<|ll

05/390

C/CH++

Programming Guide

000000000000

<|ll

05/390

C/CH++

Programming Guide

000000000000

Note!
FBefore using this information and the product it supports, read the information in moh.cslan_pa.gﬁ_ﬂﬁj

Fifth Edition (September 1999)

This edition applies to version 2 release 8 modification 0 of OS/390 C/C++ (5647-A01) and to all subsequent
releases and modifications until otherwise indicated in new editions. This edition replaces SC09-2362-03. Make sure
that you use the correct edition for the level of the program listed above. Also, ensure that you apply all necessary
PTFs for the program.

Technical changes in the text since the last release of this book are indicated by a vertical line () to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390
Library page at: http://www.s390.ibm.com/0s390/bkserv.

IBM welcomes your comments. You can send your comments in any one of the following methods:
¢ Electronically to the network ID listed below. Be sure to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)

* By FAX, use the following number:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

* By malil, to the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR

1150 Eglinton Avenue East

Toronto, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to
your comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Introduction 1
Chapter 1. About This Book 3
Who Should Use This Book 3
A Note about Examples. . 3
IBM 0OS/390 C/C++ and Related Pubhcat1ons 4
Hardcopy Books . 9
Softcopy Books 9
Softcopy Examples . 9
0S/390 C/C++ on the World Wlde Web 10
C/C++ News... . 10
How to Read the Syntax D1agrams 1
Chapter 2. About IBM 0OS/390 C/C++ 15
Changes for Version 2 Release 8 . 15
The C/C++ Compilers . 15
The C Language . 15
The C++ Language . 15
Common Features of the OS / 390 C and C++
Compilers . . . 16
0S5/390 C Compiler Specrfrc Features . .o 17
Features That Are Specific to the OS/390 C++
Compiler e 17
Utilities . 18
Class Libraries. 18
Class Library Source 19
The Debug Tool 19
0S/390 Language Envrronment 20
The Program Management Binder . 21
0S/390 UNIX System Services (OS/390 UNIX) 21
0S/390 C/C++ Apphcatlons with OS/390 UNIX
C/C++ Functions. . e 23
Input and Output. 23
1/0 Interfaces . 23
File Types 24
Additional I/0O Features 25
The System Programming C Fac111ty 25
Interaction with Other IBM Products 25
Additional Features of OS/390 C/C++ 27
Part 2. Input and Output 29
Chapter 3. Introduction to C and C++
Input and Output 31
Types of C and C++ Input and Output 31
Text Streams . . 31
Binary Streams 32
Record 1/0. 32
Chapter 4. Understanding Models of C
I/O 33
The Record Model for C I/ O 33
Record Formats 33

© Copyright IBM Corp. 1996, 1999

The Byte Stream Model for C I/O . .
Mapping the C Types of I/O to the Byte
Stream Model . . .

Chapter 5. Using the I/O Stream Class
Library in C++

Advantages to Using the C++ 1/ O Stream Class
Library . .
Predefined Streams for C++ .
How C++ I/O Streams Relate to C Streams .
Specifying File Attributes .

Related Information .

Chapter 6. Opening Files
Prototypes of functions .
Categories of I/0. .o
Specifying What Kind of File to Use
OS Files . Lo
HEFS Files
VSAM Data Sets .
Terminal Files .
Memory Files and Hlperspace Memory Flles
CICS Data Queues .
0S/390 Language Env1ronment Message Flle
How to Specify RECFM, LRECL, and BLKSIZE
fopen() Defaults . Ce e
DDnames
How OS/390 C/ C++ Determmes What Kmd of
File to Open .
MAP 0010: Under TSO MVS Batch IMS —
POSIX(ON) . . .
MAP 0020: Under TSO, MVS Batch IMS —
POSIX(OFF)
MAP 0030: Under CICS

Chapter 7. Buffering of C Streams.

Chapter 8. Using ASA Text Files

Example of Writing to an ASA File .
CBC3GAS1 . S

ASA File Control .

Chapter 9. OS/390 C Support for the
Double-Byte Character Set
Opening Files .
Reading Streams and Flles
Writing Streams and Files .
Writing Text Streams.
Writing Binary Streams .
Flushing Buffers .
Flushing Text Streams
Flushing Binary Streams
ungetwc() Considerations .
Setting Positions within Files .

42

42

45

45
45
46
46
46

47
47
48
50
50
50
50
50
51
51
52
52
54
56

57
58

62
65

67

69
69
70

73
74
74
75
76
77
77
78
78
78
79

iii

Repositioning within Text Streams .
Repositioning within Binary Streams
ungetwc() Considerations .
Closing Files .
Manipulating Wide Character Array Functlons

Chapter 10. Using C and C++ Standard
Streams and Redirection
Default Open Modes
Interleaving the Standard Streams I/ o w1th
sync_with_stdio() .
Interleaving the Standard Streams I / (@) w1thout
sync_with_stdio() .
Redirecting Standard Streams.
Redirecting Streams from the Command Lme
Using the Redirection Symbols
Assigning the Standard Streams .
Using the freopen() Library Function . .
Redirecting Streams with the MSGFILE Optlon
MSGFILE Considerations . o
Redirecting Streams under OS/ 390
Under MVS Batch
Redirecting Streams under TSO
Redirecting Streams under IMS .
Redirecting Streams under CICS.
Passing C and C++ Standard Streams Across a
system() Call .
Passing Binary Streams .
Passing Text Streams. .o
Passing Record I/O Streams .
Using Global Standard Streams .
Command Line Redirection
Direct Assignment
freopeny(). .
MSGFILE() Run- T1me Optron
fclose()
File Position and Vlslble Data
C++ I/0O Stream Class Library

Chapter 11. Performing OS 1/O
Operations .
Opening Files .
Using fopen() or freopen()
Generation Data Group 1/0 .
Regular and Extended Partitioned Data Sets
Partitioned and Sequential Concatenated Data
Sets .
In-stream Data Sets .
SYSOUT Data sets
Tapes . .
Multivolume Data Sets .
Striped Data Sets .
Other Devices .
fopen() and freopen() Parameters
Buffering
Multiple Buffermg
DCB (Data Control Block) Attr1butes
Reading from Files .o
Reading from Binary Flles
Reading from Text Files.

iV 0S/390 V2R8.0 C/C++ Programming Guide

79
79
80
80
81

83
84

85

86
88
88
89
90
90
90
90
92
92
94
94
94

95
95
96
98
98
100
101
101
101
101
101
101

. 103

103
103
107
110

111
113
113
114
115
115
116
116
120
120
121
123
124
124

Reading from Record 1/0 Files .
Writing to Files o
Writing to Binary Files .
Writing to Text Files .
Writing to Record I/0O Files
Flushing Buffers .
Updating Existing Records
Reading Updated Records .
Writing New Records
ungetc() Considerations.
Repositioning within Files .
ungetc() Considerations. .
How Long fgetpos() and ftell() Values Last
Using fseek() and ftell() in Binary Files

Using fseek() and ftell() in Text Files (ASA and

Non-ASA) .

Using fseek() and ftell() in Record F1les

Porting Old C Code That Uses fseek() or ftell()
Closing Files e
Renaming and Removmg Flles
fldata() Behavior .

Chapter 12. Performing Hierarchical
File System 1/O Operations
Creating Files .
Regular Files
Link and Symbolic Lmk Flles
Directory Files . .
Character Special Files .
FIFO Files .
Opening Files .
Using fopen() or freopen()
Reading from HFS Files
Opening and Reading from HFS Dlrectory Flles
Writing to HFS Files . o
Flushing Records . .
Setting Positions within Flles
Closing Files
Deleting Files .
Pipe 1/0. .
Using Unnamed Plpes .
Using Named Pipes .
Character Special File I/O .
Low-Level OS/390 UNIX I/O
Example of HFS I/O Functions .
CBC3GHE3 . .
fldata() Behavior .

Chapter 13. Performing VSAM 1/O

Operations .

VSAM Types (Data Set Orgamzatlon)
Access Method Services.

Choosing VSAM Data Set Types .
Keys, RBAs and RRNs . .
Summary of VSAM 1I/0O Operatlons

Opening VSAM Data Sets . .
Using fopen() or freopen()
Buffering .

Record I/0 in VSAM
RRDS Record Structure .

124
125
125
126
129
129
130
130
130
131
132
133
133
133

135
135
135
136
136
136

.139

139
139
140
140
140
140
140
141
145
145
145
146
146
146
147
147
147
149
153
153
153
154
156

. 159

159
160
160
162
163
165
165
169
169
170

Reading Record 1/0 Files .

Writing to Record I/0O Files

Updating Record I/O Files

Deleting Records . .
Repositioning within Record I / O Flles
Flushing Buffers .

Summary of VSAM Record I / O Operatlons

VSAM Record Level Sharing .
Error Reporting

Text and Binary I/0O in VSAM .
Reading from Text and Binary 1/0O Flles .

Writing to and Updatmg Text and Binary I/0

Files .

Deleting Records in Text and Bmary I/ o F11es
Repositioning within Text and Binary I/O Files

Flushing Buffers .
Summary of VSAM Text 1 / O Operatlons
Summary of VSAM Binary I/O Operations
Closing VSAM Data Sets o
VSAM Return Codes
VSAM Examples .
KSDS Example
RRDS Example
fldata() Behavior .

Chapter 14. Performing Terminal /O
Operations .
Opening Files .
Using fopen() and freopen()
Buffering
Reading from Files
Reading from Binary Flles
Reading from Text Files. .
Reading from Record I/0O Files .
Writing to Files .
Writing to Binary Files .
Writing to Text Files .
Writing to Record I/0O Files
Flushing Records . .
Text Streams
Binary Streams
Record 1/0.
Repositioning within Files .
Closing Files
fldata() Behavior .

Chapter 15. Performing Memory File
and Hiperspace 1/0O Operations
Using Hiperspace Operations.
Opening Files . . .
Using fopen() or freopen()
Simulating Partitioned Data Sets.
Buffering
Reading from Files
Writing to Files
Flushing Records . .
ungetc() Considerations.
Repositioning within Files .
Closing Files
Performance Tips .

170
171
172
173
174
176
176
177
178
179
179

179
180
180
182
182
183
185
185
185
185
194
197

.199

199
199

201

202

. 203
. 203
. 203

204

. 204
. 204
. 205

205
206
206
206

. 206

206

. 207

. 209

209
210

. 210
. 214

215
216
217
217

. 217
. 218

218
218

Removing Memory Files . 219
fldata() Behavior . . 219
Example Program. . 220
CBC3GMF3. . 221
CBC3GMF4. . 222
Chapter 16. Performing CICS I/O
Operations . .223
Chapter 17. Language Environment
Message File Operations . 225
Opening Files . . 225
Reading from Files . 225
Writing to Files . 225
Flushing Buffers . . 226
Repositioning within F1les . 226
Closing Files . 226
Chapter 18. Debugging /0 Programs 227
Using the __amrc Structure 227
CBC3GDI1 . . . 229
Using the __amrc2 Structure . . 230
Using __last_op Codes . . 231
Using the SIGIOERR Signal . 234
CBC3GDI2 . . . 234
Part 3. Interlanguage Calls with
0S/390 C/C++ . 237
Chapter 19. Using Linkage
Specifications in C++ . 239
Syntax for Linkage . . 239
Kinds of Linkage used by C++ Interlanguage
Programs .o .o . 239
Chapter 20. Combining C or C++ and
Assembler . .241
Establishing the OS/390 C / C++ Env1ronment 241
Specifying Linkage for C or C++ to Assembler 241
Parameter List for OS Linkage . . 242
Using Standard Macros . . 243
Assembler Prolog. . 243
Assembler Epilog . . . 244
Accessing Automatic Memory . 244
Calling Run-Time Library Routines from
Assembler — C Example . . 245
CBC3GCA4. . 245
CBC3GCA2. . 245
CBC3GCAS5. . 246
Calling Run-Time L1brary Routmes from
Assembler — C++ Example . 246
Retaining the C Environment Using
Preinitialization .. 248
Setting Up the Interface for Pre1n1t1ahzable
Programs . . 249
Preinitializing a C Program . 253
Multiple Preinitialization Compatlblhty
Interface C Environments . . . 260

Contents V

Using the Service Vector and Associated
Routines.

. 263

Part 4. Coding: Advanced Topics 269

Chapter 21. Building and Using
Dynamic Link Libraries (DLLs)
Support for DLLs.

DLL Concepts and Terms .

Loading a DLL

Loading a DLL Imp11c1tly

Loading a DLL Explicitly .
Managing the Use of DLLs When Runnlng DLL
Applications o

Loading DLLs .

Sharing DLLs .

Freeing DLLs . .
Creating a DLL or a DLL Apphcatlon .
Building a Simple DLL . .o

Writing Your C Code

Writing Your C++ Code.

Compiling Your Code
Binding Your Code .
Building a Simple DLL Apphcatron
Creating and Using DLLs .
DLL Restrictions .
Improving Performance

.271
. 271
. 272
. 272
. 272
. 273

. 275
. 276
. 277
. 277
. 277
. 277
. 278
. 278
. 279
. 280
. 281
. 282
. 283
. 284

Chapter 22. Building Complex DLLs 287

Rules for Compiling Source Code
Modifying Noncompliant Source
Compatibility Issues Between DLL and Non DLL
Code . . .
Pointer Ass1gnment .
Function Pointers.
DLL Function Pointer Call in Non—DLL Code
C Example . .
Non-DLL Function Pomter Call in DLL(CBA)
Code .
Non-DLL Functron Pomter Call in DLL Code
Function Pointer Comparison in Non-DLL
Code . . .
Function Pointer Comparlson in DLL Code
Using DLLs That Call Each Other

Chapter 23. Using Threads in an
0S/390 UNIX Application

Models and Requirements .

Functions

Creating a Thread

Synchronization Primitives

Thread-specific Data .

Signals .o

Generating a Signal .

Thread Cancellation .

Cleanup for Threads.
Behaviors and Restrictions in an OS / 390 UNIX
Application .

Using Threads w1th MVS Flles

vi 0S/390 V2R8.0 C/C++ Programming Guide

. 288

290

290

. 292
. 292
. 294

295

. 297

299

. 300

303

. 305

. 311

311
311

. 312
. 313
. 316
. 318
. 319
. 320
. 321

. 322
. 322

Thread-Scoped Functions .

Unsafe Thread Functions . .
Fetched Functions and Writable Statrcs
MTF and OS/390 UNIX Threading .
Thread Queuing Function .

Thread Scheduling

iconv() Family of Functions

Chapter 24. Reentrancy in OS/390
C/IC++ .

Natural or Constructed Reentrancy .
Limitations of Constructed Reentrancy for C
Programs .

Controlling External Statlc in C Programs
Controlling Writable Strings . .o
Controlling the Memory Area in C++ .

Controlling Where String Literals Exist in C++

Code . .o
CBCBGREz .

Using Writable Static in Assembler Code
CBC3GRE3 .

CBC3GRE4 .

Chapter 25. Using the Decimal Data
Type in C .o
Declaring Decimal Types .
Declaring Fixed-Point Decimal Constants
Declaring Decimal Variables .
Defining Decimal-Related Constants
Using Operators .
Arithmetic Operators
Assignment Operators .
Unary Operators .
Cast Operator .
Summary of Operators Used W1th Dec1ma1
Types. .
Converting Dec1ma1 Types
Converting Decimal Types to Decrmal Types
Converting Decimal Types to and from Integer
Types.
Converting Dec1ma1 Types to and from Floatrng
Types. .
Calling Functions.
Using Library Functions
Using Variable Arguments w1th Decrmal Types
Formatting Input and Output Operations. .
Validating Values . e
Fix Sign .
Decimal Absolute
Programming Example .
CBC3GDC3. .
Output from Programmlng Example One.
CBC3GDC4. .
Output from Programmlng Example Two.
Decimal Exception Handling .
System Programming Calls Restrlctlons
printf() and scanf() Restrictions .
Additional Considerations .
Error Messages

323
323
324
324
324
324
325

. 327

327

328
328
329
329

330
330
331
332
333

. 335

335
336
336
337
337
338
341
342
343

343
343
343

345

346
347
347
347
348
348
349
349
350
350
351
352
352
352
353
353
353
354

Chapter 26. Using Decimal Data in C++ 355

The IBinaryCodedDecimal Class.
Header File and Constants for
IBinaryCodedDecimal
Constants Defined in 1dec1ma1 hpp
Constructing IBinaryCodedDecimal Objects .
IBinaryCodedDecimal Input and Output .
Mathematical Operators for IBmaryCodedDeamal
Relational Operators.
Equality Operators
Converting IB1naryCodedDec1mal Ob]ects
An IBinaryCodedDecimal Object to a
IBinaryCodedDecimal Object .
Number of Digits in an IBrnaryCodedDecrrnal
Object .
Precision of a IB1naryCodedDec1mal Ob]ect .
IBinaryCodedDecimal Object Exceptions .
The Decimal Class .
Header File for the Dec1rnal Class
Constructing Decimal Objects.
Decimal Class Input and Output.
Operators for Decimal Class .
Converting Decimal Objects .
Number of Digits in an Decimal Ob]ect
Precision of a Decimal Object .
Decimal Object Exceptions.

Chapter 27. Handling Exceptions, Error
Conditions, and Signals .
Handling C Software Exceptions under C++.
Handling Hardware Exceptions under C++ .
Tracebacks under C++ .

CBC3GCHLI.

CBC3GCH2.

Handling Signals with POSIX(OFF) Usrng 51gna1()

and raise() . . .o

Handling Signals Using Language Env1ronment
Callable Services . .

Handling Signals Using OS / 390 UNIX w1th
POSIX(ON) .

Asynchronous Signal Dehvery under OS / 390
UNIX.

C Signal Handhng Features under OS / 390 C / C++

... 371
. 372
. 372

Establishing a Signal Handler.
Enabling a Signal .
Interrupting a Program .
Raising a Signal .
Identifying Hardware and Software Srgnals
SIGABND Considerations .
SIGIOERR Considerations .
Default Handling of Signals .
MAP 0040: Summary of C and OS/390 Language
Environment Error Handling .

Example of C Signal Handhng under OS / 390 C

or OS/390 C++

Chapter 28. Optimizing Code

Programming Recommendations.
Using Variables .
Passing Function Argurnents .

. 355

355

. 355
. 356

356
356

. 356

356

. 357

. 357

358

. 358
. 358

358

. 358
. 358
. 359

359

. 361
. 362
. 362
. 362

. 363
. 364
. 364

364
365
366

367

. 367

368

370
371

372
372

. 375
. 375
. 375

379

381

. 383
. 383

383

. 384

Coding Expressions 385
Coding Conversions. 38
Arithmetic Considerations. 386
Using Loops and Control Constructs 386
Choosing a Data Type 386
Using Built-In Library Functions and Macros 387
Input/Output Considerations. 389
When Accessing MVS datasets 389
When Accessing HFS Files. . . . 390
When Using the I/O Stream Class hbrary w1th
C++ . . . N M2 |
Using Library Extensmns < 1)
Compile Time Considerations. 391
Using Optimization Facilities. 392
Specifying Inline Functions . . oL 392
Optimizing Use of Dynamic Memory ... 39%
Using the OPTIMIZE Option. 396
Additional Hints and Tips. 398

Chapter 29. Optimizing Your C/C++

Code with Interprocedural Analysis 399
Types of Procedural Analysis. 399
Compiler Processing Flow 400
Regular Compiler Execution 400
Compiler Execution with IPA. 401
Invoking IPA from the ¢89 Utility 407
Controlling IPA Execution 408
Specifying Compiler Options w1th IPA ... 408
Specifying Pragmas under IPA 409
Effects of IPA on Your Program 410
Restrictions. 41
Locale Support 4n
Date and Time Stamps W1th1n IPA Ob]ects ... 41
Chapter 30. Network Communications
under UNIX System Services .413
Understanding OS/390 UNIX Sockets and
Internetworking 413
The Basics of Network Communlcatlon L. . 414
Transport Protocols for Sockets 414
What Is a Socket?. 415
0S/390 UNIX Socket Famlhes B Y V4
0S/390 UNIX Socket Types 417
Guidelines for Using Socket Types 418
Addressing within Sockets. 418
The Conversation. 420
The Server Perspective 421
The Client Perspective 423
A Typical TCP Socket Session. 423
A Typical UDP Socket Session . . Lo 424
A Typical Datagram Socket Sessmn 425
Locating the Server’'s Port 425
Network Application Example 426
Using Common INET 432
Compiling and Binding. 433
Using TCP/IP APIs 435
Restrictions for Using MVS TCP / IP API w1th
OS/390 UNIX. 435
Using OS/390 UNIX Sockets 437

Contents Vil

Compiling under MVS Batch for Berkeley
Sockets .
Compiling under MVS Batch for X / Open
Sockets .
Understanding The X / Open Transport Interface
(XTT) . . e
Transport endp01nts .
Transport providers for X/ Open Transport
Interface . .
General Restr1ct10ns for OS/ 390 UNIX

Chapter 31. Interprocess
Communication Using OS/390 UNIX

Message Queues .

Semaphores.

Shared Memory

Memory Mapping . .
TSO Commands from the Shell .

Chapter 32. Structuring a Program

That Uses C++ Templates

Template Terms . .

Generating Template Functlons .
Class Template Example

Using TEMPINC . . .
Organizing Source Code for the TEMPINC
option e
Instantiating the Functlons

Using the NOTEMPINC Option .
Organizing Source Code for the NOTEMPINC
option e

Using TEMPINC or NOTEMPINC
Example of a Multipurpose Header File
Example of Source Code with Multipurpose
Header File. o

Chapter 33. Using Environment
Variables .
Working with Env1r0nment Varlables .
Naming Conventions .
Environment Variables Specific to the OS / 390
C/C++ Library e
_EDC_ADD_ ERRNO2 . .
_EDC_ANSI_OPEN_DEFAULT .
_EDC_BYTE_SEEK
_EDC_CLEAR_SCREEN
_EDC_COMPAT . .
_EDC_GLOBAL_STREAMS
_EDC_IP_CACHE_ENTRIES .
_EDC_RRDS_HIDE_KEY .
_EDC_STOR_INCREMENT
_EDC_STOR_INITIAL .
_EDC_ZERO_RECLEN .
_CEE_DMPTARG.
_CEE_ENVFILE
Example. .
CBC3GEV1.
CBC3GEV2.

viii 0S/390 V2R8.0 C/C++ Programming Guide

. 438

. 439

440

.441

.44
.441

443
. 443
. 444
. 444
. 444
. 445

. 447
. 447
. 447
. 448
. 450

. 450
. 450
. 454

. 454

455

. 455

. 455

. 457
. 460
. 461

. 462
. 462
. 462
. 463
. 463
. 463
. 464
. 465
. 465
. 466
. 466
. 466
. 467
. 467

468

. 468
. 469

Part 5. OS/390 C/C++ Environments 471

Chapter 34. Using the System
Programming C Facilities .
Using Functions in the System Programming C
Environment .o

System Programming C Facrhty C0n51derat10ns
and Restrictions

Creating Freestanding Apphcatlons

Creating Modules without CEESTART .

Including an Alternative Initialization Routine

under OS/390 .

Initializing a Freestanding Apphcatlon w1th0ut

Language Environment. .

Initializing a Freestanding Apphcatlon Usmg C

Functions .

Setting up a C EnVlronment w1th Preallocated

Stack and Heap .

Determining ISA requirements .

Building Freestanding Applications to Run

under OS/390 .

Parts Used for Freestandlng Apphcatlons
Creating System Exit Routines

Building System Exit Routines under OS / 390

An Example of a System Exit. .
Creating and Using Persistent C EnV1ronrnents

Building Applications That Use Persistent C

Environments .

An Example of Per51stent C EnVlronments
Developing Services in the Service Routine
Environment .

Using Application Serv1ce Routlne Control

Flow .

Understandlng the Stub Perspectlve

Establishing a Server Environment .

Initiating a Server Request.

Accepting a Request for Service .

Returning Control from Service .

Constructing User-Server Stub Routines

Building User-Server Environments. .
Tailoring the System Programming C EnV1ronrnent

Generating Abends .

Getting Storage

Getting Page-Aligned Storage

Freeing Storage . .

Loading a Module

Deleting a Module .

Including a Run-Time Message Flle
Additional Library Routines .
Summary of Application Types .

Chapter 35. Library Functions for
System Programming C .o
_ xhote() — Set Up a Persistent C Environment
(No Library)

Format

Description .

Returned Value

Example.

.473

474

475
476
477

477

477

478

478
479

479
482
483
483
483
486

487
487

491

492
498
507
508
508
508
508
509
509
510
510
512
512
513
514
514
515
516

.519

519
519
519
519
520

_ xhotl() — Set Up a Persistent C Environment Avoiding Undesirable Results when Using MTF 564
(With Library) 520

__xhott() — Terminate a Pers1stent C Part 6. Programming with Other
Environment 520
__xhotu() — Run a Functlon in a Per51stent C Products567
Environment 521
_ xregs() — Get Reg1sters on Entry ... B2 Chapter 38. Using the Customer
_xsacc() — Accept Request for Service . . . 522 Information Control System (CICS) . .569
_ xsrvc() — Return Control from Service . . . 523 Developing C and C++ Programs for the CICS
_ xusr() - __xusr2() — Get Address of User Environment . . . 569
Word . . . - 523 Preparing CICS for Use w1th OS/ 390 Language
_ 24malc() — Allocate Storage below 16MB Environment . . . 569
Line . . . - 523 Designing and Codmg for CICS 570
—4kmale() — Allocate Page-Ahgned Storage 524 Using the CICS Command-Level Interface . . 570
Using Input and Output 574
Chapter 36. Using Run-Time User Exits 525 Using 0S/390 C/C++ L1brary Support .. . 576
Using Run-Time User Exits in OS/390 Language Storage Management 578
Environment . . e . 525 Using Interlanguage Support N V£
Understanding the Bas1cs D52 Exception Handling . . . Ve
PL/I and C/370 Compatibility . . . 525 MAP 0050: Error Handling in CICS 581
User Exits Supported under OS/390 Language Example of Error Handling in CICS 582
Environment. 526 ABEND Codes and Error Messages under
Order of Processing of User Ex1ts S 526 os/30C/C++ 584
Using Installation-Wide or Application- Spec1f1c Coding Hints and Tips 584
User Exits . . . S . . 527 Translating and Compiling for Reentrancy . . . 585
Using the Assembler User Ex1t 528 Translating 58
Using Sample Assembler User Exits 528 Translating Example. 585
Assembler User Exit Interface. 530 Compiling 590
Parameter Values in the Assembler User Ex1t 534 Sample JCL to Translate and Complle 5%
PL/I and C/370 Compatibility 539 Prelinking and Linking All Object Modules . . . 591
High Level Language User Exit Interface .. 539 Defining and Running the CICS Program. . . . 592
Program Processing 592
Chapter 37. Using The OS/390 C Link Considerations for C Programs N 1A
i i ili CSD Considerations 593
gAUItITi%SkIng FaC|I|ty. SRR Sample JCL to Install OS/390 C/C++
rganizing a Program with MTF 543 Application P 503
Ensuring Computational Independence . . . 544 PPHCARON TTOGIams ..« oo
Running a C Program without MTE 545 .
Running a C Program with MTE. 546 Chapter 39. Using Cross System
Running a C Program with One Parallel Product(CSP)59
Function. b46 Common Data Types 5%
Running a C Program w1th Two Drfferent Passing Control 5%
Parallel Functions. . . 548 Running CSP under MVS 5%
0S/390 C with Multiple Instances of the Same Calling CSP Applications from OS/ 390 C. . . 5%
Parallel Function 550 Examples bY%
Designing and Coding Appl1cat1ons for MTF .. 551 Calling OS/390 C from CSP 600
Step 1: Identifying Computationally- Examples 600
Independent Code 551 Running under CICS Control O 0
Step 2: Creating Parallel Funct1ons 552 Examples 604
Step 3: Inserting Calls to Parallel Functions 555
Changing an Application to Use MTF 555 Chapter 40. Using Data Window
Compiling and Linking Programs That Use MTF 560 Services DWS)609
Creating the Main Task Program Load Module 560
Creating the Parallel Functions Load Module 561 CB;BGDWZ S L
o . . i xample.6l
Specifying the Linkage-Editor Option 562 CBC3GDW1 611
Modifying Run-Time Options. 562
Runmng Drograms That Use MIE -+ - = %92 Chapter 41. Using DATABASE 2 (0B2) 613
DD Statements for Standard Streams 563 Ct+ Example 613
Example of JCL 563 ¢BCsGDB1. 613
Debugging Programs That Use MTF 564 ¢pcsGbB2. ..o L 6ld
CExample6l

Contents 11X

CBC3GDB4 . . 616
Chapter 42. Using Graphical Data
Display Manager (GDDM) . 617
Example . . . 618
CBC3GGD1. . 619
CBC3GGD2. . 621
Chapter 43. Using the Information
Management System (IMS) . 623
Handling Errors . . 624
Other Considerations . 625
Examples . 626
Chapter 44. Using the Interactive
System Product|V|ty FaC|I|ty (ISPF) . 633
Examples . 634
CBC3GISt . . 634
CBC3GIS2 . . 635
CBC3GIS3 . . 635
CBC3GIs4 . . 636
CBC3GIS5 . . 636
CBC3GIS6 . . 637
CBC3GIs7 . . 637
CBC3GIS8 . . 638
CBC3GIS9 . . 638
CBC3GISA . . 638
CBC3GISB . . 639
CBC3GIS4 . . 639
CBC3GIS5 . . 640
Chapter 45. Using the Query
Management Facmty (QM F) . 641
Example. . . 641
CBC3GQM1 . 641
CBC3GQM2 . 644
CBC3GQM3 . 645
Part 7. SOM support Under OS/390
C/C++. .647
Chapter 46. The IBM System Object
Model . . 649
What is SOM? . . 649
SOM and the CORBA Standard . 650
The Cost of Using SOM . 650
What is DTS? . . . 650
Interface Definition Language . . 651
SOM and Upward Binary Compat1brl1ty of
Libraries. . . . 651
Release Order of SOM Ob]ects . 652
Version Control for SOM Libraries and
Programs . . 654
Recompiling Requ1rements for SOM Programs 655
SOM and Interlanguage Sharing of Objects and
Methods. . 656
Providing a Default Constructor w1th No
Arguments . . 656

X 0S5/390 V2R8.0 C/C++ Programming Guide

Accessing Special Member Functions from

Other Languages 657
Assignment Methods 657
set and get Methods for Attr1bute Class
Members 659
Understanding the Interface Defmrtron Language 660
IDL Types and C++ Types 660
IDL Names and C++ SOM Pragmas 660
IDL and OIDL Callstyles 661
The Environment Pointer 662
C++ Limitations to Interface Def1n1t10n
Language 6062
Differences between SOM and C++ 663
Initializer Lists and Constructors 663
Function Overloading 663
Calling Methods through a NULL Pomter . . 664
Data Member Offsets 664
Casting to Pointer-to-SOM Object 664
Dereferencing a Virtual Base Pointer to a
Derived Base 665
Multiple Inheritance of a Base Class 665
Local Classes 665
AbstractClasses 666
Classes as Objects 666
Metaclasses. 667
offsetof macro. 667
sizeof operator. 667
Instance Data 668
Templates 668
Allocating Memory 669
Volatile Objects 672
Data Members Implemented as Attrrbutes .. 672
Addresses of Embedded SOM objects 672
Converting C++ Programs to SOM Using
SOMAsDefault . . . 673
Creating SOM-Compliant Programs by Inherrtrng
from SOMObject 673
Creating DLLs withSOM 674

Chapter 47. Macros, Built-in Functions,

and Pragmas forSOM675
Macros Defined forSOM 675
Built-in Functions for SOM 675
Pragmas for Using SOM 675
Conventions Used by the SOM Pragmas .. . 676
The SOM Pragma. . . . L. . 677
The SOMAsDefault Pragma N V44
The SOMAttribute Pragma 678
The SOMCallStyle Pragma. 680
The SOMClassInit Pragma. 680
The SOMClassName Pragma. 680
The SOMClassVersion Pragma 681
The SOMDataName Pragma 682
The SOMDefine Pragma 683
The SOMMetaClass Pragma 683
The SOMMethodName Pragma 684
The SOMNoDataDirect Pragma 687
The SOMNoMangling Pragma 687
The SOMNonDTS Pragma. 688
The SOMReleaseOrder Pragma 689

Chapter 48. Examples and Tips695

Building a C++ SOM-Enabled Class Library . . . 695
Explicitly Deriving Classes from SOMObject 695
Implicitly Deriving Classes from SOMObject

Using the SOM Option 69

Implicitly Deriving Classes from SOMOb]ect

Using the SOMAsDefault Pragma 697

Sample JCL to Compile and Create a

SOM-Enabled Class Library 698

Release-to-Release Binary Cornpatlblhty ... 699
Using a C++ SOM-Enabled Class Library. . . . 699

Part 8. Internationalization: Locales

and Character Sets701
Chapter 49. Introduction to Locale . .703
Internationalization in Programming Languages 703
Elements of Internationalization 703
0S5/390 C/C++ Support for Internatlonahzatlon 704
Locales and Localization 704
Locale-Sensitive Interfaces. 704
Chapter 50. Building a Locale707
Using the charmap File. L 707
The CHARMAP Section 712
The CHARSETID Section 714
Locale Source Files 715
LC_CTYPE Category 718
LC_COLLATE Category 721
LC_MONETARY Category. 728
LC_NUMERIC Category 731
LC_TIME Category . . e T732
LC_MESSAGES Category ... 734
LC_TOD Category 735
LC_SYNTAX Category 737
Using the localedef Utility. 739
Locale Naming Conventions 739
Chapter 51. Customizing a Locale. . .745
Using the Customized Locale. 746
Referring Explicitly to a Customized Locale ... 746
CBC3GCL1. 747
Referring Implicitly to a Custornlzed Locale ... 747
CBC3GCL2. 748

Chapter 52. Customizing a Time Zone 751
Using the TZ or _TZ Environment Variable to

Specify Time Zone 751
Relationship Between TZ or TZ and LC _TOD 752

Chapter 53. Definition of S370 C, SAA

C, and POSIX C Locales 753
Differences between SAA C and POSIX C Locales 759
CBC3GDL1.7%

Chapter 54. Code Set Conversion
Utilites761
The genxlt Utility. 761

The iconv Utility 761
Code Conversion Functions 762
Code Set Converters Supplied 762
Universal Coded Character Set Converters . . . 771
Codeset Conversion Using UCS-2 774
UCMAP Source Format. 775

Chapter 55. Coded Character Set
Considerations with Locale Functions 779

Variant Character Detail 779
Mappings of 13 PPCS Variant Characters . . 780
Alternate Code Points 781
Coding without Locale Support78l
Converting Existing Work 783
Writing Source Code in Coded Character Set
IBM-1047 784
Coded Character Set Independence in
Developing Applications 785
Coded Character Set of Source Code and
Header Files 787
Converting Coded Character Sets at Complle
Time 788
Working With Llstlngs and Output Flles .. 792

Considerations With Other Products and Tools 794

Part 9. Appendixes795
Appendix A. POSIX Character Set. . .797
Appendix B. Mapping Variant
Characters for 0S/390 C/C++801
Displaying Hexadecimal Values 801
Example. 802
CBC3GMV1 802
Using pragma Filetag To Spec1fy Code Page in C 804
Displaying Square Brackets When Using ISPF 804
CBC3GMV2 805
Using The CBC3GMV2 Macro 805
Procedure for Mappingon 3279 806

Appendix C. OS/390 C/C++ Code Point

Mappings807

Appendix D. Locales Supplled with

0S/390 C/C++809

Appendix E. Charmap Files Supplled

with OS/390 C/C++817

Appendix F. Examples of Charmap and

Locale Definition Source819

Charmap File 819
The Locale Definition Source Flle 82

Appendix G. Converting Code from
Coded Character Set IBM-1047831
CBC3GHC1.83

Contents X1

Appendix H. Additional Examples .. .841

Memory Management 842
CcBC3GMIl. 842
CBC3GMI2 843

Calling MVS WTO routmes from C ... 852
cBC3GWTL. 853
CBC3GWT2. 83

Listing Partitioned Data Set Members 853
¢BcsaIer 0 0oL ... 854
c¢cpesare2 .. 0 0 000 00 858

Appendix |. Using Built-In Functions 859

Appendix J. Application
Considerations for OS/390 UNIX C/C++ 861

Relationship to DATABASE 2 (DB2) 861
Application Programming Environments Not

Supported . . . - Y
Support for the Curses L1brary 861
Appendix K. External Variables863
errno. 863
daylight 863
getdate err. 863
h.ermno 84
_locx 864
locl 84
loc2 84
loecs 84
optarg 864
opterr. 864
optind 865
optopt 865
signgam. 865

xii 0S/390 V2R8.0 C/C++ Programming Guide

stdin .
stderr.
stdout
t_errno
timezone
tzname .

Notices

Programming Interface Informat1on
Trademarks.

Standards

Glossary .

Bibliography

0S/390 .

VS COBOL I Release 4

COBOL FOR MVS & VM Release 2

COBOL for OS/390 & VM Version 2 Release 1

PL/I for MVS & VM Release 1 Modification 1
OS PL/I Version 2 Release 3 . .

VS FORTRAN Version 2 Release 6 .
CICS/ESA Version 4 Release 1

CICS Transaction Server for OS/390 Release 2

DB2 Version 3 Release 1

DB2 Version 4 Release 1

DB2 Version 5 Release 1
IMS/ESA Version 4 Release 1.
IMS/ESA Version 5 Release 1.
IMS/ESA Version 6 Release 1.
QMEF Version 3 Release 2 .
VSAM

INDEX.

865
865
865
865
865
866

. 867

868
868
869

.871

. 899

899
899
899
900
900
900
900
900
900
901
901
901
901
901
901
902

. 902

. 903

Part 1. Introduction

© Copyright IBM Corp. 1996, 1999

2 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 1. About This Book

This book provides information about implementing programs that are written in
C and C++. It contains advanced guidelines and information for developing C and
C++ programs to run under OS/390.

Who Should Use This Book

To use this book, or any other books in the library of OS/390 C/C++ publications,
you must have a working knowledge of the C/C++ programming language. In
addition, you must have knowledge on the OS/390 operating system, and where
appropriate, the related products.

A Note about Examples

Examples that illustrate the use of the OS/390 C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of C/C++ language constructs. Some examples are only code fragments and will
not compile without additional code.

© Copyright IBM Corp. 1996, 1999 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. ©OS/390 C/C++ Publications

Book Title and Number

Key Sections/Chapters in the Book

0S5/390 C/C++ Programming Guide,
5C09-2362

Guidance information for:

¢ C/C++ input and output

* Debugging OS/390 C programs that use input/output

* Using linkage specifications in C++

¢ Combining C and assembler

* Creating and using DLLs

* Using threads in an OS/390 UNIX® application

 Using threads in an OS/390 UNIX application

* Reentrancy

* Using the decimal data type in C and C++

* Handling exceptions, error conditions, and signals

¢ Optimizing code

* Optimizing your C/C++ code with Interprocedural Analysis

* Network communications under OS/390 UNIX

¢ Interprocess communications using OS/390 UNIX

e Structuring a program that uses C++ templates

 Using environment variables

* Using System Programming C facilities

* Library functions for the System Programming C facilities

* Using runtime user exits

* Using the OS/390 C multitasking facility

* Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,
GDDM*, IMS*, ISPE, QMF*)

* Direct-to-SOM support under OS/390 C/C++

* Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
e POSIX character set
* Code point mappings
* Locales supplied with OS/390 C/C++
¢ Charmap files supplied with OS/390 C/C++
¢ Examples of charmap and locale definition source files
* Converting code from code character set IBM-1047
* Using built-in functions
¢ Programming considerations for OS/390 UNIX C/C++

0S/390 C/C++ User’s Guide, SC09-2361

Guidance information for:

* 05/390 C/C++ examples

¢ Compiler options

* Binder options and control statements

* Specifying OS/390 Language Environment runtime options

* Compiling, IPA Linking, binding, and running OS/390 C/C++ programs

 Using precompiled headers

« Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code
Set and Locale, ar and make, BPXBATCH)

+ Diagnosing problems

* Cataloged procedures and REXX EXECs supplied by IBM

* Error messages and return codes

4 0S/390 V2R8.0 C/C++ Programming Guide

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book
0S5/390 C/C++ Language Reference, Reference information for:
SC09-2360 ¢ The C and C++ Languages

* Lexical elements of OS/390 C and OS/390 C++

* Declarations, expressions and operators

* Implicit type conversions

* Functions and statements

* Preprocessor directives

e C++ classes, class members, and friends

¢ C++ overloading, special member functions, and inheritance
¢ C++ templates and exception handling

* OS5/390 C and OS/390 C++ compatibility

0S5/390 C/C++ Run-Time Library Reference information for:
Reference, SC28-1663 ¢ C header files

* C Library functions
0S/390 C Curses, SC28-1907 Reference information for:

* Curses concepts

* Key data types

* General rules for characters, renditions, and window properties
* General rules of operations and operating modes

* Use of macros

* Restrictions on block-mode terminals

* Curses functional interface

* Contents of headers

* The terminfo database

0S5/390 C/C++ Compiler and Run-Time | Guidance and reference information for:
Migration Guide, SC09-2359 ¢ Common migration questions

* Application executable program compatibility
* Source program compatibility

* Input and output operations compatibility

* Class library migration considerations

* Changes between releases of OS/390

¢ C/370* V1 to V2 compiler changes

* Other migration considerations

0S5/390 C/C++ Reference Summary, Summary tables for:

5X09-1313 ¢ Character set, trigraphs, digraphs, and keywords
* Escape sequences, storage classes

* Predefined and derived types, type qualifiers

* Operator precedence, redirection symbols

» fprintf() format, type characters, and flag characters
» fscanf() format and type characters

e _ amrc structure

* Hardware exceptions and signals

¢ Compiler return codes

* Compiler options

 #pragma directives

* Library functions

« Utilities

Chapter 1. About This Book

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number

Key Sections/Chapters in the Book

0S/390 C/C++ IBM Open Class Library
User’s Guide, SC09-2363

Guidance information for:

* Using the Complex Mathematics Class Library: Review of complex
numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

 Using the I/O Stream Class Library: Introduction, getting started,
advanced topics, and manipulators

¢ Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception
handling, tutorials, problem solving, compatibility with previous releases,
thread safety

* Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads and
protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

0S5/390 C/C++ IBM Open Class Library
Reference, SC09-2364

Reference information for:

¢ Complex Mathematics Class Library
¢ I/O Stream Class Library

¢ Collection Class Library

* Application Support Class Library

05/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
5C09-2366

Guidance and reference information for:

¢ C++ SOM (RRBC-enabled) versions of Collection and Application Support
Class Libraries

* Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and Reference,
5C09-2137

Guidance and reference information for:

* Preparing to debug programs

* Debugging programs

* Using Debug Tool in different environments
* Language-specific information

* Debug Tool reference

Debug Tool Reference Summary,
5X26-3840

Summary information for Debug Tool commands

APAR and BOOKS files (Shipped
with Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:

¢ Isolating reportable problems

* Keywords

* Preparing an Authorized Program Analysis Report (APAR)

* Problem identification worksheet

* Maintenance on OS/390

* Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
5C28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language Environment
Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 0S/390 V2R8.0 C/C++ Programming Guide

Table 2. Publications by Task

Tasks

Books

Planning, preparing, and migrating to OS/390 C/C++

0S5/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

0S/390 Language Environment Customization, SC28-1941
0S5/390 UNIX System Services Planning, SC28-1890
0S5/390 Planning for Installation, GC28-1726

0S/390 Task Atlas, available on the OS/390 Library
page on the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Installing

0S/390 Program Directory
0S/390 Planning for Installation, GC28-1726
0S5/390 Language Environment Customization, SC28-1941

Coding programs

0S/390 C/C++ Run-Time Library Reference, SC28-1663
0S/390 C/C++ Language Reference, SC09-2360

0S5/390 C/C++ Reference Summary, SX09-1313

0S5/390 C/C++ Programming Guide, SC09-2362
0S5/390 Language Environment Concepts Guide,
GC28-1945

0S5/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Programming Reference,
S5C28-1940

0S5/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

0S/390 C/C++ IBM Open Class Library Reference,
SC09-2364

05/390 C/C++ SOM-Enabled Class Library User’s Guide
and Reference, SC09-2366

Coding and binding programs with interlanguage calls

0S5/390 C/C++ Programming Guide, SC09-2362
0S5/390 C/C++ Language Reference, SC09-2360
0S5/390 Language Environment Programming Guide,
SC28-1939

0S5/390 Language Environment Writing Interlanguage
Applications, SC28-1943

DFSMS/MV'S Program Management, SC26-4916

Compiling, binding, and running programs

0S5/390 C/C++ User’s Guide, SC09-2361

0S5/390 Language Environment Programming Guide,
SC28-1939

0S5/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

DFSMS/MVS Program Management, SC26-4916
0S/390 Messages Database, available on the OS/390
Library page in the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Compiling and binding applications in the OS/390 UNIX

environment

0S/390 C/C++ User’s Guide, SC09-2361

0S5/390 UNIX System Services User’s Guide, SC28-1891
05/390 UNIX System Services Command Reference,
SC28-1892

DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

0S5/390 SOMobjects Programmer’s Guide, GC28-1859
0S5/390 C/C++ Programming Guide, SC09-2362
0S/390 C/C++ User’s Guide, SC09-2361

Chapter 1. About This Book

7

Table 2. Publications by Task (continued)

Tasks

Books

Debugging programs

README file

Debug Tool User’s Guide and Reference, SC09-2137
Debug Tool Reference Summary, SX26-3840

08/390 C/C++ User’s Guide, SC09-2361

0S5/390 C/C++ Programming Guide, SC09-2362
0S5/390 Language Environment Programming Guide,
SC28-1939

0S5/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

0S/390 UNIX System Services Messages and Codes,
SC28-1908

0S5/390 UNIX System Services User’s Guide, SC28-1891
0S5/390 UNIX System Services Command Reference,
SC28-1892

0S5/390 UNIX System Services Programming Tools,
SC28-1904

Using shells and utilities in the OS/390 UNIX
environment

0S5/390 C/C++ User’s Guide, SC09-2361

0S5/390 UNIX System Services Command Reference,
S5C28-1892

05/390 UNIX System Services Messages and Codes,
SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

0S5/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390

0S5/390 UNIX System Services Porting Guide

This guide contains useful information about
supported header files and C functions, sockets in an
0S/390 UNIX environment, process management,
compiler optimization tips, and suggestions for
improving the application’s performance after it has
been ported. The Porting Guide is available as a PDF
file which you can download, or as web pages which
you can browse, at the following URL:
http://www.s390.1ibm.com/unix/bpxalpor.html

Working in the OS/390 UNIX System Services Parallel
Environment

0S5/390 UNIX System Services Parallel Environment:
Operation and Use, SC33-6697

0S5/390 UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SC33-6696

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

0S5/390 C/C++ User’s Guide, SC09-2361
CBC.SCBCDOC(APAR) on OS/390 C/C++ product
tape

Quick reference

0S5/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial

For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs
in the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the OS/390 C/C++ Programming Guide.

8 05/390 V2R8.0 C/C++ Programming Guide

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:

e 0S5/390 C/C++ Run-Time Library Reference, SC28-1663

* 0S/390 C/C++ User’'s Guide, SC09-2361

e 0S5/390 C/C++ Programming Guide, SC09-2362

* 0S5/390 C/C++ Reference Summary, SX09-1313

* 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

* 0S5/390 C Curses, SC28-1907

* 0S5/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
* Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
05/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062, 5695-046)
licensed program must be available on your operating system. BookManager Read
provides access to online information as an alternative to hard copy documents.
You can read, search, make notes, and select sections of text to print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The
Library" link on the OS/390 home page. The URL for this page is:

http://www.s390.1ibm.com/0s390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:

* 0S5/390 C/C++ Language Reference, SC09-2360

* 0S5/390 C/C++ User’s Guide, SC09-2361

* 0S5/390 C/C++ Programming Guide, SC09-2362

* 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

¢ 0S5/390 C/C++ IBM Open Class Library Reference, SC09-2364

Chapter 1. About This Book 9

* 0S5/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference, SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:

* R and X refer to the OS/390 C/C++ Language Reference, SC09-2360

* G refers to the OS5/390 C/C++ Programming Guide, SC09-2362

e U refers to the OS/390 C/C++ User’s Guide, SC09-2361

* A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference, the
0S5/390 C/C++ Programming Guide, and the O5/390 C/C++ User’s Guide. Examples
labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class Library User’s
Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference, SC09-2366. For the OS/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366, the label refers to a member
name in the data set CBC.SCLBXSM.

0OS/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web.
The URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c390/index.html

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:

* Send a message electronically to the following network ID :
— Internet: inetc370@ca.ibm.com
— IBMMAIL: ibmmail(caibmrxz)

* Mail your request to:

10 0S/390 V2R8.0 C/C++ Programming Guide

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR

895 Don Mills Road

NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:

¢ Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next
line. In the following diagrams, "statement" represents a command, directive, or
statement.

v
A

»»>—statement

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

»»>—statement »><

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

»»—statement <

* Required items are on the horizontal line (the main path).

»>—statement—required_item ><

* Optional items are below the main path.

»»>—statement <
l—opltional_itemJ

* If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

»—statement—Erequ ired_choicel ><
requi red_choice2—|

If choosing one of the items is optional, the entire stack is below the main path.

Chapter 1. About This Book 11

v
A

»»—statement
i:opt ional_choicel:l
optional_choiceZ

* An arrow that returns to the left above the main line indicates an item that you
can repeat.

A\
A

»»—statement——repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

e If the syntax diagram shows punctuation marks, parentheses, arithmetic

operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise

specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

(1) (2) (3) (4)

»»—f#——————pragma comment >
(5) (6) (9) (10)

»—(———compiler) >

—date

—timestamp

copyright
Cuser— 1 L (7) (8)
s "—token_sequence—"

Notes:
1 This is the start of the syntax diagram.
2 The symbol -# must appear first.
3 The keyword -pragma must follow the -# symbol.
4 The keyword -comment must follow the keyword -pragma.
5 An opening parenthesis must follow the keyword -comment.
6 The comment type must be entered only as one of the following: -compiler,

-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

12 0S/390 V2R8.0 C/C++ Programming Guide

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment (date)
#pragma comment (user)
#pragma comment (copyright,"This text will appear in the module")

Chapter 1. About This Book 13

14 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C
and C++ application development on the OS/390 platform. The C/C++ feature is
based on the C/C++ for MVS/ESA* product.

IBM OS5/390 C/C++ includes:

* A C compiler (referred to as the OS/390 C compiler)

* A C++ compiler (referred to as the OS/390 C++ compiler)

* A set of C++ class libraries

* Application Support Class and Collection Class Library source
* A mainframe interactive Debug Tool (optional)

* A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400%*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 8

The Language Environment C/C++ Run-Time library has made the following

changes for this release:

* Added code pages to support the euro, the monetary unit of the European
Monetary Union (EMU).

¢ Added support for Unicode through UTF-8. Interoperability of UTF-8 (ASCII)
and Unicode (EBCDIC) data are supported through data converters to and from
UTF-8 and UCS-2.

¢ Added VSAM Record Level Sharing support for the sharing of VSAM data at
the record level, using the locking and caching functions of the coupling facility
hardware.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
0S/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

© Copyright IBM Corp. 1996, 1999 15

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:
* Optimization support.

— Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

— The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

— Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

— The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

* DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to
the way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

* Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
0S/390 C++ compiler always ensures that C++ programs are reentrant.

* Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System

16 0S/390 V2R8.0 C/C++ Programming Guide

Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to

use locales to specify language/country characteristics for their applications.

* The ability to call and be called by other languages such as assembler, COBOL,

PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code
with existing applications.
* Exploitation of OS/390 and OS/390 UNIX technology.

0S5/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

* When used with OS/390 UNIX and OS/390 Language Environment, support for

the following standards at the system level:

— A subset of the extended multibyte and wide character functions as defined

by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/ Amendment 1:1994(E)

- ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
— IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

— A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1¢)

— X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

— A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the S/390 environment.
— X/Open CAE Specification, Network Services, Issue 4
* Year 2000 support.

0S/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

* The ability to write portable code that conforms to the following standards:
All elements of the ISO standard ISO/IEC 9899:1990 (E)

— ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

X/Open Specification Programming Language Issue 3, Common Usage C
FIPS-160

¢ System programming capabilities, which allow you to use OS/390 C in place of

assembler

* Additional optimization capabilities through the INLINE compile-time option

* Extensions of the standard definitions of the C language to provide
programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler

provides you with the following;:

* An implementation based on the definition of the language that is contained in

the Draft Proposal International Standard for Information Systems—

Programming Language C++ (X3]J16/92-00091). The OS/390 C++ compiler also

conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3]16/93-0062).

¢ System Object Model (SOM) support, through the SOM Interface Definition

Language (IDL) compiler available with OS/390 SOMobjects. You can use the

Chapter 2. About IBM OS/390 C/C++

17

IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate
IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead
of generating it through the IDL compile option.

* C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:

* The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

e The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

e The CXXFILT Utility to map OS/390 C++ mangled names to the original source

* The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

* The DSECT Conversion Utility to convert descriptive assembler DSECTs into
05/390 C/C++ data structures

e The C/C++ Model Tool to provide online help for C/C++ #pragma directives
and runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS5/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

e The I/O Stream Class Library
The I/0 Stream Class Library lets you perform input and output (I/0)
operations independent of physical I/O devices or data types that are used. You
can code sophisticated 1/O statements easily and clearly, and define input and
output for your own data types. You can improve the maintainability of
programs that use input and output by using the I/O Stream Class Library.

* The Complex Mathematics Class Library
The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

* The Application Support Class Library

18 0S/390 V2R8.0 C/C++ Programming Guide

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

* The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of
building blocks from which they can derive application objects. The library
design exploits features of the C++ language such as exception handling and
template support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in
addition to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS5/390 C/C++
compiler feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:
* Application Support Class Library source code
* Collection Class Library source code (C++ native and C++ SOM only)

¢ Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

¢ Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

* Class Library Language Environment message file source

* Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM 0S/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:

¢ Step mode

Chapter 2. About IBM 0S/390 C/C++ 19

* Breakpoints

* Monitor

* Frequency analysis
* Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

0OS/390 Language Environment

IBM 0S/390 C/C++ exploits the C/C++ runtime environment and library of
runtime services available with OS/390 Language Environment (formerly
Language Environment for MVS & VM, Language Environment/370 and LE/370).

0S/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see @Eﬂ' 0S/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

* Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation
of storage, interlanguage communication (ILC), and condition handling.

* Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

* Runtime options that help in the execution, performance, and diagnosis of your
application.

* Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

20 0S/390 V2R8.0 C/C++ Programming Guide

* Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder
supports all C and C++ code, provided that you store the output program in a
PDSE (Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HEFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:
¢ Faster rebinds when recompiling and rebinding a few of your source files

* Rebinding at the single compile unit level of granularity (except when you use
the IPA compile-time option)

* Input of object modules, load modules, and program objects

¢ Improved long name support:
— Long names do not get converted into prelinker generated names
- Long names appear in the binder maps, enabling full cross-referencing
— Variables do not disappear after prelink
— Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

0OS/390 UNIX System Services (OS/390 UNIX)

0S/390 UNIX provides capabilities under OS/390 to make it easier to implement
or port applications in an open, distributed environment. OS/390 UNIX Services
are available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

0S/390 UNIX provides support for both existing OS/390 applications and new

0S/390 UNIX applications:

¢ C programming language support as defined by ISO/ANSI C

* C++ programming language support

* C language bindings as defined in the IEEE 1003.1 and 1003.2 standards; subsets
of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification: System
Interfaces and Headers, Issue 4, Version 2, which provides standard interfaces
for better source code portability with other conforming systems; and X/Open
CAE Specification, Network Services, Issue 4, which defines the X/Open UNIX
descriptions of sockets and X/Open Transport Interface (XTI)

Chapter 2. About IBM 0S/390 C/C++ 21

0S/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

The OS/390 UNIX Shell and Utilities feature, which provides:
— A shell, based on the Korn Shell and compatible with the Bourne Shell
— Tools and utilities that conform to the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
0S/390 support. The following utilities are included:

ar

BPXBATCH

c89
gencat

lex

make

yacc

Creates and maintains library archives

Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

Compiles, assembles, and binds OS/390 UNIX C applications

Merges the message text source files Messagefile (usually
*msg) into a formatted message Catalogfile (usually *.cat)

Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source
and object files, keeping all such files up to date with one
another

Allows you to write compilers and other programs that parse
input according to strict grammar rules

— Support for other utilities such as:

c++

mkcatdefs

runcat

dspcat
dspmsg

Compiles, assembles, and binds OS/390 UNIX C++
applications

Preprocesses a message source file for input to the gencat
utility

Invokes mkcatdefs and pipes the message catalog source data
(the output from mkcatdefs) to gencat

Displays all or part of a message catalog

Displays a selected message from a message catalog

* The OS/390 UNIX Debugger feature, which provides the dbx interactive
symbolic debugger for OS/390 UNIX applications

* OS/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

* 0S/390 C/C++ 1/0 routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

* Application threads (with support for a subset of POSIX.4a)
* Support for OS/390 C/C++ DLLs

0S/390 UNIX offers program portability across multivendor operating systems,
with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX 4a (draft 6), and

XPG4.2.

To application developers who have worked with other UNIX environments, the
0S/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments,

22 0S/390 V2R8.0 C/C++ Programming Guide

you may find that the OS/390 UNIX environment can enhance your productivity.
Refer to the O5/390 UNIX System Services User’s Guide for more information on the
Shell and Utilities.

0OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
0S5/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:
* Directly from the OS/390 UNIX Shell.

¢ From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

* Using the POSIX system() call.

* Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

Input and Output

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The
C++ I/0 Stream Class Library provides additional support.

I/O Interfaces

The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record 1/0
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record 1/0 is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets I/O
0S/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known
as sockets. A set of C language functions provides support for OS/390
UNIX sockets. OS/390 UNIX sockets correspond closely to the sockets that
are used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

Chapter 2. About IBM 0S/390 C/C++ 23

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
05/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted /O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
05/390 C/C++ has native support for three types of VSAM data
organization:
* Key-sequenced data sets (KSDS). Use KSDS to access a record through a
key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

* Entry-sequenced data sets (ESDS). Use ESDS to access data in the order
it was created (or in the reverse order).

* Relative-record data sets (RRDS). Use RRDS for data in which each item
has a particular number (for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations on these VSAM
file t?EEes, see I’Chapfpr 13 Performing VSAM 1/0 Operations” on

Hierarchical File System Files
When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than
to devices. Since memory files reside in main storage and only exist while
the program is executing, you primarily use them as work files. You can
access memory files across load modules through calls to non-POSIX
system() and C fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on a non-POSIX
system() call using command line redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded

24 0S/390 V2R8.0 C/C++ Programming Guide

storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 2°° bytes).

Additional 1/0 Features

IBM 0S/390 C/C++ provides additional I/O support through the following
features:

User error handling for serious I/0O failures (SIGIOERR)

Improved sequential data access performance through enablement of the
DEFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

Overlapped 1/0 support under OS/390 (NCP, BUFNO)
Multibyte character I/O functions
Fixed-point (packed) decimal data type support in formatted I/O functions

Support for multiple volume data sets that span more than one volume of
DASD or tape

Support for Generation Data Group 1/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services
available on your operating system. SP C offers a number of advantages:

You can develop applications that you can execute in a customized environment
rather than with OS/390 Language Environment services. Note that if you do
not use OS/390 Language Environment services, only some built-in functions
and a limited set of C/C++ runtime library functions are available to you.

You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Chapter 2. About IBM 0S/390 C/C++ 25

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

* Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

« DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL
translator. The DB2 program processes a request, and processing returns to the
application.

* Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

¢ Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

* Interactive System Productivity Facility (ISPF)

0S/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a person
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

* Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

- A windowing system that the user can tailor to display selected information
— Support for presentation and keyboard interaction
— Comprehensive graphics support
— Fonts — including support for double-byte character set (DBCS)
— Business image support
— Saving and restoring graphics pictures
— Support for many types of display terminals, printers, and plotters
* Query Management Facility (QMF)

0S/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as data
entry, query building, administration aids, and report analysis.

26 0S/390 V2R8.0 C/C++ Programming Guide

Additional Features of OS/390 C/C++

Feature

Description

Multibyte Character Support

0S/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support

Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowcs (),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

0S/390 C/C++ provides three S/370 floating-point number data types: single
precision (32 bits), declared as float; double precision (64 bits), declared as doubTe;
and extended precision (128 bits), declared as Tong double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, 0S/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and Tong double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection

You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support

0S/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support

0S/390 C/C++ provides a locale definition utility that supports the creation of
separate files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF)

Multitasking is a mode of operation where your program performs two or more tasks
at the same time. OS/390 C provides a set of library functions that perform
multitasking. These functions are known as the Multitasking Facility (MTF). MTF uses
the multitasking capabilities of OS/390 to allow a single OS/390 C application
program to use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

0S/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

0S/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support

For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

Chapter 2. About IBM 0S/390 C/C++ 27

Feature Description

System Calls You can call commands or executable modules using the system() function under
0S/390, OS/390 UNIX, and TSO. You can also use the system() function to call EXECs
on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

28 0S/390 V2R8.0 C/C++ Programming Guide

Part 2. Input and Output

This part describes the models of input and output available with IBM OS/390
C/C++. C++ has its own way of handhng input and output the 1/0O Stream class
library. EC C
contains a brief descrlptlon of Ct+ 1 / O but for a more Complete descrlptlon and
examples, you should see the OS5/390 C/C++ IBM Open Class Library User’s Guide
and the 05/390 C/C++ IBM Open Class Library Reference.

4 : 7

° 4 : 7”7

. P’thpfpr 5 ITQing the I1/Q Stream Class ihrary in Ct+” an page 45

4 : : ”

4 : ”

” . . ”

D P’Fhapfpr 9 0OS/390 C Qmppnrf far the Double-Bvute Character Set” on page 74

” . . . 17

4 : : ”

. P’Fhapfpr 12 Pprfnrming Hierarchical File Svstem 1/0 ﬂpprafim‘m” on page 13d

. I”(’hapfpr 13 Pprfnrming VSAMI/O ()Ppmh'nnq" on page 159

7 . . - 77

e F'Chanter 15 Pm‘fm‘ming Memory File and Hippraparp 1/0 Oppraﬁrmq” on

. I"(’hapfpr 16 Pprfnrming CICST1/0O Oppraﬁnne” on page 2213

7 - - . 173

4 . ”

© Copyright IBM Corp. 1996, 1999 29

30 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 3. Introduction to C and C++ Input and Output

This chapter provides you with a general introduction to C and C++ input and
output (I/0O). Three types of C and C++ input and output are discussed in this
chapter:

Types of C and C++ Input and Output

A stream is a continuous flow of data elements that are transmitted or intended for
transmission in a defined format. A record is a set of data elements treated as a
unit, and a file is a named set of records that is stored or processed as a unit.

The OS/390 C/C++ compiler supports three types of input and output: text
streams, binary streams, and record I/O. Text and binary streams are both ANSI
standards; record 1/0 is an OS/390 C extension. Record I/O is not supported by
the C++ I/O Streams Class Library.

Note: If you have written data in one of these three types and try to read it as
another type (for example, reading a binary file in text mode), you may not
get the behavior that you expect.

Text Streams

Text streams contain printable characters and, depending on the type of file,
control characters. Text streams are organized into lines. Each line ends with a
control character, usually a new-line. The last record in a text file may or may not
end with a control character, depending on what kind of file you are using. Text
files recognize the following control characters:

\a Alarm.
\b Backspace.
\f Form feed.

\n New-line.

\r Carriage return.

\t Horizontal tab character.
\v Vertical tab character.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1 in the definition of the locale that is in effect. For more

information about MB_CUR MAX, see ‘Chapter 9 QS/390 C Support for thd

7

\xOF DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX >
1 in the definition of the locale that is in effect. For more information about

MB_CUR MAX, see EChapter 9 QS/390 C Support for the Double-Bytd

© Copyright IBM Corp. 1996, 1999 31

Control characters behave differently in terminal files (see 'Chapter 14. Performing
[lerminal 1/Q QOperations” on page 199) and ASA files (see [[Chapter 8. 1sing ASAl
[lext Files” on page 69).

Binary Streams

Binary streams contain an ordered sequence of bytes. For binary streams, the
library does not translate any characters on input or output. It treats them as a
continuous stream of bytes, and ignores any record boundaries. When data is
written out to a record-oriented file, it fills one record before it starts filling the
next. HFS streams follow the binary model, regardless of whether they are opened
for text, binary, or record I/O. You can simulate record I/O by using new-line
characters as record boundaries.

Record /O

Record I/0 is an OS/390 C extension to the ANSI standard. For files opened in
record format, OS/390 C/C++ reads and writes one record at a time. If you try to
write more data to a record than the record can hold, the data is truncated. For
record I/0O, OS/390 C/C++ allows only the use of fread() and fwrite() to read
and write to files. Any other functions (such as fprintf(), fscanf(), getc(), and
putc()) fail. For record-oriented files, records do not change size when you update
them. If the new record has fewer characters than the original record, the new data
fills the first n characters, where n is the number of characters of the new data. The
record will remain the same size, and the old characters (those after n) are left
unchanged. A subsequent update begins at the next boundary. For example, if you
have the string "abcdefgh":

and you overwrite it with the string "1234", the record will look like this:

0S/390 C/C++ record 1/0 is binary. That is, it does not interpret any of the data
in a record file and therefore does not recognize control characters. The only
exception is for file categories that do not support records, such as the Hierarchical
File System (also known as POSIX I/0). For these files, OS/390 C/C++ uses
new-line characters as record boundaries.

32 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 4. Understanding Models of C 1/O

This chapter describes OS/390 C/C++ support for the major models of C I/0O:
* The record model
* The byte stream model

The next chapter (£
) describes a third major model, the object-oriented model.

The Record Model for C I/O

Almost all the kinds of I/0O that OS/390 C/C++ supports use this model. The only
ones that do not are HFS, memory file, and Hiperspace 1/0O.

The record model consists of the following:
* A record, which is the unit of data transmitted to and from a program.

e A block, which is the unit of data transmitted to and from a device. Each block
may contain one or more records.

In the record model of I/0O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on
the physical device.

LRECL Specifies the length of logical records (as opposed to physical
ones). Variable length records include a count field that is normally
not available to the programmer.

BLKSIZE Specifies the length of physical records (blocks on the physical
device).

Record Formats

Use the RECFM attribute to specify the record format. The records in a file using the
record model have one of the following formats:

¢ Fixed-length (F)
* Variable-length (V)
* Undefined-length (U)

Note: OS/390 C/C++ does not support ISCII/ ASCII format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA control characters.

B Specifies that a file is blocked. A blocked file can have more than one
record in each block.

M Specifies that the file contains machine control characters.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if

it is variable). In a standard file, every block must be full before another

© Copyright IBM Corp. 1996, 1999 33

one starts. In a spanned file, a record can be longer than a block. If it is,
the record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed
in the following sections.

Not all the 1/O categories (listed in [[able 4 on page 48) support all of these
attributes. Depending on what category you are using, OS/390 C/C++ ignores or

simulates attributes that do not apply. For more information, on the record formats
and the options supported for each I/O category, see “Opening Files” section in
this book.

Fixed-Format Records

Record Format (RECFM)

These are the formats you can specify for RECFM if you want to use a fixed-format

file:
F Fixed-length, unblocked
FA Fixed-length, ASA print-control characters

FB Fixed-length, blocked

FM Fixed-length, machine print-control codes

FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine print-control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters
FSM Fixed-length, unblocked, standard, machine print-control codes
FBSM Fixed-length, blocked, standard, machine print-control codes
FBSA Fixed-length, blocked, standard, ASA print-control characters.
Note: In general, all references in this guide to files with record format FB also

refer to FBM and FBA. The specific behavior of ASA files (such as FBA) is
explained in I”(“hap’rr—'r 8 Using ASA Text Files” on page 69

Attention: OS/390 C/C++ distinguishes between FB and FBS formats, because an
FBS file contains no embedded short blocks (the last block may be
short). FBS files give you much better performance. The use of standard
(S) blocks optimizes the sequential processing of a file on a direct-access
device. With a standard format file, the file pointer can be directly
repositioned by calculating the exact position in that file of a given
record rather than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown

in Eigure 2 on page 33.

34 0S/390 V2R8.0 C/C++ Programming Guide

F-Format FB-Format FBS-Format

Block Block
| | | |
Record I Record Record Record Record Record Record
Record I Record Record I Record Record Record
Record I Record Record Record Record Record Record
Record I Record Record I Record Record Record
=

Record Record Record Record Record Record I

Figure 2. Blocking Fixed-Length Records

Mapping C Types to Fixed Format: The following formats are discussed in this
section:

* Binary
* Text (non-ASA)
* Text (ASA)

On binary input and output, data flows over record boundaries. Because
all fixed-format records must be full, OS/390 C/C++ completes any
incomplete output record by padding it with nulls ('\0') when you close
the file. Incomplete blocks are not padded. On input, nulls are visible and
are treated as data.

For example, if record length is set to 10 and you are writing 25 characters
of data, OS/390 C/C++ will write two full records, each containing 10
characters, and then an incomplete record containing 5 characters. If you
then close the file, OS/390 C/C++ will complete the last record with 5
nulls. If you open the file for reading, OS/390 C/C++ will read the records
in order. OS/390 C/C++ will not strip off the nulls at the end of the last
record.

Text (non-ASA)
When writing in a text stream, you indicate the end of the data for a
record by writing a new-line ('\n') or carriage return ('\r') to the stream.
In a fixed-format file, the new-line or carriage return will not appear in the
external file, and the record will be padded with blanks from the position
of the new-line or carriage return to LRECL. (A carriage return is considered
the same as a new-line because the '\r' is not written to the file.)

For example, if you have set LRECL to 10, and you write the string "ABC\n"
to a fixed-format text file, OS/390 C/C++ will write this to the physical

Chapter 4. Understanding Models of C /O 35

file:

A record containing only a new-line is written to the file as LRECL blanks.

When reading in a text stream, the I/O functions place a new-line
character ('\n') in the buffer to indicate the end of data for the record. In a
fixed-format file, the new-line character is placed at the start of the blank
padding at the end of the data.

For example, if your file position points to the start of the following record
in a fixed-format file opened as a text stream

A|lB|C

file pointer

and you call fgets() to read the line of text, fgets() places the string
"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a new-line or carriage
return will be considered blank padding when the record is
read back from the file. You cannot change the padding
character.

When you are updating a fixed-format file opened as a text stream, you
can update the amount of data in a record. The maximum length of the
updated data is LRECL bytes plus the new-line character; the minimum
length is zero data bytes plus the new-line character. Writing new data into
an existing record replaces the old data. If the new data is longer or shorter
than the old data, the number of blank padding characters in the record in
the external file is changed. When you extend a record, thereby writing
over the old new-line, there will be a new-line character implied after the
new characters. For instance, if you were to overwrite the record
mentioned in the previous example with the string "123456", the records in
the physical file would then look like this:

file pointer

The blanks at the end of the record imply a new-line at position 7. You can
see this new-line by calling fflush() and then performing a read. The
implied new-line is the first character returned from this read.

36 0S/390 V2R8.0 C/C++ Programming Guide

A fixed record can hold only LRECL characters. If you try to write more
than that, OS/390 C/C++ truncates the data unless you are using a
standard stream or a terminal file. In this case, the output is split across
multiple records. If truncation occurs, OS/390 C/C++ raises SIGIOERR and
sets both errno and the error flag.

Text (ASA)
For ASA files, the first character of each record is reserved for the ASA
control character that represents a new-line, a carriage return, or a form
feed. This control character represents what should happen before the
record is written.

Table 3. C Control to ASA Characters

C Control Character ASA Character Description

\n b skip one line
\n\n ‘0" skip two lines
\n\n\n - skip three lines
\f 'l new page

\r '+ overstrike

A control character that ends a logical record is represented at the
beginning of the following record in the external file. Since the ASA control
character is in the first byte of each record, a record can hold only LRECL -
1 bytes of data. As with non-ASA text files described above, OS/390
C/C++ adds blank padding to complete any record shorter than LRECL - 1
when it writes the record to the file. On input, OS/390 C/C++ removes all
trailing blanks. For example, if LRECL is 10, and you enter the string:

\nABC\nDEF

the record in the physical file will look like this:
On input, this string is read as follows:

Al B]|C

\nABC\nDEF

You can lengthen and shorten records the same way as you can for

non-ASA files. For more information about ASA, refer to !Chapter 8 Tlsing
IASA Text Files” an page A9

Record
As with fixed-format text files, a record can hold LRECL characters. Every
call to fwrite() is considered to be writing a full record. If you write fewer
than LRECL characters, OS/390 C/C++ completes the record with enough
nulls to make it LRECL characters long. If you try to write more than that,
05/390 C/C++ truncates the data.

Variable-Format Records
In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

Chapter 4. Understanding Models of C1/0 37

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).
[lustrations of variable-length records are shown in I[Ei .

Once you have set the LRECL for a variable-format file, you can write up to LRECL
minus 4 characters in each record. OS/390 C/C++ does not let you see RDWs,
BDWs, or SDWs when you open a file as variable-format. To see the RDWs or
SDWs and BDWs, open the variable file as undefined-format, as described in

Wmmm—p&gﬂﬂ' ” .

The value of LRECL must be greater than 4 to accommodate the RDW or SDW. The
value of BLKSIZE must be greater than or equal to the value of LRECL plus 4. You
should not use a BLKSIZE greater than LRECL plus 4 for an unblocked data set.
Doing so results in buffers that are larger than they need to be. The largest amount
of data that any one record can hold is LRECL bytes minus 4.

For striped data sets, a block is padded out to its full BLKSIZE. This makes
specifying an unnecessarily large BLKSIZE very inefficient.

Record Format (RECFM): You can specify the following formats for
variable-length records:

v Variable-length, unblocked

VA Variable-length, ASA print control characters, unblocked

VB Variable-length, blocked

VM Variable-length, machine print control codes, unblocked

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print control characters

VBM Variable-length, blocked, machine print control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, spanned, ASA print control characters

VSM Variable-length, spanned, machine print control codes

VBSA Variable-length, blocked, spanned, ASA print control characters
VBSM Variable-length, blocked, spanned, machine print control codes

Note: In general, all references in this guide to files with record format VB also
refer to VBM and VBA. The specific behavior of ASA files (such as VBA) is

explained in EChapter 8 Using ASA Text Files” on page 69.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate.

Spanned Records: A spanned record is opened using both V and § in the format
specifier. A spanned record is a variable-length record in which the length of the
record can exceed the size of a block. If it does, the record is divided into segments
and accommodated in two or more consecutive blocks. The use of spanned records
allows you to select a block size, independent of record length, that will combine
optimum use of auxiliary storage with the maximum efficiency of transmission.

38 0S/390 V2R8.0 C/C++ Programming Guide

VS-format specifies that each block contains only one record or segment of a record.
The first 4 bytes of a block describe the block control information. The second 4
bytes contain record or segment control information, including an indication of
whether the record is complete or is a first, intermediate, or last segment.

VBS-format differs from VS-format in that each block in VBS-format contains as
many complete records or segments as it can accommodate, while each block in
VS-format contains at most one record per block.

V-format:
C1|{c2 Record 1 I c1|c2 Record 2 I C1|C2
VB-format:
| Block |
Cl|C2 Record 1 Cc2 Record 2 ci|c2 Record 3
VS-format. [Spanned Record
Record 1 Record 2 Record 2
c1lc2 (entire) cic2 (first segment) c1c2 (next segment)
VBS-format. —— Spanned Record |
Record 1 Record 2 Record 2
cifc2 (entire) (first segment) cic2 (last segment) c2 Record 3

C1: Block control information
C2: Record or segment control information

Figure 3. Variable-Length Records on OS/390

Mapping C Types to Variable Format:

Binary
On input and output, data flows over record boundaries. Any record will
hold up to LRECL minus 4 characters of data. If you try to write more than
that, your data will go to the next record, after the RDW or SDW. You will
not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWs, or SDWs, you can open and
read a V-format file as a U-format file. See IIndefined-Format

Records” on page 41 for more information.

05/390 C/C++ never creates empty binary records for files opened in
V-format. See [Writing to Binary Files” on page 125 for more information.
An empty binary record is one that contains only an RDW, which is 4
bytes long. On input, empty records are ignored.

Chapter 4. Understanding Models of C I/O 39

Text (non-ASA)

Record boundaries are used in the physical file to represent the position of
the new-line character. You can indicate the end of a record by including a
new-line or carriage return character in your data. In variable-format files,
05/390 C/C++ treats the carriage return character as if it were a new-line.
05/390 C/C++ does not write either of these characters to the physical
file; instead, it creates a record boundary. When you read the file back,
boundaries are read as new-lines.

If a record only contains a new-line character, the default behavior of
0S/390 C/C++ is to write a record containing a single blank to the file.
Therefore, the string " \n" is treated the same way as the string "\n"; both
are read back as "\n". All other blanks in your output are read back as is.
Any empty (zero-length) record is ignored on input. However, if the
environment variable _EDC_ZERO_RECLEN was set to Y at the time the file
was opened, a single new-line is written to the file as an empty record, and
a single blank represents " \n". On input, an empty record is treated as a
single new-line and is not ignored.

After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of
data into it, the C I/O library will add blank characters until the record is
full. Writing more data to a record than it can hold causes your data to be
truncated unless you are writing to a standard stream or a terminal file. In
this case, your output is split across multiple records. If truncation occurs,
05/390 C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the EDC_ZERO_RECLEN environment
variable when you opened the file, you can update a record that
contains a single blank to contain a non-blank character, thereby
lengthening the logical record from '\n' to 'x\n'), where x is the
non-blank character.

Text (ASA)
05/390 C/C++ treats variable-format ASA text files similarly to the way it
treats fixed-format ones. Empty records are always ignored in ASA
variable-format files; for a record to be recognized, it must contain at least
one character as the ASA control character.

For more information about ASA, refer to [Chapter 8 Tlsing ASA Texil
E]lﬂs_m_pa.g.&ég‘ ” .

Record
Each call to furite() creates a record that must be shorter than or equal to
the size established by LRECL. If you try to write more than LRECL bytes on
one call to fwrite(), OS/390 C/C++ will truncate your data. OS/390
C/C++ never creates empty records using record I/O. On input, empty
records are ignored unless you have set the _EDC_ZERO_RECLEN environment

variable to Y. In this case, empty records are treated as records with length
0.

If your application sets _EDC_ZERO_RECLEN to Y, bear in mind that fread()
returns back 0 bytes read, but does not set errno, and that both feof() and
ferror() return 0 as well.

40 0S/390 V2R8.0 C/C++ Programming Guide

Undefined-Format Records

Everything in an undefined-format file is treated as data, including control
characters and record boundaries. Blocks in undefined-format records are
variable-length; each block is considered a record.

It is impossible to have an empty record. Whatever you specify for LRECL has no
effect on your data, but the value of LRECL must be less than or equal to the value
you specify for BLKSIZE. Regardless of what you specify, OS/390 C/C++ sets LRECL
to zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record Format (RECFM): You can specify the following formats for
undefined-length records:

U Undefined-length
UA Undefined-length, ASA print control characters

UM Undefined-length, machine print control codes

U, UA, and UM formats permit the processing of records that do not conform to F-
and V-formats. The operating system treats each block as a record; your program
must perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see
the BDWs and RDWs of a file that you have written in V-format.

Mapping C Types to Undefined Format:

Binary
When you are writing to an undefined-format file, binary data fills a block
and then begins a new block.

Text (non-ASA)
Record boundaries (that is, block boundaries) are used in the physical file
to represent the position of the new-line character. You can indicate the end
of a record by including a new-line or carriage return character in your
data. In undefined-format files, OS/390 C/C++ treats the carriage return
character as if it were a new-line. OS/390 C/C++ does not write either of
these characters to the physical file; instead, it creates a record boundary.
When you read the file back, these boundaries are read as new-lines. If a
record contains only a new-line character, OS/390 C/C++ writes a record
containing a single blank to the file regardless of the setting of the
_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a
single blank followed by a new-line character) is treated the same way as
"\n'; both are written out as a single blank. On input, both are read as
"\n'. All other blank characters are written and read as you intended.
After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of
data into it, the C I/O library adds blank characters until the record is full.
Writing more data to a record than it can hold will cause your data to be
truncated unless you are writing to a standard stream or a terminal file. In
these cases, your output is split across multiple records. If truncation
occurs, OS/390 C/C++ raises SIGIOERR and sets both errno and the error
flag.

Chapter 4. Understanding Models of C /O 41

Note: You can update a record that contains a single blank to contain a
non-blank character, thereby lengthening the logical record from
"\n' to 'x\n'), where x is the non-blank character.

Text (ASA)
For a record to be recognized, it must contain at least one character as the
ASA control character.

For more information about ASA, refer to Chapter 8 Using ASA Texy
Record

Each call to fwrite() creates a record that must be shorter than or equal to

the size established by BLKSIZE. If you try to write more than BLKSIZE bytes

on one call to fwrite(), OS/390 C/C++ truncates your data.

The Byte Stream Model for C I/0O

The byte stream model differs from the record I/O model. In the byte stream
model, a file is just a stream of bytes, with no record boundaries. New-line
characters written to the stream appear in the external file.

If the file is opened in binary mode, any new-line characters previously written to
the file are visible on input. OS/390 C/C++ memory file I/O and Hiperspace

memory file I/O are based on the byte stream model (see ECha.p.tELLS_EEtfome.gl
M i T /00 - >09

” for more information).

Hierarchical File System (HFS) 1/0, defined by POSIX, is also based on the byte
stream model. Refer to P’Chahfpr 12 Pprfm‘mmcr Hierarchical File System 1/Q)

Operations” on page 139 for information about I/ O with HFS.

Mapping the C Types of I/O to the Byte Stream Model

Binary
In the byte stream model, files opened in binary mode do not contain any
record boundaries. Data is written as is to the file.

Text The byte stream model does not support ASA. New-lines, carriage returns,
and other control characters are written as-is to the file.

Record
If record 1/0O is supported by the kind of file you are using, OS/390
C/C++ simulates it by treating new-line characters as record boundaries.
New-lines are not treated as part of the record. A record written out with a
new-line inside it is not read back as it was written, because OS/390
C/C++ treats the new-line as a record boundary instead of data.

HFS files support record 1/O, but memory files do not.

As with all other record I/0O, you can use only fread() and fwrite() to
read from and write to files. Each call to fwrite() inserts a new-line in the
byte stream; each call to fread() strips it off. For example, if you use one
fwrite() statement to write the string ABC and the next to write DEF, the

42 0S/390 V2R8.0 C/C++ Programming Guide

byte stream will look like this:

There are no limitations on lengthening and shortening records. If you then
rewind the file and write new data into it, OS/390 C/C++ will replace the
old data. For example, if you used the rewind() function on the stream in
the previous example and then called fwrite() to place the string 12345
into it, the stream would look like this:

If you are using files with this model, do not use new-line characters in
your output. If you do, they will create extra record boundaries. If you are
unsure about the data being written or are writing numeric data, use
binary instead of text to avoid writing a byte that has the hex value of a
new-line.

Chapter 4. Understanding Models of C /O 43

44 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 5. Using the 1/O Stream Class Library in C++

The object-oriented model for I/O is a set of C++ classes that comprise the I/O
Stream Class Library. This set of classes implements and manages stream buffers
for input and output. Stream buffers can take two forms. They can be arrays of
bytes where data is stored between the program and the ultimate consumer for
output. Stream buffers can also be between the ultimate producer and the program
for input. Stream buffers and manipulators are used to format data.

There are two base classes, i0s and streambuf, from which all other classes in the
I/0O Stream library are derived. The ios class and its derivative classes are used to
implement formatting of I/O and maintain error state information of stream
buffers implemented with the streambuf class.

To use the I/O Stream Library, include the iostream.h header file in your program.

This chapter includes the following topics:

. |Advanfagpc ta nQing the C++ 1/0Q Stream Class T ihraryl
o [Predefined Streams for C+4
e Haw C++ 1/0 Streams Relate tao C Streamd

. B El T
¢ Related Information

Advantages to Using the C++ 1/O Stream Class Library

Although input and output are implemented with streams for both C and C++, the
C++ I/0 Stream Class Library provides the same facilities for input and output as
C stdio.h. The I/O Stream Class Library has the following advantages:

* The input (>>) operator and output (<<) operator are typesafe. These operators
are easier to use than scanf() and printf().

* You can overload the input and output operators to define input and output for
your own types and classes. This makes input and output across types,
including your own, uniform.

Predefined Streams for C++

0S/390 C++ provides the following predefined streams:
cin The standard input stream
cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this
stream are flushed on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets
flushed sending the contents of cout to the ultimate consumer.

0S/390 C standard streams create all I/O to I/O Streams:
* Input to cin comes from stdin (unless cin is redirected)

© Copyright IBM Corp. 1996, 1999 45

* cout output goes to stdout (unless cout is redirected)
* cerr output goes to stderr (unit-buffered) (unless cerr is redirected)
e clog output goes to stderr (unless clog is redirected)

When redirecting or intercepting a C standard stream, the corresponding C++ 1/0
Stream standard stream becomes redirected. This applies unless you redirect an
1/0O Stream standard stream. See L i

irection” for more information.

How C++ I/O Streams Relate to C Streams

I/0 Stream Class Library file I/O is implemented in terms of OS/390 C file I/0O,
and is buffered from it. The only exception cerr is unit buffered (ios::unitbuf is
set). A filebuf object is associated with each ifstream, ofstream, and fstream
object. When the filebuf is flushed, it writes to the underlying C stream, which
has its own buffer. The filebuf object follows every fwrite() to the underlying C
stream with an fflush().

Specifying File Attributes

The fstream, ifstream, and ofstream classes specialize stream input and output
for files.

For OS/390 C++, overloaded fstream, ifstream, and ofstream constructors, and
open() member functions, with an additional parameter, are provided so you can
specify OS/390 C fopen() mode values. You can use this additional parameter to
specify any OS/390 C fopen() mode value except type=record. If you choose to
use a constructor without this additional parameter, you will get the default
0S/390 C fopen() file characteristics. [Eab.le_ﬁ_on_pa.gdﬂ describes the default
fopen() characteristics.

Related Information

For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see the OS/390 C/C++ IBM Open Class Library
Reference and the OS/390 C/C++ IBM Open Class Library User’s Guide.

46 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 6. Opening Files

This chapter describes how to open I/0 files. You can open files using the
standard C fopen() and freopen() library functions. Alternatively, if you want to
use the C++ I/O stream class library, you can use the constructors for the
ifstream, ofstream or fstream classes, or the open() member functions of the
filebuf, ifstream, ofstream or fstream classes.

To open a file stream with a previously opened HFS file descriptor, use the
fdopen() function.

To open files with HFS low-level I/O, use the open() function. For more
information about opening HFS files, see L i i

”

Prototypes of functions

The prototypes of these functions are:

C Library Functions:
FILE =fopen(const char =xfilename, const char xmode);

FILE xfreopen(const char *filename, const char *mode, FILE *stream

FILE xfdopen(int filedes, char *mode);

C++ 1/0 Stream Class Library Functions:

// ifstream constructor
ifstream(const char* fname, int mode=ios::in,
int prot=filebuf::openprot);

// 0S/390 C++ extension
ifstream(const char* fname, const charx fattr,
int mode=ios::in, int prot=filebuf::openprot);

// ifstream::open()
void open(const char* fname, int mode=ios::in,
int prot=filebuf::openprot);

// 0S/390 C++ extension
void open(const char* fname, const char* fattr,
int mode=ios::in, int prot=filebuf::openprot);
// ofstream constructor
ofstream(const char* fname, int mode=ios::out,
int prot=filebuf::openprot);

// 0S/390 C++ extension
ofstream(const char* fname, const char* fattr,
int mode=ios::out, int prot=filebuf::openprot);

// ofstream::open()
void open(const char* fname, int mode=ios::out,
int prot=filebuf::openprot);

// 0S/390 C++ extension
void open(const char* fname, const char* fattr,
int mode=ios::out, int prot=filebuf::openprot);

© Copyright IBM Corp. 1996, 1999 47

// fstream constructor
fstream(const char* fname, int mode,
int prot=filebuf::openprot);

// 0S/390 C++ extension
fstream(const charx fname, const char* fattr,
int mode, int prot=filebuf::openprot);

// fstream::open()
void open(const char* fname, int mode,
int prot=filebuf::openprot);

// 0S/390 C++ extension
void open(const char* fname, const char* fattr,
int mode, int prot=filebuf::openprot);

// filebuf::open()
filebuf* open(const char* fname, int mode,
int prot=filebuf::openprot);

// 0S/390 C++ extension
filebuf* open(const char* fname, const charx fattr,
int mode, int prot=filebuf::openprot);

The C library functions are described in more detail in the OS/390 C/C++ Run-Time
Library Reference. The C++ 1/0O streams class library functions are described in
more detail in the OS5/390 C/C++ IBM Open Class Library Reference and the OS5/390
C/C++ IBM Open Class Library User’s Guide.

Categories of 1/0

The following table lists the categories of I/O that OS/390 C/C++ supports and
points to the section where each category is described.

Table 4. Kinds of I/O Supported by OS/390 C/C++

Type of 1/O Suggested Uses and Supported Devices Model Page
0s1/0 Used for dealing with the following kinds of Record |f0d
files:

* Generation data group

* MVS sequential DASD files

* Regular and extended partitioned data sets
e Tapes

* Printers

* Punch data sets

* Card reader data sets

* MVS inline JCL data sets

* MVS spool data sets

* Striped data sets

* Optical readers

Hierarchical File Used under OS/390 UNIX System Services Byte fad
System (HFS) I/O | (OS/390 UNIX) to support HFS data sets, and | stream
access the byte-oriented HFS files according to
POSIX .1 and XPG 4.2 interfaces. This increases
the portability of applications written on
UNIX-based systems to OS/390 C/C++
systems.

48 0S/390 V2R8.0 C/C++ Programming Guide

Table 4. Kinds of I/O Supported by OS/390 C/C++ (continued)

Type of 1/0 Suggested Uses and Supported Devices Model Page
VSAM 1I/0 Used for working with VSAM data sets. Record |59
Supports direct access to records by key, relative
record number, or relative byte address.
Supports entry-sequenced, relative record, and
key-sequenced data sets.
Terminal I/O Used to perform interactive input and output Record fod
operations with a terminal.
Memory Files Used for applications requiring temporary I/O |Byte PQC
files without the overhead of system data sets. |stream
Fast and efficient.
Hiperspacex* Used to deal with memory files as large as 2 Byte bod
Memory Files gigabytes. stream
CICS Data Queues |Used under the Customer Information Control | Record B2d
System (CICS). CICS data queues are
automatically selected under CICS for the
standard streams stdout and stderr for C, or
cout and cerr for C++. The CICS I/O
commands are supported through the
Command Level interface. The standard stream
stdin under C (or cin under C++) is treated as
an empty file under CICS.
0S/390 Language |Used when you are running with OS/390 Record B23
Environment Language Environment. The message file is
Message File automatically selected for stderr under OS/390
Language Environment. For C++, automatic
selection is of cerr.
The following table lists the environments that OS/390 C/C++ supports, and
which categories of I/O work in which environment.
Table 5. I/O Categories and Environments That Support Them
Type of 1/0 MVS IMS online | TSO TSO batch | CICS
batch
OS1/0 Yes Yes Yes Yes No
HFS 1/0 Yes Yes Yes Yes No
VSAM 1/0 Yes Yes Yes Yes No
Terminal I/O No No Yes No No
Memory Files Yes Yes Yes Yes Yes
Hiperspace Memory Files Yes Yes Yes Yes No
CICS Data Queues No No No No Yes
0S/390 Language Yes Yes Yes Yes No
Environment Message File

Note: MVS batch includes IMS batch. TSO is interactive. TSO batch indicates an
environment set up by a batch call to IKJEFT01. Programs run in such an environment
behave more like a TSO interactive program than an MVS batch program.

Chapter 6. Opening Files

49

Specifying What Kind of File to Use

This section discusses:
* the kinds of files you can use
e how to specify RECFM, LRECL, and BLKSIZE

* how to specify DDnames

OS Files

0S/390 C/C++ treats a file as an OS file, provided that it is not a CICS data
queue, or an HFS, VSAM, memory, terminal, or Hiperspace file.

HFS Files

When you are running under MVS, TSO (batch and interactive), or IMS, OS/390
C/C++ recognizes an HFS I/0 file as such if the name specified on the foien () or
freopen() call conforms to certain rules. These rules are described in

DS /390 C/C++ Determines What Kind of File to ﬂppn” on page 57

VSAM Data Sets

0S/390 C/C++ recognizes a VSAM data set if the file exists and has been defined
as a VSAM cluster before the call to fopen().

Terminal Files

When you are running with the run-time option POSIX(0OFF) under interactive TSO,
0S/390 C/C++ associates streams to the terminal. You can also call fopen() to
open the terminal directly if you are running under TSO (interactive or batch), and
either the filename you specify begins with an asterisk (*), or the ddname has been
allocated with a DSN of *.

When running with POSIX(ON), OS/390 C/C++ associates streams to the terminal
under TSO and the shell if the filename you have specified fits one of the
following criteria:

* Under TSO (interactive and batch), the name must begin with the sequence //*,
or the ddname must have been allocated with a DSN of *.

* Under the shell, the name specified on fopen() or freopen() must be the
character string returned by ttyname().

Interactive IMS and CICS behave differently from what is described here. For more
information about terminal files with interactive IMS and CICS see

”

If you are running with POSIX(ON) outside the shell, you must use the regular
0S/390 C/C++ I/0 functions for terminal I/O. If you are running with POSIX(ON)
from the shell, you can use the regular OS/390 C/C++ I/O functions or the POSIX
low-level functions (such as read()) for terminal 1/0O.

50 0S/390 V2R8.0 C/C++ Programming Guide

Memory Files and Hiperspace Memory Files

You can use regular memory files on all the systems that OS/390 C/C++ supports.
To create one, specify type=memory on the fopen() or freopen() call that creates the
file. A memory file, once created, exists until either of the following happens:

* You explicitly remove it with remove() or c1rmemf ()

¢ The root program is terminated

While a memory file exists, you can just use another fopen() or freopen() that
specifies the memory file’s name; you do not have to specify type=memory. For
example:

CBC3GOF1

/* this example shows how fopen() may be used with memory files */

#include <stdio.h>
char text[3], *result;
FILE % fp;

int main(void)
{

fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */

fprintf(fp, "%d\n",10); /* Writes to the file =/
fclose(fp); /* Closes the file */
fp = fopen("a.b", "r"); /* Reopens the same x/
/+= file (already */
/* a memory file) */

if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results =*/
printf("value retrieved is %s\n",result);
fclose(fp); /* Closes the file */

return(0);

}

Figure 4. Memory File Example

A valid memory file name will match current file restrictions on a real file. Thus, a
memory filename that is classified as HFS can have more characters than can one
classified as an MVS filename.

If you are not running under CICS, you can open a Hiperspace memory file as
follows:

fp = fopen("a.b", "w, type=memory(hiperspace)");

If you specify hiperspace and you are running in a CICS environment, OS/390
C/C++ opens a regular memory file. If you are running with the run-time options
POSIX(ON) and TRAP(OFF), specifying hiperspace has no effect; OS/390 C/C++ will
open a regular memory file. You must specify TRAP(ON) to be able to create
Hiperspace files.

CICS Data Queues

A CICS transient data queue is a pathway to a single predefined destination. The
destination can be a ddname, another transient data queue, a VSAM file, a
terminal, or another CICS environment. The CICS system administrator defines the
queues that are active during execution of CICS. All users who direct data to a
given queue will be placing data in the same location, in order of occurrence.

Chapter 6. Opening Files 51

You cannot use fopen() or freopen() to specify this kind of I/O. It is the category
selected automatically when you call any ANSI functions that reference stdout and
stderr under CICS. If you reference either of these in a C or C++ program under
CICS, OS/390 C/C++ attempts to open the CESO (stdout) or CESE (stderr)
queue. If you want to write to any other queue, you should use the CICS-provided
interface.

0OS/390 Language Environment Message File

The OS/390 Language Environment message file is managed by OS/390 Language
Environment and may not be directly opened or closed with fopen(), freopen() or
fclose() within a C or C++ application. In OS/390 Language Environment, output
from stderr is directed to the OS/390 Language Environment message file by
default. You can use freopen() and fclose() to manage stderr, or you can
redirect it to another destination. There are application writer interfaces (AWIs)
that enable you to access the OS/390 Language Environment message file directly.
These are documented in the OS/390 Language Environment Programming Guide.

” . . . 17

See for

more information on OS/390 Language Environment message files.

How to Specify RECFM, LRECL, and BLKSIZE

For OS files and terminal files, the values of RECFM, LRECL, and BLKSIZE are
significant. When you open a file, OS/390 C/C++ searches for the RECFM, LRECL,
and BLKSIZE values in the following places:

1. The fopen() or freopen() statement that opens the file

The DD statement (described in DDnames” on page 56)

2.
3. The values set in the existing file
4.

The default values for fopen() or freopen().

When you call fopen() and specify a write mode (w, wb, w+, wb+, w+b) for an
existing file, OS/390 C/C++ uses the default values for fopen() if:

* the data set is opened by the dataset name or

¢ the data set is opened by ddname and the DD statement does not have any
attributes filled in.

These defaults are listed in [[able 6 on page 55. To force OS/390 C/C++ to use
existing attributes when you are opening a file, specify recfm=+ on the fopen() or
freopen() call.

recfm=+* is valid only for existing DASD data sets. It is ignored in all other cases.

Notes:

1. When specifying a ddname on fopen() or freopen() you should be aware of
the following when opening the ddname using one of the write modes:

2. If the ddname is allocated to an already existing file and that ddname has not
yet been opened, then the DD statement will not contain the recfm, Trecl, or
bT1ksize. That information is not filled in until the ddname is opened for the
first time. If the first open uses one of the write modes (w,wb, w+, wb+, wtb)
and recfm=+ is not specified, then the existing file attributes are not considered.
Therefore, since the DD statement has not yet been filled in, the fopen()
defaults are used.

52 0S/390 V2R8.0 C/C++ Programming Guide

3. If the ddname is allocated at the same time the file is created, then the DD
statement will contain the same recfm, Trecl, and blksize specified for the
file. If the first open uses one of the write modes (w, wb, w+, wb+, w+b) and
recfm=" is not specified, then OS/390 C/C++ picks up the existing file
attributes from the DD statement since they were placed there at the time of
allocation.

You can specify the record format in
* The RECFM parameter of the JCL DD statement under MVS
¢ The RECFM parameter of the ALLOCATE statement under TSO

* The _ recfm field of the __dyn_t structure passed to the dynalloc() library
function under MVS

* The RECFM parameter on the call to the fopen() or freopen() library function

* The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

* The ISPF data set utility under MVS

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE

or RECFM that are not physically supported on the device. [[ahle 4 an page 44 lists all
the categories of 1/O that OS/390 C/C++ supports and directs you to where you

can find more information about them.

You can specify the logical record length in
* The LRECL parameter of the JCL DD statement under MVS
* The LRECL parameter of the ALLOCATE statement under TSO

* The _ Trecl field of the _dyn_t structure passed to the dynalloc() library
function under MVS

* The LRECL parameter on the call to the fopen() or freopen() library function

* The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

* The ISPF data set utility

If you are creating a file and you do not select a record size, OS/390 C/C++ uses a

default. See [fopen() Defaults” an page 54 for details on how defaults are

calculated.

You can specify the block size in
¢ The BLKSIZE parameter of the JCL DD statement
* The BLKSIZE parameter of the ALLOCATE statement under TSO

* The _ blksize field of the _ dyn_t structure passed to the dynalloc() library
function under MVS

» The BLKSIZE parameter on a call to the fopen() or freopen() library function

* The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

* The ISPF data set utility

If you are creating a file and do not select a block size, OS/390 C/C++ uses a
default. The defaults are listed in

Chapter 6. Opening Files 53

fopen() Defaults

You cannot specify a file attribute more than once on a call to fopen() or
freopen(). If you do, the function call fails. If the file attributes specified on the
call to fopen() differ from the actual file attributes, fopen() usually fails. However,
fopen() does not fail if:

* The file is opened for w, w+, wb, or wb+, and the file is neither an existing PDS or
PDSE nor an existing file opened by a ddname that specifies DISP=MOD. In such
instances, fopen() attributes override the actual file attributes. However, if
recfm=+ is specified on the fopen(), any attributes that are not specified either
on the fopen() or for the ddname will be retrieved from the existing file. If the
final combination of attributes is invalid, the fopen() will fail.

* The file is opened for reading (r or rb) with recfm=U. Any other specified
attributes should be compatible with those of the existing data set.

In calls to fopen(), the LRECL, BLKSIZE, and RECFM parameters are optional. (If you
are opening a file for read or append, any attributes that you specify must match
the existing attributes.)

If you do not specify file attributes for fopen() (or for an I/O Stream object), you
get the following defaults.

RECFM Defaults

If recfm is not specified in a fopen() call for an output binary file, recfm defaults
to:

* recfm=VB for spool (printer) files
* recfm=FB otherwise

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

* recfm=F if EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

* recfm=VBA for spool (printer) files.
e recfm=U for terminal files.

* recfm=VB for MVS files.

* recfm=VB for all other OS files.

If recfm is not specified for a record I/0 file, you will get the default of recfm=VB.
LRECL and BLKSIZE defaults

The following table shows the defaults for LRECL and BLKSIZE when OS/390
C/C++ is creating a file, not appending or updating it. The table assumes that
0S/390 C/C++ has already processed any information from the fopen() statement
or ddname. The defaults provide a basis for fopen() to select values for
unspecified attributes when you create a file.

54 0S/390 V2R8.0 C/C++ Programming Guide

Table 6. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

Irecl specified? blksize specified?? @ RECFM LRECL BLKSIZE
no no All F 80 80
All FB 80 maximum integral multiple of
80 less than or equal to max
All V, VB, minimum of 1028 or max—4 max
VS, or
VBS
AllU 0 max
yes no AllF Irecl Irecl
All FB Irecl maximum integral multiple of
Irecl less than or equal to max
AllV Irecl Irecl+4
All U 0 [recl
no yes ANl F or blksize blksize
FB
All V, VB, minimum of 1028 or blksize—4 blksize
VS, or
VBS
AllU 0 blksize

Note: “All”includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control

character (M) specifier.

In the preceding table, the value max represents the maximum block size for the
device. These are the current default maximum block sizes for several devices that

0S/390 C/C++ supports:
Device

DASD

3203 Printer

3211 Printer

4245 Printer

2540 Reader

2540 Punch

2501 Reader

3890 Document Processor

TAPE

Block Size
6144

132

132

132

80

80

80

80

32760

For more information about specific default block sizes, as returned by the DEVTYPE
macro, refer to the DFP System Programming Reference.

For DASD files that do not have recfm=U, if you specify b1ksize=0 on the call to
fopen() or freopen() and you have DFP Release 3.1 or higher, the system
determines the optimal block size for your file. If you do not have the correct level
of DFP or you specify blksize=0 for a ddname instead of specifying it on the
fopen() or freopen() call, OS/390 C/C++ behaves as if you had not specified the

blksize parameter at all.

Chapter 6. Opening Files 55

For information about block sizes for different categories of I/0O, see the chapters

listed in [[able 4 on page 48.

You do not have to specify the LRECL and BLKSIZE attributes; however, it is possible
to have conflicting attributes when you do specify them. The restrictions are:

* For a V file, the LRECL must be greater than 4 bytes and must be at least 4 bytes
smaller than the BLKSIZE.

* For an F file, the LRECL must be equal to the BLKSIZE, and must be at least 1.
* For an FB file, the BLKSIZE must be an integer multiple of the LRECL.

e For a U file, the LRECL must be less than or equal to the BLKSIZE and must be
greater than or equal to 0. The BLKSIZE must be at least 1.

* In spanned files, the LRECL and the BLKSIZE attributes must be greater than 4.

* If you specify LRECL=X, the BLKSIZE attribute must be less than or equal to the
maximum block size allowed on the device.

To determine the maximum LRECL and BLKSIZE values for the various file types
and devices available on your operating system, refer to the chapters listed in

[able 4 on page 48.

DDnames

DD names are specified by prefixing the DD name with DD:. All the following
forms of the prefix are supported:

* DD:

e dd:

« dD:

* Dd:

The DD statement enables you to write C source programs that are independent of
the files and input/output devices they will use. You can modify the parameters of
a file (such as LRECL, BLKSIZE, and RECFM) or process different files without
recompiling your program.

How to Create a DDname Under MVS Batch
To create a ddname under MVS batch, you must write a JCL DD statement.
For the C file PARTS.INSTOCK, you would write a JCL DD statement similar
to the following:

//STOCK DD DSN=PARTS.INSTOCK, . . .

HES files can be allocated with a DD card. For example:

//STOCK DD PATH='/u/parts.instock',
// PATHOPTS=(OWRONLY,0CREAT,0TRUNC) ,
// PATHMODE= (SIRWXU, SIRWXO0, SIRWXG)

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations
such as freopen(), and the DD statement will be unallocated.

For more information on writing DD statements, refer to the JCL manuals
listed in the OS/390 Information Roadmap.

How to Create a DDname Under TSO
To create a ddname under TSO, you must write an ALLOCATE command.

56 0S/390 V2R8.0 C/C++ Programming Guide

For the declaration shown above for the C file STOCK, you should write a
TSO ALLOCATE statement similar to the following;:

ALLOCATE FILE(STOCK) DATASET('PARTS.INSTOCK")

You can also allocate HFS files with TSO ALLOCATE commands. For
example:

ALLOC FI(stock) PATH('/used/parts.stock') PATHOPTS(OWRONLY,OCREAT)
PATHMODE (sirwxu,sirwxo,sirwxg)

See the OS/390 Information Roadmapfor more information on TSO ALLOCATE.

How to Create a DDname In Source Code
You can also use the OS/390 C/C++ library functions svc99() and
dynalloc() to allocate ddnames. See the OS/390 C/C++ Run-Time Library
Reference for more information about these functions.

You do not always need to describe the characteristics of the data in files both
within the program and outside it. There are, in fact, advantages to describing the
characteristics of your data in only one place.

Opening a file by ddname may require the merging of information internal and
external to the program. If any conflict is detected that will prevent the opening of
a file, fopen() returns a NULL pointer to indicate that the file cannot be opened. See
the 05/390 C/C++ Run-Time Library Reference for more information on fopen().

If DISP=MOD is specified on a DD statement and if the file is opened in w or wb mode,
the DISP=MOD causes the file to be opened in append mode rather than in write
mode.

Note: You can open a ddname only with fopen() or freopen(). open() does not
interpret ddnames as such.

How OS/390 C/C++ Determines What Kind of File to Open

This section describes the criteria that OS/390 C/C++ uses to determine what kind
of file it is opening. OS/390 C/C++ goes through the categories listed in

in the order that follows. If a category applies to a file, OS/390 C/C++
stops searching.

Note: Files cannot be opened under CICS when you have specified the POSIX(ON)
run-time option.

The following chart shows how OS/390 C/C++ determines what type of file to
open under TSO, MVS batch, and interactive IMS with POSIX(ON). For information
on the types of files shown in the chart see the appropriate chapter in the I/O
section.

Chapter 6. Opening Files 57

MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 59.

Continue at m

005

Is hiperspace specified?
Yes No

05/390 C/C++ opens a regular memory file.

007

0S/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011
0S/390 C/C++ opens an OS file.

012

0S5/390 C/C++ opens the existing memory file.

58 0S/390 V2R8.0 C/C++ Programming Guide

014

MAP 0010 (continued)

013

Continue to Btep 032 on page 6(.

Are you running under TSO interactive?

Yes

016

No

015

0S/390 C/C++ removes the asterisk from the name unless the asterisk is the

only character, and proceeds to

0S/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?

Yes

021

No

018

Does the name specified match that of an existing memory file?
Yes No

019
0S/390 C/C++ opens an HFS file.

020

0S5/390 C/C++ opens the existing memory file.

Does ddname exist?

Yes

No

022

Does a memory file exist?
Yes No

023

0S/390 C/C++ opens an HFS file called either *DD:ddname or
DD:ddname.

024

0S5/390 C/C++ opens the existing memory file.

Chapter 6. Opening Files

59

MAP 0010 (continued)
025

Is a path specified in ddname?
Yes No

026

0S/390 C/C++ opens an OS file.

027
0S/390 C/C++ opens an HFS file.

028

Is the name of the form *DD:ddname or DD:ddname?
Yes No

029

Does the name specified match that of an existing memory file?
Yes No

030
0S/390 C/C++ opens an OS file.

031

0S/390 C/C++ opens the existing memory file.

032

Does ddname exist?
Yes No

033

Does a memory file exist?
Yes No

034
ERROR

035

0S5/390 C/C++ opens the existing memory file.

60 0S/390 V2R8.0 C/C++ Programming Guide

MAP 0010 (continued)
036

Is a path specified in ddname?
Yes No

037

0S/390 C/C++ opens an OS file.

038
0S/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to
open under TSO, MVS batch, and interactive IMS with POSIX(0FF). For information
on the types of files shown in the chart see the appropriate chapter in the I/O
section.

Chapter 6. Opening Files 61

MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF)

001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003

Continue at Step 017 on page 63,

Continue at m

005

Is hiperspace specified?
Yes No

05/390 C/C++ opens a regular memory file.

007

0S/390 C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011
0S/390 C/C++ opens an OS file.

012

0S5/390 C/C++ opens the existing memory file.

62 0S/390 V2R8.0 C/C++ Programming Guide

MAP 0020 (continued)

013

Continue at Btep 0211

014

Are you running under TSO interactive?
Yes No

015

0S/390 C/C++ removes the asterisk from the name unless the asterisk is the

only character, and proceeds to

016

0S/390 C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019
0S/390 C/C++ opens an OS file.

020

0S5/390 C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?

Yes No
023
ERROR
024

0S/390 C/C++ opens the existing memory file.

Chapter 6. Opening Files

63

MAP 0020 (continued)
025

Is a path specified in ddname?
Yes No

026

0S/390 C/C++ opens an OS file.

027
0S/390 C/C++ opens an HFS file.

The following chart shows how OS/390 C/C++ determines what type of file to
open under CICS. For information on the types of files shown in the chart see the
appropriate chapter in the I/O section.

64 0S/390 V2R8.0 C/C++ Programming Guide

MAP 0030: Under CICS
001

Is type=memory specified?
Yes No

002

Does the name specified match that of an existing memory file?
Yes No

003
The fopen() call fails.

0S5/390 C/C++ opens that memory file.

005

Is hiperspace specified?
Yes No

0S5/390 C/C++ opens the specified memory file.

007
The fopen() call ignores the hiperspace specification and opens the memory file.

Chapter 6. Opening Files 65

MAP 0030 (continued)

66 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 7. Buffering of C Streams

This chapter describes buffering modes used by OS/390 C/C++, library functions
available to control buffering and methods of flushing buffers.

0S/390 C/C++ uses buffers to map C I/O to system-level I/O. When OS/390
C/C++ performs I/O operations, it uses one of the following buffering modes:

* Line buffering - characters are transmitted to the system as a block when a
new-line character is encountered. Line buffering is meaningful only for text
streams and HFS files.

e Full buffering - characters are transmitted to the system as a block when a buffer
is filled.

* No buffering - characters are transmitted to the system as they are written. Only
regular memory files and HFS files support the no buffering mode.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()
and setbuf() library functions to control buffering, but you cannot change the
buffering mode after an I/O operation has used the buffer, as all read, write, and
reposition operations do. In some circumstances, repositioning alters the contents
of the buffer. It is strongly recommended that you only use setbuf() and

setvbuf () before any I/0O, to conform with ANSI, and to avoid any dependency on
the current implementation. If you use setvbuf(), OS/390 C/C++ may or may not
accept your buffer for its internal use. For a hiperspace memory file, if the size of
the buffer specified to setvbuf() is 8K or more, it will affect the number of
hiperspace blocks read or written on each call to the operating system; the size is
rounded down to the nearest multiple of 4K.

Full buffering is the default except in the following cases:

* If you are using an interactive terminal, OS/390 C/C++ uses line buffering.
* If you are running under CICS, OS/390 C/C++ also uses line buffering.

* stderr is line-buffered by default.

* If you are using a memory file, OS/390 C/C++ does not use any buffering.

For terminals, because 1/0 is always unblocked, line buffering is equivalent to full
buffering.

For record I/0 files, buffering is meaningful only for blocked files or for record
I/0 HEFS files using full buffering. For unblocked files, the buffer is full after every
write and is therefore written immediately, leaving nothing to flush. For blocked
files or fully-buffered HEFS files, however, the buffer can contain one or more
records that have not been flushed and that require a flush operation for them to
go to the system.

You can flush buffers to the system in several different ways.

* If you are using full buffering, OS/390 C/C++ automatically flushes a buffer
when it is filled.

* If you are using line buffering for a text file or an HFS file, OS/390 C/C++
flushes a buffer when you complete it with a control character. Except for HFS
files, specifying line buffering for a record I/O or binary file has no effect;
0S/390 C/C++ treats the file as if you had specified full buffering.

* 0S/390 C/C++ flushes buffers to the system when you close a file or end a
program.

© Copyright IBM Corp. 1996, 1999 67

* O5/390 C/C++ flushes buffers to the system when you call the fflush() library
function, with the following restrictions:

— A file opened in text mode does not flush data if a record has not been
completed with a new-line.

— A file opened in fixed format does not flush incomplete records to the file.

— An FBS file does not flush out a short block unless it is a DISK file opened
without the NOSEEK parameter.

e All streams are flushed across non-POSIX system() calls. Streams are not flushed
across POSIX system() calls. For a POSIX system call, we recommend that you
do a fflush() before the system() call.

If you are reading a record that another user is writing to at the same time, you
can see the new data if you call fflush() to refresh the contents of the input
buffer.

Note: This is not supported for VSAM files.

You may not see output if a program that is using input and output fails, and the
error handling routines cannot close all the open files.

68 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 8. Using ASA Text Files

This chapter describes the American Standards Association (ASA) text files, the
control characters used in ASA files, how OS/390 C/C++ translates the control
characters, and how OS/390 C/C++ treats ASA files during input and output. The
first column of each record in an ASA file contains a control character (' ', '0", "=/,
1", or '+') when it appears in the external medium.

0S/390 C/C++ translates control characters in ASA files opened for text processing
(r, w, a, r+, w+, a+ functions). On input, OS/390 C/C++ _translates ASA
characters to sequences of control characters, as shown in able 4. On output,
0S/390 C/C++ performs the reverse translation. The following sequences of
control characters are translated, and the resultant ASA character becomes the first
character of the following record:

Table 7. C Control to ASA Characters Translation Table

C Control Character ASA Character Description
Sequence

\n n skip one line
\n\n 0’ skip two lines
\n\n\n i skip three lines
\f 1 new page

\r + overstrike

If you are writing to the first record or byte of the file and the output data does
not start with a translatable sequence of C control characters, the ' ' ASA control
character is written to the file before the specified data.

0S/390 C/C++ does not translate or verify control characters when you open an
ASA file for binary or record I/0.

Example of Writing to an ASA File
CBC3GAS1

/* this example shows how to write to an ASA file */

#include <stdio.h>
#define MAX_LEN 80

int main(void) {
FILE *fp;
int i;
char s[MAX_LEN+1];

Figure 5. ASA Example (Part 1 of 2)

© Copyright IBM Corp. 1996, 1999 69

fp = fopen("asa.file", "w, recfm=fba");

if (fp != NULL) {
fputs("\n\nabcdef\f\r345\n\n", fp);
fputs ("\n\n9034\n", fp);
fclose(fp);

return(0);

}

fp = fopen("asa.file", "r");
for (i = 0; i <5; i++) {
fscanf(fp, "%s", s[0]);
printf("string = %s\n",s);
}
1

Figure 5. ASA Example (Part 2 of 2)

This program writes five records to the file asa.file, as follows:

Oabcdef
1
+345

9034

Note that the last record is 9034. The last single "\n' does not create a record with a
single control character (' '). If this same file is opened for read, and the getc()
function is called to read the file 1 byte at a time, the same characters as those that
were written out by fputs() in the first program are read.

ASA File Control

70

ASA files are treated as follows:

* If the first record written does not begin with a control character, then a single
new-line is written and then followed by data; that is, the ASA character
defaults to a space when none is specified.

* In ASA files, control characters are treated the same way that they are treated in
other text files, with the following exceptions:

"\f' — form feed
Defines a record boundary and determines the ASA character of the

following record. Refer to [[able 7 on page 69.
"\n' — new-line
Does either of these:

— Define a record boundary and determines the ASA character of the
following record (see translation table above).

— Modity the preceding ASA character if the current position is directly
after an ASA character of ' ' or '0' (see translation table above).

"\1' — carriage return
Defines a record boundary and determines the ASA character of the
following record (see translation table above).

* Records are terminated by writing a new-line ('\n'), carriage return ('\r'), or
form feed ('\f') character.

* An ASA character can be updated to any other ASA character.

Updates made to any of the C control characters that make up an ASA character
cause the ASA character to change.

0S/390 V2R8.0 C/C++ Programming Guide

If the file is positioned directly after a ' ' or '0' ASA character, writing a "\n'
character changes the ASA character to a '0' or '-' respectively. However, if the
ASA character is a -, '1' or '+, the "\n' truncates the record (that is, it adds blank
padding to the end of the record), and causes the following record's ASA
character to be written as a ' '. Writing a '\f' or '\r' terminates the record and
start a new one, but writing a normal data character simply overwrites the first
data character of the record.

* You cannot overwrite the ASA character with a normal data character. The
position at the start of a record (at the ASA character) is the logical end of the
previous record. If you write normal data there, you are writing to the end of
the previous record. OS/390 C/C++ truncates data for the following files, except
when they are standard streams:

— Variable-format files
— Undefined-format files
— Fixed-format files in which the previous record is full of data

When truncation occurs, OS/390 C/C++ raises SIGIOERR and sets both errno and
the error flag.

* Even when you update an ASA control character, seeking to a previously
recorded position still succeeds. If the recorded position was at a control
character that no longer exists (because of an update), the reposition is to the
next character. Often, this is the first data character of the record. For example, if
you have the following string:
you have saved the position of the third new-line. If you then update the ASA

\n\n\nHELLO WORLD

x = ftell()

character to a form feed ('\f'), the logical ASA position x no longer exists:
\fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid
character, which is the letter 'H':

\fHELLO WORLD

fseek() to pos x

 If you try to shorten a record when you are updating it, OS/390 C/C++ adds
enough blank padding to fill the record.

¢ The ASA character can represent up to three new-lines, which can increase the
logical record length by 1 or 2 bytes.

¢ Extending a fixed logical record on update implies that the logical end of the
line follows the last written non-blank character.

* If an undefined text record is updated, the length of the physical records does
not change. If the replacement record is:

Chapter 8. Using ASA Text Files 71

— Longer - data characters beyond the record boundary are truncated. At the
point of truncation, the User error flag is set and SIGIOERR is raised (if the
signal is not set up to be ignored). Truncation continues until you do one of
these:

1. Write a new-line character, carriage return, or form feed to complete the
current record

2. Close the file explicitly or implicitly at termination
3. Reposition to another position in the file.
— Shorter - the blank character is used to overwrite the rest of the record.

* If you close an ASA file that has a new-line as its last character, OS/390 C/C++
does not write the new-line to the physical file. The next time you read from the
file or update it, OS/390 C/C++ returns the new-line to the end of the file. An
exception to this rule happens when you write only a new-line to a new file. In
this case, OS/390 C/C++ does not truncate the new-line; it writes a single blank
to the file. On input, however, you will read two new-lines.

* Using ASA format to read a file that contains zero-length records results in
undefined behavior.

* You may have trouble updating a file if two ASA characters are next to each
other in the file. For example, if there is a single-byte record (containing only an
ASA character) immediately followed by the ASA character of the next record,
you are positioned at or within the first ASA character. If you then write a
sequence of '\n' characters intended to update both ASA characters, the '\n's
will be absorbed by the first ASA character before overflowing to the next
record. This absorption may affect the crossing of record boundaries and cause
truncation or corruption of data.

At least one normal intervening data character (for example, a space) is required
between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than
one consecutive new-line: the result of the update depends on how the
original ASA records were structured.

* If you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system on completion (that is,
when a '\n', '\r' or '\f' character is written or when the file is closed).

If you are writing data to a blocked file without intervening flush or reposition
requests, and the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system on completion.

If you are writing data to a spanned file without intervening flush or reposition
requests, and the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

 If a flush occurs while an ASA character indicating more than one new-line is
being updated, the remaining new-lines will be discarded and a read will
continue at the first data character. For example, if '\n\n\n' is updated to be
"\n\n' and a flush occurs, then a '0' will be written out in the ASA character
position.

72 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 9. OS/390 C Support for the Double-Byte Character
Set

The number of characters in some languages such as Japanese or Korean is larger
than 256, the number of distinct values that can be encoded in a single byte. The
characters in such languages are represented in computers by a sequence of bytes,
and are called multibyte characters. This chapter explains how the OS/390 C
compiler supports multibyte characters.

Note: The OS/390 C++ compiler does not have native support for multibyte
characters. The support described here is what OS/390 C provides; for C++,
you can take advantage of this support by using interlanguage calls to C
code. Please refer to L i i ificati i Z
for more information.

The OS/390 C compiler supports the IBM EBCDIC encoding of multibyte
characters, in which each natural language character is uniquely represented by
one to four bytes. The number of bytes that encode a single character depends on
the global shift-state information. If a stream is in initial shift state, one multibyte
character is represented by a byte or sequence of bytes that has the following
characteristics:

* It starts with the byte containing the shift-out (0x0e) character.

* The shift-out character is followed by 2 bytes that encode the value of the
character.

* These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,
making this sequence represent a 4-byte multibyte character. Multibyte characters
of various lengths can be normalized by the set of OS/390 C library functions and
encoded in units of one length. Such normalized characters are called wide
characters; in OS/390 C they are represented by two bytes. Conversions between
multibyte format and wide character format can be performed by string conversion
functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowcs(), as well
by the family of the wide character I/O functions. MB_CUR_MAX is defined in the
std1ib.h header file. Depending on its value, either of the following happens:

* When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out
and shift-in characters are treated as data as well.

* When MB_CUR_MAX is 4:

— On input, the wide character I/O functions read the multibyte character from
the streams, and convert them to the wide characters.

— On output, they convert wide characters to multibyte characters and write
them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record do
not. There are three possible orientations of a stream:

Non-oriented
A stream that has been associated with an open file before any operation
other than setbuf() or setvbuf() is performed. Subsequent operations on
a non-oriented stream change the orientation of the stream. You can use
the setbuf() and setvbuf() functions only on a non-oriented stream.
When you use these functions, the stream remains non-oriented. When you

© Copyright IBM Corp. 1996, 1999 73

perform one of the wide character input/output operations on a
non-oriented stream, the stream becomes wide-oriented. When you perform
one of the byte input/output operations on a non-oriented stream, the
stream becomes byte-oriented.

Wide-oriented
A stream on which any wide character input/output functions are
guaranteed to operate correctly. Conceptually, wide-oriented streams are
sequences of wide characters. The external file associated with a
wide-oriented stream is a sequence of multibyte characters. Using byte I/O
functions on a wide-oriented stream results in undefined behavior. A
stream opened for record I/O cannot be wide-oriented.

Byte-oriented
A stream on which any byte input/output functions are guaranteed to
operate properly. Using wide character I/O functions on a byte
input/output stream results in undefined behavior. Byte-oriented streams
have minimal support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftell()
functions do not change the orientation.

Once you have established a stream’s orientation, the only way to change it is to
make a successful call to the freopen() function, which removes a stream’s
orientation.

The wchar.h header file declares the WEOF macro and the functions that support
wide character input and output. The macro expands to a constant expression of
type wint_t. Certain functions return WEOF type when the end-of-file is reached on
the stream.

Note: The behavior of the wide character I/O functions is affected by the LC_CTYPE
category of the current locale, and the setting of MB_CUR_MAX. Wide-character
input and output should be performed under the same LC_CTYPE setting. If
you change the setting between when you read from a file and when you
write to it, or vice versa, you may get undefined behavior. If you change it
back to the original setting, however, you will get the behavior that is
documented. See the introduction of this chapter for a discussion of the
effects of MB_CUR_MAX.

Opening Files

You can use the fopen() or freopen() library functions to open I/0O files that
contain multibyte characters. You do not need to specify any special parameters on
these functions for wide character I/0O.

Reading Streams and Files

Wide character input functions read multibyte characters from the stream and
convert them to wide characters. The conversion process is performed in the same
way that the mbrtowc () function performs conversions.

The following OS/390 C library functions support wide character input:
o fgetwc()
o fgetws()

74 0S/390 V2R8.0 C/C++ Programming Guide

e getwc()
e getwchar()
e swscanf()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

e scanf()
e fscanf()
e sscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted I/O functions, refer to the
05/390 C/C++ Run-Time Library Reference.

The wide-character input/output functions maintain global shift-state for multibyte
character streams they read or write. For each multibyte character they read,
wide-character input functions change global shift-state as the mbrtowc () function
would do. Similarly, for each multibyte character they write, wide-character output
functions change global shift-state as the wcrtomb() function would do.

When you are using wide-oriented input functions, multibyte characters are
converted to wide characters according to the current shift state. Invalid
double-byte character sequences cause conversion errors on input. As OS/390 C
uses wide-oriented functions to read a stream, it updates the shift state when it
encounters shift-out and shift-in characters. Wide-oriented functions always read
complete multibyte characters. Byte-oriented functions do not check for complete
multibyte characters, nor do they maintain information about the shift state.
Therefore, they should not be used to read multibyte streams.

For binary streams, no validation is performed to ensure that records start or end
in initial shift state. For text streams, however, all records must start and end in
initial shift state.

Writing Streams and Files

Wide character output functions convert wide characters to multibyte characters
and write the result to the stream. The conversion process is performed in the
same way that the wertomb() function performs conversions.

The following OS/390 C functions support wide character output:
o fputwc()

o fputws()

e swprintf()

e vswprintf()

* putwc()

e putwchar()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

o printf()
o fprintf()

Chapter 9. 0S/390 C Support for the Double-Byte Character Set 75

o sprintf()

All other output functions do not support the wchar_t data type. However, all of
the output functions support multibyte character output for text streams if
MB_CUR_MAX is 4.

For a detailed description of unformatted and formatted 1/O functions, refer to the
05/390 C/C++ Run-Time Library Reference.

Writing Text Streams

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. For text streams, all records must start and end in initial
shift state. The wide-character functions add shift-out and shift-in characters as
they are needed. When the file is closed, a shift-out character may be added to
complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, OS/390 C
starts each record in initial shift state and makes sure you complete each record in
initial shift state before moving to the next record. When a string starts with a
shift-out, all data written is treated as multibyte, not single-byte. This means that
you cannot write a single-byte control character (such as a new-line) until you
complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.
0S/390 C truncates the second shift-out and raises SIGIOERR if SIGIOERR is not set
to SIG_IGN.

When you write a shift-in character to an incomplete multibyte character, OS/390
C completes the multibyte character with a padding character (0xfe) before it
writes the shift-in. The padding character is not counted as an output character in
the total returned by the output function; you will never get a return code
indicating that you wrote more characters than you provided. If OS/390 C adds a
padding character, however, it does raise SIGIOERR, if SIGIOERR is not set to
SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are
not interpreted or validated.

When you close the file, OS/390 C ensures that the file ends in initial shift state.
This may require adding a shift-in and possibly a padding character to complete
the last multibyte character, if it is not already complete. If padding is needed in
this case, OS/390 C does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all
records end and start in initial shift state. When a shift-out is written to the file,
either directly or indirectly by wide-oriented functions, OS/390 C calculates the
maximum number of complete multibyte characters that can be contained in the
record with the accompanying shift-in. If multibyte output (including any required
shift-out and shift-in characters) does not fit within the current record, the behavior
depends on what type of file it is (a memory file has no record boundaries and so
never has this particular problem). For a standard stream or terminal file, data is
wrapped from one record to the next. Shift characters may be added to ensure that
the first record ends in initial shift state and that the second record starts in the
required shift state.

76 0S/390 V2R8.0 C/C++ Programming Guide

For files that are not standard streams, terminal files, or memory files, any attempt
to write data that does not fit into the current record results in data truncation. In
such a case, the output function returns an error code, raises SIGIOERR, and sets
errno and the error flag. Truncation continues until initial state is reached and a
new-line is written to the file. An entire multibyte stream may be truncated,
including the shift-out and shift-in, if there are not at least two bytes in the record.
For a wide-oriented stream, truncation stops when a wchar_t new-line character is
written out.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe.

Writing Binary Streams

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. No validation is performed to ensure that records start or
end in initial shift state. When the file is closed, any appends are completed with a
shift-in character, if it is needed to end the stream in initial shift state. If you are
updating a record when the stream is closed, the stream is flushed. See m
mgfor more information.

Byte-oriented output functions do not interpret binary data. If you use them for
writing multibyte data, ensure that your data is correct and ends in initial shift
state.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe for a wide-oriented file.

If you update a record after you call fgetpos(), the shift state may change. Using
the fpos_t value with the fsetpos() function may cause the shift state to be set
incorrectly.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS5/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of stream. If you call one OS/390 C
program from another OS/390 C program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee. A call to the
POSIX system() function does not flush any streams to the system. For a POSIX
system call, we recommend that you do a fflush() before the system call.

Chapter 9. 0S/390 C Support for the Double-Byte Character Set 77

Flushing Text Streams

When you call fflush() after updating a text stream, fflush() calculates your
current shift state. If you are not in initial shift state, OS/390 C looks forward in
the record to see whether a shift-in character occurs before the end of the record or
any shift-out. If not, OS/390 C adds a shift-in to the data if it will not overwrite a
shift-out character. The shift-in is placed such that there are complete multibyte
characters between it and the shift-out that took the data out of initial state.
0S/390 C may accomplish this by skipping over the next byte in order to leave an
even number of bytes between the shift-out and the added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly
discouraged. In a byte-oriented stream, you may have written only half of a
multibyte character when you call fflush(). In such a case, OS/390 C adds a
padding byte before the shift-out. For both wide-oriented and byte-oriented
streams, the addition of any shift or padding character does not move the current
file position.

Calling fflush() has no effect on the current record when you are writing new
data to a wide-oriented or byte-oriented multibyte stream, because the record is
incomplete.

Flushing Binary Streams

In a wide-oriented stream, calling fflush() causes OS/390 C to add a shift-in
character if the stream does not already end in initial shift state. In a byte-oriented
stream, calling fflush() causes no special behavior beyond what a call to fflush()
usually does.

ungetwc() Considerations

ungetwc () pushes wide characters back onto the input stream for binary and text
files. You can use it to push one wide character onto the ungetwc () buffer. Never
use ungetc() on a wide-oriented file. After you call ungetwc(), calling fflush()
backs up the file position by one wide character and clears the pushed-back wide
character from the stream. Backing up by one wide character skips over shift
characters and backs up to the start of the previous character (whether single-byte
or double-byte). For text files, OS/390 C counts the new-lines added to the records
as single-byte characters when it calculates the file position. For example, if you
have the following stream: you can run the following code fragment:

78 0S/390 V2R8.0 C/C++ Programming Guide

fgetwc (fp); /* Returns X'00C1' (the hexadecimal */

/* wchar representation of A) */
fgetwc (fp); /* Returns X'00C2' (the hexadecimal */
/* wchar representation of B) */
fgetwc (fp); /* Returns X'7FFE' (the hexadecimal */
/* wchar representation of the DBCS */
/* character) between the SO and SI */

/* characters; leaves file position at C */
ungetwc('Z',fp); /* Logically inserts Z before SI character =/

fflush(fp); /* Backs up one wchar, Teaving position at */
/* beginning of X'7FFE' DBCS char */
/* and DBCS state in double-byte mode; */
/* clears Z from the logical stream */

Figure 6. ungetwc() Example

You can set the _EDC_COMPAT environment variable before you open the file, so that
fflush() ignores any character pushed back with ungetwc() or ungetc(), and leaves
the file position where it was when ungetwc() or ungetc() was first issued. Any
characters pushed back are still cleared. For more information about _EDC_COMPAT,

see I'‘Chapter 33 Ilsing Environment Variables” on page 457.

Setting Positions within Files
The following conditions apply to text streams and binary streams.

Repositioning within Text Streams

When you use the fseek() or fsetpos() function to reposition within files, OS/390
C recalculates the shift state.

If you update a record after a successful call to the fseek() function or the
fsetpos() function, a partial multibyte character can be overwritten. Calling a
wide character function for data after the written character can result in undefined
behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a
multibyte character. If you reposition to the middle of a multibyte character,
undefined behavior can occur.

Repositioning within Binary Streams

When you are working with a wide-oriented file, keep in mind the state of the file
position that you are repositioning to. If you call ftell(), you can seek with
SEEK_SET and the state will be reset correctly. You cannot use such an ftell()
value across a program boundary unless the stream has been marked
wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will
change the state to initial state. Using relative offsets is strongly discouraged,
because you may be seeking to a point that is not in initial state, or you may end
up in the middle of a multibyte character, causing wide-oriented functions to give
you undefined behavior. These functions expect you to be at the beginning or end
of a multibyte character in the correct state. Using your own offset with SEEK_SET
also does the same. For a wide-oriented file, the number of valid bytes or records
that ftell() supports is cut in half.

Chapter 9. 0S/390 C Support for the Double-Byte Character Set 79

When you use the fsetpos() function to reposition within a file, the shift state is
set to the state saved by the function. Use this function to reposition to a wide
character that is not in the initial state.

ungetwc() Considerations

For text files, the library functions fgetpos() and ftell() take into account the
character you have pushed back onto the input stream with ungetwc (), and move
the file position back by one wide character. The starting position for an fseek()
call with a whence value of SEEK_CUR also takes into account this pushed-back wide
character. Backing up one wide character means backing up either a single-byte
character or a multibyte character, depending on the type of the preceding
character. The implicit new-lines at the end of each record are counted as wide
characters.

For binary files, the library functions fgetpos() and ftell() also take into account
the character you have pushed back onto the input stream with ungetwc(), and
adjust the file position accordingly. However, the ungetwc () must push back the
same type of character just read by fgetwc(), so that fte11() and fgetpos() can
save the state correctly. An fseek() with an offset of SEEK_CUR also accounts for the
pushed-back character. Again, the ungetwc () must unget the same type of character
for this to work properly. If the ungetwc() pushes back a character in the opposite
state, you will get undefined behavior.

You can make only one call to ungetwc(). If the current logical file position is
already at or before the first wchar in the file, a call to ftel1() or fgetpos() after
ungetwc () fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point
for the reposition also accounts for the presence of ungetwc() characters and
compensates as ftel1() and fgetpos() do. Specifying a relative offset other than 0
is not supported and results in undefined behavior.

You can set the _EDC_COMPAT environment variable to specify that ungetwc() should
not affect fgetpos() or fseek(). (It will still affect ftel1().) If the environment
variable is set, fgetpos() and fseek() ignore any pushed-back wide character. See
I’Chapfpr 33 qung Environment Variables” on page 45”7 for more information
about _EDC_COMPAT.

If a repositioning operation fails, OS/390 C attempts to restore the original file
position by treating the operation as a call to fflush(). It does not account for the
presence of ungetwc() characters, which are lost.

Closing Files

0S/390 C expects files to end in initial shift state. For binary byte-oriented files,
you must ensure that the ending state of the file is initial state. Failure to do so
results in undefined behavior if you reaccess the file again. For wide-oriented
streams and byte-oriented text streams, OS/390 C tracks new data that you add. If
necessary, OS/390 C adds a padding byte to complete any incomplete multibyte
character and a shift-in to end the file in initial state.

80 0S/390 V2R8.0 C/C++ Programming Guide

Manipulating Wide Character Array Functions

In order to manipulate wide character arrays in your program, the following

functions can be used:

Table 8. Manipulating wide character arrays

Function

Purpose

wmemcmp ()

Compare wide character

wmemchr ()

Locate wide character

wmemcpy ()

Copy wide character

wmemmove ()

Move wide character

wmemset ()

Set wide character

wcrtomb ()

Convert a wide character to a multibyte
character

wcscat ()

Append to wide-character string

weschr()

Search for wide-character substring

wcsemp ()

Compare wide-character strings

For more information about these functions, refer to the 0OS/390 C/C++ Run-Time

Library Reference.

Chapter 9. 05/390 C Support for the Double-Byte Character Set

81

82 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 10. Using C and C++ Standard Streams and

Redirection

A C program or a C++ program has associated with it standard streams. You do not
have to open these streams, because they are automatically set up for you by C
when you include the stdio.h header file, or by C++ when you include

below shows three standard streams for C and the functions
that implicitly use them. It also shows the four C++ standard streams and the
operators typically used to perform I/O with them.

iostream.h.

The default behavior for the I/O Stream standard streams is for them to open
automatically on first reference. You do not have to declare them or call their
open() member functions to open them. For example, with no preceding
declaration or open() call, the following statement writes the decimal number n to
the cout stream.

cout << n << endl;

For more detailed information on the classes available with the I/O Stream Class
Library and how to use them, see the OS5/390 C/C++ IBM Open Class Library
Reference and the OS/390 C/C++ IBM Open Class Library User’s Guide.

Table 9. C and C++ Standard streams

C standard streams and their related functions

Name of Purpose Functions that use it
stream
stdin The input device from which your C program getchar()
usually retrieves its data. scanf()
gets()
stdout The output device to which your C program printf()
normally directs its output. puts()
putchar()
stderr The output device to which your C program perror()

directs its diagnostic messages. OS/390 C/C++
uses stderr to collect error messages about
exceptions that occur.

C++ standard streams and the operators typically used with them

Name of
stream

Purpose

Common usage

cin

The object from which your C++ program usually
retrieves its data. In OS/390 C++, input from cin
comes from stdin by default.

>>, the input (extraction)
operator

cout

The object to which your C++ program normally
directs its output. In OS/390 C++, output to cout
goes to stdout by default.

<<, the output (insertion)
operator

cerr

The object to which your C++ program normally
directs its diagnostic messages. In OS/390 C++,
output to cerr goes to stderr by default. cerr is
unbuffered, so each character is flushed as you
write it.

<<, the output (insertion)
operator

© Copyright IBM Corp. 1996, 1999

83

Table 9. C and C++ Standard streams (continued)

clog Another object intended for error messages. In <<, the output (insertion)
0S/390 C++, output to clog goes to stderr by operator
default. Unlike cerr, clog is buffered.

On I/0 operations requiring a file pointer, you can use stdin, stdout, or stderr in
the same manner as you would any other file pointer.

If you are running with POSIX(ON), standard streams are opened during
initialization of the process, before the application receives control. With
POSIX(OFF), the default behavior for the C standard streams is for them to open
automatically on first reference. You do not have to call fopen() to open them. For
example:

printf("%d\n",n);

with no preceding fopen() statement writes the decimal number 7 to the stdout
stream.

By default, stdin interprets the character sequence /* as indicating that the end of

the file has been reached. See I!Chapter 14 Performing Terminal 1/0Q Operations’]

for more information.

Default Open Modes

The default open modes for the C standard streams are:
stdin r
stdout w

stderr w

Where the streams go depends on what kind of environment you are running
under. These are the defaults:

* Under interactive TSO, all three standard streams go to the terminal.
¢ Under MVS batch, TSO batch, and IMS (batch and interactive):
— stdin goes to dd:sysin If dd:sysin does not exist, all read operations from
stdin will fail.

— stdout goes first to dd:sysprint; if dd:sysprint does not exist, stdout looks
for dd:systerm and then dd:syserr. If neither of these files exists, OS/390
C/C++ opens a sysout=+ data set and sends the stdout stream to it.

— stderr will go to the OS/390 Language Environment message file.
* Under CICS, stdout and stderr are assigned to transient data queues, allocated

during CICS initialization. The CICS standard streams can be redirected only to
or from memory files. You can do this by using freopen().

* Under OS/390 UNIX if you are running in the OS/390 shell, the shell controls
redirection. See the OS/390 UNIX System Services User’s Guide and OS/390 UNIX
System Services Command Reference for information.

You can also redirect the standard streams to other files. See [Redirecting Standard

and sections following.

84 0S/390 V2R8.0 C/C++ Programming Guide

Interleaving the Standard Streams 1/O with sync_with_stdio()

For the special case of I/O Streams standard streams, the ios::sync_with_stdio()
member function allows you to indicate that you wish to interleave I/O Streams
I/0 with CI/O. A call to ios::sync_with_stdio() does the following:

e cin, cout, cerr, and clog are initialized with stdiobuf objects associated with
stdin, stdout, and stderr.

* The flags unitbuf and stdio are set for cout, cerr, and clog.

This ensures that subsequent I/O Stream and C standard stream I/O may be
mixed on a per-character basis. However, a run-time performance penalty is
incurred to ensure this synchronization.

//

// Example of interleaving I/0 with sync_with_stdio()
//

// tsyncws.cxx

#include <stdio.h>

#include <fstream.h>

int main() {
jos::sync_with_stdio();
cout << "object: to show that sync_with_stdio() allows interleaving\n
" standard input and output on a per character basis\n" << endl;

printf("line 1 ");

cout << "rest of line 1\n";
cout << "line 2 ";

printf("rest of Tine 2\n\n");

char stringl1[80]
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 2 Tines:\n"
"hello world, here I am\n"
"again\n" << endl;

cin.get(stringl[0]);
stringl[1] = getchar();
cin.get(stringl[2]);

cout << "\nstringl[0] is \'" << stringl[0] << "\'\n"
<< "stringl[1] is \'" << stringl[1] << "\'\n"
<< "stringl[2] is \'" << stringl[2] << "\'\n" << endl;

cin >> &stringl[3];
rc gets(string2); // note: reads to end of Tine, so
cin >> string3; // this line waits for more input

cout << "\nstringl is \"" << stringl << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << flush;

Figure 7. Interleaving I/O with sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection 85

// sample output (with user input shown underlined):

//
// object: to show that sync_with stdio() allows interleaving
// standard input and output on a per character basis
//

// line 1 rest of Tine 1
// line 2 rest of line 2

// type the following 2 Tines:
// hello world, here I am
// again

// hello world, here I am

// stringl[0] is 'h'
// stringl[1] is 'e'
// stringl[2] is '1'

// again
// stringl is "hello"

// string2 is "world, here I am"
// string3 is "again"

Figure 7. Interleaving I/O with sync_with_stdio() (Part 2 of 2)

Interleaving the Standard Streams 1/O without sync_with_stdio()

Because of the buffering scheme described above, and the fact that I/O Streams
I/0 is based on OS/390 C I/0O, output to cout or clog may be interleaved with
output to stdout or stderr, respectively, without a call to sync_with_stdio(), by
explicitly flushing cout or clog before calling the OS/390 C output function.
Results of attempting to interleave output to cout or clog without explicitly
flushing, are undefined. Output to cerr doesn’t have to be explicitly flushed, since
cerr is unit-buffered.

Input to cin may be interleaved with input to stdin, without a call to

sync_with_stdio(), on a line-by-line basis. Results of attempting to interleave on a
per-character basis are undefined.

86 0S/390 V2R8.0 C/C++ Programming Guide

// Example of interleaving I/0 without sync_with_stdio()
//

// tsyncwos.cxx

#include <stdio.h>

#include <fstream.h>

int main() {
cout << "object: to illustrate interleaving input and output\n
" without sync_with_stdio()\n" << endl;

printf("interleaving output ");
cout << "works with an (end of line 1) \n" << flush;
cout << "explicit flush of cout " << flush;
printf("(end of line 2)\n\n");

char stringl[80] = "";
char string2[80] = "";
char string3[80] = "";

char* rc = NULL;

cout << "type the following 3 Tines:\n"
"interleaving input\n"
"on a per-line basis\n"
"is supported\n" << endl;

cin.getline(stringl, 80);
rc = gets(string2);
cin.getline(string3, 80);

cout << "\nstringl is \"" << stringl << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << endl;
// The endl manipulator inserts a newline
// character and calls flush().

char charl = '\0';
char char2 "\0';
char char3 = '\0';

cout << "type the following 2 Tines:\n"
"results of interleaving input on a per-\n"
"character basis are not defined\n" << endl;

cin >> charl;

char2 = (char) getchar();

cin >> char3;

cout << "\ncharl s \'" << charl << "\'\n"

<< "char2 is \'" << char2 << "\'\n"
<< "char3 is \'" << char3 << "\'\n" << flush;

Figure 8. Interleaving I/O without sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection

87

// sample output (with user input shown underlined):

//

// object: to illustrate interleaving input and output
// without sync_with_stdio()

//

// interleaving output works with an (end of Tine 1)
// explicit flush of cout (end of line 2)
/1

// type the following 3 Tines:
// interleaving input

// on a per-line basis

// is supported

// interleaving-input
// on a per-line basis
// is supported

// stringl is "interleaving input"
// string2 is "on a per-line basis"
// string3 is "is supported"

// type the following 2 Tines:
// results of interleaving input on a per-
// character basis are not defined

// results of interleaving input on a per-
// character basis are not defined

// charl is 'r'
// char2 is 'c'
// char3 is 'e'

Figure 8. Interleaving I/O without sync_with_stdio() (Part 2 of 2)

Redirecting Standard Streams

This section describes redirection of standard streams:
* From the command line

* By assignment

* With freopen()

¢ With the MSGFILE run-time option

Note that, because C++ I/O streams are implemented in terms of C streams, cin,
cout, cerr, or clog are implicitly redirected when the corresponding C standard
streams are redirected, unless cin, cout, cerr, or clog are redirected by
assignment—as described in LAssigning the Standard Streams” on page 90. If
freopen() is applied to a C standard stream, creating a binary stream or one with
"type=record", then behavior of the related I/O Stream standard stream is
undefined.

Redirecting Streams from the Command Line

To redirect a standard stream to a file from the command line, invoke your
program by entering the following:

1. Program name

2. Any parameters your program requires (these may be specified before and after
the redirection)

88 05/390 V2R8.0 C/C++ Programming Guide

3. A redirection symbol followed by the name of the file that is to be used in
place of the standard stream

Note: If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Redirection Symbols

The following table lists the redirection symbols supported by OS/390 C/C++

(when not running under the OS/390 shell) for redirection of C standard streams
from the command line or from a system() call. 0, 1, and 2 represent stdin, stdout,

and stderr, respectively.

Table 10. 0S/390 C/C++ Redirection Symbols

Symbol

Description

associates the file specified as fn with stdin; reopens fn in mode r.

associates the file specified as fn with stdin; reopens fr in mode r.

associates the file specified as fn with stdout; reopens fi in mode w.

associates the file specified as fn with stdout; reopens fin in mode w.

>>fn

associates the file specified as fn with stdout; reopens fi in mode a.

2>fn

associates the file specified as fnn with stderr; reopens fin in mode w.

2>>fn

associates the file specified as fn with stderr; reopens fi in mode a.

2>&1;

associate stderr with stdout; same file and mode.

1>&2;

associate stdout with stderr; same file and mode.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive under C, or the

NOREDIR compile-time option, under C++, you cannot redirect standard streams

on the command line using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can
enclose it in double quotation marks. For example, the following passes the
string "here are the args including a <" to prog and redirects stdout to
redirl output a.

prog "here are args including a <" >"redirl output a"

3. TSO (batch and online) and MVS batch support command line arguments.

CICS and IMS do not.

When two options specifying redirection conflict with each other, or when you
redirect a standard stream more than once, the redirection fails. If you do the
latter, you will get an abend. For example, if you specify

2>41

and then

1>82
0S/390 C/C++ uses the first redirection and ignores any subsequent ones. If
you specify

>a.out

and then
1>&2

Chapter 10. Using C and C++ Standard Streams and Redirection ~ 89

the redirection fails and the program abends.

5. A failed attempt to redirect a standard stream causes your program to fail in
initialization.

Assigning the Standard Streams

This method of redirecting streams is known as direct assignment. You can redirect
a C standard stream by assigning a valid file pointer to it, as follows:

FILE *stream;

stream = fopen("new.file", "w+");
stdout = stream;

You must ensure that the streams are appropriate; for example, do not assign a
stream opened for w to stdin. Doing so would cause a function such as getchar()
called for the stream to fail, because getchar() expects a stream to be opened for
read access.

Similarly, you can redirect an I/O streams standard stream under C++ by
assignment:

ofstream myfile("myfile.data");
cout = myfile;

Again, you must ensure that the assigned stream is appropriate; for example, do
not assign an fstream opened for io0s::out only to cin. This will cause a
subsequent read operation to fail.

This topic is also covered in the chapter, "Associating a File with a Standard Input
or Output Stream”, in the OS/390 C/C++ IBM Open Class Library User’s Guide.

Using the freopen() Library Function

You can use the freopen() C library function to redirect C standard streams in all
environments.

Redirecting Streams with the MSGFILE Option

You can redirect stderr by specifying a ddname on the MSGFILE run-time option
and not redirecting stderr elsewhere (such as on the command line). The default
ddname for the OS/390 Language Environment MSGFILE is SYSOUT. See the OS/390
Language Environment Programming Guide for more information on MSGFILE.

MSGFILE Considerations

05/390 C/C++ makes a distinction between types of error output according to
whether the output is directed to the MSGFILE, to stderr, or to stdout:

90 0S/390 V2R8.0 C/C++ Programming Guide

Table 11. Output Destinations under OS/390 C/C++

Destination of
Output

Type of Message

Produced by

Default Destination

MSGFILE output

0S/390 Language
Environment
messages (CEExxxx)

0S/390 Language
Environment
conditions

MSGFILE ddname

0S/390 C/C++
language messages
(EDCxxxx)

0S/390 C/C++
unhandled conditions

MSGFILE ddname

stderr messages

perror() messages
(EDCxxxx)

Issued by a call, for
example, to: perror()

MSGFILE ddname *

User output sent
explicitly to stderr

Issued by a call to
fprintf()

MSGFILE ddname

stdout messages

User output sent
explicitly to stdout

Issued by a call, for
example, to: printf()

stdout 2

All stderr output is by default sent to the MSGFILE destination, while stdout
output is sent to its own destination. When stderr is redirected to stdout, both
share the stdout destination. When stdout is redirected to stderr, both share the

stderr destination.

If you specified one of the DDs used in the stdout open search order as the DD for
the MSGFILE option, then that DD will be ignored in the stdout open search.

[Cable 13 describes the destination of output to stderr and stdout after redirection
has occurred. Whenever stdout and stderr share a common destination, the
output is interleaved. The default case is the one where stdout and stderr have

not been redirected.

Table 12. 0S/390 C/C++ Interleaved Output

stderr not redirected

stderr redirected to
destination other
than stdout

stderr redirected to
stdout

stdout not redirected

stdout to itself
stderr to MSGFILE

stdout to itself
stderr to its other
destination

Both to stdout

stdout redirected to
destination other
than stderr

stdout to its other
destination stderr to
MSGFILE

stdout to its other
destination stderr to
its other destination

Both to the new
stdout destination

stdout redirected to
stderr

Both to MSGFILE

Both to the new
stderr destination

0S5/390 C/C++ routes error output as follows:

* MSGFILE output

stdout to stderr
stderr to stdout

- 0S5/390 Language Environment messages (messages prefixed with CEE)

- Language messages (messages prefixed with EDC)

* stderr output

1. When you are using the OS/390 shell, stderr will go to file descriptor 2, which is typically the terminal. See m
i i ions” for more information about OS/390 Language Environment

message files.

2. When you are using the OS/390 shell, stdout will go to file descriptor 1, which is typically the terminal.

Chapter 10. Using C and C++ Standard Streams and Redirection 91

— perror messages (messages prefixed with EDC and issued by a call to
perror())

— Output explicitly sent to stderr (for example, by a call to fprintf())

By default, OS/390 C/C++ sends all stderr output to the MSGFILE destination
and stdout output to its own destination. You can change this by using OS/390
C/C++ redirection, which enables you to redirect stdout and stderr to a
ddname, file name, or each other. Unless you have redirected stderr, it always
uses the MSGFILE destination. When you redirect stderr to stdout, stderr and
stdout share the stdout destination. When you redirect stdout to stderr, they
share the stderr destination.

Redirecting Streams under OS/390

This section describes how to redirect C standard streams under MVS batch and
under TSO.

Under MVS Batch

You can redirect standard streams in the following ways:

* From the freopen() library function call

* On the PARM parameter of the EXEC used to invoke your C or C++ program
* Using DD statements

Because the topic of JCL statements goes beyond the scope of this book, only
simple examples will be shown here.

Using the PARM Parameter of the EXEC Statement

The following example shows an excerpt taken from a job stream. It demonstrates
both the redirection of stdout using the PARM parameter of the EXEC statement, and
the way to redirect to a fully qualified data set. You can use the redirection

symbols described in [[able 10 on page 89.

Suppose you have a program called BATCHPGM. with 1 required parameter 'DEBUG'.
The output from BATCHPGM is to be directed to a sequential data set called
"MAINT.LOG.LISTING'. You can use the following JCL statements:

//J0Bname JOB...
//STEPO1 EXEC PGM=BATCHPGM,PARM='DEBUG >''MAINT.LOG.LISTING'"'

The following JCL redirects output to an unqualified data set using the same
program name, parameter and output data set as the example above:

//STEPO1 EXEC PGM=BATCHPGM,PARM='DEBUG >LOG.LISTING'

If your userid were TSOU812, stdout would be sent to TSOU812.L0G.LISTING.

Using DD Statements

When you use DD statements to redirect standard streams, the standard streams
will be associated with ddnames as follows:

92 0S/390 V2R8.0 C/C++ Programming Guide

e stdin will be associated with the SYSIN ddname. If SYSIN is not defined, no
characters can be read in from stdin.

e stdout will be associated with the SYSPRINT ddname. If SYSPRINT is not defined,
the C library will try to associate stdout with SYSTERM, and if SYSTERM is also not
defined, the C library will try to associate stdout with SYSERR. If any of the
above DD statements are used as the MSGFILE DD, then that DD statement will
not be considered for use as the stdout DD.

* stderr will be associated with the MSGFILE, which defaults to SYSOUT. See the
0S5/390 Language Environment Programming Guide for more information on
MSGFILE.

 If you are running with the run-time option POSIX(ON), you can redirect
standard streams with ddnames only for MVS data sets, not for HFS files.

e If the ddname for stdout is not allocated to a device or data set, it is
dynamically allocated to the terminal in an interactive environment or to
SYSOUT=* in an MVS batch environment.

The following table summarizes the association of streams with ddnames:

Table 13. Association of Standard Streams with ddnames

Standard stream ddname Alternate ddname
stdin SYSIN none

stdout SYSPRINT SYSTERM, SYSERR
stderr DD associated with MSGFILE None

The following MVS example shows an excerpt taken from a job stream
demonstrating the redirection of the three standard streams by using ddnames.

In the example, your program name is MONITOR and the input to MONITOR is to be
retrieved from a sequential data set called 'SAFETY.CHEM.LIST'. The output of
MONITOR is to be directed to a partitioned data set member called
'YEAREND.ACTION(CHEM) ', and any errors generated by MONITOR are to be written to
a sequential data set called 'YEAREND.MONITOR.ERRLIST'. To redirect the standard
streams using DD statements you could use the following JCL statements:

//J0Bname JOB...

//STEPO1 EXEC PGM=MONITOR,PARM="'MSGFILE(SYSERR)/"
//SYSIN DD DSN=SAFETY.CHEM.LIST,DISP=0LD
//SYSERR DD DSN=YEAREND.MONITOR.ERRLIST,DISP=MOD

//SYSPRINT DD DSN=YEAREND.ACTION(CHEM),DISP=0LD

The following example shows how to get stdout and stderr to share the same file
where: the program name is HOCKEY and the input to HOCKEY is to be retrieved from
a sequential data set called 'HOCKEY.PLAYER.LIST'. The output of HOCKEY is to be
directed to a sequential data set called 'HOCKEY.OUTPUT' and any errors generated
by HOCKEY are also to be written to the sequential data set 'HOCKEY.OUTPUT'. You
could use the following JCL statments:

//J0Bname JOB...
//STEPO1 EXEC PGM=HOCKEY,PARM='/ 2>&1'
//SYSIN DD DSN=HOCKEY.PLAYER.LIST,DISP=SHR

//SYSPRINT DD DSN=HOCKEY.OQUTPUT,DISP=(0LD),DCB=...

stderr shares stdout because of the 2>&1 redirection statement.

Chapter 10. Using C and C++ Standard Streams and Redirection 93

If you want to redirect to an HFS file, you can modify the above examples to use

the PATH and PATHOPT options described in FDDnames” on page 56.
Redirecting Streams under TSO

You can redirect standard streams in the following ways:
» From the freopen() library function call
¢ From the command line

* Using the parameter list in a CALL command
From the Command Line

The following example illustrates the redirection of stdin under TSO. The program
in this example is called BUILD and it has 2 required parameters, 'PLAN' and
"JOHNSTON'. The input to BUILD is to be retrieved from a partitioned data set
member called 'CONDO(SPRING) '. To redirect stdin in this example under TSO you
can use the following command:

BUILD PLAN JOHNSTON <'CONDO(SPRING)'
Notes:

1. If the data set name is not enclosed in quotation marks, your user prefix will be
appended to the data set name specified.

2. If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Parameter List in a CALL Command

You can also redirect the output to a file with a ddname in TSO by specifying the
output file in the parameter list like the following;:

CALL 'PREFIX.PROGRAM' '>DD:OUTFILE'

The ddname can be created by an ALLOCATE command.

Redirecting Streams under IMS

Under IMS online and batch, you can redirect the C standard streams in any of the
following ways:

* with direct assignment
* with the freopen() function
* with ddnames

For details on ddnames, see ['Using DD Statements” on page 92.
Redirecting Streams under CICS

There are several ways to redirect C standard streams under CICS:

* You can assign a memory file to the stream (for example, stdout=myfile).
* You can use freopen() to open a standard stream as a memory file.

* You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able
to use C functions to direct the information outside or elsewhere in the CICS

94 0S/390 V2R8.0 C/C++ Programming Guide

environment. Once access to a CICS transient data queue has been removed, either
by a call to freopen() or fclose(), or by the assignment of another file pointer to
the stream, OS/390 C/C++ does not provide a way to regain access. Once C
functions have lost access to the transient data queues, you must use the
CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data
queue, the default standard stream implementation, will go, but you must
configure this facility before a CICS cold start.

Passing C and C++ Standard Streams Across a system() Call

A system() call occurs when one OS/390 C/C++ program calls another OS/390
C/C++ program by using the ANSI system() function, which OS/390 C/C++ uses
if you are not running with POSIX(ON). Standard streams are inherited across calls
to the ANSI system() function. With a POSIX system() function, file descriptors 0,
1, and 2 will be mapped to standard streams stdin, stdout and stderr in the child
process. The behavior of these streams is similar to binary streams called with the
ANSI system() function.

Inheritance includes any redirection of the stream as well as the open mode of the
stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls
program B, program B inherits the definition of stdout. If program B reopens
stdout as "C.D" for "ab" and then uses system() to call program C, program C
inherits stdout opened to "C.D" for append. Once control returns to the calling
program, the definitions of the standard streams from the time of the system() call
are restored. For example, when program B finally returns control to program A,
stdout is restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling

programs depend on whether the standard streams are opened for binary, text, or
record 1/0.

Since the I/0O Stream standard streams are implemented in terms of the C standard
streams, behavior of the I/O Stream standard streams across a system() call is
based on the behavior of the C standard streams across system().

Passing Binary Streams

If the standard stream being passed across a system() call is opened in binary
mode, any reads or writes issued in the called program occur at the next byte in
the file. On return, the position of the file is wherever the called program is
positioned. This includes any possible repositions made by the called program if
the file is enabled for positioning. Because output to binary files is done byte by
byte, all bytes are written to stdout and stderr in the order they are written. This
is shown in the following example:

printf("123");

printf("456");

system("CHILD"); ------ > int main(void) { putc('7',stdout);}

printf("89");

The output from this example is:
123456789

Chapter 10. Using C and C++ Standard Streams and Redirection 95

Memory files are always opened in binary mode, even if you specify text. Any
standard streams redirected to memory files and passed across system() calls will
be treated as binary files. HFS files are also treated as binary files, because they do
not contain any real record boundaries. Memory files are not passed across calls to
the POSIX system() function.

If freopen() is applied to a C standard stream, thereby creating a binary stream,
the results of I/0 to the associated I/O Stream standard stream across a system()
call are undefined.

Passing Text Streams

If the C standard stream being passed across a s ystem() call is opened in text
mode (the default), the file position in the called program is placed at the next
record boundary, if it is not already at the start of a record. Any data in the current
record that is unread is skipped. Here is an example:

INPUT FILE ROOT C PROGRAM CHILD PROGRAM

—————————— int main() { int main() {

abcdefghijklm char c[4]; char d[2];

nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();

0123456789ABC c[1] = getchar(); d[1] = getchar();

DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",
c[2] = getchar(); d);

c[3] = getchar(); }
printf("%.4s\n",c);

OUTPUT
no ---> from the child
ab01 ---> from root

When you write to a spanned file, the file position moves to the beginning of the
next record, if that record exists. If not, the position moves to the end of the
incomplete record.

For non-spanned standard streams opened for output, if the caller has created a
text record missing an ending control character, the last record is hidden from the
called program. The called program can append new data if the stream is open in
append mode. Any appends made by the called program will be after the last
record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record
with a new-line; the addition of the new-line does not move the file position. Once
any incomplete record is completed, the file position moves to the next record
boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the
time of the system() call is restored to the end of the file. If the called program is
at EOF when it is terminated and the caller was within an incomplete record at the
time of the system() call, the position upon return is restored to the original record
offset at the time of the system() call. This position is usually the end of the
incomplete record. Generally, if the caller is writing to a standard stream and does
not complete the last record before it calls system(), writes continue to add to the
last record when control returns to the caller. For example:

96 0S/390 V2R8.0 C/C++ Programming Guide

printf("test");

printf("abc");

system("hello"); ------ > int main(void) { printf("hello world\n");}
printf("def\n");

The output from this example is as follows:

test
hello world
abcdef

If stdout had been opened for "w+" in this example, and a reposition had been
made to the character 'b' before the system() call, upon return, the incomplete
record "abc" would have been restored and the position would have been at the
'b'. The subsequent write of def would have performed an update to give test
hello world adef.

C++ I/O Streams Considerations

The following sections describe considerations for I/O streams standard input and
output.

Output with sync_with_stdio(): When an I/O Streams standard output stream is
open in text mode (the default), and sync_with_stdio() has been called, the output
across a system() call behaves the same as an OS/390 C standard stream:

* If the parent program writes a newline character, the line will be flushed before
the child program is invoked;

¢ Otherwise, the output from the parent will be held in a buffer until the child
returns.

Output without sync_with_stdio(): When an I/O Streams standard output stream

is open in text mode, and sync_with_stdio() has not been called, the behavior is

as follows:

* If the parent program writes a newline character, and explicitly flushes it, the
line will be written out before the child program is invoked;

¢ Otherwise, the behavior is undefined.

Input with sync_with_stdio(): When cin is open in text mode (the default), and

sync_with_stdio() has been called, the input across a system() call behaves the

same as stdin:

* The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

* When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

Input without sync_with_stdio(): When cin is open in text mode, and
sync_with_stdio() has not been called, the behavior is as follows:

* The parent program must either not read from cin before calling the child, or
must read to the end of a complete record.

* The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

* When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

* If the parent program read only part of a record before calling the child, the
behavior upon returning from the child is undefined.

Chapter 10. Using C and C++ Standard Streams and Redirection 97

Passing Record I/O Streams

For record I/0O, all reads and writes made by the called program occur at the next
record boundary. Since complete records are always read and written, there is no
change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/0O file.

fwrite("test",1,4,stdout);

fwrite("abc",1,3,stdout);

system("hello"); ------ > int main(void) {

fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout)
1

The output from this code fragment is as follows:

test

abc

hello world
def

If freopen() is applied to a C standard stream, creating a stream with
"type=record", then behavior of the associated 1/O Stream standard stream is
undefined across a system() call.

Using Global Standard Streams

In the default inheritance model, the behavior of C standard streams is such that a
child main() function cannot affect the standard streams of the parent. The child
can use the parent’s definition or redirect a standard stream to a new location, but
when control returns to the parent, the standard stream reverts back to the
definition of the parent. In the global model, the C standard streams, stdin,
stdout, and stderr, can be redirected to a different location while running in a
child main() function and have that redirection stay in effect when control returns
to the parent. You can use the _"EDC_GLOBAL_STREAMS environment variable to
set standard stream behavior to the global model. For more information, see

7 ”

[Cable 14 highlights the standard stream behavior differences between the default
inheritance model and the global model.

Table 14. Standard Stream Behavior Differences

Behavior Default Inheritance Model Global Model
POSIX(OFF) Standard streams are opened automatically on (Same)

first reference.
POSIX(ON) Standard streams are opened during initialization |Not supported.

of the process, before the application receives
control.

default open modes

As currentlr/ described in LD.efaJ.ﬂ.t_Qpen_MgdesJ (Same)

default locations As currently described in EChapter 10_Using ((Same)

Ead Cet Standard Si 1 Redicoction” od
command line Changes the location for the main being called Changes the location for the entire C
redirection and subsequent child programs. environment.

98 0S/390 V2R8.0 C/C++ Programming Guide

Table 14. Standard Stream Behavior Differences (continued)

Behavior

Default Inheritance Model

Global Model

direct assignment

Affects the current main and subsequent child
programs.

Affects the current main only. This
definition is not passed on to a
subsequent child program. The child
gets the current global definition, if
there is one defined.

freopen()

Changes location for the main from which it is
called and affects any subsequent child programs.

Changes location for the entire C
environment.

MSGFILE() run-time
option

Redirects stderr for the main being invoked and
affects any subsequent child programs. When
control returns to a parent program, stderr
reverts back to the definition of the parent. If
stderr is also redirected on the command line,
that redirection takes precedence.

(Same)

fclose()

Closes standard stream in current main only.

Closes the standard stream for the
entire C environment. The standard
stream cannot be global anymore.
Only direct assignment can be used
to use the standard stream, and that
would only be for the main in which
it is assigned.

file position and visible
data

As currently described in FChapter 10_Using O

]

File position and visible data across
mains are as if there were only one
main. No special processing occurs
during the ANSI system() call. The
standard streams are left untouched.
When either entering or returning
from a child program, reading or
writing to the standard streams begin
where previously left off,

C++ I/0O Stream

cin defaults to stdin

cout defaults to stdout

cerr defaults to stderr (unbuffered)
clog defaults to stderr (buffered)

(Same)

Notes:

1. The following environments do not allow global standard stream behavior as

an option:

* POSIX(ON)
* CICS

e SPC

2. You must identify the behavior of the standard streams to the C run-time
library before initialization of the first C main in the environment. The default
behavior uses the inheritance model. Once you set the standard stream
behavior, it cannot be changed. Attempts to change the behavior after the first

C main has been initialized are ignored.

3. The value of the environment variable, when queried, does not necessarily
reflect the standard stream behavior being used. This is because the value of
the environment variable can be changed after the standard stream behavior

has been set.

4. The behaviors described in [able 14 on page 98 only apply to the standard

streams that use the global behavior.

Chapter 10. Using C and C++ Standard Streams and Redirection

99

Command Line Redirection

In the C standard stream global model, command line redirection of the standard
streams is supported, but has much different behavior than the C standard stream
inheritance model.

The most important difference is that when redirection is done at system() call
time, the redirection takes effect for the entire C environment. When the child
program terminates, the standard stream definitions do not revert back to what
they were before the system() call.

Redirection of any of the standard streams, except when stderr is redirected to
stdout or vice versa, causes the standard stream to be flushed. This is because an
freopen() is done under the covers, which first closes the stream before reopening
it. Since the standard stream is global, the close causes the flush.

Redirecting stderr to stdout, or stdout to stderr, does not flush the redirected
stream. Any data in the buffer remains there until the stream is redirected again, to
something other than stdout or stderr. Only then is the buffer flushed.

Consider the following example:

#include <stdio.h>

#include <stdlib.h>

main() {
int rc;
printf("line 1\n");
printf("line 2");
fprintf(stderr,"Tine 3\n");
fprintf(stderr,"line 4");
rc=system("PGM=CHILD,PARM="'/ >stdout.file 2>&1;'")
printf("line 5\n");
fprintf(stderr,"line 6\n");

Figure 9. PARENT.C

#include <stdio.h>
main() {
printf("line 7\n");
fprintf(stderr,"line 8\n");
stderr = freopen("stderr.file","w",stderr);
printf("line 9\n");
fprintf(stderr,"Tine 10\n");

Figure 10. CHILD.C

When run from TSO terminal using the following command:
parent ENVAR(_EDC_GLOBAL_STREAMS=7)/

the output will be as follows:

(terminal) stdout.file stderr.file
line 1 line 7 line 10
line 3 line 8 line 6
line 2 line 9

line 4 line 5

100 0S/390 V2R8.0 C/C++ Programming Guide

Attention: If the stdout or stderr stream has data in its buffer and it is redirected
to stderr or stdout, then the data is lost if stdout or stderr is not redirected
again.

Note: If either stdout or stderr is using global behavior, but not both, then any
redirection of stdout or stderr to stderr or stdout is ignored.

Direct Assignment

You can directly assign the C standard streams in any main program. This
assignment does not have any effect on the global standard stream. No flush is
done and the new definition is not passed on to a child program nor back to a
parent program. Once you directly assign a standard stream, there is no way to
re-associate it with the global standard stream.

freopen()

When you use freopen() to redirect a standard stream, the stream is closed,
causing a flush, and then redirected. The new definition affects all C mains
currently using the global stream.

MSGFILE() Run-Time Option

The MSGFILE() run-time option redirects the stderr stream similar to command
line redirection. However, this redirection is controlled by the Common Execution
Library and does not apply to all C mains in the environment. When control
returns to a parent program, stderr reverts back to the definition of the parent.

fclose()

When a global standard stream is closed, only direct assignment can be used to
begin using the standard stream again. That use would only be for the main
performing the direct assignment. There is no way to get back global behavior for
the standard stream that was closed.

File Position and Visible Data

The file position and amount of visible data in the called and calling program is as
if there is only one program. There is no data hidden from a called program. A
child program continues where the parent program left off. This is true for all
types of 1/O: binary, text, and record.

C++ 1/O Stream Class Library

Since cin, cout, cerr and clog are initially based on stdin, stdout and stderr, they
continue to be in the global model. For example, if stdout is redirected using
freopen() in a child program, then both stdout and cout retain that redirection
when control returns to the parent.

Chapter 10. Using C and C++ Standard Streams and Redirection 101

102 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 11. Performing OS I/O Operations

This chapter describes using OS I/0, which includes support for the following:
* Regular sequential DASD (including striped data sets)

* Partitioned DASD (PDS and PDSE)

* Tapes

» SYSoUT

* Printers

* In-stream JCL

Note: OS/390 C/C++ does not support BDAM or ISAM data sets.

OS 1/0 supports text, binary, and record 1/0, in three record formats, fixed (F),
variable (V), and undefined (U).

See I’thpfpr 9 0S/390 C Q11ppnrf far the Double-Byvte Character Set” on page 74
for information about using wide-character 1/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use the C++ I/0O stream class library instead, refer to m
I”Qing the I/0Q Stream Class 1 ihrary in C++” on page 47 for general

information and the OS/390 C/C++ IBM Open Class Library User’s Guide and
0S5/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files

To open an OS file, you can use the standard C fopen() or freopen() library
functions. These are described in general terms in the OS/390 C/C++ Run-Time
Library Reference. Details about them specific to all OS/390 C/C++ 1/0O are
discussed in the "Opening Files” section. This section describes considerations for
using fopen() and freopen() with OS files.

Using fopen() or freopen()

When you open a file using fopen() or freopen(), you must specify the file name
(a data set name) or a ddname.

Using a Data Set Name

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The following diagram shows the syntax for the
filename argument on your fopen() or freopen() call:

© Copyright IBM Corp. 1996, 1999 103

>> Y qualifier >
|_//_| L.] |—(member)J
_E + :l—number—

—Ei&—_l—qual ifier

\4
\4
A

L

Note: The single quotation marks in the filename syntax diagram must be matched;
if you use one, you must use the other.

A sample construct is:

'qualifierl.qualifier2(member)"'

/I Specifying these slashes indicates that the filename refers to a non-POSIX file
or data set.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character X'C0'". The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data-set name
is as follows:

* Generally, 44 characters, including periods.
* For a generation data group, 35 characters, including periods.

These numbers do not include a member name or GDG number and
accompanying parentheses.

Specifying one or two ampersands before a single qualifier opens a temporary
data set. Multiple qualifiers are not valid after ampersands, because the system
generates additional qualifiers. Opening two temporary data sets with the
same name creates two distinct files. If you open a second temporary data set
using the same name as the first, you get a distinct data set. For example, the
following statements open two temporary data sets:

fp fopen("//&8myfile", "wb+");

fp2 = fopen("//&8myfile","wb+");

You cannot fully qualify a temporary data-set name. The file is created at open
time and is empty. When you close a temporary data set, the system removes
it.

(member)
If you specify a member, the data set you are opening must be a PDS or a
PDSE. For more information about PDSs and PDSEs, see
iti “ . For members, the member name
(including trailing blanks) can be up to 8 characters long. A member name
cannot begin with leading blanks. The characters in a member name may be

104 0S/390 V2R8.0 C/C++ Programming Guide

alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first
character should be either alphabetic or national.

+number
—number

0 You specify a Generation Data Group (GDG) by using a plus (+) or minus (-)
to precede the version number, or by using a 0. For more information about
GDGs, see L i ”

The Resource Access Control Facility (RACF) expects the data-set name to have a
high-level qualifier that is defined to RACF. RACF uses the entire data-set name
when it protects a tape data set.

When you enclose a name in single quotation marks, the name is fully qualified. The

file opened is the one specified by the name inside the quotation marks. If the

name is not fully qualified, OS/390 C/C++ does one of the following;:

* If your system does not use RACE, OS/390 C/C++ does not add a high-level
qualifier to the name you specified.

 If you are running under TSO (batch or interactive), OS/390 C/C++ appends the
TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix. If
the name is fully qualified, OS/390 C/C++ does not append a user prefix. You
can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

* If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

If you want your code to be portable between the VM/CMS and OS/390 systems
and between memory files and disk files, use a name of the format namel.name2,
where namel and name2 are up to 8 characters and are delimited by a period, or
use a ddname. You can also add a member name.

For example, the following piece of code can run under both Language
Environment for VM, and Language Environment for OS/390.

FILE *stream;

stream = fopen("parts.instock", "r");
Using a DDname

The DD statement enables you to write C or C++ source programs that are
independent of the files and input/output devices they use. You can modify the
parameters of a file or process different files without recompiling your program.

Use ddnames if you want to use non-DASD devices.

If you specify DISP=MOD on a DD statement and w or wb mode on the fopen() call,
05/390 C/C++ treats the file as if you had opened it in append mode instead of
write mode.

To open a file by ddname under MVS batch, you must define the ddname first.

You can do this in any of the following ways:

* In batch (MVS, TSO, or IMS), you can write a JCL DD statement. For the
declaration shown above for the C or C++ file PARTS.INSTOCK, you write a JCL
DD statement similar to the following:

Chapter 11. Performing OS I/O Operations 105

//STOCK DD DSN=USERID.PARTS.INSTOCK,DISP=SHR

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations such as
freopen(), and the DD statement will be unallocated.

If you use SPACE=RLSE on a DD statement, OS/390 C/C++ releases space only if

all of the following are true:

— The file is open in w, wb, a, or ab mode

— It is not simultaneously open for read

— No positioning functions (fseek(), ftel1(), rewind(), fgetpos(), fsetpos())
have been performed.

For more information on writing DD statements, refer to the job control language
(JCL) manuals listed in the OS/390 Information Roadmap.

* Under TSO (interactive and batch), you can issue an ALLOCATE command. The DD
definition shown above for the C file STOCK has an equivalent TSO ALLOCATE
command, as follows:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK) SHR

See the 05/390 Information Roadmap for manuals containing information on TSO
ALLOCATE.

* In the OS/390 environment, you can use the svc99() or dynalloc() library
functions to define ddnames. For information about these functions, refer to the
0S/390 C/C++ Run-Time Library Reference.

DCB Parameter: The DCB (data control block) parameter of the DD statement
allows you to describe the characteristics of the data in a file and the way it will be
processed at run time. The other parameters of the DD statement deal chiefly with
the identity, location, and disposition of the file. The DCB parameter specifies
information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in the OS/390 MVS JCL User’s
Guide.

The DCB parameter contains subparameters that describe:

* The organization of the file and how it will be accessed. Parameters supplied on
fopen() override those specified in DCB.

* Device-dependent information such as the recording technique for magnetic tape
or the line spacing for a printer (for example: CODE, DEN, FUNC, MODE, OPTCD=J,
PRTSP, STACK, SPACE, UNIT and TRTCH subparameters).

* The data-set format (for example: BLKSIZE, LRECL, and RECFM subparameters).

You cannot use the DCB parameter to override information already established for
the file in your C or C++ program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied by fopen() or freopen() are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

It specifies that fixed-length records, 40 bytes in length, are to be grouped in a
block 400 bytes long. You can copy attributes from another data set by either
setting the DCB parameter to DCB=(dsname) or using the SVC 99 services provided by
the svc99() and dynalloc() library functions.

106 0S/390 V2R8.0 C/C++ Programming Guide

Generation Data Group 1/O

A Generation Data Group (GDG) is a group of related cataloged data sets. Each
data set within a generation data group is called a generation data set. Generation
data sets have sequentially ordered absolute and relative names that represent their
age. The absolute generation name is the representation used by the catalog
management routines in the catalog. The relative name is a signed integer used to
refer to the latest (0), the next to the latest (-1), and so forth, generation. The
relative number can also be used to catalog a new generation (+1). For more
information on GDGs see the Managing Non-VSAM Data Sets book.

If you want to open a generation data set by data-set name with fopen () or
freopen(), you will require a model. This model specifies parameters for the
group, including the maximum number of generations (the generation index). You
can define such a model by using the Access Method Services DEFINE command.
For more information on the DEFINE command, see MVS/DFP Access Method
Services for the Integrated Catalog Facility. Note also that fopen() does not support a
DCB= parameter. If you want to change the parameters, alter the JCL that describes
the model and open it in w mode.

MVS uses an absolute generation and version number to catalog each generation.
The generation and version numbers are in the form GxxxxVyy, where xxxx is an
unsigned 4-digit decimal generation number (0001 through 9999) and yy is an
unsigned 2-digit decimal version number (00 through 99). For example:

* A.B.C.G0001V0O is generation data set 1, version 0, in generation data group
A.B.C.

* A.B.C.GO009VO01 is generation data set 9, version 1, in generation data group
AB.C.

The number of generations kept depends on the size of the generation index.
When you open a GDG by relative number, OS/390 C/C++ returns the relative
generation in the __dsname field of the structure returned by the fldata() function.
You cannot use the rename() library function to rename GDGs by relative

generation number; rename GDG data sets by using their absolute names.

The following example defines a GDG. The fopen() fails because it tries to change
the RECFM of the data set.

Note: This example is valid only for C.

Chapter 11. Performing OS I/O Operations 107

CBC3GO0OS1

27y
//* This example demonstrates GDG I/0

J] mm e m e e e e e
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
2y
//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK, (0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GDG -

(NAME (userid.MYGDG) -

EMPTY -

SCRATCH -

LIMIT(255))
/*
/27y ey
//* Create GDG data set MYGDG(+1)
/27y
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL, (1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

//* Compile, link, and run an inlined C program.

//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).

/27y
//C EXEC EDCCLG,
// CPARM="NOSEQ,NOMARGINS'

//COMPILE.SYSIN DD DATA,DLM='/>'
#include <stdio.h>
#include <errno.h>

int main(void)

{
FILE *fp;
fp = fopen("MYGDG(+1)", "a,recfm=F");
if (fp == NULL)
{
printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");
1
printf("Finished\n");
1
/>

Figure 11. Generation Data Group Example for C

The following example is valid for C++:

108 0S/390 V2R8.0 C/C++ Programming Guide

CBC3G0OS2

/27y
//* This example demonstrates GDG I/0

J] Hmm e m e e e e e
//* Create GDG model MYGDG.MODEL and GDG name MYGDG
2y
//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK, (0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GDG -

(NAME (userid.MYGDG) -

EMPTY -

SCRATCH -

LIMIT(255))
/*
2 L
//* Create GDG data set MYGDG(+1)
/27y
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL, (1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

//* Compile, bind, and run an inlined C++ program.

//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).

2 L
/1%

//DOCLG1 EXEC CBCCBG,

// CPARM="NOSEQ,NOMARGINS'

//COMPILE.SYSIN DD DATA,DLM="'<>'
#include <stdio.h>

#include <errno.h>

int main(void)

{
FILE *fp;
fp = fopen("MYGDG(+1)", "a,recfm=F");
if (fp == NULL)
{
printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");
1
printf("Finished\n");
1
<>

Figure 12. Generation Data Group Example for C++

A relative number used in the JCL refers to the same generation throughout a job.
The (+1) used in the example above exists for the life of the entire job and not just
the step, so that fopen()’s reference to (+1) did not create another new data-set but
accessed the same data set as in previous steps.

Chapter 11. Performing OS I/O Operations 109

Note: You cannot use fopen() to create another generation dataset because fopen()
does not fully support the DCB parameter.

Regular and Extended Partitioned Data Sets

Partitioned data sets (PDS) and partitioned data sets extended (PDSE) are DASD
data sets divided into sections known as members. Each member can be accessed
individually by its unique 1- to 8-character name.

PDSEs are managed by the Storage Management Subsystem (SMS) and, while
similar to PDSs, contain a number of enhancements.

Table 15. PDSE and PDS Differences

PDSE Characteristics PDS Characteristics
Data set has a 123-extent limit Data set has a 16-extent limit
Directory is open-ended and indexed by Fixed-size directory is searched sequentially

member name; faster to search directory

PDSEs are device-independent: records are | Block sizes are device-dependent

reblockable
Uses dynamic space allocation and Must use IEBCOPY COMPRESS to reclaim
reclamation space

Supports creation of more than one member |Supports creation of only one member at a
at a time* time

Note: *OS/390 C/C++ allows you to open two separate members of a PDSE for writing at
the same time. However, you cannot open a single member for writing more than once.

You specify a member by enclosing its name in parentheses and placing it after the
data-set name. For example, the following JCL refers to member A of the data set
MY.DATA:

//MYDD DD DSN=userid.MY.DATA(A),DISP=SHR

You can specify members on calls to fopen() and freopen(). You can specify
members when you are opening a data set by its data set name or by a ddname.
When you use a ddname and a member name, the definition of the ddname must
not also specify a member. For example, using the DD statement above, the
following will fail:

fp = fopen("dd:MYDD(B)","r");

You cannot open a PDS or PDSE member using the modes a, ab, a+, atb, w+, wtb,
or wb+. If you want to perform the equivalent of the w+ or wb+ mode, you must first
open the file as w or wb, write to it, and then close it. Then you can perform
updates by reopening the file in r+ or rb+ mode. You can use the C library
functions ftel1() or fgetpos() to obtain file positions for later updates to the
member. Normally, opening a file in r+ or rb+ mode enables you to extend a file
by writing to the end; however, with these modes you cannot extend a member. To
do so, you must copy the contents of the old member plus any extensions to a new
member. You can remove the old member by using the remove() function and then
rename the new member to the old name by using rename().

All members have identical attributes for RECFM, LRECL, and BLKSIZE. For PDSs, you

cannot add a member with different attributes or specify a RECFM of FBS, FBSA, or
FBSM. OS/390 C/C++ verifies any attributes you specify.

110 0S/390 V2R8.0 C/C++ Programming Guide

For PDSEs, OS/390 C/C++ checks to make sure that any attributes you specify are
compatible with those of the existing data set. Compatible attributes are those that
specify the same record format (F, V, or U) and the same LRECL. Compatibility of
attributes enables you to choose whether to specify blocked or unblocked format,
because PDSEs reblock all the records. For example, you can create a PDSE as FB
LRECL=40 BLKSIZE=80, and later open it for read as FB LRECL=40 BLKSIZE=1600 or F
LRECL=40 BLKSIZE=40. The LRECL cannot change, and the BLKSIZE must be
compatible with the RECFM and LRECL. Also, you cannot change the basic format of
the PDSE from F to V or vice versa. If the PDS or PDSE already exists, you do not
need to specify any attributes, because OS/390 C/C++ uses the previously existing
ones as its defaults.

At the start of each partitioned data set is its directory, a series of records that
contain the member names and starting locations for each member within the data
set. You can access the directory by specifying the PDS or PDSE name without
specifying a member. You can open the directory only for read; update and write
modes are not allowed. The only RECFM that you can specify for reading the
directory is RECFM=U. However, you do not need to specify the RECFM, because
0S5/390 C/C++ uses U as the default.

MVS/DFP Using Data Sets contains diagrams and more detailed explanations about
how to use PDSs and PDSEs.

Partitioned and Sequential Concatenated Data Sets

There are two forms of concatenated data sets: partitioned and sequential. You can
open concatenated data sets only by ddname, and only for read or update.
Specifying any of the write, or append modes fails. As with PDS members, you
cannot extend a concatenated data set.

Partitioned concatenation consists of specifying multiple PDSs or PDSEs under
one ddname. When you access the concatenation, it acts as one large PDS or PDSE,
from which you can access any member that has a unique name. If two or more
partitioned data sets in the concatenation contain a member with the same name,
using the concatenation ddname to specify that member refers to the first member
with that name found in the entire concatenation. You cannot use the ddname to
access subsequent members. For example, if you have a PDS named PDS1, with
members A, B, and C, and a second PDS named PDS2, with members C, D, and E,
and you concatenate the two data sets as follows:

//MYDD DD userid.PDS1,DISP=SHR
// DD userid.PDS2,DISP=SHR

and perform the following:

fp = fopen("DD:MYDD(C)","r");
fp2 = fopen("DD:MYDD(D)","r");

the first call to fopen() finds member C from PDS1, even though there is also a
member C in PDS2. The second call finds member D from PDS2, because PDS?2 is the
first PDS in the concatenation that contains this member. The member C in PDS2 is
inaccessible.

When you are concatenating partitioned data sets, be aware of the DCB attributes
for them. The concatenation is treated as a single data set with the following
attributes:

e RECFM= the RECFM of the first data set in the concatenation

* LRECL= the LRECL of the first data set in the concatenation

Chapter 11. Performing OS I/O Operations 111

* BLKSIZE= the largest BLKSIZE of any data set in the concatenation

These are the rules for compatible concatenations:

Table 16. Rules for Possible Concatenations

RECFM of first
data set RECFM of subsequent data sets LRECL of subsequent data sets
RECFM=F RECFM=F Same as that of first one
RECFM=FB RECFM=F or RECFM=FB Same as that of first one
RECFM=V RECFM=V Less than or equal to that of first
one
RECFM=VS RECFM=V or RECFM=VS Less than or equal to that of first
one
RECFM=VB RECFM=V or RECFM=VB Less than or equal to that of first
one
RECFM=VBS RECFM=V, RECFM=VB, Less than or equal to that of first
RECFM=VS, or RECEM=VBS one
RECFM=U RECFM=U or RECEM=F (see note
below)

Note: You can use a data set in V-format, but when you read it, you will see all of the
BDWs and RDWs or SDWs with the data.

If the first data set is in ASA format, all subsequent data sets must be ASA as well.
The preceding rules apply to ASA files if you add an A to the RECFMs specified.

If you do not follow these rules, undefined behavior occurs. For example, trying to
read a fixed-format member as RECFM=V could cause an exception or abend.

Repositioning is supported as it is for regular PDSs and PDSEs. If you try to read
the directory, you will be able to read only the first one.

Sequential concatenation consists of treating multiple sequential data sets or
partitioned data-set members as one long sequential data set. For example,
//MYDD DD userid.PDS1(A),DISP=SHR

// DD userid.PDS2(E),DISP=SHR
// DD userid.DATA,DISP=SHR

creates a concatenation that contains two members and a regular sequential data
set. You can read or update all of these in order. In partitioned concatenations, you
can read only one member at a time.

0S/390 C/C++ does not support concatenating data sets that do not have
compatible DCB attributes. The rules for compatibility are the same as those for
partitioned concatenations.

If all the data sets in the concatenation support repositioning, you can reposition
within a concatenation by using the functions fseek(), ftel1(), fgetpos(),
fsetpos(), and rewind(). If the first one does not, all of the repositioning functions
except rewind() fail for the entire concatenation. If the first data set supports
repositioning but a subsequent one does not, you must specify the noseek
parameter on the fopen() or freopen() call. If you do not, fopen() or freopen()
opens the file successfully; however, an error occurs when the read position gets to
the data set that does not support repositioning.

112 0S/390 V2R8.0 C/C++ Programming Guide

In-stream Data Sets

An in-stream data set is a data set contained within a set of JCL statements.
In-stream data sets (also called inline data sets) begin with a DD * or DD DATA
statement. These DD statements can have any valid ddname, including SYSIN. If you
omit a DD statement before the input data, the system provides a DD * statement
with the ddname of SYSIN. This example shows you how to indicate an in-stream
data set:

//MYDD DD *

record 1

record 2

record 3
/*

The // at the beginning of the data set starts in column 1. The statement
fopen("DD:MYDD","rb"); opens a data set with 1rec1=80, blksize=80, and
recfm=FB. In this example, the delimiter indicating the end of the data set is /*. In
some cases, your data may contain this string. For example, if you are using C
source code that contains comments, OS/390 C/C++ treats the beginning of the
first comment as the end of the in-stream data set. To avoid this occurrence, you
can change the delimiter by specifying DLM=nn, where nn is a two-character
delimiter, on the DD statement that identifies the file. For example:

//MYDD DD =*,DLM=¢¢

#include <stdio.h>

/* Hello, world program =/

int main() {printf("Hello, world\n"); }

¢¢

For more information about in-stream data sets, see the OS/390 MVS JCL User’s
Guide.

To open an in-stream data set, call the fopen() or freopen() library function and
specify the data-set’s ddname. You can open an in-stream data set only for reading.
Specifying any of the update, write, or append modes fails. Once you have opened
an in-stream data set, you cannot acquire or change the file position except by
rewinding. This means that calls to the fseek(), ftel1(), fgetpos(), and fsetpos()
for in-stream data sets fail. Calling rewind() causes OS/390 C/C++ to reopen the
file, leaving the file position at the beginning.

You can concatenate regular data sets and in-stream data sets sequentially. If you
do so, note the following:

e If the first data set is in-stream, you cannot acquire or change the file position
for the entire concatenation.

e If the first data set is not in-stream and supports repositioning, you must specify
the noseek parameter on the fopen() or freopen() call that opens the
concatenation. If you do not, fopen() or freopen() opens the file successfully;
however, an error occurs when the read position gets to the in-stream.

e The in-stream data set is treated as FB 80 and the concatenation rules for
sequential concatenation apply.

SYSOUT Data sets

You can specify a SYSOUT data set by using the SYSOUT parameter on a DD statement.
0S/390 C/C++ supports opening SYSOUT data sets in two ways:

Chapter 11. Performing OS I/O Operations 113

1. Specifying a ddname that has the SYSOUT parameter. For information about
defining ddnames, see [Llsing a DDname” on page 103.

2. Specifying a data-set name of * on a call to fopen() or freopen() while you are
running under MVS batch or IMS online or batch.

On a DD statement, you specify SYSOUT=x, where x is the output class. If the class
matches the JOB statement MSGCLASS, the output appears with the job log. You can
specify a SYSOUT data set and get the job MSGCLASS by specifying SYSOUT=x. If you
want to create a job stream within your program, you can specify INTRDR on the DD
statement. This sends your SYSOUT data set to the internal reader to be read as an
input job stream. For example,

//MYDD DD SYSOUT=(A, INTRDR)

For more details about the SYSOUT parameter, refer to the OS/390 MVS JCL User’s
Guide.

You can specify DCB attributes for a SYSOUT data set on a DD statement or a call to
fopen() or freopen(). If you do not, OS/390 C/C++ uses the following defaults:

Binary or Record I/O
RECFM=VB LRECL=137 BLKSIZE=882

Text I/O
RECFM=VBA LRECL=137 BLKSIZE=882

Tapes

0S/390 C/C++ supports standard label (SL) tapes. If you are creating tape files,
you can only open them by ddname. OS/390 C/C++ provides support for opening
tapes in read, write, or append mode, but not update. When you open a tape for
read or append, any data-set control block (DCB) characteristics you specify must
match those of the existing data set exactly. The repositioning functions are
available only when you have opened a tape for read. For tapes opened for write
or append, calling rewind() has no effect; calls to any of the other repositioning
functions fail. To open a tape file for write, you must open it by ddname.

Opening FBS-format tape files with append-only mode is not supported.

When you open a tape file for output, the data-set name you specify in the JCL
must match the data-set name specified in the tape label, even if the existing tape
file is empty. If this is not the case, you must either change the JCL to specify the
correct data-set name or write to another tape file, or reinitialize the tape to
remove the tape label and the data. You can use IEBGENER with the following JCL
to create an empty tape file before passing it to the subsequent steps:

//ALLOC EXEC PGM=IEBGENER
//SYSUT1 DD =

/*

//SYSUT2 DD DSN=name-of-OUTPUT-tape-file,UNIT=xxxx,LABEL=(x,SL),
// DISP=(NEW,PASS), (DCB=LRECL=xx,BLKSIZE=xx,RECFM=xx) ,

// VOL=SER=xxx

//SYSIN DD DUMMY
//SYSPRINT DD SYSQOUT=+

Note: For tapes, the value for UNIT= can be TAPE or CART.

114 0S/390 V2R8.0 C/C++ Programming Guide

Because the C library does not create tape files, you can append only to a tape file
that already exists. Attempting to append to a file that does not already exist on a
tape will cause an error. You can create an empty data set on a tape by using the
utility IEBGENER.

Multivolume Data Sets

0S/390 C/C++ supports data sets that span more than one volume of DASD or
tape. To open a multivolume data set for write, you must open it by ddname.

You can open multivolume tape data sets only for read or write. Opening them for
update or append is not supported.

You can open multivolume DASD data sets for read, write, or update, but not for
append. If you open one in r+ or rb+ mode, you can read and update the file, but
you cannot extend the data set.

The repositioning functions are available only when you have opened a
multivolume data set for read. For multivolume data sets opened for write, calling
rewind() has no effect; calls to any of the other repositioning functions fail. Here is
an example of a multivolume data set declaration:

//MYDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),

// VOLUME=(, , ,3,SER=(333001,333002,333003)),
// SPACE=(TRK, (9,10)),UNIT=(3390,P)

This creates a data set that may span up to three volumes. For more information
about the VOLUME parameter on DD statements, refer to the OS/390 MVS JCL User’s
Guide.

Striped Data Sets

A striped data set is a special data set organization introduced with DESMS
Version 1 Release 1.0. Striping spreads a data set over a specified number of
volumes such that I/O parallelism can be exploited. Unlike a multivolume data set
in which physical record n follows record n-1, a striped data set has physical
records n and n-1 on separate volumes. This enables asynchronous 1/O to perform
parallel operations, making requests for multiple reads and writes faster. Striped
data sets also facilitate repositioning once the relative block number is known.
0S/390 C/C++ exploits this capability when it uses fseek() to reposition. This can
result in substantial savings for applications that use ftel1() and fseek() with
data sets that have RECFMs of V, U, and FB (not FBS). data sets. When a data set is
striped, an fseek() can seek directly to the specified block just as an fsetpos() or
rewind() can. For a normal data set with the aforementioned RECFMs, OS/390
C/C++ has to read forward or rewind the data set to get to the desired position.
Depending on how large the data set is, this can be quite inefficient compared to a
direct reposition. Note that for such data sets, striping pads blocks to their
maximum size. Therefore, you may be wasting space if you have short records.

If your system has DFSMS Version 1 Release 1.0 and higher, you may not be able
to use striped data sets. This is because there is a hardware requirement by DFSMS
that all volumes of a striped data set be attached to ESCON channels. Contact your
system administrator for details on whether striped data sets are available on your
system and how to specify them.

Chapter 11. Performing OS I/O Operations 115

Other Devices

05/390 C/C++ supports several other devices for input and output. You can open
these devices only by ddname. The following table lists a number of these devices

and tells you which record formats are valid for them.

Table 17. Other Devices Supported for Input and Output

Device Valid open modes Repositioning? fldata()__device
Printer w, wb, a, ab No _ PRINTER
Card reader r, b rewind() only _ OTHER
Card punch w, wb, a, ab No _ OTHER
Optical reader 1, rb rewind() only _ OTHER
DUMMY data set 1, tb, r+, tb+, r+b, w, |rewind() only _ DUMMY

wb, w+, wb+ w+b, a,

ab, a+, ab+, a+b

Note: For all devices above that support open modes a or ab, the modes are treated as if
you had specified w or wb.

None of the devices listed above can be opened for update except the DUMMY data
set.

0S/390 C/C++ queries each device to find out its maximum BLKSIZE.

The DUMMY data set is not truly a device, although OS/390 C/C++ treats it as one.
To use the DUMMY data set, specify DD DUMMY in your JCL. On input, the DUMMY data
set always returns EOF; on output, it is always successful. This is the way to specify
a DUMMY data set:

//MYDD DD DUMMY

For more information on DUMMY data sets, see the OS/390 MVS JCL User’s Guide.

fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are allowed and applicable for OS I/0O,
and lists the option values that are valid for the applicable ones. Detailed
descriptions of these options follow the table.

Table 18. Parameters for the fopen() and freopen() Functions for OS/390 OS I/O

Parameter Allowed? Applicable? | Notes

recfm= Yes Yes Any of the 27 record formats available
under OS/390 C/C++, plus * and A are
valid.

Trecl= Yes Yes 0, any positive integer up to 32760, or X is
valid. See the parameter list below.

blksize= Yes Yes 0 or any positive integer up to 32760 is
valid.

space= Yes Yes Valid only if you are opening a new data
set by its data-set name. See the parameter
list below.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

116 0S/390 V2R8.0 C/C++ Programming Guide

Table 18. Parameters for the fopen() and freopen() Functions for 0S/390 OS

I/O (continued)

Parameter Allowed? Applicable? |Notes

acc= Yes No Not used for OS I/0.

password= Yes No Not used for OS I/0.

asis Yes No Used to specify mixed-case file names. Not
recommended.

byteseek Yes Yes Used for binary files to specify that the
seeking functions should use relative byte
offsets instead of encoded offsets.

noseek Yes Yes Used to disable seeking functions for
improved performance.

0S Yes No Ignored.

recfm=

0S5/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages , @, and @), as well as the OS/390 C/C++ RECFMs * and A.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any RECFM that you specify must match that of the
existing file, except that you may specify recfm=U to open any file for read, and
you may specify recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS
indicates to OS/390 C/C++ that there are no short blocks within the file. If
there are, undefined behavior results.

For variable-format OS files, the RDW, SDW, and BDW contain the length of
the record, segment, and block as well as their own lengths. If you open a file
for read with recfm=U, OS/390 C/C++ treats each physical block as an
undefined-format record. For files created with recfm=V, OS/390 C/C++ does
not strip off block descriptor words (BDWs) or record descriptor words
(RDWs), and for blocked files, it does not deblock records. Using recfm=U is
helpful for viewing variable-format files or seeing how records are blocked in
the file.

When you are opening an existing PDS or PDSE for write and you specify a
RECFM, it must be compatible with the RECFM of the existing data set. FS and FBS
formats are invalid for PDS members. For PDSs, you must use exactly the
same RECFM. For PDSEs, you may choose to change the blocked attribute (B),
because PDSEs perform their own blocking. If you want to read a PDS or
PDSE directory and you specify a RECFM, it must be recfm=U.

Specifying recfm=A indicates that the file contains ASA control characters. If
you are opening an existing file and you specify that ASA characters exist
(>recfm=A) when they do not, the call to fopen() or freopen() fails. If you
create a file by opening it for write or append, the A attribute is added to the

default RECFM. For more information about ASA, see I/Chapter 8 Tlsing ASA

Specifying recfm=+ causes OS/390 C/C++ to fill in any attributes that you do
not specify, taking the attributes from the existing data set. This is useful if you
want to create a new version of a data set with the same attributes as the
previous version. If you open a data set for write and the data set does not

exist, OS/390 C/C++ uses the default attributes specified in Kfopen(.)ﬂefa.l.l.l.tsﬂ
on page 54
Chapter 11. Performing OS I/O Operations 117

bn page 54. This parameter has no effect when you are opening for read or
append, and when you use it for non-DASD files.

Trecl= and blksize=
The LRECL that you specify on the fopen() call defines the maximum record
length that the C library allows. Records longer than the maximum record
length are not written to the file. The first 4 bytes of each block and the first 4
bytes of each record of variable-format files are used for control information.
For more information, see [ari = i

The maximum LRECL supported for fixed, undefined, or variable-blocked-
spanned format sequential disk files is 32760. For other variable-length format
disk files the maximum LRECL is 32756. Sequential disk files for any format
have a maximum BLKSIZE of 32760. The record length can be any size when
opening a spanned file and specifying 1recl=X. You can now specify 1recl=X
on the fopen() or freopen() call for spanned files. If you are updating an
existing file, the file must have been originally opened with Trecl=X for the
open to succeed. 1rec1=X is useful only for text and record I/0O.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any LRECL or BLKSIZE that you specify must match
that of the existing file, except when you open an F or FB format file on a disk
device without specifying the noseek parameter. In this case, you can specify
the S attribute to indicate to OS/390 C/C++ that the file has no imbedded
short blocks. Files without short blocks improve OS/390 C/C++’s performance.

When you are opening an existing PDS or PDSE for write and you specify an
LRECL or BLKSIZE, it must be compatible with the LRECL or BLKSIZE of the
existing data set. For PDSs, you must use exactly the same values. For PDSEs,
the LRECL must be the same, but the BLKSIZE may be different if you have
changed the blocking attribute as described under the RECFM parameter above.
You can change the blocking attribute, because PDSEs perform their own
blocking. The BLKSIZE you choose should be compatible with the RECFM and
LRECL. When you open the directory of a PDS or PDSE, do not specify LRECL or
BLKSIZE; OS/390 C/C++ uses the defaults. See [[ahle 19 an page 127 for more

information.

space=(units, (primary,secondary,directory))
This keyword enables you to specify the space parameters for the allocation of
an MVS data set. It applies only to MVS data sets that you open by filename
and do not already exist. If you open a data set by ddname, this parameter has
no effect. You cannot specify any whitespace inside the value for the space
keyword. You must specify at least one value with this parameter. Any
parameter that you specify will be validated for syntax. If that validation fails,
then the fopen() or freopen() will fail even if the parameter would have been
ignored.

The supported values for units are as follows:

* Any positive integer indicating BLKSIZE
* CYL (mixed case)
* TRK (mixed case)

The primary quantity, the secondary quantity, and the directory quantity all
must be positive integers.

118 0S/390 V2R8.0 C/C++ Programming Guide

If you specify values only for units and primary, you do not have to specify the
inside set of parentheses. You can use a comma to indicate a quantity is to take
the default value. For example:

space=(cyl,(100,,10)) - default secondary value

space=(trk, (100,,)) - default secondary and directory value
space=(500, (100,)) - default secondary, no directory

You can specify only the values indicated on this parameter. If you specify any
other values, fopen() or freopen() fails.

Any values not specified are omitted on the allocation. These values are filled
by the system during SVC 99 processing.

type=
You can omit this parameter. If you specify it, the only valid value for OS I/O
is type=record, which opens a file for record I/0O.

acc=
This parameter is not valid for OS I/O. If you specify it, OS/390 C/C++
ignores it.

password=
This parameter is not valid for OS I/O. If you specity it, OS/390 C/C++
ignores it.

asis
If you use this parameter, OS/390 C/C++ does not convert your file names to
upper case. The use of the asis parameter is strongly discouraged, because
most of the I/O services used by OS/390 C/C++ require uppercase file names.

byteseek
When you specify this parameter and open a file in binary mode, all
repositioning functions (such as fseek() and ftel1()) use relative byte offsets
from the beginning of the file instead of encoded offsets. In previous releases
of OS5/390 C/C++, byteseeking was performed only for fixed format binary
files. To have the byteseek parameter set as the default for all your calls to
fopen() or freopen(), you can set the environment variable EDC BYTE SEEK to
Y. See P’Chapfpr 33 1lsing Environment Variables” on page 457 for more
information.

noseek
Specifying this parameter on the fopen() call disables the repositioning
functions ftel1(), fseek(), fgetpos(), and fsetpos() for as long as the file is
open. When you have specified NOSEEK and have opened a disk file for read
only, the only repositioning function allowed on the file is rewind(), if the
device supports rewinding. Otherwise, a call to rewind() sets errno and raises
SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftel1(), fseek(),
fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

The use of the noseek parameter may improve performance when you are
reading and writing data sets.

Note: If you specify the NOSEEK parameter when you open a file for writing,
you must specify NOSEEK on any subsequent fopen() call that
simultaneously opens the file for reading; otherwise, you will get
undefined behavior.

0S
If you specify this parameter, OS/390 C/C++ ignores it.

Chapter 11. Performing OS I/0 Operations 119

Buffering

0S/390 C/C++ uses buffers to map C I/O to system-level 1/0.

When OS/390 C/C++ performs 1/O operations, it uses one of the following
buffering modes:

* Line buffering — characters are transmitted to the system when a new-line
character is encountered. Line buffering is meaningless for binary and record
1/0 files.

e Full buffering — characters are transmitted to the system when a buffer is filled.

C/C++ provides a third buffering mode, unbuffered 1/0, which is not supported
for OS files.

You can use the setvbuf() and setbuf() library functions to set the buffering
mode before you perform any I/O operation to the file. setvbuf() fails if you
specify unbuffered I/0O. It also fails if you try to specify line buffering for an FBS
data set opened in text mode, where the device does not support repositioning.
This failure happens because OS/390 C/C++ cannot deliver records at line
boundaries without violating FBS format. Do not try to change the buffering mode
after you have performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf()
to specify line buffering. For binary files, record 1/0O files, and unblocked text files,
a block is written out as soon as it is full, regardless of whether you have specified
line buffering or full buffering. Line buffering is different from full buffering only
for blocked text files.

Multiple Buffering

Multiple buffering (or asynchronous 1/0) is supported for MVS data sets. Multiple
buffering is not supported for a data set opened for read at the same time that
another file pointer has it opened for write or append. When you open files for
multiple buffering, blocks are read into buffers before they are needed, eliminating
the delay caused by waiting for I/O to complete. Multiple buffering may make
I/0 less efficient if you are seeking within or writing to a file, because seeking or
writing may discard blocks that were read into buffers but never used.

To specify multiple buffering, code either the NCP=xx or BUFNO=yy subparameter of
the DCB parameter on the JCL DD statement (or allocation), where xx is an integer
number between 02 and 99, and yy is an integer number normally between 02 and
255. Whether OS/390 C/C++ uses NCP or BUFNO depends on whether you are using
BSAM or QSAM, respectively. NCP is supported under BSAM; BUFNO is supported
under QSAM. BSAM and QSAM are documented in DFSMS/MV'S Using Data Sets.
If you specify noseek, OS/390 C/C++ uses QSAM if possible. If OS/390 C/C++ is
using BSAM and you specify a value for BUFNO, OS/390 C/C++ maps this value to
NCP. If OS/390 C/C++ is using QSAM and you specify a value for NCP, OS/390
C/C++ maps this value to BUFNO.

If you specify both NCP and BUFNO, OS/390 C/C++ takes the greater of the two
values, up to the maximum for the applicable value. For example, if you specify a
BUFNO of 120 and you are using BSAM, which uses NCP instead, OS/390 C/C++
will use NCP=99.

120 0S/390 V2R8.0 C/C++ Programming Guide

If you do not specify either, OS/390 C/C++ defaults to single buffering, except in

the following cases, where OS/390 C/C++ uses the system’s default BUFNO and

performs multiple buffering for both reading and writing:

* If you open a device that does not support repositioning, and specify read-only
or write-only mode (r, rb, w, wb, a, ab).

* If you specify the NOSEEK parameter on the call to fopen() or freopen(), and
specify read-only or write-only mode. When you specify NOSEEK, you get
multiple buffering for both reads and writes.

Here is an example of how to specify BUFNO:
//DD5 DD DSNAME=TORONTO.BLUEJAYS,DISP=SHR,DCB=(BUFN0=5)

You may need to update code from previous releases that relies on OS/390 C/C++
ignoring NCP or BUFNO parameters.

DCB (Data Control Block) Attributes

For OS files, the C run-time library creates a skeleton data control block (DCB) for
the file when you open it. File attributes are determined from the following sources
in this order:

1. The fopen() or freopen() function call
2. Attributes for a ddname specified previously (if you are opening by ddname)

3. Existing file attributes (if you specify recfm=* or you are opening an existing
file for read or append)

4. Defaults from fopen() or freopen() for creating a new file.

If you do not specify RECFM when you are creating a new file, OS/390 C/C++ uses
the following defaults:

If recfm is not specified in a fopen() call for an output binary file, recfm defaults
to:

* recfm=VB for spool (printer) files,

* recfm=FB otherwise.

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

e recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

* recfm=VBA for spool (printer) files.

* recfm=U for terminal files

e recfm=V if the LRECL or BLKSIZE is specified
* recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

The following table shows the defaults for LRECL and BLKSIZE when the OS/390
C/C++ compiler creates an OS file.

Chapter 11. Performing OS I/O Operations 121

C OR C++
PROGRAM

file *f;

f = fopen("dd:master","r,

DATA CONTROL BOX

blksize=400, recfm=FB") —
Record format FB
Block size 400
Record length 100
DD STATEMENT ' I"//\ASTER DD UNIT=3480, — -

VOLUME=SER=1791 > | Device type 3480

DSNAME-=LIST, . .

DCB=(..., 1 Recording density 1600

RECFM=FB,

BLKSIZE=400,

TAPE LABEL

LRECL=100)

Record format=FB
Record length=100
Block size=400
Recording density=1600

Figure 13. How the Operating System Completes the DCB. Information from the C or C++
program overrides that from the DD statement and the tape label. Information from the DD
statement overrides that from the data set label.

Table 19. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

Irecl specified? blksize specified? RECFM LRECL BLKSIZE
no no All F 80 80
All FB 80 maximum integral
multiple of 80 less
than or equal to max
All V, VB, VS, or VBS minimum of 1028 or max
max—4
AllU 0 max
yes no All F Irecl Irecl
All FB Irecl maximum integral
multiple of Irecl less
than or equal to max
AllV Irecl Irecl+4
AllU 0 Irecl
no yes All F or FB blksize blksize
All V, VB, VS, or VBS minimum of 1028 or blksize
blksize—4
AllU 0 blksize

Note: All includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control

character (M) specifier.

In [Cable 1d, the value max represents the maximum reasonable block size for the
device. These are the current default maximum block sizes for several devices that

0S/390 C/C++ supports:
Device Default Maximum Block Size

122 0S/390 V2R8.0 C/C++ Programming Guide

DASD 6144

3203 Printer 132
3211 Printer 132
4245 Printer 132
2540 Reader 80
2540 Punch 80
2501 Reader 80
3890 Document Processor 80
TAPE 32760

For more information about specific default block sizes as returned by the DEVTYPE
macro, refer to the DFP System Programming Reference.

You can perform multiple buffering under MVS. See tMultiple Buffering” onl

for details.

Reading from Files

You can use the following library functions to read from a file:
e fread()

o fgetc()

o fgets()

e fscanf()

* getc()

* gets()

e getchar()

e scanf()

fread() is the only interface allowed for reading record I/O files. A read operation
directly after a write operation without an intervening call to fflush(), fsetpos(),
fseek(), or rewind() fails. OS/390 C/C++ treats the following as read operations:

* Calls to read functions that request 0 bytes
* Read requests that fail because of a system error

* Calls to the ungetc() function

0S/390 C/C++ does not consider a read to be at EOF until you try to read past the
last byte visible in the file. For example, in a file containing three bytes, the feof()
function returns FALSE after three calls to fgetc(). Calling fgetc() one more time
causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See the
debugging section in this book for more details.

Chapter 11. Performing OS I/O Operations 123

Reading from Binary Files

05/390 C/C++ reads binary records in the order that they were written to the file.
Any null padding is visible and treated as data. Record boundaries are
meaningless.

Reading from Text Files

For non-ASA variable text files, the default for OS/390 C/C++ is to ignore any
empty physical records in the file. If a physical record contains a single blank,
0S/390 C/C++ reads in a logical record containing only a new-line. However, if
the environment variable EDC _ZERO RECLEN was set to Y, OS/390 C/C++ reads an
empty physical record as a logical record containing a new-line, and a physical
record containing a single blank as a logical record containing a blank and a
new-line. OS/390 C/C++ differentiates between empty records and records
containing single blanks, and does not ignore either of them. For more information
about how OS/390 C/C++ treats empty records in variable format, see

m@emmmﬂma—t—m_pa%ﬁdﬂ .

For ASA variable text files, if a file was created without a control character as its
first byte, the first byte defaults to the ' ' character. When the file is read back, the
first character is read as a new-line.

On input, ASA characters are translated to the corresponding sequence of control

characters. For more information about using ASA files, refer to ‘Chapter 8 [lsing
IASA Text Files” on page A9

For undefined format text files, reading a file causes a new-line character to be
inserted at the end of each record. On input, a record containing a single blank
character is considered an empty record and is translated to a new-line character.
Trailing blanks are preserved for each record.

For files opened in fixed text format, rightmost blanks are stripped off a record at
input, and a new-line character is placed in the logical record. This means that a
record consisting of a single new-line character is represented by a fixed-length
record made entirely of blanks.

Reading from Record 1/O Files

For files opened in record format, fread() is the only interface that supports
reading. Each time you call fread() for a record I/O file, fread() reads one record.
If you call fread() with a request for less than a complete record, the requested
bytes are copied to your buffer, and the file position is set to the start of the next
record. If the request is for more bytes than are in the record, one record is read
and the position is set to the start of the next record. OS/390 C/C++ does not strip
any blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size
argument equal to 1 and a count argument equal to the maximum expected length
of the record, fread() returns the length, in bytes, of the record read. If you pass a
size argument equal to the maximum expected length of the record, and a count
argument equal to 1, fread() returns either 0 or 1, indicating whether a record of
length size read. If a record is read successfully but is less than size bytes long,
fread() returns 0.

124 0S/390 V2R8.0 C/C++ Programming Guide

A failed read operation may lead to undefined behavior until you reposition
successfully.

Writing to Files

You can use the following library functions to write to a file:
e fwrite()

o printf()

o fprintf()

o vprintf()

o vfprintf()

* puts()

+ fputc()

+ fputs()

* putc()
e putchar()

fwrite() is the only interface allowed for writing to record I/O files. See the
0S5/390 C/C++ Run-Time Library Reference for more information on these library
functions.

A write operation directly after a read operation without an intervening call to
fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has
reached EOF. The file pointer does not reach EOF until after you have tried to read
past the last byte of the file.

0S/390 C/C++ counts a call to a write function writing 0 bytes or a write request
that fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, OS/390 C/C++ tries to set
the file position to the end of the last record updated successfully. For a
fully-buffered file, this is at the end of the last record in a block. For a line-buffered
file, this may be any record in the current block. If you are writing new data at the
time of a system failure, OS/390 C/C++ puts the file position at the end of the last
block of the file. In files opened for blocked output, you may lose data written by
other writes to that block before the system failure. The contents of a file after a
system write failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for
reading, the user who is reading the file can check for records that may have been
written past the end of the file by the other user. If the file is a spanned variable
text file, the reader can read part of a spanned record and reach the end of the file
before reading in the last segment of the spanned record.

Writing to Binary Files

Data flows over record boundaries in binary files. Writes or updates past the end
of a record go to the next record. When you are writing to files and not making
any intervening calls to fflush(), blocks are written to the system as they are
filled. If a fixed record is incomplete when you close the file, OS/390 C/C++
completes it with nulls. You cannot change the length of existing records in a file
by updating them.

Chapter 11. Performing OS I/O Operations 125

If

you are using variable binary files, note the following:

On input and on update, records that have no length are ignored; you will not
be notified. On output, zero-length records are not written. However, in spanned
files, if the first segment of a record has been written to the system, and the user
flushes or closes the file, a zero-length last segment may be written to the file.

If you are writing new data in a recfm=VB file, OS/390 C/C++ may add a short
record at the end of a block, to fill the block out to the full block size.

If your file is spanned, records are written up to length LRECL, spanning multiple
blocks if necessary. You can create a spanned file by specifying a RECFM
containing V and S on the fopen() call.

Writing to Text Files

0S/390 C/C++ treats the control characters as follows when you are writing to a
non-ASA text file:

\a
\b

\f

\n

\r

\t

\v

\x

\Xx

Alarm. Placed directly into the file; OS/390 C/C++ does not interpret it.

Backspace. Placed directly into the file; OS/390 C/C++ does not interpret
it.

Form feed. Placed directly into the file; OS/390 C/C++ does not interpret
it.

New-line. Defines a record boundary; OS/390 C/C++ does not place it in
the file.

Carriage return. Defines a record boundary; OS/390 C/C++ does not place
it in the file. Treated like a new-line character.

Horizontal tab character. Placed directly into the file; OS/390 C/C++ does
not interpret it.

Vertical tab character. Placed directly into the file; OS/390 C/C++ does not
interpret it.

O0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
MB_CUR_MAX > 1. Placed into the file.

OF DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX >
1. Placed into the file. See [!‘Chapter 9. QS/390 C Support for thd
Double-Byte Character Set” on page 73 for more information about
MB_CUR_MAX.

The way OS/390 C/C++ treats text files depends on whether they are in fixed,
variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is
reserved for the ASA control character that represents a new-line, a carriage return,

or a form feed.

Table 20. C Control to ASA Characters

C Control Character
Sequence

ASA Character

Description

\n ' skip one line
\n\n 0 skip two lines
\n\n\n - skip three lines
\f T new page

126 0S/390 V2R8.0 C/C++ Programming Guide

Table 20. C Control to ASA Characters (continued)

| \r | +' | overstrike

See [!‘Chapter 8 Tlsing ASA Text Files” on page 69 for more information.

Writing to Fixed-Format Text Files

Records in fixed-format files are all the same length. You complete each record
with a new-line or carriage return character. For fixed text files, the new-line
character is not written to the file. Blank padding is inserted to the LRECL of each
record of the block, and the block, when full, is written. For a more complete

descrigtion of the way fixed-format files are handled, see ['Fixed-Format Records’]

A logical record can be shortened to be an empty record (containing just a
new-line) or extended to a record containing LRECL bytes of data plus a new-line.
Because the physical record represents the new-line position by using padding
blanks, the new-line position can be changed on an update as long as it is within
the physical record.

Note: Using ftel1() or fgetpos() values for positions that do not exist after you
have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the
old data and, if the new data is longer or shorter than the old data, changes the
size of the logical record by changing the number of blank characters in the
physical record. When you extend a record, thereby writing over the old new-line,
a new-line character is implied after the last character of the update. Calling
fflush() flushes the data out to the file and inserts blank padding between the last
data character and the end of the record. Once you have called fflush(), you can
call any of the read functions, which begin reading at the new-line. Once the
new-line is read, reading continues at the beginning of the next record.

Writing to Variable-Format Text Files

In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW).

For ASA and non-ASA, the '\n' (new-line) character implies a record boundary.
On output, the new-line is not written to the physical file; instead, it is assumed to
follow the data of the record.

If you have not set _EDC_ZERO_RECLEN, OS/390 C/C++ writes out a record
containing a single blank character to represent a single new-line, On input, a
record containing a single blank character is considered an empty record and is
translated to a new-line character. Note that a single blank followed by a new-line
is written out as a single blank, and is treated as just a new-line on input. When
_EDC_ZERO_RECLEN is set, writing a record containing only a new-line results in a
zero-length variable record.

Chapter 11. Performing OS I/O Operations 127

For more information about environment variables, refer to I!Chapter 33 1sing]

Environment Variables” on page 454. For more information about how OS/390
C/C++ treats empty records in variable format, see 'Mapping C Types to Variabld
Eormat” on page 39.

7

Attempting to shorten a record on update by specifying less data before the
new-line causes the record to be padded with blanks to the original record size.
For spanned records, updating a record to a shorter length results in the same
blank padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The
exception to this rule is extending an empty record to a 1-byte record when the
environment variable _EDC_ZERO_RECLEN is not set. Because the physical
representation for an empty record is a record containing one blank character, it is
possible to extend the logical record to a single non-blank character followed by a
new-line character. For standard streams, truncation in text files does not occur;
data is wrapped automatically to the next record as if you had added a new-line.

When you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system when a new-line or
carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition
requests, if the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system when it is completed. If you are
using full buffering for a VB format file, a write may not fill a block completely.
The data does not go to the system unless a block is full; you can complete the
block with another write. If the subsequent write contains more data than is
needed to fill the block, it flushes the current block to the system and starts writing
your data to a new block.

When you are writing data to a spanned file without intervening flush or
reposition requests, if the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its
first byte or record (after the RDW and BDW), the first byte defaults to the ' '
character. When the file is read back, the first character is read as a new-line.

Writing to Undefined-Format Text Files

In an undefined-format file, there is only one record per block. Each record may be
a different length, up to a maximum length of BLKSIZE. Each record is completed
with a new-line or carriage return character. The new-line character is not written
to the physical file; it is assumed to follow the data of the record. However, if a
record contains only a new-line character, OS/390 C/C++ writes a record
containing a single blank to the file to represent an empty record. On input, the
blank is read in as a new-line.

Once a record has been written, you cannot change its length. If you try to shorten
a logical record by updating it with a shorter record, OS/390 C/C++ completes the
record with blank padding. If you try to lengthen a record by updating it with
more data than it can hold, OS/390 C/C++ truncates the new data. The only
instance in which this does not happen is when you extend an empty record so
that it contains a single byte. Any data beyond the single byte is truncated.

128 0S/390 V2R8.0 C/C++ Programming Guide

Truncation Versus Splitting

If you try to write more data to a record than OS/390 C/C++ allows, and the file
you are writing to is not one of the standard streams (the defaults, or those
redirected by freopen() or command-level redirection), output is cut off at the
record boundary and the remaining bytes are discarded. OS/390 C/C++ does not
count the discarded characters as characters that have been written out
successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not
SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more
information about SIGIOERR, ferror(), and other I/O-related debugging tools, see

i i v . OS/390 C/C++ continues to
discard new output until you complete the current record by writing a new-line or
carriage return character, close the file, or change the file position.

If you are writing to one of the standard streams, attempting to write more data
than a record can hold results in the data being split across multiple records.

Writing to Record I/O Files

fwrite() is the only interface allowed for writing to a file opened for record I/0O.
Only one record is written at a time. If you attempt to write more new data than a
full record can hold or you try to update a record with more data than it currently
has, OS/390 C/C++ truncates your output at the record boundary. When OS/390
C/C++ performs a truncation, it sets errno and raises SIGIOERR, if SIGIOERR is not
set to SIG_IGN.

When you update a record, you can update less than the full record. The
remaining data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record 1/0O file, if you try to write a
short record, OS5/390 C/C++ pads the record with nulls out to LRECL.

At the completion of an fwrite(), the file position is at the start of the next record.
For new data, the block is flushed out to the system as soon as it is full.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS5/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system()
function, all open streams are flushed before control is passed to the callee, and
again before control is returned to the caller. If you are running with POSIX(ON), a
call to the POSIX system() function does not flush any streams to the system.

Chapter 11. Performing OS I/O Operations 129

Updating Existing Records

Calling fflush() while you are updating flushes the updates out to the system. If
you call fflush() when you are in the middle of updating a record, OS/390
C/C++ writes the partially updated record out to the system. A subsequent write
continues to update the current record.

Reading Updated Records

If you have a file open for read at the same time that the file is open for write in
the same application, you will be able to see the new data if you call fflush() to
refresh the contents of the input buffer, as in the following example:

CBC3GO0S3

/* this example demonstrates how updated records are read */
#include <stdio.h>
int main(void)
{
FILE = fp, * fp2;
int rc, rc2, rc3, rcd;
fp = fopen("a.b","w+");
fprintf(fp,"first record");
fp2 = fopen("a.b","r"); /* Simultaneous Reader */
/* following gets EOF since fp has not completed first line
* of output so nothing will be flushed to file yet */
rc = fgetc(fp2);
printf("return code is %i\n", rc);

fputc('\n', fp); /* this will complete first line */
fflush(fp); /* ensures data is flushed to file */

rc2 = fgetc(fp2); /* this gets 'f' from first record */
printf("value is now %c\n", rc2);

rewind(fp);

fprintf(fp, "some updates\n");

rc3 = fgetc(fp2); /* gets 'i' ..doesn't know about update */
printf("value is now %c\n", rc3);

fflush(fp); /* ensure update makes it to file */
fflush(fp2); /* this updates reader's buffer =/

rc4 = fgetc(fp2); /* gets 'm', 3rd char of updated record */
printf("value is now %c\n", rcd);

return(0);

Figure 14. Example of Reading Updated Records
Writing New Records

Writing new records is handled differently for:

* Binary streams

130 0S/390 V2R8.0 C/C++ Programming Guide

e Text streams
e Record I/O

Binary Streams

05/390 C/C++ treats line buffering and full buffering the same way for binary
files.

If the file has a variable length or undefined record format, fflush() writes the
current record out. This may result in short records. In blocked files, this means
that the block is written to disk, and subsequent writes are to a new block. For
fixed files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an
incomplete block out to the file. For all other types of FBS files, fflush () does not
flush an incomplete block out to the file.

For files in FB format, fflush() always flushes out all complete records in the
current block. For sequential DASD files, new completed records are added to the
end of the flushed block if it is short. For non-DASD or non-sequential files, any
new record will start a new block.

Text Streams
¢ Line-Buffered Streams

fflush() has no effect on line-buffered text files, because OS/390 C/C++ writes
all records to the system as they are completed. All incomplete new records
remain in the buffer.

* Fully Buffered Streams

Calling fflush () flushes all completed records in the buffer, that is, all records
ending with a new-line or carriage return (or form feed character, if you are
using ASA), to the system. OS/390 C/C++ holds any incomplete record in the
buffer until you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more
than one new-line is being updated, the remaining new-lines will be discarded and
a read will continue at the first data character. For example, if '\n\n\n' is updated
to be '\n\n' and a flush occurs, then a '0' will be written out in the ASA character
position.

Record I/0

05/390 C/C++ treats line buffering and full buffering the same way for record
I/O. For files in FB format, calling fflush() writes all records in the buffer to the
system. For single-volume disk files in FBS format, fflush() will flush complete
records in an incomplete block out to the file. For all other types of FBS files,
fflush() will not flush an incomplete block out to the file. For all other formats,
calling fflush() has no effect, because fwrite() has already written the records to
disk.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for binary and text files.
ungetc() handles only single-byte characters. You can use it to push back as many
as four characters onto the ungetc() buffer. For every character pushed back with
ungetc(), fflush() backs up the file position by one character and clears all the

Chapter 11. Performing OS I/O Operations 131

pushed-back characters from the stream. Backing up the file position may end up
going across a record boundary. Remember that for text files, OS/390 C/C++
counts the new-lines added to the records as single-byte characters when it
calculates the file position.

file pointer

For example, given the stream you can run the following code fragment:

fgetc(fp); /* Returns A and puts the file position at */
/* the beginning of the character B */
ungetc('Z',fp); /* Logically inserts Z ahead of B */
fflush(fp); /* Moves the file position back by one to A, =/
/* removes Z from the Togical stream */

If you want fflush() to ignore ungetc() characters, you can set the EDC_COMPAT
environment variable. See P’Chapfpr 33 llsing Environment Variables” on page 457

for more information.

Repositioning within Files

You can use the following library functions to help you position within an OS file:
o fseek()

» ftell()

» fgetpos()

o fsetpos()

* rewind()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Opening a file with fopen() and specifying the NOSEEK parameter disables all of
these library functions except rewind(). A call to rewind() causes the file to be
reopened, unless the file is a non-disk file opened for write-only. In this case,
rewind() sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is
its default).

Calling any of these functions flushes all complete and updated records out to the
system. If a repositioning operation fails, OS/390 C/C++ attempts to restore the
original file position and treats the operation as a call to fflush(), except that it
does not account for the presence of ungetc() or ungetwc() characters, which are
lost. After a successful repositioning operation, feof () always returns 0, even if the
position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than
ftel1() and fseek(). The fgetpos() function can encode the current position into
a structure that provides enough room to hold the system position as well as
position data specific to C or C++. The ftel1() function must encode the position
into a single word of storage, which it returns. This compaction forces fseek() to

132 0S/390 V2R8.0 C/C++ Programming Guide

calculate certain position information specific to C or C++ at the time of
repositioning. For variable-format binary files, you can choose to have ftell()
return relative byte offsets. In previous releases, ftell() returned only encoded
offsets, which contained the relative block number. Since you cannot calculate the
block number from a relative byte offset in a variable-format file, fseek() may
have to read through the file to get to the new position. fsetpos() has system
position information available within the the fpos_t structure and can generally
reposition directly to the desired location.

You can use the ftell() and fseek() functions to set the current position within
all types of files except for the following:

* Files on non-seekable devices (for example, printers)

* Files on tapes opened for write

* Partitioned data sets opened in w or wb mode.

ungetc() Considerations

For binary and text files, the library functions fgetpos() and ftell() take into
account the number of characters you have pushed back onto the input stream
with ungetc(), and adjust the file position accordingly. ungetc() backs up the file
position by a single byte each time you call it. For text files, OS/390 C/C++ counts
the new-lines added to the records as single-byte characters when it calculates the
file position.

If you make so many calls to ungetc() that the logical file position is before the
beginning of the file, the next call to ftel1() or fgetpos() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point
for the reposition also accounts for the presence of ungetc() characters and
compensates as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the
EDC COMPAT environment variable. See I’Chapfpr 33 1lsing Environment Variables’}
for details. ftel1() is not affected by the setting of _EDC_COMPAT.

How Long fgetpos() and ftell() Values Last

As long as you do not re-create a file or shorten logical records, you can rely on
the values returned by ftel1() and fgetpos(), even across program boundaries
and calls to fclose(). (Calling fopen() or freopen() with any of the w modes
re-creates a file.) Using ftel1() and fgetpos() values that point to information
deleted or re-created results in undefined behavior. For more information about
shortening records, see Ariti iable- iles”

Using fseek() and ftell() in Binary Files

With binary files, ftel1() returns two types of positions:
* Relative byte offsets
* Encoded offsets

Relative Byte Offsets

You get byte offsets by default when you are seeking or positioning in fixed-format
binary files. You can also use byte offsets on a variable or undefined format file
opened in binary mode with the BYTESEEK parameter specified on the fopen() or

Chapter 11. Performing OS I/O Operations 133

freopen() function call. You can specify BYTESEEK to be the default for fopen()
calls by setting the environment variable EDC BYTE_SEEK to Y. See

Using Environment Variables” on page 457 for information on how to set

environment variables.

You do not need to acquire an offset from ftell() to seek to a relative position;
you may specify a relative offset to fseek() with a whence value of SEEK_SET.
However, you cannot specify a negative offset to fseek() when you have specified
SEEK_SET, because a negative offset would indicate a position before the beginning
of the file. Also, you cannot specify a negative offset with whence values of
SEEK_CUR or SEEK_END such that the resulting file position would be before the
beginning of the file. If you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the
current EOF. In such cases, a new end-of-file position is created; null characters are
automatically added between the old EOF and the new EOF.

fseek () support of byte offsets in variable-format files generally requires reading
all records from the whence value to the new position. The impact on performance
is greatest if you open an existing file for append in BYTESEEK mode and then call
ftel1(). In this case, ftel1() has to read from the beginning of the file to the
current position to calculate the required byte offset. Support for byteseeking is
intended to ease portability from other platforms. If you need better performance,
consider using ftell ()-encoded offsets, discussed in the next section.

Encoded Offsets

If you do not specify the BYTESEEK parameter and you set the _EDC_BYTE_SEEK
variable to N, any variable- or undefined-format binary file gets encoded offsets
from ftel1(). This keeps this release of OS/390 C/C++ compatible with code
generated by old releases of C/370.

Encoded offsets are values representing the block number and the relative byte
within that block, all within one long int. Because OS/390 C/C++ does not
document its encoding scheme, you cannot rely on any encoded offset not returned
by ftel1(), except 0, which is the beginning of the file. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction). When
you call fseek() with the whence value SEEK_SET, you must use either 0 or an
encoded offset returned from ftel1(). For whence values of SEEK _CUR and SEEK_END,
however, you specify relative byte offsets. If you want to seek to a certain relative
byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the
beginning, and then you can use SEEK_CUR to specify the desired relative byte
offset.

In earlier releases, ftel1() could determine position only for files with no more
than 131,071 blocks. In the new design, this number increases depending on the
block size. From a maximum block size of 32,760, every time this number
decreases by half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to specify a
position that is beyond the current EOF. In such cases, a new end-of-file position is
created; null characters are automatically added between the old EOF and the new
EOF. This does not apply to PDS members, as they cannot be extended. For
SEEK_SET, because you are restricted to using offsets returned by ftell(), any
offset that indicates a position outside the current file is invalid and causes fseek()
to fail.

134 0S/390 V2R8.0 C/C++ Programming Guide

Using fseek() and ftell() in Text Files (ASA and Non-ASA)

In text files, fte11() produces only encoded offsets. It returns a Tong int, in which
the block number and the byte offset within the block are encoded. You cannot rely
on any encoded offset not returned by ftel1() except 0. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction).

When you call fseek() with the whence value SEEK_SET, you must use an encoded
offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END,
however, you specify relative byte offsets. If you want to seek to a certain relative
byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the
beginning, and then you can use SEEK_CUR to specify the desired relative byte
offset. OS/390 C/C++ counts new-line characters and skips to the next record each
time it reads one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that set
the file position past the end of the file. Any offset that indicates a position outside
the current file is invalid and causes fseek() to fail.

In earlier releases, ftel1() could determine position only for files with no more
than 131071 blocks. In the new design, this number increases depending on the
block size. From a maximum block size of 32760, every time this number decreases
by half, the number of blocks that can be represented doubles.

Repositioning flushes all updates before changing position. An invalid call to
fseek() is now always treated as a flush. It flushes all updated records or all
complete new records in the block, and leaves the file position unchanged. If the
flush fails, any characters in the ungetc() buffer are lost. If a block contains an
incomplete new record, the block is saved and will be completed by another write
or by closing the file.

Using fseek() and ftell() in Record Files

For files opened with type=record, ftel1() returns relative record numbers. The
behavior of fseek() and ftell() is similar to that when you use relative byte
offsets for binary files, except that the unit is a record rather than a byte. For
example,

fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.
fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().
You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting Old C Code That Uses fseek() or ftell()

The encoding scheme used by ftell() in non-BYTESEEK mode in the OS/390
C/C++ RTL is different from that used in older versions of the C/370 RTL. By
older versions of the RTL we mean versions of the C/370 RTL prior to version 2.2
and versions of LE/370 prior to version 1.3.

Chapter 11. Performing OS I/O Operations 135

 If your code obtains ftell() values and passes them to fseek(), the change to
the encoding scheme should not affect your application. On the other hand, your
application may not work if you have saved encoded ftell() values in a file
and your application reads in these encoded values to pass to fseek(). For
non-record I/0 files, you can set the environment variable _EDC_COMPAT with the
ftel1() encoding set to tell OS/390 C/C++ that you have old ftell() values.
Files opened for record I/O do not support old ftell () values saved across the
program boundary.

* In previous versions, the fseek() support for the ftell() encoding scheme
inadvertently supported seeking from SEEK_SET with a byte offset up to 32K.
This will no longer be supported. Users of this support will have to change to
BYTESEEK mode. You can do this without changing your source code; just use the
_EDC_BYTE_SEEK environment variable.

Closing Files

Use the fclose() library function to close a file. OS/390 C/C++ automatically
closes files on normal program termination and attempts to do so under abnormal
program termination or abend. See the OS/390 C/C++ Run-Time Library Reference for
more information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with
null characters when you close the file.

For files opened in variable binary mode, incomplete records are flushed to the
system. In a spanned file, closing a file can cause a zero-length segment to be
written. This segment will still be part of the non-zero-length record. For files
opened in undefined binary mode, any incomplete output is flushed on close.

Closing files opened in text mode causes any incomplete new record to be
completed with a new-line character. All records not yet flushed to the file are
written out when the file is closed.

For files opened for record 1/0O, closing causes all records not yet flushed to the
file to be written out.

Renaming and Removing Files

You can remove or rename an MVS data set that has an uppercase filename by
using the remove() or rename() library functions, respectively. rename() and
remove () both accept data-set names. rename() does not accept ddnames, but
remove() does. You can use remove() or rename() on individual members or entire
PDSs or PDSEs. If you use rename() for a member, you can change only the name
of the member, not the name of the entire data set. To rename both the member
and the data set, make two calls to rename(), one for the member and one for the
whole PDS or PDSE.

fldata() Behavior

The format of the fldata() function is as follows:

int fldata(FILE =file, char *filename,
fldata_t =*info);

136 0S/390 V2R8.0 C/C++ Programming Guide

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes

pertaining to this category of 1/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time

Library Reference.

struct _ fileData {

unsigned int _ recfmF
__recfmV
__recfmU
__recfmS
__recfmBlk :
__recfmASA :
__recfmM
__dsorgP0
__dsorgPDSmem :
__dsorgPDSdir :
__dsorgPS
__dsorgConcat :
__dsorgMem :
__dsorgHiper
__dsorgTemp:
__dsorgVSAM:
__dsorgHFS :
__openmode :

__modeflag :

__dsorgPDSE:
__reserveZ :

_ device_t __device;

unsigned long _ blksize,
__maxreclen;

unsigned short _ vsamtype;
unsigned long __ vsamkeylen;
unsigned Tong _ vsamRKP;
char * __dsname;
unsigned int _ reserved;

}s

typedef struct _ fileData fldata_t;

Figure 15. fldata() Structure

Notes:

1. If you have opened the file by its data set name, filename is fully qualified,

S e e e e e e

W W v W L W W B oW B B oW oW oW B ow W

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

-

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

N/A -- always
N/A -- always

N/A -- always
N/A -- always
one of:

TEXT

BINARY

RECORD

off
off

off
off

combination of:

READ

WRITE

APPEND

—_UPDATE

one of:
DISK

_TAPE
__PRINTER
DUMMY

__OTHER

N/A
N/A
N/A

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

including quotation marks. If you have opened the file by ddname, filename is

dd:ddname, without any quotation marks. The ddname is uppercase. If you

specified a member on the fopen() or freopen() function call, the member is

returned as part of filename.

Chapter 11. Performing OS I/O Operations

137

2. Any of the _ recfm bits may be set on for OS files.

3. The __dsorgP0 bit will be set on only if you are reading a directory or member
of a partitioned data set, either regular or extended, regardless of whether the
member is specified on a DD statement or on the fopen() or freopen()
function call. The _ dsorgPS bit will be set on for all other OS files.

4. The _ dsorgPDSE bit will be set when processing an extended partitioned data
set (PDSE).

5. The __dsorgConcat bit will be set on for a concatenation of sequential data
sets, but not for a concatenation of partitioned data sets.

6. The _ dsorgTemp bit will be set on only if the file was created using the
tmpfile() function.

7. The _ blksize value may include BDW and RDWs.

8. The __maxreclen value may include the ASA character.

9. The _ recfm bits and the _ blksize and _ maxreclen values correspond to the
attributes of the open stream. They do not necessarily reflect the attributes of
the existing data set.

10. The _ dsname field is filled in for _ DISK files with the data set name. The
member name is added if the file is a member of a partitioned data set, either
regular or extended. The __dsname value is uppercase unless the asis option

was specified on the fopen() or freopen() function call. The _ dsname field is
set to NULL for all other OS files.

138 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 12. Performing Hierarchical File System 1/O

Operations

You can create the following HFS file types:
* Regular

* Link

* Directory

* Character special

» FIFO

The Single UNIX Specification defines another type of file called STREAMS. Even
though the system interfaces are provided, it is impossible to have a valid STREAMS
file descriptor. These interfaces will always return a return code of -1 with errno
set to indicate an error such as, EBADF, EINVAL, or ENOTTY.

HES streams follow the binary model, regardless of whether they are opened for
text, binary, or record I/O. You can simulate record I/O by using new-line
characters as record boundaries.

For information on the hierarchical file system and access to files within it from
other than the C or C++ language, see the OS5/390 UNIX System Services User’s
Guide. For an introduction to and description of the behavior of a POSIX-defined
file system, see The POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick,
(Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991).

”

See L[-
for information about using wide-character 1/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/0O and the I1/O Stream class library instead, refer to
; - . - 7 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and 0S/390 C/C++ IBM Open Class Library Reference for specifics.

Creating Files

You can use library functions to create the following types of HFS files.
¢ Regular Files

* Link and Symbolic Link Files

* Directory Files

* Character Special Files

* FIFO Files

Regular Files

Use any of the following C functions to create HFS regular files:
e creat()
» fopen()

© Copyright IBM Corp. 1996, 1999 139

* freopen()
* open()

For a description of these and other I/O functions, see the OS/390 C/C++ Run-Time
Library Reference.

Link and Symbolic Link Files

Use either of the following C functions to create HFS link or symbolic link files:
e 1ink()
e symlink()

Directory Files

Use the following C function to create an HFS directory file:
e mkdir()

Character Special Files

Use the following C function to create an HFS character special file:
e mknod()

You must have superuser authority to create a character special file.

Other functions used for character special files are:
e ptsname()

e grantpt()

e unlockpt()

e tcgetsid()

e ttyname()

e dsatty()

FIFO Files

Use the following C function to create an HFS FIFO file (named pipe):
e mkfifo()

To create an unnamed pipe, use the following C function:
* pipe()

Opening Files

This section discusses the use of the fopen() or freopen() library functions to open
Hierarchical File System (HFS) I/O files. You can also access HFS files using
low-level I/0O open () function. See Low-=Level QOS/390 TINIX I1/Q” on page 153 for
information about low-level I/O, and the OS/390 C/C++ Run-Time Library Reference
for information about any of the functions listed above.

The name of an HEFS file can include characters chosen from the complete set of
character values, except for null characters. If you want a portable filename, then
choose characters from the POSIX .1 portable filename character set.

140 0S/390 V2R8.0 C/C++ Programming Guide

The complete pathname can begin with a slash and be followed by zero, one, or
more filenames, each separated by a slash. If a directory is included within the
pathname, it may have one or more trailing slashes. Multiple slashes following one
another are interpreted as one slash.

If your program is running under POSIX(ON), all valid POSIX names are passed
asis to the POSIX open function.

You can access either HFS files or MVS data sets from programs. Programs
accessing files or data sets can be executed with either the POSIX(OFF) or POSIX(ON)
run-time options. There are basic file naming rules that apply for HFS files and
MVS data sets. However, there are also special OS5/390 C/C++ naming
considerations that depend on how you execute your program.

The POSIX run-time option determines the type of OS/390 C/C++ services and
I/0 available to your program. (See the OS/390 C/C++ User’s Guide for a discussion
of the OS/390 UNIX programming environment and overview of binding OS/390
UNIX C/C++ applications.)

Both the basic and special OS/390 C/C++ file naming rules for HFS files are
described in the sections that follow. Examples are provided. All examples must be
run with the POSIX(ON) option. For information about MVS data sets, see

”

Using fopen() or freopen()

When you open a file with fopen() or freopen(), you must specify the file name (a
data-set name) or a ddname.

File Naming Considerations

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode").

HFS Files: The following is the format for the pathname argument on the fopen()
or freopen() function:

>> B u pathname ><
n /

dd: ddname
|—//—l |—DD:—I |—(—m.ember‘—)—"J

The POSIX.1 standard defines pathname as the information that identifies a file. For
the OS/390 UNIX implementation of the POSIX.1 standard, a pathname can be up
to 1024 characters—including the null-terminating character. Optionally, it can
begin with a slash character (/) followed by directory names separated by slash
characters and a filename. For the pathname, each directory name or the filename
can be up to 255 characters long.

Note:

Regardless of whether your program is run as an OS/390 UNIX application
or a traditional MVS application, if the pathname that you attempt to open

Chapter 12. Performing Hierarchical File System 1/O Operations 141

using fopen() or freopen() contains a slash character but does not begin
with exactly two slashes, an HFS file is opened. For example, if you code:

fopen("tradnsell/parts.order", "w+")
the HFS file tradnsell/parts.order from the working directory is opened.

If you begin the pathname value with ./, the specified HFS file in the
working directory is opened:

fopen("./parts.order", "w+")

Likewise, if you begin the pathname value with /, the specified HFS file in
the root directory is opened:

fopen("/parts.order", "w+")

If you specify more than two consecutive slash characters anywhere in a
pathname, all but the first slash character is ignored, as in the following examples:

"//a.b" MVS data set prefix.a.b
"///a.b" HEFS file /a.b
“////a.b" HEFS file /a.b
"a////b.c" HFS file a/b.c
"/a.b" HEFS file /a.b

“/a///b.c" HEFS file /a/b.c

If you specify /dd:pathname or ./dd:pathname, a file named dd:pathname is opened
in the file system root directory or your working directory, respectively. For
example, if you code:

fopen("/dd:parder", "w+")
the file dd:parder is opened in the HFS root directory.

For HFS files, leading and trailing white spaces are significant.
Opening a File by Name

Which type of file (HFS or MVS data set) you open may depend on whether the
0S/390 C/C++ application program is running under POSIX(ON).

For an application program that is to be run under POSIX(ON), you can include in
your program statements similar to the following to open the HFS file
parts.instock for reading in the working directory:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the MVS data set user-prefix.PARTS. INSTOCK for reading, include statements
similar to the following in your program:

FILE *stream;

stream = fopen("//parts.instock", "r");

142 0S/390 V2R8.0 C/C++ Programming Guide

For an application program that is to be run as a traditional OS/390 C/C++
application program, with POSIX(OFF), to open the MVS data set

user-prefix.PARTS . INSTOCK for reading, include statements similar to the following in
your program:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the HFS file parts.instock in the working directory for reading, include
statements similar to the following in your program:

FILE *stream;

stream = fopen("./parts.instock", "r");
Opening a File by DDname

The DD statement enables you to write OS/390 C/C++ source programs that are
independent of the files and I/O devices they will use. You can modify the
parameters of a file or process different files without recompiling your program.

When dd:ddname is specified to fopen() or freopen(), the OS/390 C/C++ library
looks to find and resolve the data definition information for the filename to open.
If the data definition information points to an MVS data set, MVS data set naming
rules are followed. If an HFS file is indicated using the PATH parameter, a ddname is
resolved to the associated pathname.

Note: Use of the OS/390 C/C++ fork() library function from an OS/390 UNIX
application program does not replicate the data definition information of the
parent process for the child process. Use of any of the exec() library
functions deallocates the data definition information for the application
process.

For the declaration just shown for the HFS file parts.instock, you should write a
JCL DD statement similar to the following:

//PSTOCK DD PATH='/u/parts.instock',...

For more information on writing DD statements, you should refer to the job control
language (JCL) manual OS/390 MVS JCL Reference.

To open the file by DD name under TSO/E, you must write an ALLOCATE
command.

For the declaration of an HFS file parts.instock, you should write a TSO/E
ALLOCATE command similar to the following:

ALLOCATE DDNAME(PSTOCK) PATH('/u/parts.instock')...

See the 05/390 TSO/E Command Reference for more information on TSO ALLOCATE.
fopen() and freopen() Parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are useful for HFS 1/0, and lists the
values that are valid for the applicable ones.

Chapter 12. Performing Hierarchical File System 1/O Operations 143

Table 21. Parameters for the fopen() and freopen() functions for HFS I/O

Parameter Allowed? Applicable? |Notes

recfm= Yes No HFS I/0 uses a continuous stream of data
as its file format.

Trecl= Yes No HEFS 1/0 uses a continuous stream of data
as its file format.

blksize= Yes No HEFS I/0 uses a continuous stream of data
as its file format.

space= Yes No Not used for HFS 1/0.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for HFS I/0.

password= Yes No Not used for HFS 1/0.

asis Yes No Not used for HFS I/0.

byteseek Yes No Not used for HFS 1/0.

noseek Yes No Not used for HFS I/0.

0S Yes No Not used for HFS I/0.

recfm=

Ignored for HFS I/0.

Trecl= and blksize=
Ignored for HFS I/0, except that Trecl affects the value returned in the
__maxreclen field of fldata() as described below.

acc=
Ignored for HFS 1/0.

password
Ignored for HFS 1/0.

space=
Ignored for HES 1/0.

type=
The only valid value for this parameter under HFS is type=record. If you
specify this, your file follows the HFS record I/O rules:

1. One record is defined to be the data up to the next new-line character.

2. When an fread() is done the data will be copied into the user buffer as if
an fgets(buf, size item*num items, stream) were issued. Data is read
into the user buffer up to the number of bytes specified on the fread(), or
until a new-line character or EOF is found. The new-line character is not
included.

3. When an fwrite() is done the data will be written from the user buffer
with a new-line character added by the RTL code. Data is written up to the
number of bytes specified on the fwrite(); the new-line is added by the
RTL and is not included in the return value from fwrite().

4. If you have specified an Trecl and type=record, fldata() of this stream will
return the Trecl you specified, in the _ maxreclen field of the _ fileData
return structure of stdio.h. If you specified type=record but no 1recl, the
__maxreclen field will contain 1024.

If type=record is not in effect, fldata() of this stream will return 0 in the
__maxreclen field of the _ fileData return structure of stdio.h.

144 0S/390 V2R8.0 C/C++ Programming Guide

asis
Ignored for HFS 1/0.

byteseek
Ignored for HES 1/0.

noseek
Ignored for HFS I/0.

0S Ignored for HFS I/0.

Reading from HFS Files

You can use the following library functions to read in information from HFS files:
e fread()

» fgets()

* gets()

o fgetc()

* getc()

e getchar()

e scanf()

e fscanf()

e read()

fread() is the only interface allowed for reading record I/0O files. See the 0S/390
C/C++ Run-Time Library Reference for more information on all of the above library

functions.

For OS/390 UNIX low-level I/O, you can use the read() and readv() function.

0 ”

See =

Opening and Reading from HFS Directory Files

To open an HFS directory, you can use the opendir() function.

You can use the following library functions to read from and position within HFS
directories:

* readdir()
* seekdir()
* telldir()

To close a directory, use the closedir() function.

Writing to HFS Files

You can use the following library functions to write to HFS files:
o fwrite()

* printf()

+ fprintf()

Chapter 12. Performing Hierarchical File System 1/O Operations 145

o vprintf()
o vfprintf()
* puts()

o fputs()

o fputc()

* putc()

e putchar()
* write()

fwrite() is the only interface allowed for writing to record 1/0 files. See the
0S5/390 C/C++ Run-Time Library Reference for more information on all of the above
library functions. For OS/390 UNIX low-level I/O, you can use the write() and
writev() function.

Flushing Records

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the OS/390 C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one OS/390 C/C++
program from another OS/390 C/C++ program by using the ANSI system()
function, all open streams are flushed before control is passed to the callee, and
again before control is returned to the caller. A call to the POSIX system() function
does not flush any streams.

For HFS files, the fflush() function copies the data from the run time buffer to the
file system. The fsync() function copies the data from the file system buffer to the
storage device.

Setting Positions within Files

You can use the following library functions to help you reposition within a regular
file:

+ fseek()

o ftell()

» fgetpos()
o fsetpos()
e rewind()
e lseek()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Closing Files

You can use fclose(), freopen(), or close() to close a file. OS/390 C/C++
automatically closes files on normal program termination, and attempts to do so
under abnormal program termination or abend. See the O5/390 C/C++ Run-Time
Library Reference for more information on these library functions. For OS/390 UNIX

146 0S/390 V2R8.0 C/C++ Programming Guide

low-level I/0, you can use the close() function. When you use any exec() or
fork() function, files defined as “marked to be closed” are closed before control is
returned.

Deleting Files
Use the unTink() or remove() OS/390 C/C++ function to delete the following
types of HFS files:
* Regular
* Character special
« FIFO
* Link files
Use the rmdir() OS/390 C/C++ function to delete an HFS directory file. See the
05/390 C/C++ Run-Time Library Reference for more information about these
functions.

Pipe 1/0

POSIX.1 pipes represent an I/O channel that processes can use to communicate
with other processes. Pipes are conceptually like HFS files. One process can write
data into a pipe, and another process can read data from the pipe.

0S/390 UNIX C/C++ supports two types of POSIX.1-defined pipes: unnamed
pipes and named pipes (FIFO files).

An unnamed pipe is accessible only by the process that created the pipe and its
child processes. An unnamed pipe does not have to be opened before it can be
used. It is a temporary file that lasts only until the last file descriptor that
references it is closed. You can create an unnamed pipe by coding the pipe()
function.

A named pipe can be used by independent processes and must be explicitly opened
and closed. Named pipes are also referred to as first-in, first-out (FIFO) files, or
FIFOs. You can create a named pipe by coding the mkfifo() function. If you want
to do stream I/O after a pipe() function, call the fdopen() function to build a
stream on one of the file descriptors returned by pipe(). If you want to do stream
I/0 on a FIFO, you must open the file with fopen(), freopen(), or open() and
fdopen() together. When the stream is built, you can then use normal C
programming language I/0 functions such as fgets(), printf(), and so forth to
carry out input and output.

Using Unnamed Pipes

If your OS/390 UNIX C/C++ application program forks processes that need to

communicate among themselves for work to be done, you can take advantage of

POSIX.1-defined unnamed pipes. If your application program’s processes need to

communicate with other processes that it did not fork, you should use the

POSIX.1-defined named pipe (FIFO special file) support. See ‘Using Named Pipes”]
for more information.

When you code the pipe() function to create a pipe, you pass a pointer to a
two-element integer array where pipe() puts the file descriptors it creates. One

Chapter 12. Performing Hierarchical File System 1/O Operations 147

descriptor is for the input end of the pipe, and the other is for the output end of
the pipe. You can code your application so that one process writes data to the
input end of the pipe and another process reads from the output end on a
first-in-first-out basis. You can also build a stream on the pipe by using fdopen(),
and use buffered I/O functions. The result is that you can communicate data
between a parent process and any of its child processes.

The opened pipe is assigned the two lowest-numbered file descriptors available.

0S/390 UNIX provide no security checks for unnamed pipes, because such a pipe
is accessible only by the parent process that creates the pipe and any of the parent
process’s descendent processes. When the parent process ends, an unnamed pipe
created by the process can still be used, if needed, by any existing descendant
process that has an open file descriptor for the pipe.

Consider the following example, where you open a pipe, do a write operation, and
later do a read operation from the pipe.

CBC3GHF1

/* this example shows how unnamed pipes may be used */

#include <unistd.h>
#include <stdio.h>
#include <errno.h>

int main() {

int ret_val;

int pfd[2];

char buff[32];

char stringl[]="String for pipe I/0";

ret_val = pipe(pfd); /* Create pipe */

if (ret_val !=0) { /* Test for success */
printf("Unable to create a pipe; errno=%d\n",errno);
exit(1l); /* Print error message and exit x/

}

Figure 16. Unnamed Pipes Example (Part 1 of 2)

148 0S/390 V2R8.0 C/C++ Programming Guide

if (fork() == 0) {
/* child program */
close(pfd[0]); /* close the read end */
ret_val = write(pfd[1],stringl,strlen(stringl)); /+Write to pipex/
if (ret_val != strlen(stringl)) {
printf("Write did not return expected value\n");
exit(2); /* Print error message and exit =/
1
}
else {
/* parent program */
close(pfd[1]); /* close the write end of pipe */
ret_val = read(pfd[0],buff,strlen(stringl)); /* Read from pipe */
if (ret_val != strlen(stringl)) {
printf("Read did not return expected value\n");
exit(3); /* Print error message and exit x/

}

printf("parent read %s from the child program\n",buff);

exit(0);
1

Figure 16. Unnamed Pipes Example (Part 2 of 2)

For more information on the pipe() function and the file I/O functions, see the
0S5/390 C/C++ Run-Time Library Reference.

Using Named Pipes

If the OS/390 UNIX C/C++ application program you are developing requires its
active processes to communicate with other processes that are active but may not
be from the same program, code your application program to create a named pipe
(FIFO file). Named pipes allow transfer of data between processes in a FIFO
manner and synchronization of process execution. Use of a named pipe allows
processes to communicate even though they do not know what processes are on
the other end of the pipe. Named pipes differ from standard unnamed pipes,
created using the pipe() function, in that they involve the creation of a real file
that is available for I/O operations to properly authorized processes.

Within the application program, you create a named pipe by coding a mkfifo() or
mknod () function. You give the FIFO a name and an access mode when you create
it. If the access mode allows all users read and write access to the named pipe, any
process that knows its name can use it to send or receive data.

Processes can use the open() function to access named pipes and then use the
regular I/O functions for files, such as read(), write(), and close(), when
manipulating named pipes. Buffered I/O functions can also be used to access and
manipulate named pipe files. For more information on the mkfifo() and mknod()
functions and the file I/O functions, see the OS/390 C/C++ Run-Time Library
Reference.

0S/390 UNIX does security checks on named pipes.

The following steps outline how to use a named pipe from an OS/390 UNIX
C/C++ application program:

1. Create a named pipe using the mkfifo() function. Only one of the processes
that use the named pipe needs to do this.

Chapter 12. Performing Hierarchical File System 1/O Operations 149

2. Access the named pipe using the appropriate I/O method.

3. Communicate through the pipe with another process using file I/O functions:
a. Write data to the named pipe.
b. Read data from the named pipe.

4. Close the named pipe.

5. If the process created the named pipe file and the named pipe is no longer
needed, remove the named pipe using the unlink() function.

A process running the following simple example program creates a new named
pipe with the file pathname pointed to by the path value coded in the mkfifo()
function. The access mode of the new named pipe file is initialized from the mode
value coded in the mkfifo() function. The file permission bits of the mode
argument are modified by the process file creation mask.

As an example, a process running the following program code creates a child
process and then creates a named pipe called fifo.test. The child process then
writes a data string to the pipe file. The parent process reads from the pipe file and
verifies that the data string it reads is the expected one.

Note: The two processes are related and have agreed to communicate through the
named pipe. They need not be related, however. Other authorized users can
run the same program and participate in (or interfere with) the process
communication.

CBC3GHF2

/* this example shows how named pipes may be used */
#define _OPEN_SYS

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#include <fcntl.h>

#include <wait.h>

Figure 17. Named Pipes Example (Part 1 of 4)

150 0S/390 V2R8.0 C/C++ Programming Guide

/* *

* Sample use of mkfifo() *
* */
main()

{ /* start of program */
int flags, ret_value, c_status;

pid t pid;

size_t n_elements;

char char_ptr[32];

char str[] = "string for fifo ";
char fifoname[] = "temp.fifo";
FILE *rd_stream,*wr_stream;

if ((mkfifo(fifoname,S_IRWXU)) != 0) {
printf("Unable to create a fifo; errno=%d\n",errno);
exit(1); /* Print error message and return %/

}

if ((pid = fork()) < 0) {
perror("fork failed");

exit(2);

1

if (pid == (pid_t)0) { /* CHILD process */
/* issue fopen for write end of the fifo x/

wr_stream = fopen(fifoname,"w");
if (wr_stream == (FILE %) NULL) {
printf("In child process\n");

printf("fopen returned a NULL, expected valid stream\n");

exit(100);

1
/* perform a write */
n_elements = fwrite(str,1l,strlen(str),wr_stream);

if (n_elements != (size_t) strlen(str)) {

printf("Fwrite returned %d, expected %d\n",
(int)n_elements,strlen(str));
exit(101);

exit(0); /* return success to parent */

}

Figure 17. Named Pipes Example (Part 2 of 4)

Chapter 12. Performing Hierarchical File System 1/O Operations

151

else { /* PARENT process */

/* issue fopen for read */
rd_stream = fopen(fifoname,"r");
if (rd_stream == (FILE *) NULL) {

printf("In parent process\n");

printf("fopen returned a NULL, expected valid pointer\n");

exit(2);
}
/* get current flag settings of file */
if ((flags = fcnt1(fileno(rd_stream),F GETFL)) == -1) {
printf("fcntl returned -1 for %s\n",fifoname);
exit(3);
1
/* clear 0 _NONBLOCK and reset file flags */

flags &= ~(0_NONBLOCK) ;

if ((fent1(fileno(rd_stream),F_SETFL,flags)) == -1) {
printf("\nfcntl returned -1 for %s",fifoname);
exit(4);

1

/* try to read the string */
ret_value = fread(char_ptr,sizeof(char),strlen(str),rd_stream);
if (ret_value != strlen(str)) {

printf("\nFread did not read %d elements as expected ",

strlen(str));

printf("\nret_value is %d ",ret_value);

exit(6);
}

if (strncmp(char_ptr,str,strien(str))) {
printf("\ncontents of char_ptr are %s ",

char_ptr);
printf("\ncontents of str are %s ",
str);
printf("\nThese should be equal");
exit(7);

}

ret_value = fclose(rd_stream);

if (ret_value != 0) {
printf("\nFclose failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(8);

Figure 17. Named Pipes Example (Part 3 of 4)

152 0S/390 V2R8.0 C/C++ Programming Guide

ret_value = remove(fifoname);

if (ret_value != 0) {
printf("\nremove failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(9);

1

pid = wait(c_status);
if ((WIFEXITED(c_status) !=0) &&; (WEXITSTATUS(c_status) !=0)) {
printf("\nchild exited with code %d",WEXITSTATUS(c_ status));
exit(10);
}
} /% end of else clause */
printf("About to issue exit(0), \
processing completed successfully\n");
exit(0);

Figure 17. Named Pipes Example (Part 4 of 4)
Character Special File I/O

A named pipe (FIFO file) is a type of character special file. Therefore, it obeys the

I/0 rules for character special files rather than the rules for regular files:

* It cannot be opened in read/write mode. A process must open a named pipe in
either write-only or read-only mode.

* It must be opened in read mode by a process before it can be opened in write
mode by another process. Otherwise, the file is blocked from use for I/O by
processes. Blocked processes can cause an application program to hang.

A single process intending to access a named pipe can use an open() function
with 0_NONBLOCK to open the read end of the named pipe. It can then open the
named pipe in write mode.

Note: The fopen() function cannot be used to accomplish this.

Low-Level OS/390 UNIX I/O

Low-level OS/390 UNIX I/0 is the POSIX.1-defined I/O method. All input and
output is processed using the defined read(), readv(), write(), and writev()
functions.

For application programmers used to a UNIX environment, OS/390 UNIX behaves
in familiar and predictable ways. Standard UNIX programming practices for

shared resources, along with designing applications to respect locks put on files by
multiple threads running in a process, will ensure that data is handled predictably.

For a discussion of POSIX.1-defined low-level I/O and some of the practical
considerations to take into account when designing an application, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick (Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc., 1991).

Example of HFS 1/0O Functions

The following example demonstrates the use of OS/390 UNIX stream input/output
by writing streams to a file, reading the input lines, and replacing a line.

Chapter 12. Performing Hierarchical File System 1/O Operations 153

CBC3GHF3

/* this example uses HFS stream I/0 */

#define _OPEN_SYS
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#undef _OPEN_SYS

FILE *stream;

char stringl[] = "A line of text.";
char string2[] = "Find this Tine.";
char string3[] = "Another stream.";
char string4[16];

long position, strpos;

int i, result, fd;

int rc;

ssize t x;
char buffer[16];

int main(void)

{

/* Write continuous streams to file

/* NOTE: There are actually 16 =/

/*
/*
/*
/*
/*
/*
/*

characters in each line of */
text. The 16th is a null =*/
terminator on each string. */
Since the null character x/
is not being written to */
the file, 15 is used as */
the data stream length. */

if ((stream = fopen("./myfile.data","wb"))==NULL) {

perror("Error opening file");
exit(0);
}

for(i=0; i<12;i++) {
int lenl = strlen(stringl);

rc = fwrite(stringl, 1, lenl, stream);

if (rc != Tenl) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);
}
}

Figure 18. Example of HFS Stream Input and Output Functions (Part 1 of 3)

154 0S/390 V2R8.0 C/C++ Programming Guide

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

1

for(i=0;i<12;i++) {
rc = fwrite(stringl,1,sizeof(stringl)-1,stream);

if (rc != sizeof(stringl)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);
}
1
fclose(stream);
/* Read data stream and search for location of string2. */

/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position = ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
while(!feof(stream)) {
if (rc != sizeof(string2)-1) {
perror("fread failed");
exit(99);
}

if (strstr(string4,string2) != NULL) /* If string2 is found x/
strpos = position ; /* then save position. */

if ((position=ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

Figure 18. Example of HFS Stream Input and Output Functions (Part 2 of 3)

Chapter 12. Performing Hierarchical File System 1/O Operations 155

fclose(stream);
/* Replace Tine containing string2 with string3 */

fd = open("test.data",0_RDWR);
if (fd < 0){
perror("open failed\n");
x = write(fd,"a record",8);
if (x < 8){
perror("write failed\n");
rc = 1seek(fd,0,SEEK_SET);
x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

printf("data read is %.8s\n",buffer);

close(fd);

Figure 18. Example of HFS Stream Input and Output Functions (Part 3 of 3)

fldata() Behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename,
fldata_t
*info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of 1/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

156 0S/390 V2R8.0 C/C++ Programming Guide

struct _ fileData {

1

typedef struct _ fileData fldata_t;

unsigned int _ recfmF
__recfmV
__recfmU
__recfmS
__recfmBlk :
__recfmASA :
__recfmM

__dsorgP0

__dsorgPDSmem :
__dsorgPDSdir :

__dsorgPS

__dsorgConcat :

__dsorgMem :
__dsorgHiper
__dsorgTemp:
__dsorgVSAM:
__dsorgHFS :
__openmode :

__modeflag :

__dsorgPDSE:

__reserveZ :
__device_t __device;
unsigned long _ blksize,

__maxreclen;
unsigned short __ vsamtype;
unsigned long _ vsamkeylen;
unsigned long _ vsamRKP;
char * __dsname;
unsigned int _ reserved;

Figure 19. fldata() Structure

Notes:

1.
2.

N = s s s e e e

W W v W L W W B W B B oW oW oW o w ow W

~
-

—_
-

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

./*

/*
/*
/*
/*
/*
/*
/*
/*

always
always
always
always
always
always
always
N/A --
N/A --
N/A --
N/A --
N/A --
N/A --
N/A --
N/A --
N/A --
always
one of:
BINAR

RECOR

off
of f

on

of f
off
of f
off
always
always
always
always
always
always
always
always
always
on

Y
D

off
off
off
off
of f
off
of f
off
off

combination of:

READ

WRITE

APPEN

UPDAT

D
E

N/A -- always off

HFS

0

N/A
N/A
N/A

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The filename is the same as specified on the fopen() or freopen() function call.

The __maxreclen value is 0 for regular I/O (binary). For record I/0O the value is

Trecl or the default of 1024 when Trec] is not specified.

The __dsname value is the real POSIX pathname.

Chapter 12. Performing Hierarchical File System 1/O Operations

157

158 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 13. Performing VSAM I/O Operations

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets
in OS/390 C/C++. Three 1/O processing modes for VSAM data sets are available
in OS/390 C/C++:

* Record
e Text Stream

* Binary Stream

Because VSAM is a record-based access method, record mode is the logical
processing mode and is specified by coding the type=record keyword parameter
on the fopen() function call. 0S/390 C/C++ also provides limited support for
VSAM text streams and binary streams. Because of the record-based nature of
VSAM, this chapter is organized differently from the other chapters in this section.
The focus of this chapter is on record I/O. Only those aspects of text and binary
I/0 that are specific to VSAM are discussed, at the end of the chapter.

For more information about the facilities of VSAM, see the list of

See l’(’hapfpr 9 0OS/390 C QHPPm'f for the Double-Byvte Character Set” on page 74
for information about using wide-character 1/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/0 and the 1/O Stream class library instead, refer to
P’Chapfpr) qung the T/0 Stream Class Iibrarv in C++” on page 47 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and 0S/390 C/C++ IBM Open Class Library Reference for specifics.

VSAM Types (Data Set Organization)

There are three types of VSAM data sets supported by OS/390 C/C++, all of
which are held on direct-access storage devices.

* Key-Sequenced Data Set (KSDS) is used when a record is accessed through a key
field within the record (for example, an employee directory file where the
employee number can be used to access the record). KSDS also supports
sequential access. Each record in a KSDS must have a unique key value.

* Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in
the order it was created (or the reverse order). It supports direct access by
Relative Byte Address (RBA), and sequential access.

* Relative Record Data Set (RRDS) is used for data in which each item has a
particular number, and the relevant record is accessed by that number (for
example, a telephone system with a record associated with each number). It
supports direct access by Relative Record Number (RRN), and sequential access.

In addition to the primary VSAM access described above, for KSDS and ESDS,
there is also direct access by one or more additional key fields within each record.
These additional keys can be unique or nonunique; they are called an alternate
index (AIX).

© Copyright IBM Corp. 1996, 1999 159

Note: VSAM Linear Data Sets are not supported in OS/390 C/C++ 1/0.
Access Method Services

Access Method Services are generally known by the name IDCAMS on MVS. For
more information, see the DFSMS/MVS Access Method Services for VSAM.

Before a VSAM data set is used for the first time, its structure is defined to the
system by the Access Method Services DEFINE CLUSTER command. This command
defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to
the system by the Access Method Services DEFINE ALTERNATEINDEX command. To
enable access to the base cluster records through the alternate index, use the
DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX
command.

When you have built the alternate index, you call fopen() and specify the PATH in
order to access the base cluster through the alternate index. Do not use fopen() to

access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM Data Set Types

When you plan your program, you must first decide the type of data set to use.
i shows you the possibilities available with the types of VSAM

data sets.

160 0S/390 V2R8.0 C/C++ Programming Guide

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.

ANDREW M SMITH &

VALERIE SUZIE ANN MORGAN (1967)
|

|
FRED(1969) ANDY (1970) SUZAN(1972) JANE(1975)

Key-Sequenced Data Set
Alternate Indexes

Data component By Birthdate (unique)
: 69
Prime » ANDY 70M |<
Index — | 70
empty space
< 72
ANDY 4,—» FRED 69 M ;
FRED LS
empty space

JANE I JANE 75F ¢ — By sex (non-unique)

SUZAN h
empty space “\
F

SUZAN T2F |¢ Lo

\4

Entry-Sequenced Data Set

Relative byte addresses Alternate Indexes
canbeaccessed and Alphabetically by name
used as keys Data component (unique)

» FRED 69M

4—‘ ’7L ANDY

ANDY 70M
« | FRED
|

SUZAN 72F |4 ‘ r— JANE
< [
JANE 75F (4 ! SUZAN

|
By sex (non-unique)
F
\
Relative Record Data Set

Relative record numbers Data component No Alternate Indexes
canbe accessed and Slot 1 | FRED 69M
used as keys

ANDY 70M

empty space for 71

SUZAN 72F

empty space for 74

JANE 75F
empty space for 76

2
3
4
5 | empty space for 73
6
7
8

Each slot corresponds to ayear

Figure 20. Types and Advantages of VSAM Data Sets

When choosing the VSAM data set type, you should base your choice on the most
common sequence in which you require data. You should follow a procedure
similar to the one suggested below to help ensure a combination of data sets and
indexes that provide the function you require.

Chapter 13. Performing VSAM 1/0O Operations 161

1. Determine the type of data and its primary access.
* sequentially — favors ESDS
* by key — favors KSDS
* by number — favors RRDS

2. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you do, determine whether the
alternate index is to have unique or nonunique keys. You should keep in mind
that making an assumption that all future records will have unique keys may
not be practical, and an attempt to insert a record with a nonunique key in an
index that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported.

Keys, RBAs and RRNs

All VSAM data sets have keys associated with their records. For KSDS, KSDS AIX,
and ESDS AIX, the key is a defined field within the logical record. For ESDS, the
key is the relative byte address (RBA) of the record. For RRDS, the key is a relative
record number (RRN).

Keys for Indexed VSAM Data Sets

For KSDS, KSDS AIX, and ESDS AIX, keys are part of the logical records recorded
on the data set. For KSDS, the length and location of the keys are defined by the
DEFINE CLUSTER command of Access Method Services. For KSDS AIX and ESDS
AIX, the keys are defined by the DEFINE ALTERNATEINDEX command.

Relative Byte Addresses

Relative byte addresses enable you to access ESDS files directly. The RBAs are
unsigned Tong int fields, and their values are computed by VSAM.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can
change if an insert, delete or update operation is performed elsewhere in the
file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate()
with RBA values does not work across control intervals. Therefore, using RBAs
with RRDS clusters is not recommended. The RRDS access method does not
support RBAs. OS/390 C/C++ supports the use of RBAs in an RRDS cluster by
translating the RBA value to an RRN. It does this by dividing the RBA value by
the LRECL.

3. Alternate indexes do not allow positioning by RBA.
The RBA value is stored in the C structure __amrc, which is defined in the C

<stdio.h> header file. You can access the field __amrc->__RBA as shown in the
following example.

162 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GVS1

/* this example shows how to access the __amrc->_RBA field */
/* it assumes that an ESDS has already been defined, and has been */
/% assigned the ddname ESDSCLUS x/

#include <stdio.h>
#include <stdlib.h>

main() {
FILE *ESDSfile;
unsigned Tong myRBA;
char recbuff[100]="This is record one.";
int w_retcd;
int 1_retcd;
int r_retcd;

printf("calling fopen(\"dd:esdsclus\",\"rb+,type=record\");\n");
ESDSfile = fopen("dd:esdsclus", "rb+,type=record");
printf("fopen() returned 0X%.8x\n",ESDSfile);

if (ESDSfile==NULL) exit;

w_retcd = fwrite(recbuff, 1, sizeof(rechuff), ESDSfile);
printf("fwrite() returned %d\n",w_retcd);

if (w_retcd != sizeof(recbuff)) exit;

myRBA = __amrc->__ RBA;

1 retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), _ RBA EQ);
printf("flocate() returned %d\n",1_retcd);

if (1_retcd !=0) exit;

r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fread() returned %d\n",r_retcd);

if (1_retcd !=0) exit;

return(0);

Figure 21. VSAM Example

For more information about the __amrc structure, refer to t‘Chapter 18 Debugging]

”

Relative Record Numbers

Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record position. Only RRDS files support
accessing a record by its relative record number.

Summary of VSAM 1/O Operations

m summarizes VSAM data set characteristics and the allowable I/0O
operations on them.

Table 22. Summary of VSAM Data Set Characteristics and Allowable I/O Operations
KSDS ESDS RRDS

Fixed.

Record Length

Variable. Length can
be changed by
update.

Variable. Length
cannot be changed
by update.

Chapter 13. Performing VSAM I/O Operations

Table 22. Summary of VSAM Data Set Characteristics and Allowable 1/0

Operations (continued)

KSDS

ESDS

RRDS

Alternate index

Allows access using
unique or nonunique
keys.

Allows access using
unique or nonunique
keys.

Not supported by
VSAM.

Record Read
(Sequential)

The order is
determined by the
VSAM key

By entry sequence.
Reads proceed in key
sequence for the key
of reference.

By relative record
number.

Record Write (Direct)

Position determined
by the value in the
field designated as
the key.

Record written at the
end of the file.

By relative record
number.

Positioning for
Record Read

By key or by RBA
value. Positioning by
RBA value is not
recommended
because changes to
the file change the
RBA.

By RBA value.
Alternate index
allows use by key.

By relative record
number.

Delete (Record)

If not already in
correct position,
reposition the file;
read the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Not supported by
VSAM.

If not already in
correct position,
position the file; read
the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Update (Record)

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

Empty the file

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+, type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode.

Stream Read Supported by Supported by Supported by
0S/390 C/C++. 0S/390 C/C++. 0S5/390 C/C++.

Stream Write/Update | Not supported by Supported by Supported by
0S/390 C/C++. 0S/390 C/C++. 05/390 C/C++.

Stream Repositioning | Supported by Supported by Supported by

0S/390 C/C++.

0S/390 C/C++.

0S/390 C/C++.

164 0S/390 V2R8.0 C/C++ Programming Guide

Opening VSAM Data Sets

To open a VSAM data set, use the standard C library functions fopen() and
freopen() just as you would for opening non-VSAM data sets. The fopen() and
freopen() functions are described in the OS/390 C/C++ Run-Time Library Reference.

This section describes considerations for using fopen() and freopen() with VSAM
files. Remember that a VSAM file must exist and be defined as a VSAM cluster
before you call fopen().

Using fopen() or freopen()

This section covers using file names for MVS data sets, specifying fopen() and
freopen() keywords, and buffering.

File Names for MVS Data Sets: Using a Data Set Name

The following diagram shows the syntax for the filename argument on your
fopen() or freopen() call:

A\
A

|_//_|] Y —qualifier]

The following is a sample construct:
'qualifierl.qualifier2'

Single quotation marks indicate that you are passing a fully-qualified data set
name, that is, one which includes the high-level qualifier. If you pass a data set
name without single quotation marks, the OS/390 C/C++ compiler prefixes
the high-level qualifier (usually the user ID) to the name. See F_Eha%.p.tcﬂ%l

i ions” for information on fully qualified

data set names.
/I Specifying these slashes indicates that the file names refer to MVS data sets.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, # @), the hyphen, or the character \xC0. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACFE-protected data sets.

You can join qualifiers with periods. The maximum length of a data set name
is generally 44 characters, including periods.

To open a data set by its name, you can code something like the following in your
C or C++ program:

infile=fopen("VSAM.CLUSTER1", "ab+, type=record");

File Names for MVS Data Sets: Using a DDname

To access a cluster or path by ddname, you can write the required DD statement
and call fopen() as shown in the following example.

Chapter 13. Performing VSAM 1/O Operations 165

If your data set is VSAM.CLUSTERL, your C or C++ program refers to this data set by
the ddname CFILE, and you want exclusive control of the data set for update, you
can write the DD statement:

//CFILE DD DSNAME=VSAM.CLUSTER1,DISP=0LD

and code the following in your C or C++ source program:
#include <stdio.h>

FILE *infile;
main()

{
infile=fopen("DD:CFILE", "ab+, type=record");

}

To share your data set, use DISP=SHR on the DD statement. DISP=SHR is the default
for fopen() calls that use a data set name and specify any of the r,rb, rb+, and
r+b open modes.

Note: OS/390 C/C++ does not check the value of shareoptions at fopen() time,
and does not provide support for read-integrity and write-integrity, as
required to share files under shareoptions 3 and 4.

For more information on shareoptions, see the information on DEFINE CLUSTER in
the books listed in E'NVSAM” on page 902

Specifying fopen() and freopen() Keywords

The mode argument is a character string specifying the type of access requested for
the file.

The mode argument contains one positional parameter (access mode) followed by
keyword parameters. A description of these parameters, along with an explanation
of how they apply to VSAM data sets is given the following sections.

Specifying Access Mode: The access mode is specified by the positional
parameter of the fopen() function call. The possible record I/O and binary modes
you can specify are:

b Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing
contents of the cluster are destroyed. If the cluster is defined as not
reusable (clusters with paths are, by definition, not reusable),
fopen() fails. However, if the cluster has been defined but not
loaded, this mode can be used to do the initial load of both
reusable and non reusable clusters.

ab Open for writing.
rb+ or r+b Open for reading, writing, and/or updating.

wb+ or w+b Open for reading, writing, and/or updating. If the cluster is
defined as reusable, the existing contents of the cluster are
destroyed. If the cluster is defined as not reusable (clusters with
paths are, by definition, not reusable), the fopen() fails. However,

166 0S/390 V2R8.0 C/C++ Programming Guide

if the cluster has been defined but not loaded, this mode can be
used to do the initial load of both reusable and non reusable
clusters.

ab+ or a+b Open for reading, writing, and/or updating.
For text files, you can specify the following modes: r, w, a, r+, wt, and a+.

Note: For KSDS, KSDS AIX and ESDS AIX in text and binary I/0, the only valid
modes are r and rb, respectively.

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for VSAM I/0, and lists the
values that are valid for the applicable ones.

Table 23. Keywords for the fopen() and freopen() Functions for VSAM Data Sets

Keyword Allowed? Applicable? | Notes

recfm= Yes No Ignored.

Trec]= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes Yes Specifies the access direction for
VSAM data sets. Valid values are BWD
and FWD.

password= Yes Yes Specifies the password for a VSAM
data set.

asis Yes No Enables the use of mixed-case file

names. Not supported for VSAM.

byteseek Yes Yes Used for binary stream files to
specify that the seeking functions
should use relative byte offsets
instead of encoded offsets. This is
the default setting.

noseek Yes No Ignored.

0S Yes No Ignored.

rls= Yes Yes Indicates the VSAM RLS access
mode in which a VSAM file is to be
opened.

Keyword Descriptions

recfm=
Any values passed into fopen() are ignored.

Irecl= and blksize=
These keywords are set to the maximum record size of the cluster as initialized
in the cluster definition. Any values passed into fopen() are ignored.

space=
This keyword is not supported under VSAM.

Chapter 13. Performing VSAM 1/O Operations 167

type=
If you use the type= keyword, the only valid value for VSAM data sets is
type=record. This opens a file for record 1/O.

acc=
For VSAM files opened with the keyword type=record, you can specify the
direction by using the acc=access_type keyword on the fopen() function call.
For text and binary files, the access direction is always forward. Attempts to
open a VSAM data set with acc=BWD for either binary or text stream I/O will
fail.

The access_type can be one of the following:

FWD The acc=FWD keyword specifies that the file be processed in a forward
direction. When the file is opened, it will be positioned at the
beginning of the first physical record, and any subsequent read
operations sets the file position indicator to the beginning of the next
record.

The default value for the access keyword is acc=FWD.

BWD The acc=BWD keyword specifies that the file be processed in a backward
direction. When the file is opened, it is positioned at the beginning of
the last physical record and any subsequent read operation sets the file
position indicator to the beginning of the preceding record.

You can change the direction of sequential processing (from forward to
backward or from backward to forward) by using the f1 ocate() hbrary
function. For more information about flocate(), see i

Recard 1/0 Files” on page 174,

Note: When opening paths, records with duplicate alternate index keys are
processed in order of arrival time (oldest to newest) regardless of the
current processing direction.

password=
VSAM facilities provide password protection for your data sets. You access a
data set that has password protection by specifying the password on the
password keyword parameter of the fopen() function call; the password resides
in the VSAM catalog entry for the named file. There can be more than one
password in the VSAM catalog entry; data sets can have different passwords
for different levels of authorization such as reading, writing, updating,
inserting, or deleting. For a complete description of password protection on
VSAM files, see the list of publications given on ”

The password keyword has the form:
password=nx

where x is a 1- to 8-character password, and n is the exact number of
characters in the password. The password can contain special characters such
as blanks and commas.

If a required password is not supplied, or if an incorrect password is given,
fopen() fails.

asis
This keyword is not supported for VSAM.

168 0S/390 V2R8.0 C/C++ Programming Guide

byteseek
When you specify this keyword and open a file in binary stream mode,
fseek() and ftell() use relative byte offsets from the beginning of the file.
This is the default setting.

noseek
This keyword is ignored for VSAM data sets.

(O
This keyword is ignored for VSAM data sets.

rls=
Indicates the VSAM RLS access mode in which a VSAM file is to be opened.
This keyword is ignored for non-VSAM files. The following values are valid:

* nri — No Read Integrity
* cr — Consistent Read

Note: When the RLS keyword is specified, DISP is changed to default to SHR
when dynamic allocation of the data set is performed. In the rare case
when a batch job wants to use RLS without sharing the data set with
other tasks, DISP should be OLD. To set DISP to OLD, the application
must specify DISP=OLD in the DD statement and start the application
using JCL. You cannot specify DISP in the fopen() mode argument.

Buffering

Full buffering is the default. You can specify line buffering, but OS/390 C/C++
treats line buffering as full buffering for VSAM data sets. Unbuffered I/0 is not
supported under VSAM; if you specify it, your setvbuf() call fails.

To find out how to optimize VSAM performance by controlling the number of
VSAM buffers used for your data set, refer to DFSMS/MVS Access Method Services
for VSAM.

Record I/0 in VSAM

This section describes how to use record I/O in VSAM. The following topics are
covered:

+ [RRDS Record Structurd
 IRRDS Record Structurd
. Reados R 70 T

¢ Summary of VSAM Record I/O Operations

. Readinge £ T TR /0 Tiled

. Undatine T T /0 Filed
. Deletine R i & /0 Filed

‘R — Thin T & 70 Filed

* [Elushing Bufferd

Chapter 13. Performing VSAM 1/0O Operations 169

* Bummary of VSAM Text 1/0Q QOperationd
. E AN WieYe —

RRDS Record Structure

For RRDS files opened in record mode, OS/390 C/C++ defines the following key
structure in the C header file <stdio.h>:
typedef struct {
Tong unsigned int _ fill,
__recnum; /* the RRN, starting at 1 x/
}__rrds_key type;

In your source program, you can define an RRDS record structure as either:

struct {
__rrds_key_type rrds_key; /+* __fill value always 0 */
char data[MY_REC_SIZE];

} rrds_rec 0;

or:

struct {
__rrds_key_type rrds_key; /* __fi1l value always 1 */
char *data;

} rrds_rec_1;

The OS/390 C/C++ library recognizes which type of record structures you have
used by the value of rrds_key._ fill. Zero indicates that the data is contiguous
with rrds_key and 1 indicates that a pointer to the data follows rrds_key.

Reading Record I/O Files

To read from a VSAM data set opened with type=record, use the standard C

fread() library function. If you set the size argument to 1 and the count argument
to the maximum record size, fread() returns the number of bytes read successfully.
For more information on fread(), see the OS/390 C/C++ Run-Time Library Reference.

fread() reads one record from the system from the current file position. Thus, if
you want to read a certain record, you can call flocate() to position the file
pointer to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read
contains, fread() reads the entire record and returns the number of bytes read. If
you use fread () to request fewer bytes than the record about to read contains,
fread() reads the number of bytes that you specified and returns your request.

0S/390 C/C++ VSAM Record 1/0 does not allow a read operation to immediately
follow a write operation without an intervening reposition. OS/390 C/C++ treats
the following as read operations:

* Calls to read functions that request 0 bytes
* Read requests that fail because of a system error
 Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in
between, reads several records in sequence (sequential processing), which can be
forward or backward, depending on the access direction, as described in the
following.

170 0S/390 V2R8.0 C/C++ Programming Guide

* KSDS, KSDS AIX and ESDS AIX

The records are retrieved according to the sequence of the key of reference, or in
reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of
arrival time (oldest to newest) regardless of the current processing
direction.

* ESDS

The records are retrieved according to the sequence they were written to the file
(entry sequence), or in reverse entry sequence.

* RRDS

The records are retrieved according to relative record number sequence or
reverse relative record number sequence.

When records are being read, RRNs without an associated record are ignored.
For example, if a file has relative records of 1, 2, and 5, the nonexistent records 3
and 4 are ignored.

By default, in record mode, fread() must be called with a pointer to an RRDS
record structure. The field _ rrds_key type._fill must be set to either 0 or 1
indicating the type of the structure, and the count argument must include the
length of the _ rrds_key_type. fread() returns the RRN number in the __recnum
field, and includes the length of the _ rrds_key_type in the return value. You
can override these operations by setting the _EDC_RRDS_HIDE_KEY environment
variable to Y. Once this variable is set, fread() is called with a data buffer and
not an RRDS data structure. The return value of fread() is now only the length
of the data read. In this case, fread() cannot return the RRN. For information on
settini environment variables, see I”(’hapfpr 33 qung Environment Variables” anl

Writing to Record I/O Files

To write new records to a VSAM data set opened with type=record, use the
standard C fwrite() library function. If you set size to 1 and count to the desired
record size, fwrite() returns the number of bytes written successfully. For more
information on fwrite() and the type=record parameter, see the 0S/390 C/C++
Run-Time Library Reference.

In general, C I/O does not allow a write operation to follow a read operation
without an intervening reposition or fflush(). OS/390 C/C++ counts a call to a
write function writing 0 bytes or or a write request that fails because of a system
error as a write operation. However, OS/390 C/C++ VSAM record I/0O allows a
write to directly follow a read. This feature has been provided for compatibility
with earlier releases.

The process of writing to a data set for the first time is known as initial loading.
Using the fwrite() function, you can write to a new VSAM file in initial load mode
just as you would to a file not in initial load mode. Writing to a KSDS PATH or an
ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record
size, fwrite() writes a record of the length you asked for and returns your request.
If your fwrite() call asks for more than the maximum record size, fwrite() writes
the maximum record size, sets errno, and returns the maximum record size. In
either case, the next call to fwrite() writes to the following record.

Chapter 13. Performing VSAM 1/0O Operations 171

Note: If an fwrite() fails, you must reposition the file before you try to read or
write again.

* KSDS, KSDS AIX
Records are written to the cluster according to the value stored in the field
designated as the prime key.
You can load a KSDS in any key order but it is most efficient to perform the
furite() operations in key sequence.

* ESDS, ESDS AIX
Records are written to the end of the file.

* RRDS

Records are written according to the value stored in the relative record number
field.

fwrite() is called with the RRDS record structure.

By default, in record mode, fwrite() and fupdate() must be called with a
pointer to an RRDS record structure. The __ rrds_key_type fields _ fi1l and
__recnum must be set. __fill is set to 0 or 1 to indicate the type of the structure.
The __recnum field specifies the RRN to write, and is required for fwrite() but
not fupdate(). The count argument must include the length of the
__rrds_key_type. furite() and fupdate() include the length of the

__rrds_key type in the return value.

Updating Record I/O Files

The fupdate() function, a OS/390 C/C++ extension to the SAA C library, is used
to update records in a VSAM file. For more information on this function, see the
0S5/390 C/C++ Run-Time Library Reference.
* KSDS, ESDS, and RRDS
To update a record in a VSAM file, you must perform the following operations:
1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified
as the required positional parameter of the fopen() function call and
type=record).
2. If the file is not already positioned at the record you want to update,
reposition to that record.
3. Read in the record using fread().
Once the record you want to update has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fupdate().
4. Make the necessary changes to the copy of the record in your buffer area.
5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to
read or write.

Notes:

1. If a file is opened in update mode, a read operation can result in the locking
of control intervals, depending on shareoptions specification of the VSAM
file. If after reading a record, you decide not to update it, you may need to
unlock a control interval by performing a file positioning operation to the
same record, such as an flocate() using the same key.

2. If fupdate() wrote out a record the file position is the start of the next
record. If the fupdate() call did not write out a record, the file position
remains the same.

172 0S/390 V2R8.0 C/C++ Programming Guide

* KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not
exceed the maximum record size of the file, fupdate() writes a record of the
length requested and returns the request. If your request exceeds the maximum
record size of the file, fupdate() writes a record that is the maximum record
size, sets errno, and returns the maximum record size.

You cannot change the prime key field of the record, and in KSDS AIX, you
cannot change the key of reference of the record.

* ESDS

You cannot change the length of the record being updated. If the size of the
record being updated is less than the current record size, fupdate() updates the
amount you specify and does not alter the data remaining in the record. If your
request exceeds the length of the record that was read, fupdate() writes a record
that is the length of the record that was read, sets errno, and returns the length
of the record that was read.

* ESDS PATH

You cannot change the length of the record being updated or the key of
reference of the record. If the size of the record being updated is less than the
current record size, fupdate() updates the amount you specify and does not
alter the data remaining in the record. If your request exceeds the length of the
record that was read, fupdate() writes a record that is the length of the record
that was read, sets errno, and returns the length of the record that was read.

* RRDS
RRDS files have fixed record length. If you update the record with less than the
record size, only those characters specified are updated, and the remaining data
is not altered. If your request exceeds the record size of the file, fupdate() writes

a record that is the record size, sets errno, and returns the length of the record
that was read.

Deleting Records

To delete records, use the library function fdelrec(), a OS/390 C/C++ extension
to the SAA C library. For more information on this function, see the O5/390 C/C++
Run-Time Library Reference.

* KSDS, KSDS PATH, and RRDS
To delete records, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified
as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to delete,
reposition to that record.

3. Read the record using the fread() function.

Once the record you want to delete has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fdelrec().

4. Delete the record using the fdelrec() function.
Note: If the data set was opened with an access mode of rb+ or r+b, a read

operation can result in the locking of control intervals, depending on
shareoptions specification of the VSAM file. If after reading a record, you

Chapter 13. Performing VSAM 1/0O Operations 173

decide not to delete it, you may need to unlock a control interval by
performing a file-positioning operation to the same record, such as an
flocate() using the same key.

¢ ESDS and ESDS PATH
VSAM does not support deletion of records in ESDS files.

Repositioning within Record 1/O Files

You can use the following functions to locate a record within a VSAM data set:
* flocate()

e ftell() and fseek()

» fgetpos() and fsetpos()

* rewind()

For complete details on these library functions, see the OS/390 C/C++ Run-Time
Library Reference.

flocate()

The flocate() C library function can be used to locate a specific record within a
VSAM data set given the key, relative byte address, or the relative record number.
The flocate() function also sets the access direction.

The following f1 ocate() parameters set the access direction to forward:
e _ KEY_FIRST (the key and key_len parameters are ignored)

« _KEY_EQ
« _ KEY GE
« _RBA EQ

The following flocate() parameters all set the access direction to backward and are
only valid for record 1/0O:

e _ KEY_LAST (the key and key_len parameters are ignored)
.« KEY_EQ_BWD
. __RBA_EQ_BWD

Note: The _ RBA_EQ and __RBA_EQ_BWD parameters are not valid for paths and are
not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.

* KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options _ KEY_EQ, _ KEY_GE, and
__KEY_EQ_BWD is a pointer to the key of reference of the data set. The key_len
parameter is the key length as defined for the data set for a full key search, or
less than the defined key length for a generic key search (a partial key match).

For KSDSs, __RBA_EQ and __RBA_EQ_BWD are supported, but are not
recommended.

Alternate indexes do not allow positioning by RBA.
* ESDS

174 0S/390 V2R8.0 C/C++ Programming Guide

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

* RRDS

For _ KEY_EQ, __KEY_GE, and __KEY_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified relative record
number. For _ RBA_EQ and __RBA_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified RBA. However,
seeking to RBA values is not recommended, because it is not supported across
control intervals. The key_len parameter is 4, because RRNs and RBAs are
unsigned long integers.

fgetpos() and fsetpos()

fgetpos() is used to store the current file position and access direction. fsetpos ()
is used to relocate to a file position stored by fgetpos() and restore the saved
access direction.

* KSDS

fgetpos () stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions, or updates.

* KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.
* ESDS and RRDS

There are no special considerations.

ftell() and fseek()

ftel1() is used to store the current file position. fseek() is used to relocate to one
of the following:

* A file position stored by ftell()

* A calculated record number (SEEK_SET)

¢ A position relative to the current position (SEEK_CUR)
* A position relative to the end of the file (SEEK_END).

ftel1() and fseek() offsets in record mode I/O are relative record offsets. For
example, the following call moves the file position to the start of the previous
record:

fseek(fp, -1L, SEEK _CUR);

You cannot use fseek() to reposition to a file position before the beginning of the
file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.
* KSDS and RRDS
There are no special considerations.
+ KSDS AIX and ESDS AIX
ftel1() and fseek() are not supported.
* ESDS
ftel1() is not supported.
* RRDS

Chapter 13. Performing VSAM 1/O Operations 175

fseek() seeks to a relative position in the file, and not to an RRN value. For
example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK_SET);
followed by an fread() would read in RRN 7, which is at offset 3 in the file.

rewind()

The rewind() function repositions the file position to the beginning of the file, and

clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()
with __KEY_LAST sets the file pointer to the end of the file and sets the access

direction to backwards. A subsequent call to rewind() sets the file pointer to the
beginning of the file, but the access direction remains backwards.

Flushing Buffers

You can use the C library function fflush() to flush buffers. However, fflush()
writes nothing to the system, because all records have already been written there

by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see the OS/390 C/C++ Run-Time Library

Reference.

Summary of VSAM Record I/O Operations

Table 24. Summary of VSAM Record I/O Operations

KSDS ESDS RRDS PATH
fopen(), rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+
freopen() wb, wb+ (empty | wb, wb+ (empty | wb, wb+ (empty
cluster or reuse |cluster or reuse |cluster or reuse
specified for wb |specified for wb |specified for wb
& wb+) & wb+) & wb+)
furite() rb+, ab, ab+, wb, | rb+, ab, ab+, wb, | rb+, ab, ab+, wb, | rb+, ab, ab+
wb+ wb+ wb+
fread() rb, rb+, ab+, rb, rb+, ab+, rb, rb+, ab+, rb, rb+, ab+
wb+ wb+ wb+
ftell() rb, rb+, ab, ab+, rb, rb+, ab, ab+,
wb, wb+ 2 wb, wb+
fseek() rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ 2 wb, wb+ wb, wb+
fgetpos() rb, tb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ * wb, wb+ wb, wb+
fsetpos() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ * wb, wb+ wb, wb+
flocate() b, tb+, ab+, rb, tb+, ab+, rb, tb+, ab+, rb, rb+, ab+
wb+ wb+ wb+
rewind() b, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+
fflush() rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

176 0S/390 V2R8.0 C/C++ Programming Guide

Table 24. Summary of VSAM Record I/O Operations (continued)

KSDS ESDS RRDS PATH

fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not

ESDS)

fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+

ferror() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

feof() rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

clearerr() rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

fclose() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

fldata() rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+

VSAM Record Level Sharing

VSAM Record Level Sharing (RLS) provides for the sharing of VSAM data at the
record level, using the locking and caching functions of the coupling facility
hardware. For more information on Record Level Sharing, see the DFSMS/MV'S
General Information.

The C/C++ run-time library provides the following support for VSAM RLS:

* Specification of RLS-related keywords in the mode string of fopen() and
freopen().

* Specification of RLS-related text unit key values in the __dyn_t structure, which
is used as input to the dynalloc() function.

* Provides the application with VSAM return and reason codes for VSAM 1/0
errors.

* Performs implicit positioning for files opened for RLS access.

VSAM RLS has 2 read integrity file access modes. These modes tell VSAM the
level of locking to perform when records are accessed within a file that has not
been opened in update mode. The access modes are:

nri No Read Integrity indicates that requests performed by the application are
not to be serialized with updates or erases of the records by other calling
programs. VSAM accesses the records without obtaining a lock on the
record.

cr Consistent Read indicates that requests performed by the application are to
be serialized with updates or erases of the records by other calling
programs. VSAM obtains a share lock when accessing the record. This lock
is released once the record has been returned to the caller.

3. The saved position is based on the relative position of the record within the data set. Subsequent insertions or deletions may
invalidate the saved position.

4. The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may invalidate the saved

position.

Chapter 13. Performing VSAM 1/O Operations 177

VSAM RLS locks records to support record integrity. An application may wait for
an exclusive record lock if another user has the record locked. The application is
also subject to new locking errors such as deadlock or timeout errors.

If the file has been opened in update mode, and RLS=CR is specified, VSAM also
serializes access to the records within the file. However, the type of serialization
differs from non-update mode in the following ways:

* A reposition within the file causes VSAM to obtain a share lock for the record.

e A read of a record causes VSAM to obtain an exclusive lock for the record. The
lock is held until the record is updated in the file, or another record is read.

Notes:
1. When a file is opened, it is implicitly positioned to the first record to be
accessed.

2. You can also specify the RLS keyword on the JCL DD statement. When
specified on both the JCL DD statement and in the mode string on fopen() or
freopen(), the read integrity options specified in the mode string override
those specified on the JCL DD statement.

3. VSAM RLS access is supported for the 3 types of VSAM files that the C/C++
run-time library supports: Key-Sequenced (KSDS), Entry-Sequenced (ESDS),
and Relative Record (RRDS) data sets.

4. VSAM RLS functions require the use of a Coupling Facility. For more
information on using the Coupling Facility, see the DFSMS/MVS General
Information, and the OS/390 Parallel Sysplex Overview.

5. In an environment where one thread opens and another thread issues record
management requests, VSAM RLS requires that record management requests be
issued from a thread whose Task Control Block (TCB) is subordinate to the TCB
of the thread which opened the file.

6. VSAM RLS does not support the following:
* Key range data sets.
* Direct open of an AIX cluster as a KSDS.
¢ Acces to individual components of a cluster.
e OS Checkpoint and Restart.

Error Reporting

Errors are reported through the __amrc structure and the SIGIOERR signal. The
following are additional considerations for error reporting in a VSAM RLS
application:

* VSAM RLS uses the SMSVSAM server address space. When a file open fails for
the rare condition that the server is not available, the C run-time library places
the error return code and error value in the __amrc structure, and returns a null
file descriptor. Record management requests return specific error return/reason
codes, if the SMSVSAM server is not available. The server address space is
automatically restarted. To recover from this type of error, an application should
first close the file to clean up the file status, and then open the file prior to
attempting record management requests. The close for the file returns a return
code of 4, and an error code of 170(X"AA’). This is the expected result. It is not
an error.

* Opening a recoverable file for output is not supported. If you attempt to do so,
the open will fail with error return code 255 in the __amrc structure.

178 0S/390 V2R8.0 C/C++ Programming Guide

* Some of the VSAM errors, that are reported in the __amrc structure, are
situations from which an application can recover. These are problems that can
occur unpredictably in a sharing environment. Usually, the application can
recover by simply accessing another record. Examples of such errors are the
following:

- RC 8§, 21(X'15"): Request cancelled as part of deadlock resolution.
— RC 8, 22(X'16’): Request cancelled as part of timeout resolution.

— RC 8§, 24(X"18’): Request cancelled because transaction backout is pending on
the requested record.

- RC §, 29(X'14): Intra-luwid contention between threads under a given TCB.

The application can intercept errors by registering a condition handler for the
SIGIOERR condition. Within the condition handler, the application can examine
the information in the __amrc structure and determine how to recover from each
specific situation.

Refer to the DFSMS/MVS Macro Instructions for Data Sets for a complete list of
return and reason codes.

Text and Binary 1/0O in VSAM

Because VSAM is primarily record-based, this section only discusses those aspects
of text and binary I/O that are specific to VSAM. For general information on text
and binary 1/0, refer to the respective sections in tC hapter 11 Performing OS 1/ a

”

Reading from Text and Binary 1/O Files

* RRDS

All the read functions support reading from text and binary RRDS files. fread()
is called with a character buffer instead of an RRDS record structure.

Writing to and Updating Text and Binary 1/O Files
* KSDS, KSDS AIX, and ESDS AIX

0S/390 C/C++ VSAM support for streams does not provide for writing and
updating these types of data sets opened for text or binary stream I/0O.

* ESDS
Writes are supported for ESDSs opened as binary or text streams. Updating data
in an ESDS stream cannot change the length of the record in the external file.
Therefore, in a binary stream:

— updates for less than the existing record length leave existing data beyond the
updated length unchanged;

— updates for longer than the existing record length flow over the record
boundary and update the start of the next record.

In text streams:

— updates that specify records shorter than the original record pad the updated
record to the existing record length with blanks;

— updates for longer than the existing record length result in truncation, unless
the original record contained only a new-line character, in which case it may
be updated to contain one byte of data plus a new-line character.

* RRDS

Chapter 13. Performing VSAM 1/0O Operations 179

fwrite() is called with a character buffer instead of an RRDS record structure.

Records are treated as contiguous. Once the current record is filled, the next
record in the file is written to. For example, if the file consisted of only record 1,
record 5, and record 28, a write would complete record 1 and then go directly to
record 5.

Writing past the last record in the file is allowed, up to the maximum size of the
RRDS data set. For example, if the last record in the file is record 28, the next
record to be written is record 29.

Insertion of records is not supported. For example, in a file of records 1, 5, and
28, you cannot insert record 3 into the file.

Deleting Records in Text and Binary 1/O Files
fdelrec() is not supported for text and binary I/O in VSAM.
Repositioning within Text and Binary 1/O Files

You can use the following functions to locate a record within a VSAM data set:
e flocate()

+ ftell() and fseek()

» fgetpos() and fsetpos()

e rewind()

For complete details on these library functions, see the OS/390 C/C++ Run-Time
Library Reference.

flocate()

The flocate() C library function can be used to reposition to the beginning of a
specific record within a VSAM data set given the key, relative byte address, or the
relative record number. For more information on this function, see the OS/390
C/C++ Run-Time Library Reference.

The following f1 ocate() parameters set the direction access to forward:
e __KEY_FIRST (the key and key_len parameters are ignored)

« __KEY_EQ
« __KEY GE
+ __RBA EQ

The following flocate() parameters all set the access direction to backward and are
not valid for text and binary I/O, because backwards access is not supported:

e _ KEY_LAST (the key and key_len parameters are ignored)
« _ KEY_EQ_BWD
« __RBA_EQ_BWD

You can use the rewind() library function instead of calling flocate() with

__KEY_FIRST.

» KSDS, KSDS AIX, and ESDS AIX
The key parameter of flocate() for the options __KEY_EQ and _ KEY GE is a
pointer to the key of reference of the data set. The key_len parameter is the key
length as defined for the data set for a full key search, or less than the defined
key length for a generic key search (a partial key match).

180 0S/390 V2R8.0 C/C++ Programming Guide

Alternate indexes do not allow positioning by RBA.

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.
+ ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key_len parameter is 4, because RBAs
are unsigned long integers.

* RRDS

For _ KEY_EQ and __KEY_GE, the key parameter of flocate() is a pointer to an
unsigned long integer containing the specified relative record number. For
__RBA_EQ, the key parameter of flocate() is a pointer to an unsigned long
integer containing the specified RBA. However, seeking to RBA values is not
recommended, because it is not supported across control intervals. The key_len
parameter is 4, because RRNs and RBAs are unsigned long integers.

fgetpos() and fsetpos()

fgetpos () saves the access direction, an RBA value, and the file position, and
fsetpos() restores the saved access direction.

fgetpos() accounts for the presence of characters in the ungetc() buffer unless you
have set the EDC_COMPAT variable. See I'‘Chapter 33 TIsing Environment Variables’]

for information about _EDC_COMPAT. If ungetc() characters back the file
position up to before the start of the file, calls to fgetpos() fail.

+ KSDS
fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions or updates.
* KSDS PATH and ESDS PATH
fgetpos() and fsetpos() are not supported for PATHs.
* ESDS and RRDS
There are no special considerations.

ftell() and fseek()

Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS
binary file results in the file being extended with nulls to the new position. An
incomplete last record is completed with nulls, records of length Trecl are added
as required, and the current record is filled with the remaining number of nulls
and left in the current buffer. This is supported for relative byte offset from

SEEK_SET, SEEK_CUR and SEEK_END. [Cable 25 an page 182 provides a summary of the
fseek() and ftell() parameters in binary and text.

Chapter 13. Performing VSAM 1/0O Operations 181

Table 25. Summary of fseek() and ftell() parameters in text and binary

Type Mode ftel1() return fseek() SEEK_SET |SEEK_CUR SEEK_END
values
KSDS Binary relative byte relative byte relative byte relative byte
offset offset offset offset
Text not supported zero only relative byte relative byte
offset offset
ESDS Binary relative byte relative byte relative byte relative byte
offset offset offset offset
Text not supported zero only relative byte relative byte
offset offset
RRDS Binary encoded byte encoded byte relative byte relative byte
offset offset offset offset
Text encoded byte encoded byte relative byte relative byte
offset offset offset offset
PATH Binary not supported not supported not supported not supported
Text not supported not supported not supported not supported

Flushing Buffers

You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data
to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see the OS/390 C/C++ Run-Time Library

Reference.

Summary of VSAM Text I/O Operations

Table 26. Summary of VSAM Text I/O Operations

KSDS

ESDS

RRDS

PATH

fopen(),
freopen()

T

L, I+, a, a+, w,
w+ (empty
cluster or reuse
specified for w
& w+)

I, r+, a, a+, w,
w+ (empty
cluster or reuse
specified for w
& w+)

furite()

r+, a, at, w, w+

r+, a, at, w, w+

fprintf()

r+, a, a+, W, w+

r+, a, a+, W, w+

fputs()

r+, a, at, w, w+

r+, a, at+, W, w+

fputc()

r+, a, a+, W, w+

r+, a, a+, W, w+

putc()

I+, a, at+, W, w+

r+, a, at+, W, w+

viprintf()

r+, a, at, w, w+

r+, a, at, w, w+

vprintf()

I+, a, at+, W, w+

r+, a, at+, W, w+

fread()

I, I+, a+, W+

I, r+, a+, W+

fscanf()

I, I+, a+, W+

I, r+, a+, W+

fgets()

I, I+, a+, W+

I, I+, a+, W+

182 0S/390 V2R8.0 C/C++ Programming Guide

Table 26. Summary of VSAM Text I/O Operations (continued)

KSDS ESDS RRDS PATH

fgetc() r I, T+, a+, W+ I, T+, a+, w+ r

getc() r I, r+, a+, W+ I, 1+, a+, w+ r

ungetc() r I, r+, a+, W+ I, I+, a+, W+ r

ftell() I, r+, a, at+, w,

w+

fseek() r I, I+, a, a+, W, I, I+, a, a+, W,
w+ w+

fgetpos() r I, I+, a, a+, W, I, I+, a, a+, W,
w+ w+

fsetpos() r I, T+, a, a+, W, I, 1+, a, a+, w,
w+ w+

flocate() r I, I+, a+, W+ I, 1+, a+, w+ r

rewind() r I, I+, a, a+, W, I, I+, a, a+, W, r
w+ W+

fflush() r I, T+, a, a+, W, I, 1+, a, a+, w, r
w+ w+

ferror() r I, I+, a, a+, W, I, I+, a, a+, W, r
w+ w+

fdelrec()

fupdate()

feof() r I, 1+, a, a+, W, I, 1+, a, a+, W, r
w+ w+

clearerr() r I, I+, a, a+, W, I, I+, a, a+, W, r
w+ W+

fclose() r I, T+, a, a+, W, I, 1+, a, a+, w, r
w+ w+

fldata() r I, r+, a, a+, w, I, 1+, a, at+, w, r
w+ w+

Summary of VSAM Binary I/O Operations
Table 27. Summary of VSAM Binary I/0 Operations
KSDS ESDS RRDS PATH

fopen(), rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb

freopen() wb, wb+ (empty |wb, wb+ (empty
cluster or reuse |cluster or reuse
specified for wb |specified for wb
& wb+) & wb+)

fwrite() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

fprintf() rb+, ab, ab+, wb, |rb+, ab, ab+, wb,
wb+ wb+

fputs () rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

fputc() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

Chapter 13. Performing VSAM I/O Operations

183

Table 27. Summary of VSAM Binary I/0O Operations (continued)

KSDS ESDS RRDS PATH

putc() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

viprintf() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

vprintf() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

fread() b b, tb+, ab+, rb, tb+, ab+, b
wb+ wb+

fscanf() rb rb, tb+, ab+, rb, tb+, ab+, b
wb+ wb+

fgets() rb rb, tb+, ab+, rb, tb+, ab+, rb
wb+ wb+

fgetc() rb rb, rb+, ab+, rb, tb+, ab+, b
wb+ wb+

getc() b rb, tb+, ab+, rb, tb+, ab+, b
wb+ wb+

ungetc() rb rb, tb+, ab+, rb, tb+, ab+, b
wb+ wb+

ftell() rb rb, tb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

fseek() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

fgetpos() b b, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

fsetpos() rb rb, tb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

flocate() rb rb, tb+, ab+, rb, tb+, ab+, rb
wb+ wb+

rewind() rb b, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

fflush() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

ferror() rb rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb
wb, wb+ wb, wb+

fdelrec()

fupdate()

feof() rb rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb
wb, wb+ wb, wb+

clearerr() rb b, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

fclose() b rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb
wb, wb+ wb, wb+

fldata() b rb, tb+, ab, ab+, |rb, tb+, ab, ab+, |rb
wb, wb+ wb, wb+

184 0S/390 V2R8.0 C/C++ Programming Guide

Closing VSAM Data Sets

To close a VSAM data set, use the standard C fclose() library function as you
would for closing non-VSAM files. See the OS/390 C/C++ Run-Time Library
Reference for more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer
that is less than the maximum record size, this record is written to the file at its
current size. A new RRDS binary record that is incomplete when the file is closed
is filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is
completed with a new-line.

VSAM Return Codes

When failing return codes are received from OS/390 C/C++ VSAM I/0O functions,
you can access the __amrc structure to help you diagnose errors. The __amrc_type
structure is defined in the header file stdio.h (when the compiler option

LANGLVL (EXTENDED) is used).

Note: The __amrc struct is global and can be reset by another I/O operation (such
as printf()).

The following fields of the structure are important to VSAM users:

__amrc.__co de._feedback. rc
Stores the VSAM R15.

__amrc.__code.__ feedback.__fdbk
Stores the VSAM error code or reason code.

__amrc._ RBA
Stores the RBA after some operations.

__amrc.__last op
Stores a code for the last operation. The codes are defined in the header
file stdio.h.

For definitions of these return codes and feedback codes, refer to the publications
listed in 'NVSAM” on page 902

You can set up a SIGIOERR handler to catch read or write system errors. See
d i ” for more information.

VSAM Examples
This section provides several examples of using I/O under VSAM.
KSDS Example

The example below shows two functions from an employee record entry system
with a mainline driver to process selected options (display, display next, update,
delete, create).

Chapter 13. Performing VSAM 1/O Operations 185

The update routine is an example of KSDS clusters, and the display routine is an
example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as
follows:

* The KSDS cluster has a record size of 150 with a key length of 4 with offset 0.
* The unique KSDS AIX has a key length of 20 with an offset of 10.
¢ The non-unique KSDS AIX has a key length of 40 with an offset of 30.

The update routine is passed the following:

e data_ptr, which points to the information that is to be updated

* orig_data_ptr, which points to the information that was originally displayed
using the display option

* A file pointer to the KSDS cluster

The display routine is passed the following;:

 data_ptr, which points to the information that was entered on the screen for the
search query

* orig_data_ptr, which is returned with the information for the record to be
displayed if it exists

* File pointers for the primary cluster, unique alternate index and non-unique
alternate index

By definition, the primary key is unique and therefore the employee number was
chosen for this key. The user_id is also a unique key; therefore, it was chosen as
the unique alternate index key. The name field may not be unique; therefore, it was
chosen as the non-unique alternate index key.

186 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GVS2

/* this example demonstrates the use of a KSDS file */
/* part 1 of 2-other file is CBC3GVS3 */

#include <stdio.h>
#include <string.h>

/* global definitions

struct data_struct {

}s

#define
#define
#define
#define

char emp_number[4];
char user_id[8];
char name[20];

char pers_info[37];

REC_SIZE 69
CLUS_KEY_SIZE 4
AIX_UNIQUE KEY SIZE 8

AIX_NONUNIQUE_KEY SIZE 20

static void print_amrc() {
__amrc_type currErr = *__amrc; /* co

printf("R15 value
printf("Reason code
printf("RBA
printf("Last op

/* st
/* do
%d\n", currErr
%d\n", currErr
%d\n", currErr
%d\n", currErr

return;

Figure 22. KSDS Example (Part 1 of 6)

py contents of _ amrc */
ructure so that values */
n't get jumbled by printf =/
.__code._feedback. rc);
.__code. feedback. fdbk);
.__RBA);

.__last op);

Chapter 13. Performing VSAM I/O Operations

187

/* update_emp_rec() function definition */

int update_emp rec (struct data struct *data_ptr,
struct data_struct xorig_data_ptr,
FILE *fp)

int rc;
char buffer[REC_SIZE+1];

/* Check to see if update will change primary key (emp_number) x/
if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

/* Check to see if changed primary key exists */
rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE, KEY_EQ);
if (rc == 0) {

print_amrc();
printf("Error: new employee number already exists\n");
return 10;

1
clearerr(fp);

/* Write out new record */
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();

printf("Error: write with new employee number failed\n");

return 20;
}
/* Locate to old employee record so it can be deleted */
rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS KEY SIZE,
__KEY_EQ);
if (rc !=0) {
print_amrc();
printf("Error: flocate to original employee number failed\n");
return 30;
1

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: reading old employee record failed\n");

return 40;
}
rc = fdelrec(fp);
if (rc 1= 0) {
print_amrc();
printf("Error: deleting old employee record failed\n");
return 50;
}

Figure 22. KSDS Example (Part 2 of 6)

188 0S/390 V2R8.0 C/C++ Programming Guide

} /* end of checking for change in primary key */

else { /* Locate to current employee record */
rc = flocate(fp,&(data_ptr->emp_number),CLUS _KEY SIZE, KEY EQ);
if (rc == 0) {
/* record exists, so update it */

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: reading old employee record failed\n");

return 60;
1
rc = fupdate(data_ptr,REC_SIZE,fp);
if (rc == 0) {
print_amrc();
printf("Error: updating new employee record failed\n");
return 70;
1

else { /* record doesn't exist so write out new record =/
clearerr(fp);
printf("Warning: record previously displayed no longer\n");
printf(" : exists, new record being created\n");
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: write with new employee number failed\n");

return 80;
1
1
1
return 0;
1
/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,
struct data_struct xorig data ptr,
FILE *clus_fp, FILE *aix_unique_fp,
FILE *aix_non_unique_fp)

int rc = 0;
char buffer[REC_SIZE+1];

/* Primary Key Search */
if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {
rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS KEY SIZE,
__KEY_EQ);
if (rc 1= 0) {
printf("Error: flocate with primary key failed\n");
return 10;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);
if (rc != REC_SIZE |] ferror(clus_fp)) {

printf("Error: reading employee record failed\n");

return 15;

}

Figure 22. KSDS Example (Part 3 of 6)

Chapter 13. Performing VSAM 1/0O Operations 189

/* Unique Alternate Index Search */
else if (data_ptr->user_id[0] != '\0') {
rc = flocate(aix_unique_fp,data_ptr->user_id,AIX UNIQUE KEY SIZE,
__KEY_EQ);
if (rc !=0) {
printf("Error: flocate with user id failed\n");
return 20;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);
if (rc != REC_SIZE |T ferror(aix_unique_fp)) {
printf("Error: reading employee record failed\n");
return 25;
}
}
/* Non-unique Alternate Index Search */
else if (data_ptr->name[0] !'= '\0') {
rc = flocate(aix_non_unique_fp,data_ptr->name,
AIX_NONUNIQUE KEY_SIZE, KEY GE);

if (rc 1= 0) {
printf("Error: flocate with name failed\n");
return 30;
}
/* Read record for display */

rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);
if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {
printf("Error: reading employee record failed\n");

return 35;
1
1
else {
printf("Error: invalid search argument; valid search arguments\n"
" : are either employee number, user id, or name\n");
return 40;
1
/* display record data */

.4s\n", orig_data_ptr->emp_number);
.8s\n", orig_data_ptr->user_id);
.20s\n", orig_data_ptr->name);
.37s\n", orig_data_ptr->pers_info);

printf("Employee Number:
printf("Employee Userid:
printf("Employee Name:
printf("Employee Info:
return 0;

AN o o° o

Figure 22. KSDS Example (Part 4 of 6)

190 0S/390 V2R8.0 C/C++ Programming Guide

/* main() function definition */

int main() {

FILE* clus_fp;
FILE* aix_ufp;
FILE* aix_nufp;
int i;

struct data_struct bufl, buf2;

char data[3] [REC_SIZE+1] = {
" 1LARRY LARRY HI, I'M LARRY, ",
" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",
" 3DARRYL2 DARRYL "

s

/* open file three ways */
clus_fp = fopen("dd:cluster", "rb+,type=record");
if (clus_fp == NULL) {

print_amrc();

printf("Error: fopen(\"dd:cluster\"...) failed\n");

return 5;
1
/* assume base cluster was loaded with at least one dummy record =/
/* so aix could be defined */

aix_ufp = fopen("dd:aixunig", "rb,type=record");
if (aix_ufp == NULL) {
print_amrc();
printf("Error: fopen(\"dd:aixunig\"...) failed\n");

return 10;
1
/* assume base cluster was loaded with at Teast one dummy record =*/
/* so aix could be defined */

aix_nufp = fopen("dd:aixnuniq", "rb,type=record");

if (aix_nufp == NULL) {
print_amrc();
printf("Error: fopen(\"dd:aixnunig\"...) failed\n");
return 15;

}

/* load sample records */
for (i = 03 i < 3; ++i) {
if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {
print_amrc();
printf("Error: fwrite(data[%d]...) failed\n", i);
return 66+i;

Figure 22. KSDS Example (Part 5 of 6)

Chapter 13. Performing VSAM 1/0 Operations 191

/* display sample record by primary key */

memcpy (bufl.emp_number, " 1", 4);

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 69;

/* display sample record by nonunique aix key */

memset (bufl.emp_number, '\0', 4);
bufl.user id[0] = '\0';

memcpy (bufl.name, "DARRYL ", 20);

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 70;

/* display sample record by unique aix key */

memcpy (bufl.user_id, "DARRYL2 ", 8);
if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 71;

/* update record just read with new personal info */
memcpy (&bufl, &buf2, REC_SIZE);

memcpy (bufl.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);
if (update_emp_rec(&bufl, &buf2, clus_fp) != 0) return 72;

/* display sample record by unique aix key */

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 73;

return 0;

Figure 22. KSDS Example (Part 6 of 6)

The following JCL can be used to test the previous example.
CBC3GVS3

//* this example illustrates the use of a KSDS file
//* part 2 of 2-other file is CBC3GVS2

//DELETEC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=+
//SYSIN DD =
DELETE -
userid.KSDS.CLUSTER -
CLUSTER -
PURGE -
ERASE

Figure 23. KSDS Example (Part 1 of 3)

192 0S/390 V2R8.0 C/C++ Programming Guide

//DEFINE EXEC PGM=IDCAMS

//VOLUME DD UNIT=SYSDA,DISP=SHR,VOL=SER=(XXXXXX)

//SYSPRINT DD SYSOUT=x
//SYSIN DD *
DEFINE CLUSTER -
(NAME (userid.KSDS.CLUSTER) -
FILE(VOLUME) -
VOL (XXXXXX) -
TRK(4 4) -
RECSZ(69 100) -
INDEXED -
NOREUSE -
KEYS(4 0) -
OWNER (userid)) -
DATA -
(NAME (userid.KSDS.DA)) -
INDEX -
(NAME (userid.KSDS.IX))

//REPRO EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
REPRO INDATASET (userid.DUMMY.DATA) -
OUTDATASET (userid.KSDS.CLUSTER)

//* Define unique AIX, define and build PATH

2 ey L

//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=+
//SYSIN DD =
DEFINE AIX -
(NAME (userid.KSDS.UAIX) -
RECORDS (25) -
KEYS(8,4) -
VOL (XXXXXX) -
UNIQUEKEY -
RELATE (userid.KSDS.CLUSTER)) -
DATA -
(NAME (userid.KSDS.UAIXDA)) -
INDEX -
(NAME (userid.KSDS.UAIXIX))
DEFINE PATH -
(NAME (userid.KSDS.UPATH) -
PATHENTRY (userid.KSDS.UAIX))
BLDINDEX -
INDATASET (userid.KSDS.CLUSTER) -
OUTDATASET (userid.KSDS.UAIX)
/*

Figure 23. KSDS Example (Part 2 of 3)

Chapter 13. Performing VSAM I/O Operations

193

//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX -

(NAME (userid.KSDS.NUAIX) -

RECORDS (25) -

KEYS (20, 12) -

VOL (XXXXXX) -

NONUNIQUEKEY -

RELATE (userid.KSDS.CLUSTER)) -
DATA -

(NAME (userid.KSDS.NUAIXDA)) -
INDEX -

(NAME (userid.KSDS.NUAIXIX))

DEFINE PATH -

(NAME (userid.KSDS.NUPATH) -
PATHENTRY (userid.KSDS.NUAIX))

BLDINDEX -

INDATASET (userid.KSDS.CLUSTER) -
OUTDATASET (userid.KSDS.NUAIX)

//G0

EXEC PGM=CBC3GVS2,REGION=5M

//STEPLIB DD DSN=userid.TEST.LOAD,DISP=SHR

//

DD DSN=CEE.SCEERUN,DISP=SHR

//SYSPRINT DD SYSOUT=+

//SYSTERM DD SYSOUT=+

//SYSoUT DD SYSOUT=+

//PLIDUMP DD SYSOUT=*

//SYSABEND DD SYSOUT=+

//SYSUDUMP DD SYSOUT=+

//CLUSTER DD DSN=userid.KSDS.CLUSTER,DISP=SHR
//AIXUNIQ DD DSN=userid.KSDS.UPATH,DISP=SHR
//AIXNUNIQ DD DSN=userid.KSDS.NUPATH,DISP=SHR

//PRINTF EXEC PGM=IDCAMS
//SYSPRINT ~ DD SYSOUT=*
//SYSIN DD =

/*

PRINT -

INDATASET (userid.KSDS.CLUSTER) CHAR

Figure 23. KSDS Example (Part 3 of 3)

RRDS Example

The following program illustrates the use of an RRDS file. It performs the
following operations:

1.

o gk wN

Opens an RRDS file in record mode (the cluster must be defined)

Writes three records (RRN 2, RRN 10, and RRN 32)

Sets the file position to the first record

Reads the first record in the file

Deletes it

Locates the last record in the file and sets the access direction to backwards

194 0S/390 V2R8.0 C/C++ Programming Guide

7. Reads the record
8. Updates the record
9. Sets the EDC_RRDS _HIDE KEY environment variable
10. Reads the next record in sequence (RRN 10) into a character string

CBC3GVS4

/* this example illustrates the use of an RRDS file %/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <env.h>

struct rrds_struct {
rrds_key_type rrds_key;

char *rrds_buf;
1

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;

RRDS_STRUCT RRDSstruct;
RRDS_STRUCT *rrds_rec = &RRDSstruct;
char buffer1[80] =

"THIS IS THE FIRST RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 2. "
char buffer2[80] =
"THIS IS THE SECOND RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 10. ";
char buffer3[80] =
"THIS IS THE THIRD RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 32. ";
char outputbuf[80];
unsigned Tong flocate_key = 0;

Figure 24. RRDS Example (Part 1 of 3)

Chapter 13. Performing VSAM 1/O Operations 195

/*| select RRDS record structure 2 by setting _ fill to 1 */
/* */
/*| 1. open an RRDS file record mode (the cluster must be defined) */
/*| 2. write three records (RRN 2, RRN 10, RRN 32) */
e */

fileptr = fopen("DD:RRDSFILE", "wb+,type=record");
if (fileptr == NULL) {

perror("fopen");

exit(99);
1
rrds_rec->rrds_key._recnum = 2;
rrds_rec->rrds_buf = bufferl;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 10;
rrds_rec->rrds_buf = buffer2;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key. recnum = 32;
rrds_rec->rrds_buf = buffer3;
fwrite(rrds_rec,1,88, fileptr);

[m e e */
/x| 3. set file position to the first record */
/*| 4. read the first record in the file */
/*| 5. delete it */
/2y */

flocate(fileptr, &flocate key,; sizeof(unsigned Tong), _ KEY FIRST);

memset (outputbuf,0x00,80) ;
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The first record in the file (this will be deleted):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key. recnum,outputbuf);

fdelrec(fileptr);

Figure 24. RRDS Example (Part 2 of 3)

196 0S/390 V2R8.0 C/C++ Programming Guide

/*| 6. lTocate last record in file and set access direction backwards*/

/*| 7. read the record */
/*| 8. update the record x/
S S S S S S S S Sy S S S IS Sy */

flocate(fileptr, &flocate key,; sizeof(unsigned Tong), _ KEY LAST);

memset (outputbuf,0x00,80) ;
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The last record in the file (this one will be updated):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key. recnum,outputbuf);

memset (outputbuf,0x00,80);
memcpy (outputbuf,"THIS IS THE UPDATED STRING... ",30);
fupdate(rrds_rec,88,fileptr);

[e m e e e e e */
/*| 9. set _EDC_RRDS_HIDE_KEY environment variable */
/*|10. read the next record in sequence (ie. RRN 10) into a */
/* + character string */
gy */

setenv("_EDC_RRDS_HIDE_KEY","Y",1);

memset (outputbuf,0x00,80);

fread(outputbuf, 1, 80, fileptr);

printf("The middle record in the file (read into char string):\n");
printf("%80s\n\n",outputbuf);

fclose(fileptr);

Figure 24. RRDS Example (Part 3 of 3)

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *=file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of 1/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

Chapter 13. Performing VSAM 1/O Operations 197

struct _ fileData {

unsigned int _ recfmF 1, /* */
__recfmV 1, /* x/

_ recfmU 1, /* x/

_recfmS 1, /* always off */

__recfmBlk : 1, /* always off */

__recfmASA : 1, /* always off */

__recfmM 1, /* always off */

__dsorgP0 1, /= N/A -- always off */

__dsorgPDSmem : 1, /* N/A -- always off */

__dsorgPDSdir : 1, /* N/A -- always off */

__dsorgPS 1, /* N/A -- always off */

__dsorgConcat : 1, /* N/A -- always off */

__dsorgMem : 1, /* N/A -- always off */

__dsorgHiper : 1, /* N/A -- always off */

__dsorgTemp: 1, /* N/A -- always off */

__dsorgVSAM: 1, /* always on */

__dsorgHFS : 1, /* N/A -- always off */

__openmode : 2, /* one of: */

/* _TEXT */

/* __BINARY */

/* __RECORD */

__modeflag : 4, /* combination of: */

/* _READ */

/* _WRITE */

/* __APPEND */

/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */

__vsamRLS : 3, /* One of: */

/* __NORLS */

/* _RLS */

__reserve2 : 5; /x */

__device_t __device; /* __DISK */
unsigned long _ blksize, /* */
__maxreclen; /* */

unsigned short _ vsamtype; /* one of: */
/% _ESDS */

/* __KSDS */

/* __RRDS */

/* __ESDS_PATH */

/* __KSDS_PATH */

unsigned Tong _ vsamkeylen; /* */
unsigned long __ vsamRKP; /* */
char = __dsname; /* */
unsigned int _ reserved; /* */

bs
typedef struct _ fileData fldata_t;

Figure 25. fldata() Structure

Notes:

1. If you have opened the file by its data set name, the filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase.

2. The _ dsname field is filled in with the data set name. The _ dsname value is
uppercase unless the asis option was specified on the fopen() or freopen()
function call.

198 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 14. Performing Terminal I/O Operations

This chapter describes how to use input and output interactively with a terminal
(using TSO or OS/390 UNIX).

Terminal I/O supports text, binary, and record 1/0O, in undefined, variable and
fixed-length formats, except that ASA format is not valid for any text terminal files.

Note: You cannot use the OS/390 C/C++ I/O functions for terminal I/O under
either IMS or CICS. Terminal I/O under CICS is supported through the
CICS command level interface.

See I’thpfpr 9_QS/390 C Q11ppn1‘f for the Double-Byvte Character Set” on page 74
for information about using wide-character I/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/0O and the IO Stream class library instead, refer to
P’thpfpr 5 TTQing the 1/Q Stream Class Library in C++” on page 45 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and the OS/390 C/C++ IBM Open Class Library Reference for specifics.

Opening Files

You can use the library functions fopen() or freopen() to open a file.

Using fopen() and freopen()

This section covers:

* Opening a file by data set name

* Opening a file by DD name

» fopen() and freopen() keywords

* Opening a terminal file under the shell

Opening a File by Data Set Name

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The first character of the filename must be an asterisk

().

0S/390 UNIX Considerations: If you have specified POSIX(ON),
fopen("*file.data","r"); does not open a terminal file. Instead, it opens a file
called *file.data in the HFS file system. To open a terminal file under POSIX, you

must specify two slashes before the asterisk, as follows:
fopen("//*file.data","r"):

Terminal files cannot be opened in update mode.

Terminal files opened in append mode are treated as if they were opened in write
mode.

© Copyright IBM Corp. 1996, 1999 199

Opening a File by DD Name

The dataset name that is associated with the DD statement must be an asterisk(*).
For example:

TSO ALLOC f(ddname) DA(*)
fopen("dd:ddname", "mode");

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for terminal I/O, and lists the
values that are valid for the applicable ones.

Table 28. Keywords for the fopen() and freopen() Functions for Terminal I/O

Parameter Allowed? Applicable? |Notes

recfm= Yes Yes F, V, U and additional keywords A, B, S,
M are the valid values. A, B, S, and M are
ignored.

Trecl= Yes Yes See below.

blksize= Yes Yes See below.

space= Yes No Has no effect for terminal I/0.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= No No Not used for terminal I/0.

password= No No Not used for terminal I/0.

asis Yes No Has no effect for terminal I/0.

byteseek Yes No Has no effect for terminal 1/0.

noseek Yes No Has no effect for terminal I/0.

0S Yes No Not used for terminal I/0.

recfm=

0S5/390 C/C++ allows you to specify any of the 27 possible RECFM types (listed
on pages @, @, and @). The default is recfm=U.
Any specification of ASA for the record format is ignored.

Trecl= and blksize=
The Trecl and blksize parameters allow you to set the record size and block
size, respectively.
The maximum limits on 1recl values are as follows:
32771 For input OS/390 variable terminals (data length of 32767)
32767 For input OS/390 fixed and undefined terminals
32770 For output OS/390 variable terminals (data length of 32766)
32766 For output OS/390 fixed and undefined terminals
In fixed and undefined terminal files, b1ksize is always the size of 1recl. In
variable terminal files, b1ksize is always the size of Trecl plus 4 bytes. It is not
necessary to specify values for 1recl and blksize. If neither is specified, the

default values are used. The default 1recl sizes (not including the extra 4 bytes
in the Trecl of variable length types) are as follows:

200 0S/390 V2R8.0 C/C++ Programming Guide

* Screen width for output terminals
* 1000 for input OS/390 text terminals
¢ 254 for all other input terminals

space=
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

type=
type=record specifies that the file is to be opened for sequential record 1/0.
The file must be opened as a binary file.

acc=
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

password=
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

asis
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

byteseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

noseek
This parameter is accepted as an option for terminal I/O, but it is ignored. It
does not generate an error.

0S
This parameter is not valid for terminal I/O. If you specify it, your fopen()
call fails.

When you perform input and output in an interactive mode with the terminal, all
standard streams and all files with * as the first character of their names are
associated with the terminal. Output goes to the screen; input comes from the
keyboard.

An input EOF can be generated by a /* if you open a stream in text mode. If you
open the stream in binary or record mode, you can generate an EOF by entering a

null string.

ASA characters are not interpreted in terminal I/0O.

Opening a Terminal File Under the Shell

Files are opened with a call to fopen() in the format fopen("/dev/tty", "mode").
Buffering

0S/390 C/C++ uses buffers to map byte-level I/O (data stored in records and
blocks) to system-level C I/O.

In terminal I/0O, line buffering is always in effect.

The setvbuf() and setbuf() functions can be used to control buffering before any
read or write operation to the file. If you want to reset the buffering mode, you

Chapter 14. Performing Terminal I/O Operations 201

must call setvbuf() or setbuf() before any other operation occurs on a file,
because you cannot change the buffering mode after an 1/O operation to the file.

Reading from Files

You can use the following library functions to read in information from terminal
files:

e fread()

o fgets()

* gets()

e fgetc()

* getc()

e getchar()

e scanf()

e fscanf()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

You can set up a SIGIOERR handler to catch read or write system errors. See

IChapter 18 Debugging 1/Q Pragrams” an page 227 for more information.

A call to the rewind() function clears unread input data in the terminal buffer so
that on the next read request, the system waits for more user input.

With OS/390 Language Environment, an empty record is considered EOF in binary
mode or record mode. This remains in effect until a rewind() or clearerr() is
issued. When the rewind() is issued, the buffer is cleared and reading can
continue.

Under TSO, the virtual line size of the terminal is used to determine the line
length.

When reading from the terminal and the RECFM has been set to be F (for example,
by an ALLOCATE under TSO) in binary or record mode, the input is padded with
blanks to the record length.

On input, all terminal files opened for output flush their output, no matter what
type of file they are and whether a record is complete or not. This includes fixed
terminal files that would normally withhold output until a record is completed, as
well as text records that normally wait until a new-line or carriage return. In all
cases, the data is placed into one line with a blank added to separate output from
different terminal files. Fixed terminal files do not pad the output with blanks
when flushing this way.

Note: This flush is not the same as a call to fflush(), because fixed terminal files
do not have incomplete records and text terminal files do not output until
the new-line or carriage return. This flush occurs only when actual input is
required from the terminal. When data is still in the buffer, that data is read
without flushing output terminal files.

202 0S/390 V2R8.0 C/C++ Programming Guide

Reading from Binary Files

This discussion includes reading from fixed binary files and from variable or
undefined binary files.

Reading from Fixed Binary Files

e Any input that is smaller than the record length is padded with blanks to the
record length. The default record length is 254.

* The carriage return or new-line is not included as part of the data.

* An input line longer than the record length is returned to the calling program on
subsequent system reads.

For example, suppose a program requests 30 bytes of user input from an input
fixed binary terminal with record length 25. The full 30 bytes of user input
returns to satisfy the request, so that you do not need to enter a second line of
input.

* An empty input line indicates EOF.

Reading from Variable or Undefined Binary Files

These files behave like fixed-length binary files, except that no padding is
performed if the input is smaller than the record length.

Reading from Text Files

This discussion includes reading from fixed text files and from variable or
undefined text files.

Reading from Fixed Text Files
* The carriage return indicates the end of the record.

* A new-line character is added as part of the data to indicate the end of an input
line.

e If the input is larger than the record length, it is truncated to the record length.
The truncation causes SIGIOERR to be raised, if the default action for SIGIOERR is
not SIG_IGN.

* When an input line is smaller than the record length, it is not padded with
blanks.

* The character sequence /* indicates that the end of the file has been reached.
Reading from Variable or Undefined Text Files

These files behave like fixed-length text files.
Reading from Record /O Files

This discussion includes reading from fixed record 1/0O files and from variable or
undefined record 1/0 files.

Reading from Fixed Record 1/O Files

* Records smaller than the record length are padded with blanks up to the record
length. The default record length is 254.

* Input record terminal records have an implicit logical record boundary at the
record length if the input size exceeds the record length.

Chapter 14. Performing Terminal I/O Operations 203

If you enter input data larger than the record length, each subsequent block of
record-length bytes from the user input satisfies successive read requests.

* The carriage return or new-line is not included as part of the data.

* An empty line indicates an EOF.
Reading from Variable or Undefined Record I/O Files

These files behave like fixed-length record files, except that no padding is
performed.

Writing to Files

You can use the following library functions to write to a terminal file:
e fwrite()

o printf()

o fprintf()
e vprintf()
o vfprintf()
* puts()

o fputs()

o fputc()

* putc()

e putchar()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

If no record length is specified for the output terminal file, it defaults to the virtual
line size of the terminal.

On output, records are written one line at a time up to the record length. For all
output terminal files, records are not truncated. If you are printing a long string, it
wraps around to another line.

Writing to Binary Files

This discussion includes writing to fixed binary files and to variable or undefined
binary files.

Writing to Fixed Binary Files
e Output data is sent to the terminal when the last character of a record is written.

* When closing an output terminal, any unwritten data is padded to the record
length with blanks before it is flushed.

Writing to Variable or Undefined Binary Files

These files behave the same as fixed-length binary files, except that no padding
occurs for output that is smaller than the record length.

Writing to Text Files

The following control characters are supported:

\a Alarm. Causes the terminal to generate an audible beep.

204 0S/390 V2R8.0 C/C++ Programming Guide

\b Backspace. Backs up the output position by one byte. If you are at the start
of the record, you cannot back up to previous record, and backspace is
ignored.

\f Form feed. Sends any unwritten data to the terminal and clears the screen
if the environment variable _EDC_CLEAR_SCREEN is set. If the variable is not
set, the \f character is written to the screen.

\n New-line. Sends the preceding unwritten character to the terminal. If no
preceding data exists, it sends a single blank character.

\t Horizontal tab. Pads the output record with blanks up to the next tab stop
(set at eight characters).

\v Vertical tab. Placed in the output as is.

\r Carriage return. Treated as a new-line, sends preceding unwritten data to

the terminal.

Writing to Fixed Text Files

* Lines that are longer than the record length are not truncated. They are split
across multiple lines, each LRECL bytes long. Subsequent writes begin on a new
line.

e Output data is sent to the terminal when one character more than the record
length is written, or when a \r, \n, or \f character is written. In the case of \f,
output is displayed only if the _EDC_CLEAR_SCREEN environment variable is set.

* No padding occurs on output when a record is smaller than the record length.
Writing to Variable or Undefined Text Files

These terminal files behave like fixed-length terminal files.
Writing to Record I/O Files

This discussion includes writing to fixed record I/O files and to variable or
undefined record 1/0O files.

Writing to Fixed Record I/0O Files

* Any output record that is smaller than the record length is padded to the record
length with blanks, and trailing blanks are displayed.

* If a record is longer than the record length, all data is written to the terminal,
wrapping at the record length.

* Output data is sent to the terminal with every record write.
Writing to Variable or Undefined Record I/O Files

These files behave like fixed-length record files except that no padding occurs
when the output record is smaller than the record length.

Flushing Records

The action taken by the fflush() library function depends on the file mode. The
fflush() function only flushes buffers in binary files with Variable or Undefined
record format.

If you call one OS/390 C/C++ program from another OS/390 C/C++ program by
using the ANSI system() function, all open streams are flushed before control is

Chapter 14. Performing Terminal /O Operations 205

passed to the callee, and again before control is returned to the caller. If you are
running with POSIX(ON), a call to the POSIX system() function does not flush any
streams to the system.

Text Streams
* Writing a new record:

Because a new-line character has not been encountered to indicate the
end-of-line, fflush() takes no action. The record is written as a new record
when one of the following takes place:

— A new-line character is written.

— The file is closed.

* Reading a record:
fflush() clears a previous ungetc() character.

Binary Streams

* Writing a new record:

If the file is variable or undefined length in record format, fflush() causes the
current record to be written out, which in turn causes a new record to be created
for subsequent writes. If the file is of fixed record length, no action is taken.

* Reading a record:
fflush() clears a previous ungetc() character.

Record /O

» Writing a new record: fflush() takes no action.
* Reading a record: fflush() takes no action.

Repositioning within Files

In terminal I/O, rewind() is the only positioning library function available. Using
the library functions fseek(), fgetpos(), fsetpos(), and ftel1() generates an
error.

See the O5/390 C/C++ Run-Time Library Reference for more information on these
library functions.

When an input terminal reaches an EOF, the rewind() function:
1. Clears the EOF condition.
2. Enables the terminal to read again.

You can also use rewind() when reading from the terminal to flush out your
record buffer for that stream.

Closing Files

Use the fclose() library function to close a file. OS/390 C/C++ automatically
closes files on normal program termination and attempts to do so under abnormal
program termination or abend. When closing a fixed binary terminal, OS/390
C/C++ pads the last record with blanks if it is incomplete.

See the OS/390 C/C++ Run-Time Library Reference for more information on this
library function.

206 0S/390 V2R8.0 C/C++ Programming Guide

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes

pertaining to this category of 1/O follow the figure.

For more information on the fldata() function, refer to the OS/390 C/C++ Run-Time
Library Reference.

struct _ fileData {

}s

unsigned int _ recfmF 1, /*
__recfmV 1, /*

__recfmU 1, /*

__recfmS 1, /*

_ recfmBlk : 1, /*

__recfmASA : 1, /*

__recfmM 1, /*

__dsorgP0 1, /*

__dsorgPDSmem : 1, /=

_ dsorgPDSdir : 1, /*

__dsorgPS 1, /*

_ dsorgConcat : 1, /*

__dsorgMem : 1, /*

__dsorgHiper : 1, /%

__dsorgTemp: 1, /*

__dsorgVSAM: 1, /*

__dsorgHFS : 1, /*

__openmode : 2, /*

/*

/*

/*

__modeflag : 4, /*

/*

/*

/*

_ dsorgPDSE: 1, /*

__reserve2 : 8; /*

__device_t __device; /*
unsigned long _ blksize, /*
__maxreclen; /*

unsigned short _ vsamtype; /*
unsigned long _ vsamkeylen; /*
unsigned Tong _ vsamRKP; /*
char * __dsname; /*
unsigned int _ reserved; /*

typedef struct _ fileData fldata_t;

Figure 26. fldata() Structure

Notes:

1.

always off
always off
always off
always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
one of:

TEXT

__BINARY

__RECORD

combination of:
READ

" WRITE

" APPEND
N/A -- always off

___TERMINAL

N/A
N/A
N/A
N/A -- always NULL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The filename value is dd:ddname if the file is opened by ddname; otherwise, the

value is *. The ddname is uppercase.

Either _recfmF, _ recfmV, or __recfmU will be set according to the recfm
parameter specified on the fopen() or freopen() function call.

Chapter 14. Performing Terminal I/O Operations

207

208 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 15. Performing Memory File and Hiperspace 1/0O
Operations

This chapter describes how to perform memory file and hiperspace I/O operations.

0S/390 C/C++ supports files known as memory files. Memory files are temporary
work files that are stored in main memory rather than in external storage.

There are two types of memory files:
* Regular memory files, which exist in your virtual storage

* Hiperspace memory files, which use special storage areas called hiperspaces. You
cannot share hiperspace memory files with an AMODE=24 OS/390 C or OS/390
C++ program.

Memory files can be written to, read from, and repositioned within like any other
type of file. Memory files exist for the life of your root program, unless you
explicitly delete them by using the remove() or clrmemf() functions. The root
program is the first main() to be invoked. Any main() program called by a
system() call is known as a child program. When the root program terminates,
0S/390 C/C++ removes memory files automatically. Memory files may give you
better performance than other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a
memory file and the bytes in some other external representation of the file,
such as a disk file. Applications that mix open modes on a file (for example,
writing a file as text file and reading it back as binary) may not port readily
from external I/O to memory file I/0O.

See I’Chapfpr 9 0OS/390 C QUPPm‘f for the Double-Bvte Character Set” on page 73
for information about using wide-character 1/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/O and the 1/O Stream class library instead, refer to
I”(”haph:r o) UQing the 1/0 Stream Class Iibrarv in C++” on page 47 for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and 0S/390 C/C++ IBM Open Class Library Reference for specifics.

Using Hiperspace Operations

On MVS/ESA systems that support hiperspaces, large memory files can be placed
in hiperspaces to reduce memory requirements within your address space.

If your installation is MVS/ESA and supports hiperspaces, and you are not using
CICS, you can use hiperspace memory files (see the appropriate book as listed in
the OS/390 Information Roadmap for more information on hiperspaces). Whereas a
regular memory file stores all the file data in your address space, a hiperspace
memory file uses one buffer in your address space, and keeps the rest of the data
in the hiperspace. Therefore, a hiperspace memory file requires only a certain
amount of storage in your address space, regardless of how large the file is. If you
use setvbuf(), OS/390 C/C++ may or may not accept your buffer for its internal
use. For a hiperspace memory file, if the size of the buffer specified to setvbuf() is

© Copyright IBM Corp. 1996, 1999 209

4K or more, it will affect the number of hiperspace blocks read or written on each

call to the operating system; the size is rounded down to the nearest multiple of
4K.

Opening Files

Use the standard C fopen() or freopen() library functions to open a memory file.
Details about these functions that apply to all OS/390 C/C++ I/O operations are

discussed in IChapter 6_Qpening Files” on page 47.

Using fopen() or freopen()

This section describes considerations for using fopen() and freopen() with
memory files. Memory files are always treated as binary streams of bytes,
regardless of the parameters you specify on the function call that opens them.

File-Naming Considerations

When you open a file using fopen() or freopen(), you must specify the filename
(a data set name) or the ddname.

Using a Data Set Name: Files are opened with a call to fopen() or freopen() in
the format fopen("filename", "mode"). The following diagram shows the syntax
for the filename argument on your fopen() or freopen() call:

’,
> |_//_| |_|_| qualifier L(_[gember) I | >«

The following is a sample construct:
'qualifierl.qualifier2(member)"’

/I Ignored for memory files.

qualifier
Each qualifier is a 1- to 8-character name. There is no restriction on the length
of each qualifier. All characters are considered valid.

(member)
If you specify a member, the data set you are opening is considered to be a
s1mu1ated PDS or a PDSE. For more information about PDSes and PDSEs, see
” . For members, the member
name (including trailing blanks) can be up to 8 characters long. A member
name cannot begin with leading blanks.

When you enclose a name in single quotation marks, the name is fully qualified. The
file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, OS/390 C/C++ does one of the following:

* If your system does not use RACF, OS/390 C/C++ does not add a high-level
qualifier to the name you specified.

* If you are running under TSO (batch or interactive), OS/390 C/C++ appends the
TSO user prefix to the front of the name. For example, the statement

210 0S/390 V2R8.0 C/C++ Programming Guide

fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix.
You can set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

 If you are running under MVS batch or IMS (batch or online), OS/390 C/C++
appends the RACF user ID to the front of the name.

Using a DDname: You can specify names that begin with dd:, but OS/390
C/C++ treats the dd: as part of the file name.

0S/390 UNIX Considerations: Using the fork() library function from an OS/390
UNIX application program causes the memory file to be copied into the child
process. The memory file data in the child is identical to that of the parent at the
time of the fork(). The memory file can be used in either the child or the parent,
but the data is not visible in the other process.

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for memory file I/O, and lists
the values that are valid for the applicable ones.

Table 29. Keywords for the fopen() and freopen() Functions for Memory File 1/O

Keyword Allowed? Applicable? | Notes

recfm= Yes No This parameter is ignored for memory file
and hiperspace 1/0. If you specify a RECFM,
it must have correct syntax. Otherwise the
fopen() call fails.

Trecl= Yes No This parameter is ignored for memory file
and hiperspace 1/0. If you specify an
LRECL, it must have correct syntax.
Otherwise fopen() call fails.

blksize= Yes No This parameter is ignored for memory file
and hiperspace 1/0. If you specify a
BLKSIZE, it must have correct syntax.
Otherwise fopen() call fails.

acc= Yes No This parameter is ignored for memory file
and hiperspace 1/0. If you specify an
ACC, it must have correct syntax.
Otherwise fopen() fails.

password= No No Ignored for memory files.

space= Yes No This parameter is ignored for memory file
and hiperspace 1/0. If you specify a
SPACE, it must have correct syntax.
Otherwise, fopen() call fails.

type= Yes Yes Valid values are memory and
memory (hiperspace). See the parameter list
below.
asis Yes Yes Enables the use of mixed-case file names.
byteseek Yes No Ignored for memory files, as they use

byteseeking by default.

noseek Yes No This parameter is ignored for memory file
and hiperspace 1/0.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 211

Table 29. Keywords for the fopen() and freopen() Functions for Memory File I/O (continued)
Keyword Allowed? Applicable? |Notes

0S No No This parameter is not valid for memory file
and hiperspace 1/0. If you specify OS,
your fopen() call fails.

recfm=
0S/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

Trecl= and blksize=
0S/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

acc=
0S/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

password=
This parameter is not valid for memory file and hiperspace 1/O. If you specify
PASSWORD, your fopen() call fails.

space=
0S/390 C/C++ parses your specification for these values. If they do not have
the correct syntax, your function call fails. If they do, OS/390 C/C++ ignores
their values and continues.

type=
To create a memory file, you must specify type=memory. You cannot specify
type=record; if you do, fopen() or freopen() fails.

To create a hiperspace memory file, you must specify
type=memory (hiperspace).

asis
If you use this parameter, you can specify mixed-case filenames such as JaMe$
dAtA or pErCy.FILE. If you are running with POSIX(ON), asis is the default.

byteseek
This parameter is ignored for memory file and hiperspace 1/0.

noseek
This parameter is ignored for memory file and hiperspace 1/0.

0S
This parameter is not allowed for memory file and hiperspace 1/0. If you
specify OS, your fopen() call fails.

Once a memory file has been created, it can be accessed by the module that
created it as well as by any function or module that is subsequently invoked
(including modules that are called using the system() library function), and by any
modules in the current chain of system() calls, if you are running with POSIX(OFF).
If you are running with POSIX(ON), the system() function is the POSIX one, not the
ANGSI one, and it does not propagate memory files to a child program. Once the
file has been created, you can open it with the same name, without specifying the
type=memory parameter. You cannot specify type=record for a memory file.

212 0S/390 V2R8.0 C/C++ Programming Guide

This is how OS/390 C/C++ searches for memory files:

1. fopen("my.file","w....,type=memory"); OS/390 C/C++ checks the open files
to see whether a file with that name is already open. If not, it creates a memory
file.

2. fopen("my.file","w...... "); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, it then checks to see
whether a memory file exists with that name. If so, it opens the memory file; if
not, it creates a disk file.

3. fopen("my.file","a..... ,type=memory"); OS/390 C/C++ checks the open files
to see whether a file with that name is already open. If not, it searches the
existing memory files to see whether a memory file exists with that name. If so,
0S/390 C/C++ opens it; if not, it creates a new memory file.

4. fopen("my.file","a...."); OS/390 C/C++ checks the open files to see
whether a file with that name is already open. If not, OS/390 C/C++ searches
existing files (both disk and memory) according to file mode, and opens the
first file that has that name. If there is no such file, OS/390 C/C++ creates a
disk file.

5. fopen("my.file","r....,type=memory"); OS/390 C/C++ searches the memory
files to see whether a file with that name exists. If one does, OS/390 C/C++
opens it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); OS/390 C/C++ searches first through memory
files. If it does not find the specified one, it then tries to open a disk file.

If you specify a memory file name that has an asterisk (*) as the first character, a
name is created for that file. (You can acquire this name by using fldata().) For
example, you can specify fopen("*","type=memory");. Opening a memory file this
way is faster than using the tmpnam() function.

You cannot have any blanks or periods in the member name of a memory file.
Otherwise, all valid data set names are accepted for memory files. Note that if
invalid disk file names are used for memory files, difficulties could occur when
you try to port memory file applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open
mode. There is no blank padding, and control characters such as the new line are
written directly into the file (even if the fopen() specifies text mode).

Opening Hiperspace Files

To create a memory file in hiperspace, specify type=memory (hiperspace) on the
fopen() call that creates the file. If hiperspace is not available, you get a regular
memory file. Under systems that do not support hiperspaces, as well as when you
are running with POSIX(ON) and TRAP(OFF), a specification of

type=memory (hiperspace) is treated as type=memory. Use of TRAP(OFF) is not
recommended.

You must decide whether a file is to be a hiperspace memory file before you create
it. You cannot change a memory file to a hiperspace memory file by specifying
type=memory (hiperspace) on a subsequent call to fopen() or freopen(). If the
hiperspace to store the file cannot be created, the fopen() or freopen() call fails.

Once you have created a hiperspace memory file, you do not have to specify
type=memory (hiperspace) on subsequent function calls that open the file.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 213

If you open a hiperspace memory file for read at the same time that it is opened
for write, you can attempt to read extensions made by the writer, even after the
EOF flag has been set on by a previous read. If such a read succeeds, the EOF flag is
set off until the new EOF is reached. If you have opened a file once for write and
one or more times for read, a reader can now read past the original EQF.

Simulating Partitioned Data Sets

You can create memory files that are conceptually grouped as a partitioned data
set (PDS). Grouping the files in this way offers the following advantages:

* You can remove all the members of a PDS by stating the data set name.

* You can rename the qualifiers of a PDS without renaming each member
individually.

Once you have established that a memory file has members, you can rename and
remove all the members by specifying the file name and no members, just as with
a PDS or PDSE. None of the members can be open for you to perform this action.
Once a memory file is created with or without a member, another memory file
with the same name (with or without a member) cannot be created as well. For
example, if you open memory file a.b and write to it, OS/390 C/C++ does not
allow a memory file named a.b(c) until you close and remove a.b. Also, if you
create a memory file named a.b(mbrl), you cannot open a file named a.b until
you close and remove a.b(mbrl).

The following example demonstrates the removal of all the members of the data
set a.b. After the call to remove(), neither a.b(mbrl) nor a.b(mbr2) exists.

CBC3GMF1

/* this example shows how to remove members of a PDS */
#include <stdio.h>

int main(void)
{
FILE = fpl, * fp2;
fpl=fopen("a.b(mbrl)","w,type=memory");
fp2=fopen("a.b(mbr2)","w, type=memory");
fwrite("hello, world\n", 1, 13, fpl);
fwrite("hello, world\n", 1, 13, fp2);
fclose(fpl);
fclose(fp2);
remove("a.b");
fpl=fopen("a.b(mbrl)","r,type=memory");
if (fpl == NULL) {
perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "
"the file has been removed\n");
1
else {
printf("fopen() should have failed\n");
}

return(0);

Figure 27. Removing Members of a PDS

The following example demonstrates the renaming of a PDS from a.b to c.d.

214 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GMF2

/* this example shows how to rename a PDS */
#include <stdio.h>

int main(void)
{
FILE = fpl, * fp2;

fpl=fopen("a.b(mbr1)","w,type=memory");
fp2=fopen("a.b(mbr2)","w, type=memory");
fclose(fpl);

fclose(fp2);

rename("a.b","c.d");

/* after renaming, you cannot access members of PDS a.b =/

fpl=fopen("a.b(mbrl)","r,type=memory");
if (fpl == NULL) {
perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "
"the file has been renamed\n");

}

else {
printf("fopen() should have failed\n");
}

fp2=fopen("c.d(mbr2)","r,type=memory");
if (fp2 != NULL) {
printf("fopen(\"c.c(mbr1)\"...) worked as expected: "
"the file has been renamed\n");

1
else {

perror("fopen():");

printf("fopen() should have worked\n");
1

return(0);

Figure 28. Renaming Members of a PDS

Note: If you are using simulated PDSs, you can change either the name of the
PDS, or the member name. You cannot rename a.b(mbrl) to either c.d(mbr2)
or c.d, but you can rename a.b(mbrl) to a.b(mbr2), and a.b to c.d.

Memory files that are open as a sequential data set cannot be opened again with a
member name specified. Also, if a data set is already open with a member name,
the sequential data set version with only the data set name cannot be opened.
These operations result in fopen() returning NULL. For example, fopen() returns
NULL in the second line of the following;:

fp = fopen("a.b","w,type=memory");

fpl = fopen("a.b(ml)","w,type=memory");

You cannot use the rename() or remove() functions on open files.

Buffering

Regular memory files are not buffered. Any parameters passed to setvbuf() are
ignored. Each character that you write is written directly to the memory file.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 215

Hiperspace memory files are fully buffered. The default size of the I/O buffer in
your own address space is 16KB. You can override this buffer size by using the
setvbuf() function (see the OS/390 C/C++ Run-Time Library Reference for more
information).

If you call setvbuf() for a hiperspace memory file:

If the size value is greater than or equal to 4K, it will be rounded down to the
nearest multiple of 4K and this buffer size will be used. Otherwise, the size
value is ignored.

If a pointer to a buffer is passed, the buffer size is greater than or equal to 4K,
and the buffer is aligned on a 4K boundary, the buffer may be used. Otherwise,
0S/390 C/C++ will allocate a buffer.

Reading from Files

You can use the following library functions to read information from memory files:

e fread()

o fgets()

* gets()

o fgetc()

e getc()

» getchar()
e scanf()

e fscanf()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The gets(), getchar(), and scanf() functions read from stdin, which can be
redirected to a memory or hiperspace memory file.

You can open an existing file for read one or more times, even if it is already open
for write. You cannot open a file for write if it is already open (for either read or
write). If you want to update or truncate a file or append to a file that is already
open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an
intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. OS5/390 C/C++
treats the following as read operations:

* Calls to read functions that request 0 bytes
* Read requests that fail because of a system error

* Calls to the ungetc() function

You can set up a SIGIOERR handler to catch read or write system errors that happen

when you are using hiperspace memory files. See 'Chapter 18 Debugging I/Q)

” for more information.

216 0S/390 V2R8.0 C/C++ Programming Guide

Writing to Files

You can use the following library functions to write to a file:
e fwrite()

* printf()

o fprintf()
o vprintf()
o vfprintf()
* puts()

+ fputs()

+ fputc()

* putc()

* putchar()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which
can be redirected to a memory or hiperspace memory file.

In hiperspace memory files, each library function causes your data to be moved
into the buffer in your address space. The buffer is written to hiperspace each time
it is filled, or each time you call the fflush() library function.

05/390 C/C++ counts a call to a write function writing 0 bytes or or a write
request that fails because of a system error as a write operation. For regular
memory files, the only possible system error that can occur is an error in acquiring
storage.

Flushing Records

fflush() does not move data from an internal buffer to a memory file, because the
data is written to the memory file as it is generated. However, fflush() does make
the data visible to readers who have a regular or hiperspace memory file open for
reading while a user has it open for writing.

Hiperspace memory files are fully buffered. The fflush() function writes data
from the internal buffer to the hiperspace.

Any repositioning operation writes data to the hiperspace.

The fclose() function also invokes fflush() when it detects an incomplete buffer
for a file that is open for writing or appending.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for memory files. ungetc()
handles only single-byte characters. You can use it to push back as many as four
characters onto the ungetc() buffer. For every character pushed back with ungetc(),
fflush() backs up the file position by one character and clears all the pushed-back
characters from the stream. Backing up the file position may end up going across a
record boundary.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 217

If you want fflush() to ignore ungetc() characters, you can set the EDC_COMPAT
environment variable. See P’Chapfpr 33 Using Environment Variables” on page 457
for more information.

Repositioning within Files

You can use the following library functions to help you position within a memory
or hiperspace memory file:

» fgetpos()

» fsetpos()

+ fseek()

o ftell()

e rewind()

See the OS/390 C/C++ Run-Time Library Reference for more information on these
library functions.

Using fseek() to seek past the end of a memory file extends the file using null
characters. This may cause OS/390 C/C++ to attempt to allocate more storage than
is available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets
from SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftell() are relative byte offsets from the beginning of the
file. fseek() supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and and ftel1() handle ungetc()
characters unless you have set the _EDC_COMPAT env1ronment Varlable in which
case fgetpos() and fseek() do not. See L

- for more information about _EDC_COMPAT. If in handling
these characters, if the current position goes beyond the start of the file, fgetpos ()
returns the EOF value, and ftel1() returns -1.

fgetpos() values generated by code from previous releases of the OS/390 C/C++
compiler are not supported by fsetpos().

Closing Files

Use the fclose() library function to close a regular or hiperspace memory file. See
the OS/390 C/C++ Run-Time Library Reference for more information on this library
function. OS/390 C/C++ automatically closes memory files at the termination of
the C root main environment.

Performance Tips

You should use hiperspace memory files instead of regular memory files when
they will be large (IMB or greater).

Regular memory files perform more efficiently if large amounts of data (10K or
more) are written in one request (that is, if you pass 10K or more of data to the

218 0S/390 V2R8.0 C/C++ Programming Guide

fwrite() function). You should use fopen("+", "type=memory") both to generate a
name for a memory file and to open the file instead of calling fopen() with a name
returned by tmpnam(). You can acquire the file’s generated name by using fldata().

Removing Memory Files

The memory file remains accessible until the file is removed by the remove() or
clrmemf () library functions or until the root program has terminated. You cannot
remove an open memory file, except when you use clrmemf(). See the OS/390
C/C++ Run-Time Library Reference for more information on these library functions.

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *=file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of I/O
are shown in the comment beside the structure element. Additional notes
pertaining to this category of I/O follow the figure. For more information on the
fldata() function, refer to the OS/390 C/C++ Run-Time Library Reference.

Chapter 15. Performing Memory File and Hiperspace I/O Operations 219

struct _ fileData {

unsigned int _ recfmF 1, /* always on */
__recfmV 1, /* always off */

__recfmU 1, /* always off */

_recfmS 1, /* always off */

__recfmBlk : 1, /* always off */

__recfmASA : 1, /* always off */

__recfmM 1, /* always off */

__dsorgP0 1, /= N/A -- always off */

__dsorgPDSmem : 1, /* N/A -- always off */

__dsorgPDSdir : 1, /* N/A -- always off */

__dsorgPS 1, /* N/A -- always off */

__dsorgConcat : 1, /* N/A -- always off */

__dsorgMem : 1, /= */

__dsorgHiper : 1, /% */

__dsorgTemp: 1, /* N/A -- always off */

__dsorgVSAM: 1, /* N/A -- always off */

__dsorgHFS : 1, /* N/A -- always off */

__openmode : 2, /+ __BINARY */

__modeflag : 4, /* combination of: */

/* _READ */

/* _WRITE */

/* __APPEND */

/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */

__reserve2 : 8; /* */

__device_t __device; /* one of: */
/* __MEMORY */

/* __HIPERSPACE */

unsigned long _ blksize, /* */
__maxreclen; /* */

unsigned short _ vsamtype; /* N/A */
unsigned Tong _ vsamkeylen; /* N/A */
unsigned long __ vsamRKP; /* N/A */
char = __dsname; /* */
unsigned int _ reserved; /* */

bs
typedef struct _ fileData fldata_t;

Figure 29. fldata() Structure

Notes:

1. The filename is the fully qualified version of the filename specified on the
fopen() or freopen() function call. There are no quotation marks. However, if
the filename specified on the fopen() or freopen() function call begins with an
*, a unique filename is generated in the format ((n)), where n is an integer.

2. The __dsorgMem bit will be set on only for regular memory files.
3. The __dsorgHiper bit will be set on only for hiperspace memory files.
4. The __dsname is identical to the filename value.

Example Program

The following example shows the use of a memory file. The program PROGA creates
a memory file, calls program PROGB, and redirects the output of the called program
to the memory file. When control returns to the first program, the program reads
and prints the string in the memory file.

For more information on the system() library function, see the OS/390 C/C++
Run-Time Library Reference.

220 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GMF3

/* this example demonstrates the use of a memory file */
/* part 1 of 2-other file is CBC3GMF4 =/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void)

{
FILE *fp;
char buffer[20];
char *rc;

/* Open the memory file to create it */
if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)
{

/* Close the memory file so that it can be used as stdout */
fclose(fp);

/* Call CBC3GMF4 and redirect its output to memory file */
/* CBC3GMF4 must be an executable MODULE */
system("CBC3GMF4 >PROG.DAT");

/* Now print the string contained in the file */

fp = fopen("PROG.DAT","rb");
rc = fgets(buffer,sizeof (buffer),fp);
if (rc == NULL)
{
perror(" Error reading from file ");
exit(99);
1
printf("%s", buffer);
}

return(0);

Figure 30. Memory File Example

Chapter 15. Performing Memory File and Hiperspace I/O Operations 221

CBC3GMF4

/* this example demonstrates the use of a memory file */
/* part 2 of 2-other file is CBC3GMF3 =/

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char iteml[] = "Hello World\n";
int rc;

/* Write the data to the stdout which, at this point, has been
redirected to the memory file */
rc = fputs(iteml,stdout);
if (rc == 0) {
perror("Error putting to file ");
exit(99);

return(0);

Figure 31. Memory File Example

222 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 16. Performing CICS 1/0O Operations

0S/390 C/C++ under CICS supports only three kinds of 1/0O:

CICS I/O
0S/390 C/C++ applications can access the CICS I/O commands through the
CICS command level interface. The CICS/ESA 4.1 Application Programmer’s
Guide/Reference discusses this interface in detail.

Files
Memory files are the only type of file that OS/390 C/C++ supports under
CICS. Hiperspace files are not supported.

VSAM files can be accessed through the CICS command level interface.

CICS data queues
Under CICS, OS/390 C/C++ implements the standard output (stdout) and
standard error (stderr) streams as CICS transient data queues. These data
queues must be defined in the CICS Destination Control table (DCT) by the
CICS system administrator before the CICS cold start. Output from all users’
transactions that use stdout (or stderr) is written to the queue in the order of
occurrence. To help differentiate the output, place a user’s terminal name, the
CICS transaction identifier, and the time at the beginning of each line printed
to the queue.

The queues are as follows:

Stream Queue

stdout CESO

stderr CESE

stdin Not supported

To access any other queues, you must use the command level interface.

Note: If you are using the I/O Streams class library, cout maps to stdout, which
maps to CESO. cerr and clog both map to stderr, which maps to CESE. cin is
not supported under CICS. For more information about C++ I/O and the
/O Stream class library, refer to !Chapter 5. Using the 1/Q Stream Clasd
LLibrary in C++” on page 49 for general information and the 0S/390 C/C++
IBM Open Class Library User’s Guide and the OS/390 C/C++ IBM Open Class
Library Reference for specifics.

For complete information about using OS/390 C/C++ and OS/390 C/C++ 1/0
under CICS, see El]si ” .

For information on using wide characters in the CICS environment, see m

”

© Copyright IBM Corp. 1996, 1999 223

224 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 17. Language Environment Message File Operations

This chapter describes input and output with the OS/390 Language Environment
message file. This file is write-only; it is nonreadable and nonseekable.

The default open mode for the OS/390 Language Environment Message File is
text. Binary and record 1/O modes are not supported.

See I’thpfpr 9_(QS/390 C anpnr{- for the Double-Byvte Character Set” on page 73
for information about using wide-character 1/O with OS/390 C/C++.

Note: This chapter describes C I/O as it can be used within C++ programs. If you
want to use C++ I/0 and the IO Stream class library instead, refer to
d i i i ” for
general information and the OS/390 C/C++ IBM Open Class Library User’s
Guide and the OS/390 C/C++ IBM Open Class Library Reference for specifics.

The standard stream stderr defaults to using the OS/390 Language Environment
message file. stderr will be directed to file descriptor 2, which is typically your
terminal if you are running under the OS/390 shell. There are some exceptions,
however:

* If the application has allocated the ddname in the MSGFILE (ddname) run-time
parameter, your output will go there. The default is MSGFILE (SYSOUT).

* If the application has issued one of the POSIX exec() functions, or it is running
in an address space created by the POSIX fork() function and the application
has not dynamically allocated a ddname for MSGFILE, then the default is to use
file descriptor 2, if one exists. If it doesn’t, then the default is to create a message
file in the user’s current working directory. The message file will have the name
that is specified on the message file run-time option, the default being SYSOUT.

Opening Files

The default is for stderr to go to the message file automatically. The message file
is available only as stderr; you cannot use the fopen() or freopen() library
function to open it.

» freopen() with the null string ("") as filename string will fail.

* Record format (RECFM) is always treated as undefined (U). Logical record length

(LRECL) is always treated as 255 (the maximum length defined by OS/390
Language Environment Message File system write interface).

Reading from Files

The OS/390 Language Environment Message file is non-readable.

Writing to Files
* Data written to the OS/390 Language Environment Message File is always
appended to the end of the file.

* When the data written is longer than 255 bytes, it is written to the OS/390
Language Environment Message File 255 bytes at a time, with the last write
possibly less than 255 bytes. No truncation will occur.

© Copyright IBM Corp. 1996, 1999 225

* When the output data is shorter than the actual LRECL of the OS/390 Language
Environment Message File, it is padded with blank characters by the OS/390
Language Environment system write interface.

* When the output data is longer than the actual LRECL of the OS/390 Language
Environment Message File, it is split into multiple records by the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface splits the output data at the last blank
before the LRECL-th byte, and begins writing the next record with the first
non-blank character. Note that if there are no blanks in the first LRECL bytes
(DBCS for instance), the OS/390 Language Environment system write interface
splits the output data at the LRECL-th byte. It also closes off any DBCS string on
the first record with a X'OF' character, and begins the DBCS string on the next
record with a X'0E' character.

* The hex characters X'0E' and X'0OF' have special meaning to the OS/390
Language Environment system write interface. The OS/390 Language
Environment system write interface removes adjacent pairs of these characters
(normalization).

* You can set up a SIGIOERR handler to catch system write errors. See m

Debu.g.gm.g_LLO_Bm.gLam.s_on_pa.ge_ZZﬂ for more information.

Flushing Buffers

The fflush() function has no effect on the OS/390 Language Environment
Message File.

Repositioning within Files

The ftell1(), fgetpos(), fseek(), and fsetpos() functions are not allowed, because
0S/390 Language Environment Message File is a non-seekable file. The rewind()
function only resets error flags.

You cannot call fseek() on stderr when it is mapped to MSGFILE (the default
routing of stderr).

Closing Files

Do not use the fclose() library function to close the OS/390 Language
Environment message file. OS/390 C/C++ automatically closes files on normal
program termination and attempts to do so under abnormal program termination
or abend.

226 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 18. Debugging I/O Programs

This chapter will help you locate and diagnose problems in programs that use
input and output. It discusses several diagnostic methods specific to I/O.
Diagnostic methods for I/O errors include:

* Using return codes from I/O functions

» Using errno values and the associated perror() message

* Using the __amrc structure

* Using the __amrc2 structure

The information provided with the return code of I/O functions and with the
perror() message associated with errno values may help you locate the source of
errors and the reason for program failure. Because return codes and errno values
do not exist for every possible system 1/O failure, return codes and errno values
are not useful for diagnosing all I/O errors. This chapter discusses the use of the
__amrc structure and the __amrc2 structure.

Using the __amrc Structure

__amrc is a structure defined in stdio.h (when the compile-time option

LANGLVL (EXTENDED) is in effect) to help you determine errors resulting from an I/O
operation. This structure is changed during system I/O and some C specific error
situations.

Note: __amrc is not used to record I/O errors in HFS files.

When looking at __amrc, be sure to copy the structure into a temporary structure
of __amrctype since any I/O function calls will change the value of __amrc.

Eigure 32 an page 228 shows the __amrc structure as it appears in stdio.h.

© Copyright IBM Corp. 1996, 1999 227

typedef struct _ amrctype {

union { 1]
Tong int __error; 2]
struct {
unsigned short _ syscode,
rc;
} __abend;
struct {
unsigned char _ fdbk_fill,
_rc,
__ftncd,
fdbk;
} _ feedback; A
struct {

unsigned short _ svc99_info,
svc99_error;

} __allocs
} __code;
unsigned long _ RBA; 6|
unsigned int __last_op;
struct {
unsigned long _ Ten_fill;
unsigned long _ Ten;
char __str[120];

unsigned long _ parmr0;
unsigned long _ parmrl;
unsigned long _ fil112[2];
char __str2[64];
} __msg;

} __amrc_type;

Figure 32. __amrc Structure

__code
The error or warning value from an I/O operation is in either __error,
__abend, __feedback, or __alloc. You must look at __last_op to determine
how to interpret the __code union.

H _error

__error contains the return code from the system macro or utility. Refer to

[Iable 30 on page 231 for further information.

E __abend
This struct contains the abend code when errno is set to indicate a
recoverable I/O abend. __syscode is the system abend code and __rc is the
return code. For more information on the abend codes, see the System
Codes manual as listed in the OS/390 Information Roadmap. The macros
__abendcode() and __rsncode() may be set to the abend code and reason
code of a TSO CLIST or command when invoked with system().

[_ feedback
This struct is used for VSAM only. The __rc stores the VSAM register 15,
_ fdbk stores the VSAM error code or reason code, and __ RBA stores the
RBA after some operations.

B _alloc

This struct contains errors during fopen() or freopen() calls when

228 0S/390 V2R8.0 C/C++ Programming Guide

defining files to the system using SVC 99. See the Systems Macros manual,
as listed in the OS/390 Information Roadmap, for more information on these
fields as set by SVC 99.

6 LT

This is the RBA value returned by VSAM after an ESDS or KSDS record is
written out. For a RRDS, it is the calculated value from the record number.
It may be used in subsequent calls to flocate().

__last_op
This field contains a value that indicates the last I/O operation being
performed by OS/390 C/C++ at the time the error occurred. These values
are shown in

B _nsg
This may contain the system error messages from read or write operations
emitted from the BSAM SYNADAF macro instruction. This field will not
always be filled. If you print this field using the %s format, you should
print the string starting at the sixth position because of possible null
characters found in the first 6 characters. Special messages for PDSEs are
contained in the positions 136 through 184. See the Data Administration
manual as listed in OS5/390 Information Roadmap for more information.

This field is used by the SIGIOERR handler.

M demonstrates how to print the __amrc structure after an error has
occurred to get information that may help you to diagnose an I/O error.

CBC3GDI1

/* this example demonstrates how to print the __amrc structure =/
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
FILE *fp;
__amrc_type save_amrc;
char buffer[80];
int i = 0;
/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, 1rec1=80");
if (fp == NULL) exit(99);
memset (buffer, 'A', 80);

Figure 33. Example of Printing the __amrc Structure (Part 1 of 2)

Chapter 18. Debugging I/0 Programs 229

/* write to MVS file until it runs out of extents =*/

while (fwrite(buffer, 1, 80, fp) == 80)
++1

save_amrc = *__amrc; /* need copy of __amrc structure */
printf("number of successful fwrites of 80 bytes = %d\n", i);

printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",
errno,
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code. abend._ rc);

return 0;

Figure 33. Example of Printing the __amrc Structure (Part 2 of 2)

The program writes to a file until it is full. When the file is full, the program fails.
Following the I/O failure the program makes a copy of the __amrc structure, and
prints the number of successful writes to the file, the errno, the _ last_op code, the
abend system code and the return code.

Using the __amrc2 Structure

The __amrc2 structure is an extension of __amrc. Only 2 fields are defined for
__amrc2. Like the __amrc structure, __amrc2 is changed during system I/O and
some C specific error situations.

Note: See ILsing the SIGIOERR Signal” on page 234 for information on restrictions

that exist when comparing file pointers if you are using the __amrc2
structure.

m shows the __amrc2 structure as it appears in stdio.h.

struct {
Tong int __errorz; */
FILE *_fileptr; */
Tong int __reserved[6];
}
Figure 34. __amrc2 Structure
This field is a secondary error code that is used to store the reason code

from specific macros. The __last_op codes that can be returned to __amrc2
are _ BSAM_STOW, _ BSAM BLDL, _ I0 LOCATE, _ IO RENAME, _ IO CATALOG
and _ I0_UNCATALOG. For information on the macros associated with these

codes see [[able 30 on page 231|

For further information about the macros see the DFSMS/MVS DFSMSdfp
Diagnosis Reference.

2] This field, _ fileptr, of the __amrc2 structure is used by the signal
SIGIOERR to pass back a FILE pointer that can then be passed to fldata() to
get the name of the file causing the error. The __amrc2__ fileptr will be
NULL if a SIGIOERR is raised before the file has been successfully opened.

230 0S/390 V2R8.0 C/C++ Programming Guide

Using _ last op Codes

The __Tast_op field is the most important of the __amrc fields. It defines the last
I/0 operation OS/390 C/C++ was performing at the time of the I/O error. You
should note that the structure is neither cleared nor set by non-I/O operations so
querying this field outside of a SIGIOERR handler should only be done immediately
after I/O operations. lists __last_op codes you may receive and where to
look for further information.

Table 30. __last_op Codes and Diagnosis Information

Code Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at
initialization.

_ BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg
(errno == 66) filled in).

_ BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

_ BSAM_POINT This will not appear as an error Tastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg

(errno == 65) filled in).

_ BSAM_CLOSE_T

Sets __error with return code from OS CLOSE TYPE=T.

_ BSAM_BLDL Sets __error with return code from OS BLDL macro.
__BSAM_STOW Sets __error with return code from OS STOW macro.
__TGET_READ Sets __error with return code from TSO TGET macro.
__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__ IO _DEVTYPE Sets __error with return code from I/O DEVTYPE macro.
__I0_RDJFCB Sets __error with return code from I/O RDJFCB macro.
__I0_TRKCALC Sets __error with return code from I/O TRKCALC macro.
__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.
__T10_LOCATE Sets __error with return code from I/O CAMLST LOCATE.
__I0_CATALOG Sets __error with return code from I/O CAMLST CAT. The

associated macro is CATALOG.

__10_UNCATALOG

Sets __error with return code from I/O CAMLST UNCAT.
The associated macro is CATALOG.

__10_RENAME

Sets __error with return code from I/O CAMLST
RENAME.

_SVC99_ALLOC

Sets __alloc structure with info and error codes from SVC 99
allocation.

_SVC99_ALLOC_NEW

Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

_SVC99_UNALLOC

Sets __unalloc structure with info and error codes from SVC
99 unallocation.

Chapter 18. Debugging I/0 Programs 231

Table 30. __last_op Codes and Diagnosis Information (continued)

Code

Further Information

__C_TRUNCATE

Set when OS/390 C/C++ truncates output data. Usually
this is data written to a text file with no newline such that
the record fills up to capacity and subsequent characters
cannot be written. For a record 1/0 file this refers to an
fwrite() writing more data than the record can hold.
Truncation is always of rightmost data. There is no return
code.

__C_FCBCHECK

Set when OS/390 C/C++ FCB is corrupted. This is due to a
pointer corruption somewhere. File cannot be used after
this.

__C_DBCS_TRUNCATE

This occurs when writing DBCS data to a text file and there
is no room left in a physical record for anymore double
byte characters. A new-line is not acceptable at this point.
Truncation will continue to occur until an SI is written or
the file position is moved. Cannot happen if MB_CUR_MAX is
1.

__C_DBCS_SO_TRUNCATE

This occurs when there is not enough room in a record to
start any DBCS string or else when a redundant SO is
written to the file before an SI. Cannot happen if
MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE

This occurs only when there was not enough room to start
a DBCS string and data was written anyway, with an SI to
end it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN

This occurs when an SI is written before the last double
byte character is completed, thereby forcing OS/390 C/C++
to fill in the last byte of the DBCS string with a padding
byte X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND

This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a partitioned dataset being opened for update.

__VSAM_OPEN_FAIL

Set when a low level VSAM OPEN fails, sets __rc and
__fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_MODCB

Set when a low level VSAM MODCB macro fails, sets __rc
and __fdbk fields in the __amrc struct.

__VSAM_TESTCB

Set when a low level VSAM TESTCB macro fails, sets __rc
and __ fdbk fields in the __amrc struct.

__VSAM_SHOWCB

Set when a low level VSAM SHOWCB macro fails, sets
_ rc and __fdbk fields in the __amrc struct.

__VSAM_GENCB

Set when a low level VSAM GENCB macro fails, sets __rc
and __ fdbk fields in the __amrc struct.

232 0S/390 V2R8.0 C/C++ Programming Guide

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_GET Set when the last op was a low level VSAM GET; if the
GET fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the
PUT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE,; if the

ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ

Set when the last op was a low level VSAM ENDREQ; if
the ENDREQ fails, sets __rc and __fdbk in the __amrc
struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the
CLOSE fails, sets __rc and __fdbk in the __amrc struct.
__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,
otherwise if read error (errno == 66), look at __msg.
__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,
otherwise if write error (errno == 65), look at __msg.
__QSAM_TRUNC This is an intermediate operation. You will only see this if

an I/0 abend occurred.

__QSAM_FREEPOOL

This is an intermediate operation. You will only see this if
an I/O abend occurred.

__QSAM_CLOSE

Sets __error to result of OS CLOSE macro.

__QSAM_OPEN

Sets __error to result of OS OPEN macro.

__HSP_CREATE

Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails,
stores abend code in __amrc.__code.__abend.__syscode,
reason code in __amrc.__code.__abend.__rc.

__HSP_DELETE

Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during
termination. If DELETE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_READ

Indicates last op was a HSPSERV READ from a hiperspace.
If READ fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend._ rc.

__HSP_WRITE

Indicates last op was a HSPSERV WRITE to a hiperspace. If
WRITE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_EXTEND

Indicates last op was a HSPSERV EXTEND during a write
to a hiperspace. If EXTEND fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__CICS_WRITEQ_TD

Sets __error with error code from EXEC CICS WRITEQ
TD.

Chapter 18. Debugging I/0 Programs 233

Table 30. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__LFS_OPEN Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in 0S/390 UNIX System Services
Programming: Assembler Callable Services Reference.

_ LFS_CLOSE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_READ Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

__LFS_WRITE Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

_ LFS_LSEEK Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

_ LFS_FSTAT Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in OS/390 UNIX System Services
Programming: Assembler Callable Services Reference.

Using the SIGIOERR Signal

SIGIOERR is a signal used by the library to pass control to an error handler when
an I/O error occurs. The default action for this signal is SIG_IGN. Setting up a
SIGIOERR handler is like setting up any other error handler. The example in

adds a SIGIOERR handler to the example shown in Eigure 33 on page 229,
Note the way fldata() and the __amrc2 field _ fileptr are used to get the name of
the file that caused the error.

CBC3GDI2

#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

#ifdef _ cplusplus
extern "C" {
#endif

Figure 35. Example of Using SIGIOERR (Part 1 of 2)

234 0S/390 V2R8.0 C/C++ Programming Guide

void iohdlr(int);
#ifdef __cplusplus
#endif

int main(void) {
FILE *fp;
char buffer[80];
int i = 0;

signal (SIGIOERR, iohdlr);
/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, 1rec1=80");
if (fp == NULL) exit(99);

memset (buffer, 'A', 80);
/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

printf("number of successful fwrites of 80 bytes = %d\n", i);

return 0;

1

void iohdlr (int signum) {
__amrc_type save_amrc;
__amrc2_type save_amrc2;
char filename[FILENAME MAX];
fldata_t info;

save_amrc = *__amrc; /* need copy of __amrc structure =*/

save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */
/* get name of file causing error from fldata */

if (fldata(save_amrc2. fileptr, filename, &info) == 0)
printf("error on file %s\n",filename);

perror("io handler"); /* give errno message */

printf("lastop=%d syscode=%X rc=%d\n",
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code. abend. rc);

signal (SIGIOERR, iohdlr);

Figure 35. Example of Using SIGIOERR (Part 2 of 2)

When control is given to a SIGIOERR handler, the __amrc2 structure field _ fileptr

will be filled in with a file pointer. The __amrc2__fileptr will be NULL if a

SIGIOERR is raised before the file has been successfully opened. The only operation

permitted on the file pointer is fldata(). This operation can be used to extract
information about the file that caused the error. Other than freopen() and
fclose(), all I/O operations will fail since the file pointer is marked invalid. Do
not issue freopen() or fclose() in a SIGIOERR handler that returns control. This
will result in unpredictable behavior, likely an abend.

Chapter 18. Debugging I/0 Programs 235

If you choose not to return from the handler, the file is still locked from all
operations except fldata(), freopen(), or fclose(). The file is considered open and
can prevent other incorrect access, such as an MVS sequential file opened more
than once for a write. Like all other files, the file is closed automatically at
program termination if it has not been closed explicitly already.

When you exit a SIGIOERR handler and do not return, the state of the file at closing
is indeterminate. The state of the file is indeterminate because certain control block
fields are not set correctly at the point of error and they do not get corrected unless
you return from the handler.

For example, if your handler were invoked due to a truncation error and you
performed a Tongjmp() out of your SIGIOERR handler, the file in error would
remain open, yet inaccessible to all I/O functions other than fldata(), fclose(), and
freopen(). If you were to close the file or it was closed at termination of the
program, it is still likely that the record that was truncated will not appear in the
final file.

You should be aware that for a standard stream passed across a system() call, the
state of the file will be indeterminate even after you return to the parent program.
For this reason, you should not jump out of a SIGIOERR handler. For further

information on system() calls and standard streams, see kCha.p.ter_‘Lﬂ_U.sm.gLand

”

I/0O with files other than the file causing the error is perfectly valid within a
SIGIOERR handler. For example, it is valid to call printf() in your SIGIOERR
handler if the file causing the error is not stdout. Comparing the incoming file
pointer to the standard streams is not a reliable mechanism of detecting whether
any of the standard streams are in error. This is because the file pointer in some
cases is only a pointer to a file structure that points to the same _ file as the
stream supplied by you. The FILE pointers will not be equal if compared, but a
comparison of the _ file fields of the corresponding FILE pointers will be. See the
stdio.h header file for details of type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a
special log file in your handler to issue messages about the error.

236 0S/390 V2R8.0 C/C++ Programming Guide

Part 3. Interlanguage Calls with OS/390 C/C++

This part describes OS/390 C/C++ considerations about interlanguage calls in the
0S/390 Language Environment. For complete information about interlanguage
calls (ILCS) with OS/390 C/C++ and OS/390 Language Environment, refer to
0S5/390 Language Environment Writing Interlanguage Applications.

° 4 ”

© Copyright IBM Corp. 1996, 1999 237

238 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 19. Using Linkage Specifications in C++

This section describes how you can make linkages between C++ and assembler, C,
COBOL, PL/I, or FORTRAN. For more complete information on making

interlanguage calls to and from C++, see OS/390 Language Environment Writing

Interlanguage Applications.

Syntax for Linkage

You can create linkages between C++ and other languages by using linkage
specifications with the following syntax:

extern "string-literal" { [declaration-list] }

extern "string-literal" declaration

declaration-list:
declaration

declaration-Tist declaration

string-literal specifies the linkage associated with a particular function that is
not a class member (C++ methods cannot have COBOL linkage). The valid values
for string-literal in OS/390 C++ include:

"C++" Default

"c" C linkage

"OS" Operating System linkage
"COBOL" COBOL linkage

"PLI" PL/I linkage
"FORTRAN" FORTRAN linkage

If OS/390 C++ does not recognize the value of string-literal, it uses C linkage.

Kinds of Linkage used by C++ Interlanguage Programs

The following table describes the kinds of linkage used by C++ interlanguage

programs.
What calls or is Kind of linkage Description of linkage Example
called by C++ used
program
Assembler, GDDM, | OS Basic linkage defined by the |extern "0S"
or ISPF operating system. Use of OS [{ ... }
linkage with assembler is
detailed in |’q,m=r*ifvinn;|
Linkage for C or Ca+ td
Ié 7’ 2 J]I.
PL/1 PLI Modification of OS linkage. |extern "PLI"

It forces the compiler to read
and write parameter lists
using PL/I linkage
conventions.

{ ...}

© Copyright IBM Corp. 1996, 1999

239

What calls or is Kind of linkage Description of linkage Example
called by C++ used
program

COBOL COBOL Forces the compiler to read |extern "COBOL"
and write parameter lists { ...}

using COBOL linkage
conventions. All calls from
C++ to COBOL must be
void functions.

FORTRAN FORTRAN Forces the compiler to read |extern "FORTRAN"
and write parameter lists { ...}

using FORTRAN linkage
conventions.

C C Forces the compiler to read |extern "C"
and write parameter lists { ...}
using C linkage conventions.
C code and the Data
Window Services (DWS)
product both use C linkage.

In the following example, a function is prototyped in a piece of C++ code and
uses, by default, C++ linkage.

void CXX_FUNC (int); // C++ linkage

Note that C++ is case-sensitive, but PL/I, COBOL, assembler, and FORTRAN are
not. In these languages, external names are mapped to uppercase. To ensure that
external names match across interlanguage calls, code the names in uppercase in
the C++ program, supply an appropriate #pragma map specification, or use the
NOLONGNAME compiler option. This will truncate and uppercase names for functions
without C++ linkage.

To reference functions defined in other languages, you should use a linkage
specification with a literal string that is one of "C", "0S", "PLI", "COBOL", or
"FORTRAN". For example:

extern "0S" {
int ASMFUNC1(void);
int ASMFUNC2(int);
}

This specification declares the two functions ASMFUNC1 and ASMFUNC2 to have
assembler linkage. The function names are case-sensitive and must match the
definition exactly. You should also limit identifiers to 8 or fewer characters.

Use the reference type parameter (typed) in C++ prototypes if the called language
does not support pass-by-value parameters or if the called routine expects a
parameter to be passed by reference.

¢ 0S/390 C/C++ supports the Tong Tong type for FORTRAN linkage functions.
* A C or C++ signed Tong Tong int maps to a FORTRAN INTEGER.

* A C or C++ unsigned long Tong int maps to FORTRAN LOGIC.

* 0S/390 C/C++ does not support other non-C or C++ linkage functions.

Note: To have your program be callable by any of these other languages, include
an extern declaration for the function that the other language will call.

240 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 20. Combining C or C++ and Assembler

This chapter describes how to communicate between OS/390 C/C++ and
assembler programs.

To write assembler code that can be called from OS/390 C/C++, use the prolog
and epilog macros described in this chapter. For more information on how the
0S5/390 Language Environment works with assembler, see OS/390 Language
Environment Writing Interlanguage Applications.

Access to OS/390 UNIX is intended to be through the OS/390 UNIX C/C++
extensions only. The OS5/390 C/C++ compiler does not support the direct use of
0OS/390 UNIX callable services such as the assembler interfaces. You should not
directly use OS/390 UNIX callable services from your OS/390 C/C++ application
programs, because problems can occur with the processing of the following:

* Signals

* Library transfers

» fork()

e exec()

* Threads

There are comparable OS/390 C/C++ functions for most OS/390 UNIX callable
services, and you should use those instead. Do not call assembler programs that
access OS/390 UNIX callable services.

Establishing the OS/390 C/C++ Environment

Before you can call an OS/390 C/C++ function from assembler, you must establish
a suitable environment.

¢ If you are using the C language, do one of the following:

— Call the assembler program from a C main(). This will establish the C
environment. You can then call assembler from C by following the OS linkage
conventions. Once you are in assembler, you can call any C function. See
t'Calling Run-Time Library Routines from Assembler — C Example” on

for an example.

— Use preinitialization to set up the OS/390 Language Environment. See
- — - - ———0—— for

information.
* If you are using C++, call the assembler program from a C++ main(). This will
establish the C++ environment. You can then call assembler from C++ by
following the OS linkage conventions. Once you are in assembler, you can call

any C++ function. For an example, see ECaJJm.gJS’un—_"Em;e_LJhtar_)LRguhnes_ﬁ;gnJ

”

Specifying Linkage for C or C++ to Assembler

The process for specifying the linkage to assembler differs for C and for C++. In C,
a #pragma linkage directive is used, while in C++ a linkage specifier is used.

© Copyright IBM Corp. 1996, 1999 241

* Under C, a #pragma 1inkage directive enables the compiler to generate and
accept parameter lists, using a linkage convention known as OS linkage.
Although functionally different, both calling an assembler routine and being called
by one are handled by the same #pragma. Its format is:

#pragma 1linkage (identifier, 0S)
where identifier is the name of the assembler function to be called from C or the

C function to be called from assembler. The #pragma 1inkage directive must
occur before the call to the entry point.

* Under C++, a linkage specifier enables the compiler to generate and accept
parameter lists, using a linkage convention known as OS linkage. Although
functionally different, both calling an assembler routine and being called by one
are handled by the same linkage specifier. The format of the linkage specifier is:
extern "0S" {

fnl desc;
fnZ desc;

}

where fnx desc is the name of the OS entry point.

You can call OS/390 C/C++ library functions when using the OS linkage, but you
must do this indirectly, through intervening C or C++ code, as shown in @

In general, any type that can be passed between C and assembler can also be
passed between C++ and assembler. However, if a C++ class that uses features not
available to assembler (such as virtual functions, virtual base classes, private and
protected data, or static data members) is passed to assembler, the results will be
undefined.

Note: In C++, a structure is just a class declared with the keyword struct its
members and base classes are public by default. A union is a class declared
with the keyword union its members are public by default, and it holds only
one member at a time.

Parameter List for OS Linkage

A parameter list for OS linkage is a list of pointers. The most significant bit of the
last parameter in the parameter list is turned on by the compiler when the list is
created.

If a parameter is an address-type parameter, the address itself is directly stored
into the parameter list. Otherwise, a copy is created for a value parameter and the
address of this copy is stored into the parameter list.

The type of a parameter is specified by the prototype of a function. In the absence
of a prototype, the creation of a parameter list is determined by the types of the

actual parameters passed to the function. Eigure 36 on page 243 shows an example
of the parameter list for OS linkage.

In the list, the first and third parameters are value parameters, and the second is
an address parameter.

242 0S/390 V2R8.0 C/C++ Programming Guide

ptr of P1 copy ptr of P3 copy

copy of P1 I copy of P3 I

Figure 36. Example of Parameter Lists For OS Linkages

Using Standard

Macros

To communicate properly, assembler routines must preserve the use of certain
registers and particular storage areas, in a way that is consistent with code from
the C or C++ compiler. OS/390 C/C++ provides three macros for use with
assembler routines. These macros are in CEE.SCEEMAC. They must be assembled
using Assembler H. The macros are:

EDCPRLG Generates the prolog for assembler code
EDCEPIL Generates the epilog for assembler code
EDCDSAD Accesses automatic memory

EDCPROL, the old version of EDCPRLG, is shipped for compatibility with Version 1 of
C/370 and is unchanged. However, you should use EDCPRLG if you can.

The advantage of writing assembler code using these macros is that the assembler
routine will then participate fully in the OS/390 C/C++ environment, enabling the
assembler routine to call OS/390 C/C++ functions. The macros also manage
automatic storage, and make the assembler code easier to debug because the
0S/390 Language Environment control blocks for the assembler function will be
displayed in a formatted traceback or dump. See Debug Tool User’s Guide and
Reference for further information on OS/390 Language Environment tracebacks and
dumps.

Assembler Prolog

Use the EDCPRLG macro to generate assembler prolog code at the start of assembler
routines.

>>—m_EDC PRLG ><
name EUSRDSALW] en

BASEREG=register—
DSALEN=dlen

name Is inserted in the prolog. It is used in the processing of certain
exception conditions and is useful in debugging and in reading
memory dumps. If name is absent, the name of the current CSECT
is used.

Chapter 20. Combining C or C++ and Assembler 243

USRDSAL=ulen Is used only when automatic storage (in bytes) is needed. To
address this storage, see the EDCDSAD macro description. The ulen
value is the requested length of the user space in the DSA.

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is Register 3. If register equals NONE, no
code is generated for establishing addressability.

DSALEN=dlen Is the total requested length of the DSA. The default is 120. If
fewer than 120 bytes are requested, 120 bytes are allocated. If both
dlen and ulen are specified, then the greater of dlen or ulen+120 is
allocated. If DSALEN=NONE is specified, no code is generated for DSA
storage allocation, and R13 will still point to the caller’s DSA.
Therefore, you should not use the EDCEPIL macro to terminate the
assembler routine. Instead, you have to restore the registers
yourself from the current DSA. To do this, you can use an
assembler instruction such as

LM 14,12,12(R13)
BR 14

You should not use EDCDSAD to access automatic memory if you
have specified DSALEN=NONE, since DSECT is addressable using R13.

Assembler Epilog

Use the EDCEPIL macro to generate assembler epilog code at the end of assembler
routines. Do not use this macro in conjunction with an EDCPRLG macro that specifies
DSALEN=NONE.

bb—m_EDCEPI L »><
name

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

Accessing Automatic Memory

Use the EDCDSAD macro to access automatic memory. Automatic memory is reserved
using the USRDSAL, or the DSALEN operand of the EDCPRLG macro. The length of the
allocated area is derived from the ulen and/or dlen values specified on the EDCPRLG
macro. EDCDSAD generates a DSECT, which reserves space for the stack frame needed
for the C or C++ environment.

name

name Is the optional name operand, which then becomes the name of the
generated DSECT.

The DSECT is addressable using Register 13. Register 13 is initialized by the prolog
code. If you have specified DSALEN=NONE with EDCPRLG you should not use EDCDSAD.

244 0S/390 V2R8.0 C/C++ Programming Guide

Calling Run-Time Library Routines from Assemble r — C Example

The following C example shows how to call library routines from assembler. There
are three parts to this example. The first part, shown in Eigure 37, is a trivial C
routine that establishes the C run-time environment.

CBC3GCA4

/* this example demonstrates C/Assembler ILC */
/* part 1 of 3 (other files are CBC3GCA2, CBC3GCA5) =/

#pragma linkage(CALLPRTF, 0S)

int main(void) {
CALLPRTF();

return(0);

}

Figure 37. Establishing the C Run-Time Environment

The second part of the example, shown in Eigure 34, is the assembler routine. It
calls an intermediate C function that invokes a run-time library function.

CBC3GCA2

* this example demonstrates ILC with Assembler-part 2 of 3
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in rl
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character
END

Figure 38. Calling an Intermediate C Function from Assembler OS Linkage

Finally, the intermediate C routine calls a run-time library function as shown in

Eigure 30 on page 244,

Chapter 20. Combining C or C++ and Assembler 245

CBC3GCAS5

/* this example demonstrates C/Assembler ILC */
/* part 3 of 3 (other files are CBC3GCA2, CBC3GCA4) =/
/***\
* This routine is an interface between assembler code =
and the 0S/390 C/C++ Tlibrary function printf(). *
0S Tinkage will not tolerate C-style variable length *
parameter lists, so this routine is specific to a *
formatting string and a single 4-byte substitution =*
*
/

* %k ok X

* parameter. It's specified as an int here.
/***

#pragma linkage(_printf4,0S) /+*function will be called from assemblerx/
#include <stdio.h>

#pragma map(_printf4,"@PRINTF4")

int _printfd(char *str,int i) {

return printf(str,i); /* call run-time library function /

Figure 39. Intermediate C Routine Calling a Run-Time Library Function

Calling Run-Time Library Routines from Assembler — C++
Example

The following C++ example shows how to call library routines from assembler.
There are three parts to this example. The first part shown in Eigure 40, is a trivial
C/C++ routine that establishes the C/C++ run-time environment. It uses extern OS
to indicate the OS linkage and calls the assembler routine.

CBC3GCA1l

// this example demonstrates C++/Assembler ILC
// part 1 of 3 (other files are CBC3GCA2, CBC3GCA3)

extern "0S" int CALLPRTF(void);

int main(void) {
CALLPRTF();
}

Figure 40. Establishing the C/C++ Run-Time Environment

The second part of this example, shown in Eigure 41 on page 247 is the assembler

routine. It calls an intermediate C/C++ routine that invokes a run-time library
function.

246 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GCA2

% this example demonstrates ILC with Assembler (part 2 of 3)
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in rl
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character
END

Figure 41. Calling an Intermediate C/C++ Function from Assembler using OS Linkage

The third part of the example, shown in Eigure 47, is an intermediate C routine
that calls a run-time library function.

CBC3GCA3

// this example demonstrates C/C++/Assembler ILC
// part 3 of 3 (other files are CBC3GCAl, CBC3GCA2)

// This routine is an interface between assembler code

// and the Run-time library function printf(). 0S Tinkage
// will not tolerate C-style variable Tength parameter lists,
// so this routine is specific to a formatting string

// and a single 4-byte substitution parameter. It's

// specified as an int here.

#include <stdio.h>
#pragma map(_printf4,"@PRINTF4")

extern "0S" int _printf4(char *str,int i) {

//function will be called from assembler
return printf(str,i); // call Run-time library function

Figure 42. Intermediate C/C++ Routine Calling a Run-Time Library Function
Register Content at Entry to an ASM Routine Using OS linkage

When control is passed to an assembler routine that uses OS linkage, the contents
of the registers are as follows:

Register Contents
RO Undefined.
R1 Points to the parameter list. The parameter list consists of a vector

Chapter 20. Combining C or C++ and Assembler 247

of addresses, each of which points to an actual parameter. The
address of the last parameter has its high-order bit set on, to
indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called
routine but must be restored to its entry value if it calls a routine
that expects an OS/390 Language Environment environment.

R13 Points to the caller’s DSA. Part of the DSA is used by EDCPRLG and
EDCEPIL to save and restore registers. EDCPRLG can change R13 so
that it points to the called routine’s DSA from the caller’'s DSA.

R14 The return address.
R15 The address of the entry point being called.

Register Content at Exit from an ASM Routine to OS/390 C/C++

Registers have the following content when control returns to the point of call:

Register Contents

RO Undefined.

R1 Undefined.

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and
EDCPRLG.

R14 Return address.

R15 Return value for integer types (long int, short int, char) and
pointer types. Otherwise set to 0.

FPo Returns value for float or double parameters.

FPO Returns value if Tong double is passed.

FP2 Returns value if Tong double is passed.

Note: When in FLOAT(AFP) mode the callee must save and restore FPR’s 8 through
15.

All other floating point registers are undefined.

Retaining the C Environment Using Preinitialization

Note: This information pertains only to users of C programs.

If an assembler routine called the same C program repeatedly, the creation and
termination of the C environment for each call would be inefficient. The solution is
to create the C environment only once by preinitializing the C program. This
section discusses the existing OS/390 C preinitialization interface only for reasons
of compatibility. Under the OS/390 Language Environment, you should use the
callable service CEEPIPI instead to preinitialize the environment for your
applications. For more information about this service, see OS/390 Language
Environment Writing Interlanguage Applications.

If you are calling a C program multiple times from an assembler program, you can
establish the C environment and then repeatedly invoke the C program using the

248 0S/390 V2R8.0 C/C++ Programming Guide

already established C environment. You incur the overhead of initializing and
terminating the C environment only once instead of every time you invoke the C
program.

Because C detects programs that can be preinitialized dynamically during
initialization, you do not have to recompile the program or link-edit it again.

To maintain the C environment, you start the program with the C entry CEESTART,
and pass a special Extended Parameter List that indicates that the program is to be
preinitialized.

When you use preinitialization, you are initializing the library yourself with the
INIT call and terminating it yourself with the TERM call. In a non-preinitialized
program, the library closes any files you left open and releases storage. It does not
do this in a preinitialized program. Therefore, for every invocation of your
preinitialized program, you must release all allocated resources as follows:

* Close all files that were opened
* Free all allocated storage
* Release all fetched modules

If you do not release all allocated resources, you will waste memory.
Setting Up the Interface for Preinitializable Programs

The interface for preinitializing programs is shown in w

Chapter 20. Combining C or C++ and Assembler 249

X! '+
R1 80000000
address

Length of EPL

Request

Extended plist
address

A

request modifier

defined

user-defined
word

address of work
area for DSAS etc.
address of
load routine

address of
delete routine
address of get-
storage routine
address of free-
storage routine

address of
exception router

address of
attention router

address of

message router

Token 1
Token 2
address
address X80000000" + LL | Runtime Options
address
0
address count of fields

Figure 43. Interface for Preinitializable Programs

The LL field is a halfword containing the value of 16. The halfword that follows

must contain 0 (zero).

The Request field is 8 characters that can contain:

"INIT !

Initializes the C environment and, returns two tokens that represent the

250 0S/390 V2R8.0 C/C++ Programming Guide

—> argc

pointer to pointer to argv [0]

argv vector argv [0] (program name)
pointer to
argv [1] argv [1]
pointer to _

argv [argc-1] argv [arge-1]
0

environment, but does not run the program. Token 1 and token 2 must both
have the value of zero on an INIT call; otherwise, preinitialization fails.

You can initialize only one C environment at a time. However, you can make
the sequence of calls to INIT, CALL, and TERM more than once.

"CALL '
Runs the C program using the environment established by the INIT request,
and exits from the environment when the program completes. The CALL request
uses the two tokens that were returned by the INIT request so that C can
recognize the proper environment.

You can also initialize and call a C program by passing the CALL parameter
with two zero tokens. The C program processes this request as an INIT
followed by a CALL. You can still call the program repeatedly, but you should
pass the two zero tokens only on the first call. Once the C environment is
initialized, the values of the tokens are changed, and must not be modified on
any subsequent calls.

Calling a C program other than the one used to initialize the C environment is
not supported, especially if write-able static is needed by the program being
called. This is because write-able static was allocated and initialized based
upon the program used to initialize the C environment.

'"TERM '
Terminates the C environment but does not run the program.

The program used to terminate the C environment should be the same as the
program used to initialize the C environment. Usage of a different program to
terminate the C environment is unsupported.

"EXECUTE '
Performs INIT, CALL, and TERM in succession.

No other value is valid.

The Extended PLIST address field is a pointer to the Extended Parameter List
(EPL). The EPL is a vector of fullwords that consists of:

Length of Extended Parameter List
The length includes the 4 bytes for the length field. Valid decimal values
are 20, 28, and 32.

First and Second C Environment Tokens:
These tokens are automatically returned during initialization; or, you can
use zeros for them when requesting a preinitialized CALL, and the effect is
that both an INIT and a CALL are performed.

Pointer to Your Program Parameters:

The layout of the parameters is shown in Eigure 43 on page 250, Interface

for Preinitialization Programs. If no parameter is specified, use a fullword
of zeros.

Pointer to Your Run-Time Options:
To point to the character string of run-time options, refer to w The
character string consists of a halfword LL field that contains the length of
the list of run-time options, followed by the actual list of run-time options.

Chapter 20. Combining C or C++ and Assembler 251

Pointer to an Alternative Main:
This field is not supported in C. However, if you want to use the seventh
or eighth fields, use a full word of zeros as a place holder.

Pointer to the Service Vector:
If you want certain services (such as load and delete) to be carried out by
other code supplied by you (instead of, for example, by the LOAD and
DELETE macros), use this field to point to the service vector. See

Request Modifier Code:
When your request is INIT, CALL, or EXECUTE, you can specify any of the
following request modifier codes:

0 Does not change the request.

1 Loads all common library modules as part of the preinitialized
environment.

2 Loads all common and C library modules as part of the

preinitialized environment.

3 Reinitializes the environment. If the environment is already
established, frees all HEAP storage and any ISA overflow segments.

Do not use this code if subsequent calls depend on storage that is
still being allocated by previous calls.

4 Allows you to create more than one environment. The new
environment is chained with existing request modifier 4
environments or a batch environment, where possible, so that C
memory file sharing among the environments is possible. Details
on chaining and C memory file sharing support are covered in

The user-supplied service routine vector is not supported when
you use request modifier value 4 in the extended parameter list.
Do not code this if you are using the service routine vector. If you
do, an abnormal end will occur.

5 Allows you to create more than one environment. The new
environment is separated from other environments which may
already exist. This environment does not support sharing of C
memory files with other preinitialization compatibility interface
environments.

When your request is TERM, you can specify either of the following request
modifier codes:
0 Does not change the request.

1 Forces termination. Ends the C environment without any of the
usual checks.

Code this field only when you cannot request normal termination.
You must ensure that the environment you are forcing to end is
not in use.

The length you specify in the first field of the extended parameter list makes it
known whether you have specified a request modifier code or not.

252 0S/390 V2R8.0 C/C++ Programming Guide

Run-Time options are applied only at initialization and remain until termination.
You must code PLIST(MVS) in the called C program in order for the
preinitialization to work.

The options ARGPARSE |[NOARGPARSE have no effect on preinitialized programs. The
assembler program has to provide parameters in the form expected by the C
program. Thus, if the C program is coded for the NOARGPARSE option, the argc
should be set to 2, and parameters passed as a single string.

Preinitializin g a C Program

A preinitialized C program is displayed in Eigure 44 on page 254 which shows how

to:

* Establish the C environment using an INIT request

* Pass run-time parameters to the C initialization routine

* Set up a parameter to the C program

* Repeatedly call a C program using the CALL request

* Communicate from the C program to the driving program using a return code
* End the C program using the TERM request

The example C program is very simple. The parameters it expects are the file name
in argv[1] and the return code in argv[2]. The C program printf()s the value of
the return code, writes a record to the file name, and decrements the value in
return code.

The assembler program that drives the C program establishes the C environment
and repeatedly invokes the C program, initially passing a value of 5 in the return
code. When the return code set by the C program is zero, the assembler program
terminates the C environment and exits.

The program in [Bigure 44 on page 254 does not include the logic that would verify
the correctness of any of the invocations. Such logic is imperative for proper

operations.

Chapter 20. Combining C or C++ and Assembler 253

CBC3

CBC3GCA

k
*k*k
*k*k
*kk
k
*kk

CBC3GCA
CBC3GCA
CBC3GCA

k
k
*k%
*kk
k
k

DO_CALL

GCAG6

6 TITLE 'TESTING PREINITIALIZED C PROGRAMS'

this example shows how to preinitialize a C program

part 1 of 3 (other files are CBC3GCA7 and CBC3GCA8)
Function: Demonstrate the use of Preinitialized C programs
Requests used: INIT, CALL, TERM

Parameters to C program: FILE_NAME, RUN_INDEX

Return from C Program: RUN_INDEX

6 CSECT
6 RMODE ANY
6 AMODE ANY
EXTRN CEESTART C Program Entry
STM R14,R12,12(R13) Save registers
BALR R3,0 Set base register
USING *,R3 Establish addressability
ST R13,SVAR+4 Set back chain
LA R13,SVAR Set this module's save area

DS OH

MVC P_RQ,INIT Set INIT as the request
LA R1,PALIPT Load Parameter pointer
L R15,CEP Load C Entry Point

BALR R14,R15 Invoke C Program

The C environment has been established.

Parameters include RUN_INDEX which will be counted down

by the C program. When the RUN_INDEX is zero, termination
will be requested.

The following code will set up C program parameters and
CALL request, invoke the C program and test for termination.

LA R1,PGPAPT Pointer to C program parameters
ST R1,EP_PGPA . to extended parameter Tist
DS OH

MVC P_RQ,CALL set up CALL request

LA R1,PALIPT set parameter pointer

L R15,CEP set entry point

BALR RI14,R15 invoke C program

L RO,RUN_INDEX Test Return Code

LTR RO,RO

BNZ DO_CALL Repeat CALL

Figure 44. Preinitializing a C Program (CBC3GCA®6) (Part 1 of 3)

254 0S/390 V2R8.0 C/C++ Programming Guide

*kk C requested termination.
*kk Set up TERM request and terminate the environment
KKK
DO_TERM DS OH

MVC P_RQ,TERM set up TERM request

SR R1,R1 mark no parameters

ST R1,EP_PGPA

LA R1,PALIPT set parameter pointer

L R15,CEP set entry point

BALR R14,R15 invoke termination
KK
*kk Return to system
KKK o e
XIT DS OH

L R13,4(13)
LM R14,R12,12(13)

BR R14
B g g g g g g g S g g g g g g g g g g g g S S SRS ——
*kk Constants and work areas
b g g g g g g g g g g g e g g gy S S ——

VARCON DS 0D
PALIPT DC A(X'80000000'+PALI) Address of Parameter list

CEP DC A(CEESTART) Entry point address
KKK o o o = -
PALI DS OF Parameter Tist
P_LG DC H'16' Length of the Tist
DC H'O' Must be zero
P_RQ DC cLg' ' Request - INIT,CALL,TERM,EXECUTE
P_EP_PT DC A(EPALI) Address of extended plist
B L T T L T
EPALI DS 0F Extended Parameter Tist
DC A(EP_LG) Length of this Tlist
EP.TCA DC A(0) First token
EP_PRV DC A(0) Second token
EP_PGPA DC A(PGPAPT) Address of C program plist
EP_XOPT DC A(XOPTPT) Address of run-time options
EP LG EQU *-EPALI Length of this Tist
KKK o o o o - - - -
*kk C program plist in argc, argv format
AR e e e e e e e e e e e e e e e, e e e e e e e e e — e ———————————
PGPAPT DC F'3! Number of parameters (argc)
DC A(PGVTPT) parameter vector pter (argv)
PGVTPT DS 0A Parameter Vector
DC A (PGNM) Program name pointer (argvl)
DC A(FILE_NAME) File name pointer (argv2)
DC A(RUN_INDEX) Run index pointer (argv3)
DC XL4'00000000" NULL pointer

Figure 44. Preinitializing a C Program (CBC3GCAG6) (Part 2 of 3)

Chapter 20. Combining C or C++ and Assembler

255

*kk Run-Time options

L R e T T e e e T
XOPTPT DC A(X'80000000'+XOPTLG) Run-Time options pter
XOPTLG DC AL2 (XOPTSQ) Run-Time option Tist length
XOPTS DC C'STACK(4K) RPTSTG(ON)' Run-Time options list
XOPTSQ EQU *-XOPTS Run-Time options length

KK o o e e e e e e
PGNM DC C'CBC3GCA7',X'00" C program name
FILE_NAME DC C'PREINIT.DATA',X'00' File name for C program
RUN_INDEX DC F'5',X'00" changed by C Program
KKK e
*Hx Request strings for preinitialization

KKK o e

INIT DC CL8"INIT'
CALL DC CL8'CALL'
TERM DC CL8'TERM'
EXEC DC CL8'EXECUTE'

KK o o
*Hx Assembler program's register save area
K e o e o e i e
SVAR DC 18F'0'
LTORG
f T gy g g gy g g g g g g g g g g g g g g g g Sy S S L
*HE Register definitions
KHK o o o o o o o o o e o o o
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
END

Figure 44. Preinitializing a C Program (CBC3GCAG6) (Part 3 of 3)

The program shown in [Figure 45 on page 2574 shows how to use the preinitializable

program

256 0S/390 V2R8.0 C/C++ Programming Guide

CBC3GCA7

/* this example shows how to use a preinitializable program =/
/* part 2 of 3 (other files are CBC3GCA6 and CBC3GCA8) =*/

#pragma runopts(PLIST(MVS))

#include <stdio.h>
#include <stdlib.h>

#define MAX_MSG 50
#define MAX_FNAME 8

typedef int (*f_ptr)(int, char*);/* pointer to function returning intx/

int main(int argc, char x*argv)

{
FILE *fp; /* File to be written to */
int *ptr_run; /* Pointer to the "run index" x/
char *ffmsg; /* a pointer to the "fetched function msg"*/
char fname[MAX_FNAME+1]; /* name of the function to be fetched */
int fetch_rc; /* Return value of function invocation */
f ptr fetch_ptr; /* Function pointer to fetched function */

/* Get the pointer to the "run index" =*/
ptr_run = (int *)argv[2];

if ((fp = fopen(argv[1],"a")) == NULL)
{

printf("Cannot open file %s\n",argv[1]);
*ptr_run = 03 /x Set to zero so it won't be called again */
return(0); /* Return to Assembler program x/

}

/* Write the record to the file =/
fprintf(fp,"Run index was %d.\n",*ptr_run);

/* Allocate the message returned from the fetched function x/
if ((ffmsg=(char *)malloc(MAX_MSG + 1)) == NULL)
printf("ERROR -- malloc returned NULL\n");

/* fetch the function */
fetch_ptr = (f_ptr) fetch("MYFUNC");
if (fetch_ptr == NULL)
printf("ERROR - Fetch returned a null pointer\n");

/* execute the function */
fetch_rc = fetch_ptr(*ptr_run, ffmsg);

Figure 45. Using the Preinitializable Program (CBC3GCA?) (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler

257

/* Write the function msg to file */
fprintf(fp,"%s\n",ffmsg);

/% Tell the user the value of the "run index" =/
printf("Run index was %d.\n",*ptr_run);

/* Decrement the "run index" x/
(*ptr_run)--;

/* Remember to close all opened files */
fclose(fp);

/* Remember to free all allocated storage */
free(fname);

/* Remember to release all fetched modules */
release((void(*)())fetch ptr);

/* Return to Assembler program */
return(0);

Figure 45. Using the Preinitializable Program (CBC3GCA?) (Part 2 of 2)

CBC3GCAS8

/* this example shows how to use a preinitializable program */
/* part 3 of 3 (other files are CBC3GCA6 & CBC3GCA7) =/

#include <string.h>
#pragma linkage(fetched, fetchable)
int fetched(int run_index, char *ffmsg) {
sprintf(ffmsg,"Welcome to myfunc: Run index was %d.",run_index);

return(0);

}

Figure 46. Using the Preinitializable Program (CBC3GCAS8)
Return Codes

Preinitialized programs do not put their return codes in R15. If the address of the
return code is required, specify a parameter. The example on page

shows how you can use the RUN_INDEX parameter to evaluate the address of a
return code.

User Exits in Preinitializable Programs

C invokes user exits when initialization and termination are actually performed.
That is, the initialization user exit is invoked during the INIT request or the CALL
with the zero token request. Similarly, the termination user exit is called only
during the TERM request.

Run-Time Options

If run-time options are specified in the assembler program, the C program must be
compiled with EXECOPS in effect. EXECOPS is the default.

258 0S/390 V2R8.0 C/C++ Programming Guide

Calling a Preinitializable Program

Figure 47 shows sample JCL to run a preinitializable program in an 0S/390
environment.

//youridA JOB
/1%

// SET LIB='CEE'
// SET CMP='CBC'

/1%

//PROCLIB JCLLIB ORDER=(&CMP..SCBCPRC)
//*===
L

/1* ASSEMBLE THE DRIVING ASSEMBLER PROGRAM
4y
//HLASM EXEC PGM=ASMA90,

// PARM="NODECK,OBJECT,LIST,ALIGN'

//SYSPRINT DD SYSOUT=+

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSPUNCH DD DUMMY

//SYSLIN DD DSN=&&0BJECT (ASSEM),SPACE=(80, (400,400,5)),

// DISP=(,PASS),UNIT=VIO,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSIN DD DSN=yourid.CBC3GCA6.ASM,DISP=SHR

//#===
ey

/1* COMPILE THE MAIN C PROGRAM
ey

//COMP EXEC EDCC,INFILE='yourid.CBC3GCA7.C',

// OUTFILE="'&&0BJECT (CMAIN),DISP=(0LD,PASS)"',

// CPARM="NOOPT,NOSEQ,NOMAR",

// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//*==s===sS====s=======
2y ey

/1* COMPILE AND LINK THE FETCHED C PROGRAM
7y

//CMPLK EXEC EDCCL,INFILE='yourid.CBC3GCA8.C',

// CPARM="NOOPT,NOSEQ,NOMAR",

// LIBPRFX=&LIB.,LNGPRFX=&CMP.

//LKED.SYSLMOD DD DSN=&&LOAD(MYFUNC),DISP=(,PASS),

// UNIT=VIO,SPACE=(TRK,(1,1,5))

Figure 47. JCL for Running a Preinitializable C Program (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler

259

//LKED EXEC PGM=IEWL,PARM='MAP,XREF,LIST',
// COND=((4,LT,HLASM), (4,LT,COMP.COMPILE), (4,LT,CMPLK.LKED))
//OBJECT DD DSN=&&OBJECT,DISP=(0LD,PASS)
//SYSLIN DD =
INCLUDE OBJECT (ASSEM)
INCLUDE OBJECT (CMAIN)
ENTRY CBC3GCA6
/*
//SYSLIB DD DISP=SHR,DSN=&LIB..SCEELKED
//SYSPRINT DD SYSOUT=x
//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&&LOAD(PREINIT),DISP=(0OLD,PASS)

/[*===================s======s====s====s=s====s====s=ss====ss=ss==s====
27y

//* RUN

[Hmm e m e e e e e

//G0 EXEC PGM=x.LKED.SYSLMOD,

// COND=(4,LT,LKED)

//STEPLIB DD DISP=0LD,DSN=&&LOAD

// DD DISP=SHR,DSN=&LIB..SCEERUN

//STDIN DD SYSOUT=+
//STDOUT DD SYSOUT=+
//STDERR DD SYSOUT=+
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=+

Figure 47. JCL for Running a Preinitializable C Program (Part 2 of 2)

Multiple Preinitialization Compatibility Interface C
Environments

To establish multiple Preinitialized Compatibility Interface (PICI) environments,
you must specify either request modifier 4 or request modifier 5 in the extended
parameter list (EPL) at environment initialization.

Request Modifier 4 Environment Characteristics

Use request modifier 4 to establish an environment which is tolerant of an existing
environment. When a request modifier 4 environment is dormant, it is immune to
creation or termination of other environments.

Environments created using request modifier 4 normally intend to share C memory
files, but it is not required for the application to take advantage of this support. A
new environment of this type is chained to the currently active environment that
supports chaining, or it will set up a dummy environment which supports
chaining. This allows for C memory files to be shared.

The sharing of C memory files across request modifier 4 environments is only
supported within the boundary of the application. There are really only two types
of applications where request modifier 4 environments are involved. The first type
is a set of pure request modifier 4 environments; there are no batch environments.
The second type allows a single batch environment. In the second type, the batch
environment must be the first initialized and the last terminated.

If starting with non OS/390 Language Environment enabled assembler, the first
request modifier 4 environment creates a dummy environment (OS/390 Language

260 0S/390 V2R8.0 C/C++ Programming Guide

Environment region-level control blocks) in addition to its own. The dummy
environment remains pointed to by the TCB when the initialization is complete.
The next initialization using request modifier 4 recognizes an existing environment
that supports chaining and the new environment will be chained. This permits the
two environments to share C memory files. Request modifier 4 environments in
this model can be initialized and terminated in any order.

If starting with an OS/390 Language Environment batch environment (for
example, COBOL, PL/I or C), which supports chaining by default, and during
execution within that environment a call is made to an assembler routine which
initializes a request modifier 4 environment, the batch environment is recognized
and the new environment will be chained. This allows an initial batch environment
to share C memory files with the request modifier 4 environment. Request modifier
4 environments in this model can be initialized and terminated in any order, but
all request modifier environments must be terminated before the batch
environment is terminated.

Notes:

1. When an OS/390 Language Environment batch environment is chained with
request modifier 4 environments, the OS/390 Language Environment batch
environment must be the first environment that is initialized and the last
environment that is terminated. All request modifier 4 environments initialized
within the scope of a batch environment must be terminated prior to exiting
the batch environment. Failure to do so will leave the request modifier 4
environments in a state such that attempted call or termination requests will
result in unpredictable behavior.

2. Initialization of a request modifier 4 environment while running in a
non-sharable environment, such as a request modifier 5 environment, causes
the new request modifier 4 environment to be non-sharable.

Sharing C Memory Files with Request Modifier 4 Environments: You can use
request modifier 4 to create multiple Preinitialized Compatibility Interface (PICI) C
environments. When you create a new request modifier 4 environment, it is
chained under certain circumstances to the current environment.

The following list identifies the specific features that are or are not supported in
the multiple PICI C environment scenario:

¢ C memory files will be shared across all C environments (as long as at least one
C environment exists) that are on the chain. This includes all PICI C
environments that are initialized and possibly an initial batch C environment.

e Because the PICI C environments are chained, initialization and termination of
these PICI C environments can be performed in any order. The chaining also
requires that the C run-time library treat each PICI C environment as equal. In C
run-time library terms, each PICI C environment is considered a root enclave
(depth=0).

* Because there can be multiple C root enclaves, sharing of C standard streams
across the C root enclaves exhibits a special behavior. When a C standard stream
is referenced for the first time, its definition is made available to each of the C
root enclaves.

* C standard streams are inherited across the system() call boundary. When a PICI
C environment is initialized from a nested enclave, it does not inherit the
standard streams of the nested enclave. Instead, it shares the C standard stream
definitions at the root level.

* C regular (nonmemory, nonstandard stream) files are also shared across the PICI
C environments.

Chapter 20. Combining C or C++ and Assembler 261

* Nested C enclaves are created using the system() call. The depth is relative to
the root enclave that owns the system() call chain. You can have two C enclaves,
other than the C root enclaves, with the same depth. You can do this by calling
one of the PICI C environments from a nested enclave and then using system()
in the PICI C environment.

* C regular (nonmemory, nonstandard stream) files opened in a system() call
enclave are closed automatically when the enclave ends.

¢ C regular (nonmemory, nonstandard stream) files that are opened in a PICI C
environment root enclave are not closed automatically until the PICI C
environment ends. Before returning to the caller, you should close streams that
are opened by the PICI C environment. If you do not, undefined behavior can
occur.

* C memory files are not removed until the last PICI C environment is ended.

* The clrmemf() function will only remove C memory files created within the
scope of the C root enclave from which the function is called.

* When a PICI C environment is called, flushing of open streams is not performed
automatically as it is when you use the system() call.

* This function is not supported under CICS.
* This function is not supported under System Programming C (SP C).
» Use of POSIX(ON) is not supported with this feature.

Request Modifier 5 Environment Characteristics

Use request modifier 5 to establish an environment which is tolerant of an existing
environment. When a request modifier 5 environment is dormant, it is immune to
creation or termination of other environments.

Request modifier 5 environments cannot share C memory files with other
environments. Each environment of this type is created as a separate entity, not
connected to any other environment. Request modifier 5 environments can be
initialized and terminated in any order.

Restrictions on Using batch Environments with Preinitialization
Compatibility Interface C Environments

If a batch environment is to participate in C memory file sharing, such as with a
request modifier 4 environment, then the batch environment must be the first
environment created and the last one terminated. All PICI environments initialized
within the scope of the batch environment must be terminated before the batch
environment is terminated. This is required because the PICI environment shares
control blocks that belong to the batch environment. If the batch environment is
terminated, storage for those control blocks is released. Attempts to use or
terminate a PICI environment after the batch environment has terminated will
result in unpredictable behavior.

Behaviors When Mixing Request Modifier 4 and Request Modifier
5

While running in a request modifier 5 environment, initializing another
environment with request modifier 4 creates a new environment that is separated
from the rest. The new environment will not be able to share C memory files with
any other request modifier 4 environment that may already exist.

While running in a request modifier 4 environment, initialization of a request
modifier 5 environment creates a new environment that is separated from the rest.

262 0S/390 V2R8.0 C/C++ Programming Guide

If the new request modifier 5 environment is within the scope of a batch
environment, this new environment does not need to be terminated before the
batch environment is terminated.

Using the Service Vector and Associated Routines

The service vector is a list of addresses of user-supplied service routines. The
interface requirements for each of the service routines that you can supply,
including sample routines for some of the services, are provided in the following
sections.

Using the Service Vector

If you want certain services like load and delete to be carried out by other
programs supplied by you (instead of, for example, by the LOAD and DELETE
macros), you must place the address of your service vector in the seventh fullword
field of the extended parameter list. Define the service vector according to the
pattern shown in the following example:

SRV_COUNT DS F Count of fields defined
SRV_USER_WORD DS F User-defined word

SRV_WORKAREA DS A Addr of work area for DSAs etc
SRV_LOAD DS A Addr of Toad routine
SRV_DELETE DS A Addr of delete routine
SRV_GETSTOR DS A Addr of get-storage routine
SRV_FREESTOR DS A Addr of free-storage routine
SRV_EXCEP_RTR DS A Addr of exception router
SRV_ATTN_RTR DS A Addr of attention router
SRV_MSG_RTR DS A Addr of message router

Although you need not use labels identical to those above, you must use the same
order. The address of your load routine is "fourth”, and the address of your
free-storage routine is "seventh”.

Some other constraints apply:

* You cannot omit any fields on the template that precede the last one you specify
from your definition of the service vector. You can supply zeros for the ones you
want ignored.

e The field count does not count itself. The maximum value is therefore 9.

* You must specify an address in the work area field if you specify addresses in
any of the subsequent fields.

* This work area must begin on a doubleword boundary and start with a fullword
that specifies its length. This length must be at least 256 bytes.

* For the load and delete routines, you cannot specify one of the pair without the
other; if one of these two fields contains a value of zero, the other is
automatically ignored. The same is true for the get-storage and free-storage pair.

* If you specify the get-storage and free-storage services, you must also specify the
load and delete services.

You must supply any service routines pointed to in your service vector. When
called, these service routines require the following:

* Register 13 points to a standard 18-fullword save area.
* Register 1 points to a list of addresses of parameters available to the routine.

* The third parameter in the list must be the address of the user word you
specified in the second field of the service vector.

Chapter 20. Combining C or C++ and Assembler 263

The parameters available to each routine, and the return and reason codes that
each routine uses, are shown in the following section. The parameter addresses are
passed in the same order in which the parameters are listed.

Load Service Routine

The load routine loads named modules. The LOAD macro usually provides this
service.

The parameters passed to the load routine are shown in Mable 21,

Table 31. Load Service Routine Parameters

Parameter ASM Attributes Type
Address of module name DS A Input
Length of name DS F Input
User word DS A Input
(Reserved field) DS F Input
Address of load point DS A Output
Size of module DS F Output
Return code DS F Output
Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will
contain zeros.

The load routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — module loaded above line when in AMODE 24

8/4 unsuccessful — load failed

16/4 unrecoverable error occurred

Delete Service Routine

The delete routine deletes named modules. The DELETE macro usually provides this
service.

The parameters passed to the delete routine are shown in [Cable 3d.

Table 32. Delete Service Routine Parameters

Parameter ASM Attributes Type
Address of module name DS A Input
Length of name DS F Input
User word DS A Input
(Reserved field) DS F Input
Return code DS F Output
Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will
contain zeros. Every delete action must have a corresponding load action, and the

264 0S/390 V2R8.0 C/C++ Programming Guide

task that does the load must also do the delete. Counts of deletes and loads
performed must be maintained by the service routines.

The delete routine can set the following return/reason codes:

0/0 successful

8/4 unsuccessful — delete failed

16/4 unrecoverable error occurred

Get-Storage Service Routine

The get-storage routine obtains storage. The GETMAIN macro usually provides this
service.

The parameters passed to the get-storage routine are shown in Cable 23

Table 33. Get-Storage Service Routine Parameters

Parameter ASM Attributes Type
Amount desired DS F Input
Subpool number DS F Input
User word DS A Input
Flags DS F Input
Address of obtained storage |DS A Output
Amount obtained DS F Output
Return code DS F Output
Reason code DS F Output

The get-storage routine can set the following return/reason codes:
0/0 successful
4/4 unsuccessful — the storage could not be obtained

16/4 unrecoverable error occurred.

Free-Storage Service Routine

The free-storage routine frees storage. The FREEMAIN macro usually provides this
service.

The parameters passed to the free-storage routine are shown in [[able 24,

Table 34. Free-Storage Service Routine Parameters

Parameter ASM Attributes Type
Amount to be freed DS F Input
Subpool number DS F Input
User word DS A Input
Address of storage DS A Input
Return code DS F Output
Reason code DS F Output

The free-storage routine can set the following return/reason codes:

Chapter 20. Combining C or C++ and Assembler 265

0/0 successful

16/4 unrecoverable error occurred

Exception Router Service Routine

The exception router traps and routes exceptions. The ESTAE and ESPIE macros
usually provide this service.

The parameters passed to the exception router are shown in [Cable2d

Table 35. Exception Router Service Routine Parameters

Parameter ASM Attributes Type
Address of exception handler | DS A Input
Environment token DS A Input
User word DS A Input
Abend flags DS F Input
Check flags DS F Input
Return code DS F Output
Reason code DS F Output

During initialization, if the ESTAE and/or ESPIE options are in effect, the common
library puts the address of the common library exception handler in the first field
of the above parameter list, and sets the environment token field to a value that is
passed on to the exception handler. It also sets abend and check flags as
appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following structure:

struct {
struct {
unsigned short abends : 1, /*control for system abends*/
reserved : 15;
} system;
struct {
unsigned short abends : 1, /*control for user abendsx*/
reserved : 15;
} user;

} abendflags;

The meaning of the bits in the check flags are given by the following structure:

struct {
struct {
unsigned short reserved
operation :
privileged_operation :
execute :

protection
addressing
specification
data
fixed_overflow
fixed_divide
decimal_overflow
decimal_divide
exponent_overflow
exponent_divide
significance

= = b b b b b e e b b e s e
L

266 0S/390 V2R8.0 C/C++ Programming Guide

float_divide H
} type;
unsigned short reserved;
} checkflags;

The exception router service routine can set the following return/reason codes:
0/0 successful
4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

Attention Router Service Routine

The attention router traps and routes attention interrupts. The STAX macro usually
provides this service.

The parameters passed to the attention router are shown in [Cable 24.

Table 36. Attention Router Service Routine Parameters

Parameter ASM Attributes Type
Address of attention router |DS A Input
Environmental token DS A Input
User word DS A Input
Return code DS F Output
Reason code DS F Output

The attention router routine can set the following return/reason codes:
0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the

attention handler. Use _the address in the attention handler field passing the
parameters shown in

Table 37. Attention Handler Parameters

Parameter ASM Attributes Type
Environment token DS A Input
Return code DS F Output
Reason code DS F Output

The return/reason codes upon return from the attention handler are:

0/0 The attention interrupt has been or will be handled

If an attention interrupt occurs in the attention handler or when an attention
handler is not started, your attention router should ignore the attention interrupt.

Message Router Service Routine

The message router routes messages written by the run-time library. These
messages are normally written to the LE Message File.

Chapter 20. Combining C or C++ and Assembler 267

The parameters passed to the message router are are shown in [[able 38.

Table 38. Message Router Service Routine Parameters

Parameter ASM Attributes Type
Address of message DS A Input
Message length in bytes DS F Input
User word DS A Input
Line length DS F Input
Return code DS F Output
Reason code DS F Output

If the address of the message is zero, your message router is expected to return the
size of the line to which messages are written (in the length field). The length field
allows messages to be formatted correctly, for example, broken at blanks.

The message routine must use the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

268 0S/390 V2R8.0 C/C++ Programming Guide

Part 4. Coding: Advanced Topics

This part contains the following coding topics:

» EChapter 21 Building and Using Dynamic Link Libraries (DL Ls)” on page 271

4 : : ”

. ” 77

o [“ 7

4 . . . ”

s . . : ”

% . . ey . 7

% . . . 172

o F'Chanter 29 ﬂrnh'mim'ng Your C/C+t+ Code with Tnfprprnrp(‘]nrz] Analysis” onl

FChanter 30 Network Communications under UNIX Svstem Services” onl

. I"(’hapfpr 31 ThfPTPT‘n(‘PQQ Communication TTQing 0S /390 TINIX” on page 447

4 : 17

a : : : ”

© Copyright IBM Corp. 1996, 1999 269

270 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 21. Building and Using Dynamic Link Libraries (DLLS)

As of OS/390 Version 2, the C/C++ IBM Open Class Library is licensed with the
base operating system and enables access to the C/C++ Class Library by
applications that require the library at execution time. This eliminates the need to
license the C/C++ Compiler features or to use the DLL Rename Utility. Provided
you use the base operating system, the DLL Rename Ultility discussed in this
chapter is not applicable.

A dynamic link library (DLL) is a collection of one or more functions or variables
in an executable module that is executable or accessible from a separate application
module. In an application without DLLs, all external function and variable
references are resolved statically at bind time. In a DLL application, external
function and variable references are resolved dynamically at run-time.

There are two types of DLLs: simple and complex. A simple DLL contains only
DLL code in which special code sequences are generated by the compiler for
referencing functions and external variables, and using function pointers. With
these code sequences, a DLL application can reference imported functions and
imported variables from a DLL as easily as it can non-imported ones.

The object code generated by the OS/390 C++ compiler is always DLL code. The
object code generated by the OS/390 C compiler with the DLL compiler option is
DLL code. Other types of object code are non-DLL code. For more information
about compiler options for DLLs, see the O5/390 C/C++ User’s Guide.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL
code. A typical complex DLL would contain some C++ code, which is always DLL
code, and some C object modules compiled with the NODLL compiler option bound
together.

This chapter defines DLL concepts and shows how to build simple DLLs.
I’(’hapfpr 22 Building Complex DITs” an page 287 shows how to build complex

DLLs and discusses some of the compatibility issues of DLLs.

Note: If your application uses the IBM-supplied C++ Class Library DLLs for
execution on a system prior to OS/390 Version 2, you must rename them
using the DLL Rename utility. See the OS/390 C/C++ User’s Guide for more
information on using this utility.

Support for DLLs

DLL support is available for applications running under the following systems:
* OS5/390 batch

+ CICS

+ IMS

* TSO

» OS5/390 UNIX

It is not available for applications running under SP C, CSP or MTE.

© Copyright IBM Corp. 1996, 1999 271

Note: All potential DLL executable modules are registered in the CICS PPT control
table in the CICS environment and are invoked at run time.

DLL Concepts and Terms

DLL An executable module that exports functions, variable definitions, or both,
to other DLLs or DLL applications.

DLL application
An application that references imported functions, imported variables, or
both, from other DLLs.

Imported functions and variables
Functions and variables that are not defined in the executable module
where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module
where a reference to them is made.

Exported functions or variables
Functions or variables that are defined in one executable module and can
be referenced from another executable module. When an exported function
or variable is referenced within the executable module that defines it, the
exported function or variable is also nonimported.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically,

this area contains global variables and function and variable descriptors for
DLLs.

Function descriptor
An internal control block containing information needed by compiled code
to call a function.

Variable descriptor
An internal control block containing information about the variable needed
by compiled code.

Loading a DLL

The DLL is loaded implicitly when an application references an imported variable
or calls an imported function. DLLs can be explicitly loaded by calling d111o0ad().
Due to optimizations performed, the DLL implicit load point may be moved and is
only done before the actual reference occurs.

Loading a DLL Implicitly

When an application uses functions or variables defined in a DLL, the compiled
code loads the DLL. This implicit load is transparent to the application. The load
establishes the required references to functions and variables in the DLL by
updating the control information contained in function and variable descriptors.

If the DLL contains static classes, constructors are run when the DLL is loaded,
typically before main(). Their destructors run once after they return from main().

To implicitly load a DLL, do one of the following:

272 0S/390 V2R8.0 C/C++ Programming Guide

1. Statically initialize a variable pointer to the address of an exported DLL
variable.

Reference a function pointer that points to an exported function.
Call an exported function.

Reference (use, modify, or take the address of) an exported variable.

a s~ DN

Call through a function pointer that points to an exported function.

In the first situation, the DLL is loaded before main() is invoked, and if the DLL
contains C++ code, constructors are run before main() is invoked. In the other
situations, the DLL loading may be delayed until the time of the implicit call,
although optimization may move this load earlier.

Note: When a DLL is loaded, its writable static is initialized. If the DLL load
module contains C++ code, constructors are run once at initial load time,
and destructors are run once at program termination.

Loading a DLL Explicitly

The use of DLLs can also be explicitly controlled by the application code at the
source level. The application uses explicit source-level calls to one or more
run-time services to connect the reference to the definition. The connections for the
reference and the definition are made at run-time.

The DLL application writer can explicitly call the following run-time services:

e d111oad(), which loads the DLL and returns a handle to be used in future
references to this DLL

* dl1queryfn(), which obtains a pointer to a DLL function
» dllqueryvar(), which obtains a pointer to a DLL variable
e d11free(), which frees a DLL loaded with d111o0ad()

For more information about the run-time services, see the 0OS/390 C/C++ Run-Time
Library Reference.

To explicitly call a DLL in your application:

* Determine the names of the exported functions and variables that you want to
use. You can get this information from the DLL provider’s documentation or by
looking at the definition side-deck file that came with the DLL. A definition
side-deck is a directive file that contains an IMPORT control statement for each
function and variable exported by that DLL.

* Include the DLL header file d11.h in your application.
* Compile your source as usual.
¢ Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling
the DLL explicitly with the run-time services.

Eigure 48 on page 274 is an example of an application that uses explicit DLL calls.

Explicit Use of a DLL in an Application

The following example shows explicit use of a DLL in an application.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 273

#include <d11.h>
#include <stdio.h>
#include <string.h>

#ifdef _ cplusplus
extern "C" {
#endif
typedef int (DLL_FN) (void);

#ifdef __cplusplus

#endif
#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"
" where\n"
" <pLL-name> is the DLL to load,\n"
" <type> can be one of FUNCTION or VARIABLE\n"
" and <identifier> is the function or variable\n"
to reference\n", progName);
return;

}

main(int argc, char* argv[]) {
int value;
int* varPtr;
char* d11;
char* type;
char* id;
d1Thandle* d1THandle;

if (argc != 4) {
Syntax(argv[0]);
return(4);

}

Figure 48. Explicit Use of a DLL in an Application (Part 1 of 2)

274 0S/390 V2R8.0 C/C++ Programming Guide

d11 = argv[1];
type = argv[2];
id = argv[3];

d11Handle = d117oad(d11);

if (d11Handle == NULL) {
perror("DLL-Load");
fprintf(stderr, "Load of DLL %s failed\n", d11);
return(8);

}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {

fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");
Syntax(argv[0]);
return(8);
1
/*
* variable request, so get address of variable
*
/

varPtr = (int*)(d11queryvar(dllHandle, id));

if (varPtr == NULL) {
perror("DLL-Query-Var");
fprintf(stderr, "Variable %s not exported from %s\n", id, d11);
return(8);

value = *varPtr;
printf("Variable %s has a value of %d\n", id, value);

}
else {
/*
* function request, so get function descriptor and call it
*
/
DLL_FNx fn = (DLL_FN*) (d11queryfn(dlTHandle, id));
if (fn == NULL) {
perror("DLL-Query-Fn");
fprintf(stderr, "Function %s() not exported from %s\n", id, d11);
return(8);

value = fn();
printf("Result of call to %s() is %d\n", id, value);

}
d11free(d1THandle);
return(0);
1
Figure 48. Explicit Use of a DLL in an Application (Part 2 of 2)

For more information on the DLL functions, see the OS/390 C/C++ Run-Time Library
Reference.

Managing the Use of DLLs When Running DLL Applications

This section describes how OS/390 C/C++ manages loading, sharing and freeing
DLLs when you run a DLL application.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 275

Loading DLLs

When you load a DLL for the first time, either implicitly or via an explicit
d1110ad(), writable static is initialized. If the DLL is written in C++, constructors
are run.

You can load DLLs from an OS/390 UNIX HEFS as well as from conventional data
sets. The following list specifies the order of a search for unambiguous and
ambiguous file names.

* Unambiguous file names
— If the file has an unambiguous HFS name (it starts with a ./ or contains a /),
the file is searched for only in the HFS.
— If the file has an unambiguous MVS name, and starts with two slashes (//),
the file is only searched for in MVS.
* Ambiguous file names
For ambiguous cases, the settings for POSIX are checked.
— When specifying the POSIX(ON) run-time option, the run-time library attempts
to load the DLL as follows:

1. An attempt is made to load the DLL from the HFS. This is done using the
system service BPX1LOD. For more information on this service, see
05/390 UNIX System Services Programming: Assembler Callable Services
Reference.

If the environment variable LIBPATH is set, each directory listed will be
searched for the DLL. See I!Chapter 33 Tlsing Environment Variahles” onl

for information on LIBPATH. Otherwise the current directory will
be searched for the DLL. Note that a search for the DLL in the HFS is
case-sensitive.

2. If the DLL is found and contains an external link name of eight characters
or less, the uppercase external link name is used to attempt a LOAD from
the caller’s MVS load library search order. If the DLL is not found or the
external link name is more than eight characters, then the load fails.

3. If the DLL is found and its sticky bit is on, any suffix is stripped off. Next,
the name is converted to uppercase, and the base DLL name is used to
attempt a LOAD from the caller’'s MVS load library search order. If the
DLL is not found or the base DLL name is more than eight characters, the
version of the DLL in the HFS is loaded.

4. If the DLL is found and does not fall into one of the previous two cases, a
load from the HFS is attempted.

If the DLL could not be loaded from the HFS, an attempt is made to load the
DLL from the caller’s MVS load library search order. This is done by calling the
0S/390 service LOAD with the DLL name, which must be eight characters or less
and is converted to uppercase. LOAD searches data sets in the following order:

1. Run-time library services (if active)

2. Job Pack Queue

3. Current STEPLIB/JOBLIB

4. LPA

5. Link List

* When POSIX(OFF) is specified the sequence is reversed.

— An attempt to load the DLL is made from the caller’s MVS load library search
order.

276 0S/390 V2R8.0 C/C++ Programming Guide

— If the DLL could not be loaded from the caller’s MVS load library then an
attempt is made to load the DLL from the HFS.

Sharing DLLs

DLLs are shared at the enclave level (as defined by the OS/390 Language
Environment). A referenced DLL is loaded only once per enclave and only one
copy of the writable static is created or maintained per DLL per enclave. Thus, one
copy of a DLL serves all modules in an enclave regardless of whether the DLL is
loaded implicitly or explicitly. A copy is implicit through a reference to a function
or variable. A copy is explicit through d1110ad(). You can access the same DLL
within an enclave both implicitly and by explicit run-time services.

All accesses to a variable in a DLL in an enclave refer to the only copy of that
variable. All accesses to a function in a DLL in an enclave refer to the only copy of
that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads
are counted and used to determine when the DLL can be deleted. For a given DLL
in a given enclave, there is one logical load for each explicit d111oad() request.
DLLs that are referenced implicitly may be logically loaded at application
initialization time if the application references any data exported by the DLL, or
the logical load may occur during the first implicit call to a function exported by
the DLL.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded
the DLL can access functions and variables.

Freeing DLLs

You can free explicitly loaded DLLs with a d11free() request. This request is
optional because the DLLs are automatically deleted by the run time library when
the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are
deleted by the run-time library at enclave termination. Therefore, if a DLL has been
both explicitly and implicitly loaded, the DLL can only be deleted by the run-time
when the enclave is terminated.

Creating a DLL or a DLL Application

Building a DLL or a DLL application is similar to creating a C or C++ application.
It involves the following steps:

1. Writing your source code
2. Compiling your source code

3. Binding your object modules

Building a Simple DLL

This section shows how to build a simple DLL.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 277

Writing Your C Code

To build a simple C DLL, write code using the #pragma export directive to export
specific external functions and variables as shown in

#pragma export(bopen)
#pragma export(bclose)
#pragma export(bread)
#pragma export (bwrite)
int bopen(const char* file, const char* mode) {

}
int bclose(int) {

}
int bread(int bytes) {

int bwrite(int bytes) {

} ...
#pragma export(berror)
int berror;

char buffer[1024];

Figure 49. Using #pragma export to Create a DLL Executable Module Named BASICIO

For the previous example, the functions bopen(), bclose(), bread(), and bwrite()
are exported; the variable berror is exported; and the variable buffer is not
exported.

Note: To export all defined functions and variables with external linkage in the
compilation unit to the users of the DLL, compile with the EXPORTALL
compile option. All defined functions and variables with external linkage
will be accessible from this DLL and by all users of this DLL. However,
exporting all functions and variables has a performance penalty, especially
with IPA. When you use EXPORTALL you do not need to include #pragma
export in your code.

Writing Your C++ Code

To create a simple C++ DLL:

* Ensure that classes and class members are exported correctly, especially if they
use templates.

* Use _Export or the #pragma export directive to export specific functions and
variables.

For example, to create a DLL executable module TRIANGLE, export the
getarea() function, the getperim() function, the static member objectCount and
the constructor for class triangle using #pragma export:

278 0S/390 V2R8.0 C/C++ Programming Guide

class triangle : public area
{
public:
static int objectCount;
getarea();
getperim();
triangle::triangle(void);
1
#pragma export(triangle::objectCount)
#pragma export(triangle::getarea())
#pragma export(triangle::getperim())
#pragma export(triangle::triangle(void))

Figure 50. Using #pragma Export to Create a DLL Executable Module TRIANGLE

* Do not inline the function if you apply the _Export keyword to the function
declaration.

class triangle : public area
{
public:
static int _Export objectCount;
double _Export getarea();
double _Export getperim();
_Export triangle::triangle(void);

}s

Figure 51. Using _export to Create DLL Executable Module TRIANGLE

* Always export constructors and destructors when using the _Export keyword.

* Apply the _Export keyword to a class. This keyword automatically exports static
members and defined functions of that class, constructors, and destructors.
_class Export triangle

{ public:
static int objectCount;
double getarea();
double getperim();
triangle::triangle(void);
bs
* To export all external functions and variables in the compilation unit to the users
of this DLL, you can also use the compiler option EXPORTALL. This compiler
option is described in the OS/390 C/C++ User’s Guide and #pragma directives are
described in detail in the OS/390 C/C++ Language Reference. If you use the
EXPORTALL option, you do not need to include #pragma export or _Export in your
code.

Compiling Your Code

For C source, compile with the DLL compiler option. When you specify the DLL
compiler option, the compiler generates special code when calling functions and
referencing external variables. Even if a simple application or DLL does not
reference any imported functions or imported variables from other DLLs, you
should specify the DLL compiler option. Compiling an application or DLL as DLL
code eliminates the potential compatibility problems that may occur when binding
DLL code with non-DLL code. See P’Chnpfpr 22 Building Complex DIIs” on

for more information on compatibility issues.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 279

For C++ source, compile as you would any C++ program.

Binding Your Code

Except for the object modules you require for creating the DLL, no additional
object modules are required. The binder automatically creates a definition
side-deck that describes the functions and the variables that can be imported by
DLL applications. You must provide the generated definition side-deck to all users
of the DLL. Any DLL application that implicitly loads the DLL must include the
definition side-deck when they bind.

Note: To target a PDS load library, prelink and link your code rather than using
the binder. For information on prelinking and linking, see the appendix on
the Prelinker in OS/390 C/C++ User’s Guide.

When binding the C object module as shown in Eigure 49 on page 278, the binder
generates the following definition side-deck:

IMPORT CODE 'BASICIO' bopen
IMPORT DATA ,BASICIO, bclose
IMPORT DATA ,BASICIO, bread
IMPORT DATA ,BASICIO, bwrite
IMPORT DATA ,BASICIO, berror

You can edit the definition side-deck to remove any functions or variables that you
do not want to export. For instance, in the above example, if you do not want to
expose berror, remove the control statement IMPORT DATA,BASICIO, berror from
the definition side-deck.

Note: You should also provide a header file containing the prototypes for exported
functions and external variable declarations for exported variables.

When binding the C++ object modules shown in Eigure 50 an page 279, the binder
generates the following definition side-deck.
IMPORT CODE ,TRIANGLE, getarea_ 8triangleFv

IMPORT CODE ,TRIANGLE, getperim__8triangleFv
IMPORT CODE ,TRIANGLE, _ct_8triangleFv

You can edit the definition side-deck to remove any functions and variables that
you do not want to export. In the above example, if you do not want to expose
getperim(), remove the control statement IMPORT CODE ,TRIANGLE,
getperim__8triangleFv from the definition side-deck.

Note: Removing functions and variables from the side definition deck does not
minimize the performance impact caused by specifying the EXPORTALL
complier option.

The definition side-deck contains mangled names, such as getarea__8triangleFv.
To find the original function or variable name in your source module, review the
compiler listing created or use the CXXFILT utility. This will permit you to see both
the mangled and demangled names. For more information on the CXXFILT utility,
see the OS/390 C/C++ User’s Guide.

280 0S/390 V2R8.0 C/C++ Programming Guide

Building a Simple DLL Application

A simple DLL application contains object modules that are made up of only
DLL-code. The application may consist of multiple source modules. Some of the
source modules may contain references to imported functions, imported variables,
or both. Some of the files contain references to imported functions or imported
variables.

To use a load-on-call DLL in your simple DLL application:
1. Write your code as you would if the functions were statically bound.
2. Compile as follows:
* Compile your C source files with the following compiler options:
- DLL
— RENT
— LONGNAME
These options instruct the compiler to generate special code when calling
functions and referencing external variables.

* Compile your C++ source files normally. A C++ application is always DLL
code.

3. Bind your object modules as follows.

* If you are using OS/390 Batch, use the IBM-supplied procedure when you
bind your object modules.

* If you are not using the IBM-supplied procedure, specify the RENT binder
option when you bind your object modules.

* If you are using OS/390 UNIX specify the following option for the bind step
for c89 or c++.

-W 1,DLL
Include the definition side-deck from the DLL provider in the set of object
modules to bind. The binder uses the definition side-deck to resolve references

to functions and variables defined in the DLL. If you are referencing multiple
DLLs, you must include multiple definition side-decks.

Note: Because definition side-decks in automatic library call (autocall)
processing will not be resolved, you must use the INCLUDE statement.

The following is a code fragment illustrating how an application can use the DLL
described previously. Compile normally and bind with the definition side-deck
provided with the TRIANGLE DLL.

extern int getarea(); /* function prototype */
main () {

getarea(); /* imported function reference */

}

See Eigure 52 an page 283 for a summary of the processing steps required for the
application (and related DLLs).

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 281

Creating and Using DLLs

summarizes the use of DLLs for both the DLL provider and
for the writer of applications that use them. In this example, application ABC is
referencing functions and variables from two DLLs, XYZ and PQR. The connection
between DLL preparation and application preparation is shown. Each DLL shown
contains a single compilation unit. The same general scheme applies for DLLs
composed of multiple compilation units, except that they have multiple compiles
and a single bind for each DLL. For simplicity, this example assumes that ABC
does not export variables or functions and that XYZ and PQR do not use other
DLLs.

282 0S/390 V2R8.0 C/C++ Programming Guide

P I DLL - » <--- APPLICATION ----» - DLL === »
XYZ.c ABC.c PQR.c
DLL Source: Application Source: DLL Source:
hooVar definition foo() ref rooVar definition
kooVar definition goo() ref sooVar definition
foo() definition boo() ref boo() definition
goo() definition hooVar ref s00() definition
kooVar ref
rooVar ref

Compile with
EXPORTALL, DLL

v XYZ.0bj

DLL TEXT

Bind

APPL TEXT .

Compile Compile with
with EXPORTALL, DLL
DLL

v ABC.obj PQR.obj ¢

DLL TEXT .

Bind

XYZ.objdef

PQR.objdef

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data '‘PQR' rooVar
Import data 'PQR' sooVar

Bind
Link
vXYZ.pobj vABC.pobj PQR.pobj v
DLL program Application program DLL program

Figure 52. Summary of DLL and DLL Application Preparation and Usage

DLL Restrictions

Consider the following restrictions when creating DLLs and DLL applications:

* The entry point for a DLL must be either an OS/390 C/C++ or a Language
Environment conforming entry point. An entry point is considered Language

Environment conforming if it includes CEESTART or if it was compiled using a

Language Environment conforming compiler.

Note: If the entry point for a DLL does not meet either of the above conditions,

Language Environment issues an error and terminates the application.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs)

283

In a DLL application that contains main(), main() cannot be exported.

The AMODE of a DLL application must be the same as the AMODE of the DLL
that it calls.

DLL facilities are not available:
— Under MTF, CSP or SP C

- To application programs with main() written in PL/I that dynamically call
0S/390 C functions

You cannot implicitly or explicitly perform a physical load of a DLL while
running C++ static destructors. However, a logical load of a DLL (meaning that
the DLL has previously been loaded into the enclave) is allowed from a static
destructor. In this case, references from the load module containing the static
destructor to the previously-loaded DLL are resolved.

You cannot use the functions set_new_handler() or set_unexpected() in a DLL
if the DLL application is expected to invoke the new handler or unexpected
function routines.

When using the explicit DLL functions in a multithreaded environment, avoid
any situation where one thread frees a DLL while another thread calls any of the
DLL functions. For example, this situation occurs when a main () function uses
d1110ad() to load a DLL, and then creates a thread that uses the ftw() function.
The ftw() target function routine is in the DLL. If the main() function uses
d11free() to free the DLL, but the created thread uses ftw() at any point, you
will get an abend.

To avoid a situation where one thread frees a DLL while another thread calls a
DLL function, do either of the following:

— Do not free any DLLs by using d11free() (the OS/390 Language
Environment will free them when the enclave is terminated).

— Have the main() function call d11free() only after all threads have been
terminated.

For DLLs to be processed by IPA, they must contain at least one function or
method. Data-only DLLs will result in a compilation error.

Use of circular DLLs may result in unpredictable behavior related to the
initialization of non-local static objects. For example, if a static constructor (being
run as part of loading DLL "A") causes another DLL "B" to be loaded, then DLL
"B” (or any other DLLs that "B" causes to be loaded before static constructors for
DLL "A" have completed) cannot expect non-local static objects in "A" to be
initialized (that is what static constructors do). You should ensure that non-local
static objects are initialized before they are used, by coding techniques such as
counters or by placing the static objects inside functions.

Improving Performance

This section contains some hints on using DLLs efficiently. Effective use of DLLs
may improve the performance of your application. Following are some suggestions
that may improve performance:

If you are using a particular DLL frequently across multiple address spaces, the
DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the
dynamic LPA services should be used. Installing in the LPA/ELPA may give you
the performance benefits of a single rather than multiple load of the DLL.

Be sure to specify the RENT option when you bind your code. Otherwise, each
load of a DLL results in a separately loaded DLL with its own writable static.

Group external variables into one external structure.
When using OS/390 UNIX avoid unnecessary load attempts.

284 0S/390 V2R8.0 C/C++ Programming Guide

0S/390 Language Environment supports loading a DLL residing in the HFS or a
dataset. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the run-time option POSIX(ON) or
POSIX (OFF).

If your application runs with POSIX(ON), OS/390 Language Environment tries to
load the DLL from the HFS first. If your DLL is a data set member, you can
avoid searching the HFS directories. To direct a DLL search to a dataset, prefix
the DLL name with two slashes (//) as is in the following example.

//MYDLL

If your application runs with POSIX(0FF), OS/390 Language Environment tries
to load your DLL from a dataset. If your DLL is an HFS file, you can avoid
searching a dataset. To direct a DLL search to the HFS, prefix the DLL name
with a period and slash (./) as is done in the following example.

. /myd11

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found in the HFS.

— For IPA, you should only export subprograms (functions and C++ methods)
or variables that you need for the interface to the final DLL. If you export
subprograms or variables unnecessarily (for example, by using the EXPORTALL
option), you severely limit IPA optimization. In this case, global variable
coalescing and pruning of unreachable or 100% inlined code does not occur.
To be processed by IPA, DLLs must contain at least one subprogram.
Attempts to process a data-only DLL will result in a compilation error.

— The suboption NOCALLBACKANY of the compiler option DLL is more efficient than
the CALLBACKANY suboption. The CALLBACKANY option calls an OS/390
Language Environment routine at run-time. This run-time service enables
direct function calls. Direct function calls are function calls through function
pointers that point to actual function entry points rather than function
descriptors. The use of CALLBACKANY will result in extra overhead at every
occurrence of a call through a function pointer. This is unnecessary if the calls
are not direct function calls.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 285

286 0S/390 V2R8.0 C/C++ Programming Guide

Chapter 22. Building Complex DLLs

Before you attempt to build complex DLLs it is important to understand the
differences between the terms DLL, DLL code, and DLL application.

A DLL (Dynamic Link Library) is a file containing executable code and data bound
to a program at run time. The code and data in a DLL can be shared by several
applications simultaneously. It is important to note that compiling code with the
DLL option does not mean that the produced executable will be a DLL. To create a
DLL, you must use the #pragma export or EXPORTALL compiler option.

DLL code is code that is compiled using the DLL option. Non-DLL code is compiled
without the DLL option. All C++ code is DLL code.

DLL applications use exported functions or variables. Note that not all source files
that make up a DLL application have to be compiled with the DLL option.
However, source files that reference to exported functions and exported global
variables must be compiled with the DLL option.

A key characteristic of a complex DLL or DLL application is that linking DLL code
with non-DLL code creates it. The following are reasons you might compile your
code as non-DLL:

1. Source modules do not use C or C++.

2. To prevent problems which occur when a non-DLL function pointer call uses
DLL code. This problem takes place when a function makes a call through a
function pointer that points to a function entry rather than a function
descriptor.

As of V2 R4.0, the compiler option DLL has the following two suboptions:

* NOCALLBACKANY (abbreviated as NOCBA)
* CALLBACKANY (abbreviated as CBA)

If you use the suboption NOCBA, which is the default, there is no change in the
behavior of either the DLL or NODLL compiler option. If you use CBA, a call is made
to an OS/390 Language Environment routine at run-time for each function call
through a function pointer. This call, made by a function pointer when you specify
the CBA suboption, eliminates the error that would occur when a non-DLL function
pointer passes to DLL code.

Note: All source modules compiled before the addition of CBA and NOCBA
suboptions are equivalent to those compiled with NOCBA, the default. In this
book, unless otherwise specified, all references to the DLL|NODLL compiler

option assume suboption NOCBA. For more information on the compiler
option DLL, see OS/390 C/C++ User’s Guide.

The steps for creating a complex DLL or DLL application are:
1. Determining how to compile your source modules.
2. Modifying the source modules that do not meet all the DLL rules.

3. Compiling the source modules to produce DLL code and non-DLL code as
determined in the previous steps.

4. Binding your DLL or DLL application.

© Copyright IBM Corp. 1996, 1999 287

The focus of this chapter is step 1 and step 2 . IBinding Your Code” on page 280

explains Step 4. You perform step 4 the same way you would for any other C or
C++ application.

Rules for Compiling Source Code

To create a complex DLL or DLL application, you must comply with the following
rules that dictate how you compile source modules. The first decision you must
make is how you should compile your code. You determine whether to compile
with either the DLL or NODLL compiler option based on whether or not your code
references any other DLLs. Even if your code is a DLL, it is safe to compile your
code with the NODLL compiler option if your code does not reference other DLLs.

The second decision you must make is whether to compile with the default
compiler suboption for DLL|NODLL, which is NOCBA, or use the alternative suboption
CBA. This decision is based upon your knowledge of the code you reference. If you
are sure that you do not reference any function calls through function pointers that
point to a function entry rather than a function descriptor, use the NOCBA suboption.
Otherwise, you should use the CBA suboption.

As of V2R4 of OS/390 C/C++, use the following options to ensure that you do not
have undefined results as a result of the function pointer pointing to a function
entry rather than a function descriptor:

1. Compile your source module with the CBA suboption of DLL |NODLL. This option
inserts extra code whenever you have a function call through a function
pointer. The inserted code invokes a run-time service of OS/390 Language
Environment which enables direct function calls through C/C++ function
pointers. Direct function calls are function calls through function pointers that
point to actual function entry points rather than function descriptors. The
drawback of this method is that your code will run slower. This occurs because
whenever you have function calls through functi