is the object file id number.
m is the collision counter, starting with 1.

Running the IPA Link Step Under OS/390 Batch

The following diagram shows the basic IPA Link step process for your C/C++
application.

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 283

C Object Module

: . Language DLL
Including main() C User Non-C User Envirgnmgent Definition
and/or IPA Link Libraries Libraries Library Side-Decks

Control Statements

SYSIN ‘ ¢ SYSLIB + Other User-specified DDNAMEs

IPA Link Step

SYSLIN (or SYSPUNCH)

Object
Module

Figure 31. Basic IPA Link Step Processing

Use the SYSIN DD statement to specify your primary input. This may be object
modules or IPA Link step control statements.

Use the SYSLIB DD statement to specify your secondary input. Your secondary
input may be C/C++ user libraries, non-C/C++ user libraries, or the Language
Environment library. Also, if you are creating an application that imports symbols
from DLLs, you must INCLUDE the definition side-deck for each DLL from the
SYSLIB DD statement.

You can specify additional secondary input through user-specified ddnames.

The IPA Link step stores the final object module that it generates in the data set
that is referenced by the SYSLIN or SYSPUNCH DD name.

Using the EDCI and CBCI Cataloged Procedures

You can use the IBM-supplied cataloged procedures EDCI and CBCI to perform IPA
Link step processing on your program. The two procedures are the same. IBM
provides CBCI to conform to the procedure naming conventions of C++, and CBCI
is aliased to EDCI. Note that by default, the EDCI procedure does not save the
generated object module.

The EDCI procedure specifies the IPA(LINK) option for you.

The following example shows the general job control procedure for IPA linking a
program under OS/390 batch:

284 0S/390 V2R6.0 C/C++ User’s Guide

// jobcard
//*
//* IN THE FOLLOWING STEP, THE MEMBERS TESTFILE AND DECODE FROM
//* THE LIBRARIES USERID.WORK.OBJECT AND USERID.LIBRARY.OBJECT ARE
//* IPA LINKED, AND THE GENERATED OBJECT MODULE IS PLACED
//* IN USERID.WORK.IPAOBJ(TEST).
//* AN IPA LINK LISTING IS GENERATED AND DIRECTED TO SYSOUT=x.
/1*
//IPALINK EXEC EDCI,
// INFILE="'SEE.SYSIN.OVERRIDE',
// OUTFILE="'USERID.WORK.IPAOBJ(TEST),DISP=SHR',
// IPARM="IPA(MAP,LIST,DUP,ER,NONCAL)",
// IREGSIZ=64M
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//0BJECT DD DSNAME=USERID.WORK.OBJECT,DISP=SHR
//LIBRARY DD DSNAME=USERID.LIBRARY.OBJECT,DISP=SHR
//SYSOUT DD SYSOUT=x
//SYSCPRT DD SYSOUT=+
//SYSIN DD DATA,DLM=0@
INCLUDE OBJECT(TESTFILE)
INCLUDE LIBRARY (DECODE)
e

Figure 32. IPA Linking a Program under OS/390 Batch
Specifying IPA Link Options

Use the IPARM parameter to specify the IPA Link options. The format of the
parameter is:

IPARM=""ipa-link-options" '
where ipa-link-options is a list of IPA Link options, separated by commas.
Specifying Region Size

Use the IREGSIZ parameter to specify the IPA Link step region. The format of the
parameter is:

IREGSIZ=region-size
Specifying Secondary Input under OS/390 Batch

Specify the secondary input data sets with the SYSLIB DD statement. Add LIBRARY
and INCLUDE control statements to reference object and load module library data
sets. If you have multiple secondary input data sets, concatenate them as shown in
the following example:

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
// DD DSNAME=AREA.SALESLIB,DISP=SHR

To specify additional object modules or libraries, code INCLUDE and LIBRARY

statements after your DD statements as part of your job control procedure, as
follows:

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 285

//SYSIN DD DSNAME=myid.IPAOBJ,DISP=SHR
// DD DSNAME=...

// DD *
INCLUDE ddname (member)
LIBRARY ADDLIB(CPGM10)
/*

Figure 33. IPA Link Control Statements
Using Your Own JCL

The following example shows sample JCL for running the IPA Link step:

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CBCDRVR,PARM="'/IPA(MAP,LIST,DUP,ER,NONCAL)"
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR

// DD DSNAME=CBC.SCBCCMP,DISP=SHR

//SYSLIN DD DSNAME=userid.MYPROG.0BJ,DISP=SHR
//SYSLIB DD DSNAME=userid.SECOND.LOAD,DISP=SHR

// DD DSNAME=CEE.SCEELKED,DISP=SHR

//0BJECT DD DSNAME=userid.WORK.OBJECT,DISP=SHR
//LIBRARY DD SYSOUT=userid.LIBRARY.OBJECT,DISP=SHR
//SYSOUT DD SYSOUT=*

//SYSCPRT DD SYSOUT==*

//SYSUT1 DD DSN=...

//SYSUT4 DD DSN=...

//SYSIN DD =
INCLUDE OBJECT(TESTFILE)

INCLUDE LIBRARY (DECODE)
/*

Figure 34. JCL for Running the IPA Link Step

Running the IPA Link Step in OS/390 UNIX

Processing your application under OS/390 UNIX System Services is the same as
processing it under OS/390 batch.

Using JCL

The example JCL, below, uses archive libraries and data sets. INCLUDE files may
be PDS members, sequential files, or HFS files. Libraries may be partitioned data
sets or archive libraries.

286 0S/390 V2R6.0 C/C++ User’s Guide

// jobcard
/1*
//* THE FOLLOWING STEP IPA LINKS THE OBJECT FILES DEFINED BY DDOBJ1,
//* AND DDOBJ2 AND PLACES THE GENERATED OBJECT MODULE IN
//* USERID.WORK.IPAOBJ(TEST). AN IPA LINK LISTING IS GENERATED AND
//* DIRECTED TO SYSOUT=x.
/1*
//IPALINK EXEC EDCI,
// INFILE="'SEE.SYSIN.OVERRIDE',
// OUTFILE="'USERID.WORK.IPAOBJ(TEST),DISP=SHR',
// IPARM="IPA(MAP,LIST,DUP,ER,NONCAL) ",
// IREGSIZ=64M
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//* object file
//DDOBJ1 DD PATH='/u/myuserid/callfoogoohoo.o',
/] PATHOPTS=(ORDONLY) ,
// PATHDISP=(KEEP,KEEP)
//* PDS member
//DDOBJ2 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.O0BJ(MEM1)
//* archive Tlibrary
//DDLIB3 DD PATH='/u/myuserid/mylibrary.a’,
// PATHOPTS=(ORDONLY),
// PATHDISP=(KEEP,KEEP)
//* PDS Library
//DDLIB4 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ
//SYSLIN DD DISP=SHR,DSN=USERID.WORK.IPAOBJ(TEST)
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSIN DD *
INCLUDE DDOBJ1
INCLUDE DDOBJ2
LIBRARY DDLIB3
LIBRARY DDLIB4
/*

Figure 35. Using JCL for IPA Linking an OS/390 UNIX Application
Invoking IPA from the c89 Utility

The ¢89 utility supports IPA. You can invoke the IPA Compile step, the IPA Link
step, or both. The step that c89 invokes depends upon the invocation parameters
and type of files you specify. You must specify the I phase indicator along with the
W option of the c89 utility. You can specify IPA suboptions as comma-separated
keywords.

If you invoke ¢89 with a source file and the -c option, c¢89 automatically specifies
the IPA(NOLINK) option and invokes the IPA compile step. For example, the
following command invokes the IPA Compile step for source file hello.c:

c89 -c -WI hello.c

If you invoke ¢89 with an object file, do not specify the -c option and do not specify
any source files, c89 automatically specifies IPA(LINK) and invokes the IPA Link
step, and the binder. For example, the following command invokes the IPA Link step
and the binder to create a program called hello:

c89 -0 hello -WI hello.o
If you invoke c89 with at least one source file and any number of object files, and

do not specify the -c option, c89 automatically invokes the IPA Compile step once
for each compilation unit and the IPA Link step once for the entire program. For

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 287

example, the following command invokes the IPA Compile step, the IPA Link step,
and the binder while creating program foo:

c89 -0 foo -WI,object foo.c
Specifying Options

When using c89, you can pass options to IPA, as follows:

» If you specify -WI, followed by IPA suboptions, c89 passes those suboptions to
both the IPA Compile step and the IPA Link step.

» If you specify -Wc, followed by compiler options, c89 passes those options only
to the IPA Compile step.

» If you specify -W1,1, followed by compiler options, c89 passes those options only
to the IPA Link step.

The following is an example of passing options:
c89 -2 -WI,noobject -Wc,source -W1,I,"maxmem(2048)" file.c

In this example, you pass the IPA(NOOBJECT) option to both the IPA Compile and
IPA Link steps, the SOURCE option only to the IPA Compile step, and the
MAXMEM(2048) option only to the IPA Link step.

Using IPA Link with Archive Files

The IPA Link step supports all archive files, including those which are empty.

Other Considerations

The compiler (which includes IPA) is packaged in MVS load module format, not in
HFS executable format.

Refer to the OS/390 UNIX System Services Command Reference for more
information about the c89 utility.

288 0S/390 V2R6.0 C/C++ User’s Guide

Chapter 12. Binding OS/390 C/C++ Programs

This chapter describes how to bind your programs using the binder (the
DFSMS/MVS program management binder) in the OS/390 batch, OS/390 UNIX
System Services, and TSO environments.

When You Can Use the Binder

The output of the binder is a program object. You can store program objects in a
PDSE member or in an HFS file. Depending on the environment you use, you can
produce binder program objects as follows:

* For c89:

If the targets of your executables are HFS files, you can use the binder. If the
targets of your executables are PDSs, you must use the prelinker, followed by
the binder. If the targets of your executables are PDSES, you can use the binder
alone.

* For OS/390 batch or TSO:
If you can use PDSEs, you can use the binder. If you want to to use PDSs, you
must use the prelinker for the following:
— C++ code

— C code compiled with the LONGNAME, RENT, or DLL options

For more information on the prelinker, see t‘Append'x A_Prelinking and Linki |

When You Cannot Use the Binder

The following are the restrictions to using the binder.

Your Output is a PDS, not a PDSE

CICS

MTF

IPA

If you are using OS/390 batch or TSO, and your output must target a PDS instead
of a PDSE, you cannot use the binder.

CICS does not support PDSEs. If you have to target CICS, you cannot use the
binder.

MTF does not support PDSEs. If you have to target MTF, you cannot use the
binder.

Object files that are generated by the IPA Compile step using the compiler option
IPA(NOLINK,OBJECT) may be given as input to the binder. Such an object file is a

© Copyright IBM Corp. 1996, 1999 289

combination of an IPA object module, and a regular compiler object module. The
binder processes the regular compiler object module, ignores the IPA object
module, and no IPA optimization is done.

Object files that are generated by the IPA Compile step using compiler option
IPA(NOLINK,NOOBJECT) should not be given as input to the binder. These are IPA
only object files, and do not contain a regular compiler object module.

The IPA Link step will not accept a program object as input.

Using Different Methods to Bind

This section shows you how to use different methods to bind your application:

Single Final Bind
Compile all your code and then perform a single final bind of all the object
modules.

Bind Each Compile Unit
Compile and bind each compilation unit, then perform a final bind of all the
partially bound program objects.

Build and Use DLLs
Build DLLs and programs that use those DLLs.

Rebind a Changed Compile Unit
Recompile only changed compile units, and rebind them into a program
object without needi